A method of designing a template pattern used for imprint lithography, includes generating data of a dummy template pattern to be formed in a third area between first and second areas of a template based on data of a design pattern of the template, the data of the dummy template pattern being generated so that a third surface area ratio showing a ratio of a surface area of the third area to an area of the third area is set smaller than a first surface area ratio showing a ratio of a surface area of the first area to an area of the first area and larger than a second surface area ratio showing a ratio of a surface area of the second area to an area of the second area.

Patent
   RE48815
Priority
Mar 19 2009
Filed
Jun 17 2015
Issued
Nov 09 2021
Expiry
Mar 16 2030
Assg.orig
Entity
Large
0
17
all paid
0. 27. A computer-implemented method of designing one or more template patterns used for imprint lithography, comprising:
determining, by a computer, an area of a first region, an area of a second region, and an area of a third region where a template pattern is to be formed, the third region being between and adjacent to the first region and the second region of a template;
generating, by the computer, data of the template pattern to be formed in the third region based on data of the design pattern of the template;
wherein the first region, the second region, and the template pattern to be formed in the third region are associated respectively with a first density, a second density, and a third density; and
wherein the third density is smaller than the first density and larger than the second density.
1. A computer-implemented method of designing a template pattern used for imprint lithography, comprising:
determining, by a computer, a first area, a second area, and a third area where a dummy template pattern is to be formed, the third area being between and adjacent to the first area and the second area of a template;
generating, by a the computer, data of a the dummy template pattern to be formed in a the third area between first and second areas of a template based on data of a design pattern of the template,
the data of the dummy template pattern being generated so that a third surface area ratio showing a ratio of a surface area of the third area to an area of the third area is set to be:
smaller than a first surface area ratio showing a ratio of a surface area of the first area to an area of the first area, and
larger than a second surface area ratio showing a ratio of a surface area of the second area to an area of the second area.
0. 14. A computer-implemented method of designing one or more template patterns used for imprint lithography, comprising:
determining, by a computer, an area of a first region, an area of a second region, and an area of a third region where a template pattern is to be formed, the third region being between and adjacent to the first region and the second region of a template;
generating, by the computer, data of the template pattern to be formed in the third region based on data of a design pattern of the template;
wherein the first region, the second region, and the third region are associated respectively with a first surface area ratio, a second surface area ratio, and a third surface area ratio;
and wherein the third surface area ratio is smaller than the first surface area ratio and larger than the second surface area ratio,
wherein the first region is included in a chip area, and the second region is included in an interchip area between the chip area and another chip area, and the third region is included in the interchip area.
2. The method according to claim 1, wherein generating the data of the dummy template pattern includes:
calculating the first surface area ratio based on the data of the design pattern;
calculating the second surface area ratio based on the data of the design pattern; and
generating the data of the dummy template pattern based on the first and second surface area ratios.
3. The method according to claim 1, wherein the first area is included in a chip area.
4. The method according to claim 1, wherein the second area is included in an interchip area.
5. The method according to claim 1, wherein the second area has no pattern.
6. The method according to claim 1, wherein a pitch of between a dummy template pattern of the third area is larger than that a width of a dummy template pattern of the first third area.
7. The method according to claim 1, wherein a width of a dummy template pattern of the third area is larger than that of a template pattern of the first area.
8. The method according to claim 1, wherein the surface area ratio of the third area is constant.
9. The method according to claim 1, wherein the surface area ratio of the third area changes.
10. The method according to claim 1, wherein the third area includes a first sub-area and a second sub-area between the second area and the first sub-area, and
a fourth surface area ratio showing a ratio of a surface area of the first sub-area to an area of the first sub-area is smaller than the first surface area ratio, and
a fifth surface area ratio showing a ratio of a surface area of the second sub-area to an area of the second sub-area is smaller than the fourth surface area ratio, and larger than the second surface area ratio.
11. The method according to claim 1, wherein the surface area ratio of the third area decreases from the first area toward the second area.
12. A method of manufacturing a template, comprising:
forming a template pattern designed using the method according to claim 1 in a template substrate.
13. A method of manufacturing a semiconductor device, comprising:
transferring a pattern formed in the template manufactured using the method according to claim 12 to an imprint material layer on a substrate.
0. 15. The method of claim 14, wherein generating the data of the template pattern includes:
calculating the first surface area ratio and the second surface area ratio after determining the area of the first region, the area of the second region, and the area of the third region; and
determining the template pattern of the third region based on the calculated first surface area ratio and the calculated second surface area ratio.
0. 16. The method of claim 14, wherein the first region is included in a chip area.
0. 17. The method of claim 14, wherein the second region and the third region are included in an interchip area.
0. 18. The method of claim 14, wherein the second region has no pattern.
0. 19. The method according to claim 14, wherein a third pitch between the template pattern to be formed in the third region is larger than a first pitch between a template pattern of the first region.
0. 20. The method according to claim 14, wherein a third width of the template pattern to be formed in the third region is larger than a first width of a template pattern of the first region.
0. 21. The method according to claim 14, wherein the template pattern to be formed in the third region includes a first sub-region and a second sub-region; wherein the first sub-region is associated with a first sub-region surface area ratio; wherein the second sub-region is associated with a second sub-region surface area ratio; wherein the first sub-region surface area ratio is different from the second sub-region surface area ratio.
0. 22. The method according to claim 21, wherein the second sub-region is to be formed between the second region and the first sub-region; wherein the first sub-region surface area ratio is smaller than the first surface area ratio; and wherein the second sub-region surface area ratio is smaller than the first sub-region surface area ratio.
0. 23. The method according to claim 22, wherein the second sub-region surface area ratio is larger than the second surface area ratio.
0. 24. The method according to claim 14, wherein the template pattern to be formed in the third region includes a dummy template pattern.
0. 25. A method of manufacturing a template, comprising:
forming at least one of the one or more template patterns designed using the method of claim 14 in a template substrate.
0. 26. A method of manufacturing a semiconductor device, comprising:
transferring one or more patterns formed in the template manufactured using the method according to claim 25 to an imprint material layer on a substrate.

This application

The dummy template pattern is generated at design stage before a template is actually prepared and arranged at a placement area of a dummy template pattern.

According to the foregoing embodiment, areas 33 and 35 have no pattern. However, a pattern may be formed in areas 33 and 35 so long as the foregoing relationship is established between the surface area ratios of areas 31, 32 and 33. If a large pattern exists in the placement area of the dummy template pattern, the large pattern may be divided so that a dummy template pattern is generated.

As described above, the area 32 provided with a dummy template pattern is interposed between the area 31 having a large surface area ratio and the area 33 having a small surface area ratio. In this way, the surface area ratio of the area 32 is set to a value ranging between the surface area ratio of the area 31 and that of the area 33. In the manner described above, each surface area ratio of areas 31, 32 and 33 is set, and thereby, this serves to prevent a rapid change of a surface area ratio, and to prevent a rapid change of a contact area of a template with a resist layer. Therefore, it is possible to prevent a separation velocity from rapidly increasing, and to prevent a resist pattern from being torn off.

Hereinafter, a method of designing the foregoing template pattern will be described with reference to a flowchart shown in FIG. 11.

First, a template pattern is generated based on the design pattern data of a semiconductor device. Thereafter, the generated template pattern is divided into a plurality of mesh-shaped areas (S11).

A surface area ratio of each divided area is calculated, and then, a surface area ratio map is prepared (S12).

Based on the foregoing surface area ratio map, an area of arranging a dummy template pattern is determined (S13). Specifically, a divided area having a rapidly decreased surface area ratio with respect to neighboring divided area is obtained, and then, the foregoing divided area is determined as a placement area of a dummy template pattern.

A surface area ratio of each divided area adjacent to both sides of the placement area of a dummy template pattern is calculated based on the design pattern data (S14).

A dummy template pattern to be arranged in the dummy template pattern placement area is generated (S15). Specifically, based on the surface area ratios of both neighboring divided areas calculated in step S14, a dummy template pattern is generated so that a surface area ratio of the dummy template pattern placement area is set to a value ranging between the surface area ratios of both neighboring divided areas.

According to this embodiment, a third area between a first area having a large surface area ratio (first surface area ratio) and a second area having a small surface area ratio (second surface area ratio) is provided with a dummy template pattern. In this way, a surface area ratio (third surface area ratio) of the third area is set smaller than the first surface area ratio and larger than the second surface area ratio. This serves to prevent a rapid change of a surface area ratio, and to prevent a rapid change of a contact area of a template with a resist layer. Therefore, it is possible to prevent a rapid increase of a separation velocity, and to effectively prevent a resist pattern from being torn off. As a result, the generation of a defect can be prevented in the resist pattern.

Various changes may be made with respect to the dummy template pattern. Hereinafter, various modifications will be described.

FIG. 12 is a view schematically showing a first modification example. According to the embodiment shown in FIGS. 9 and 10, the area 32 is provided with the dummy template pattern 42 having a pitch larger than the template pattern 41 of the area 31. In this way, the number of patterns of the area 32 is relatively reduced, and the surface area ratio of the area 32 is set smaller than that of the area 31. According to this modification example, an area 32 is provided with a dummy template pattern 42 having a size (pattern width) larger than a template pattern 41 of an area 31. In this way, the number of patterns of the area 32 is relatively reduced, and the surface area ratio of the area 32 is set smaller than that of the area 31. Therefore, according to this modification example, the same effect as described above is obtained.

FIG. 13 is a view schematically showing a second modification example. According to the embodiment shown in FIGS. 9 and 10, the template pattern 41 of the area 31 is a line-shaped pattern, and the dummy template pattern 42 of the area 32 is a line-shaped pattern. According to the second modification example, a template pattern 41 of an area 31 is a square-shaped pattern, and also, a dummy template pattern 42 of an area 32 is a square-shaped pattern. According to this modification example, the area 32 is provided with a dummy template pattern 42 having a pitch larger than the template pattern 41 of the area 31. In this way, the number of patterns of the area 32 is relatively reduced, and the surface area ratio of the area 32 is set smaller than that of the area 31. Therefore, according to this modification example, the same effect as described above is obtained.

FIG. 14 is a view schematically showing a third modification example. According to the third modification example, a dummy template pattern 42 of an area 32 is a square-shaped pattern as well as the second modification example. According to this modification example, the area 32 is provided with a dummy template pattern 42 having a size larger than a template pattern 41 of an area 31. In this way, the number of patterns of the area 32 is relatively reduced, and a surface area ratio of the area 32 is smaller than that of the area 31. Therefore, according to this modification example, the same effect described above is obtained.

FIG. 15 is a view schematically showing a fourth modification example. According to the embodiment shown in FIGS. 9 and 10, the surface area ratio of the template becomes small in the order of areas 31, 32 and 33. According to the fourth modification example, the surface area ratios of areas 31 and 33 are relatively large while the surface area ratio of the area 32 ranging between areas 31 and 33 is relatively small. Even if the foregoing configuration is employed, it is possible to prevent a defect from being generated in a resist pattern.

FIG. 16 is a view schematically showing a fifth modification example. According to the embodiment shown in FIGS. 9 and 10, the surface area ratio of the area 32 provided with the dummy template pattern 42 is constant. According to the fifth modification example, the surface area ratio changes in the area 32. A change of the surface area ratio is given at least two stages or more. Specifically, the area 32 is divided into two sub-areas or more, and one sub-area relatively positioning on the side of the area 31 is set as a sub-area S1. Further, one sub-area (i.e., sub-area ranging between the area 33 and the sub-area S1) relatively positioning on the side of the area 33 is set as S2. In this case, a surface area ratio of the sub-area S1 is smaller than that of the area 31. A surface area ratio of the sub-area S2 is smaller than that of the area sub-area S1 and larger than that of the area 33. According to this example shown in FIG. 16, in the area 32, the surface area ratio gradually decreases from the area 31 toward the area 33. For example, preferably, a dummy template pattern 42 is provided so that a change of the surface area ratio is constant. According to this modification example, the same effect as described above is obtained. In addition, according to this example, the surface area ratio gradually changes in the area 32; therefore, this serves to further prevent a rapid change of a separation velocity.

A method of manufacturing a template based on the template pattern designed according to the foregoing embodiments and a method of manufacturing a semiconductor device will be described below with reference to a flowchart shown in FIG. 17.

First, template pattern data designed according to the foregoing embodiments is prepared (S21). Based on the prepared template pattern data, the surface of a template substrate (quartz substrate) is formed with a template pattern by means of electron beam (EB) exposure and etching, and thus, a template is manufactured (S22). A semiconductor device (semiconductor integrated circuit device) is manufactured using the foregoing template thus manufactured. Specifically, the template pattern formed on the template is transferred to a resist layer (imprint material layer) on a substrate so that a resist pattern is formed (S23). Further, etching is carried out using the formed resist pattern as a mask so that a desired pattern is formed on a substrate (S24).

The foregoing method is employed, and thereby, it is possible to improve the manufacture yield of a semiconductor device. In other words, when the template pattern is transferred to the resist layer on the substrate, it is possible to prevent a defect from being generated in the resist pattern. Therefore, this contributes to improving the manufacture yield of a semiconductor device.

Moreover, the method of designing a template pattern described in the foregoing embodiment is realizable using a computer whose operation is controlled according to a program stored with the procedures of the foregoing method. The foregoing program is provided using a recoding medium such as a magnetic disk or a communication line (wire or wireless line) such as Internet.

The following is an explanation of the verification result (measurement result) when a pattern is actually formed on a substrate using the template obtained according to the method of the embodiment.

FIG. 18 is a view showing a template used for verification. In the template, a line and space pattern (L/S pattern, half pitch=80 nm, line width:space width=L:S=1:1) is used as an evaluation pattern, and the L/S pattern is arranged on each of areas A to I. Further, a dot pattern shown in FIG. 19 is used as a dummy pattern. Specifically, three dummy patterns having pattern covering ratios (pattern occupation ration) 70%, 35% and 0% (no dummy pattern) are used. The relationship between a peripheral pattern covering ratio of an evaluation pattern (L/S pattern) and a defect density (DD) after a template is separated is investigated using the verification pattern. An average pattern covering ratio of areas having a width 50 μm shown by the slanted line of FIG. 20 was used as a peripheral pattern covering ratio of an evaluation pattern.

FIG. 21 is a graph showing the measured result. An approximate expression (straight line) was obtained from the measured result, and further, a peripheral pattern covering ratio to a defect density (DD) was calculated. As a result, a pattern covering ratio at DD=10/cm2 was 44.6%, a pattern covering ratio at DD=1/cm2 was 46.8%, and further, a pattern covering ratio at DD=0.1/cm2 was 47.1%. Therefore, in order to obtain DD<1/cm2, the pattern covering ratio must be set to about 47% or more. In other words, it is desirable that a peripheral pattern covering ratio is set to about 47% or more in order to obtain DD<1/cm2 in an L/S pattern of L:S=1:1 (pattern covering ratio: 50%). FIG. 22 is a graph showing a value (100/surface area ratio (%)) expressed using the foregoing defined surface area ratio (surface area/area) as the horizontal axis.

Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.

Tokue, Hiroshi, Yoneda, Ikuo, Inanami, Ryoichi

Patent Priority Assignee Title
Patent Priority Assignee Title
7013446, Jul 05 2002 SOCIONEXT INC Method, program, and apparatus for designing a semiconductor device
7613538, Jul 24 2006 Hewlett-Packard Development Company, L.P.; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Compensation for distortion in contact lithography
8075299, Oct 21 2008 CITIBANK, N A Reduction of stress during template separation
8652393, Oct 24 2008 CITIBANK, N A Strain and kinetics control during separation phase of imprint process
20020157076,
20060230959,
20080090170,
20080258201,
20090045539,
20090276745,
20100021848,
20100096776,
20100102469,
20110068436,
20110159134,
JP2006303503,
JP200891782,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 17 2015Kioxia Corporation(assignment on the face of the patent)
Jun 30 2017Kabushiki Kaisha ToshibaTOSHIBA MEMORY CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0430210746 pdf
Aug 01 2018TOSHIBA MEMORY CORPORATIONTOSHIBA MEMORY CORPORATIONMERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0576620091 pdf
Aug 01 2018K K PANGEATOSHIBA MEMORY CORPORATIONMERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0576620091 pdf
Oct 01 2019TOSHIBA MEMORY CORPORATIONKioxia CorporationCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0573370437 pdf
Date Maintenance Fee Events
Dec 09 2024M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 09 20244 years fee payment window open
May 09 20256 months grace period start (w surcharge)
Nov 09 2025patent expiry (for year 4)
Nov 09 20272 years to revive unintentionally abandoned end. (for year 4)
Nov 09 20288 years fee payment window open
May 09 20296 months grace period start (w surcharge)
Nov 09 2029patent expiry (for year 8)
Nov 09 20312 years to revive unintentionally abandoned end. (for year 8)
Nov 09 203212 years fee payment window open
May 09 20336 months grace period start (w surcharge)
Nov 09 2033patent expiry (for year 12)
Nov 09 20352 years to revive unintentionally abandoned end. (for year 12)