A fluidic system that includes a reagent manifold comprising a plurality of channels configured for fluid communication between a reagent cartridge and an inlet of a flow cell; a plurality of reagent sippers extending downward from ports in the manifold, each of the reagent sippers configured to be placed into a reagent reservoir in a reagent cartridge so that liquid reagent can be drawn from the reagent reservoir into the sipper; at least one valve configured to mediate fluid communication between the reservoirs and the inlet of the flow cell. The reagent manifold can also include cache reservoirs for reagent re-use.
|
1. A method of reagent re-use comprising:
a) drawing a liquid reagent from a reagent reservoir into a cache reservoir, the cache reservoir in fluid communication with the reagent reservoir and at least one channel of a flow cell;
b) transporting the liquid reagent from the cache reservoir onto the at least one channel of the flow cell;
c) transporting at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the liquid reagent on the flow cell channel to the cache reservoir such that the liquid reagent from the flow cell is not directed back to the reagent reservoir after contacting the flow cell and maintaining a gradient of the transported at least 30% of the liquid reagent and fresh liquid within the cache reservoir; and
d) repeating at least b) to achieve re-use of the liquid reagent on the flow cell.
13. A system comprising:
a reagent reservoir;
a flow cell;
a manifold coupled between the reagent reservoir and the flow cell and comprising a cache reservoir configured to receive liquid reagent from the reagent reservoir, and configured to provide a volume of the liquid reagent into a channel of the flow cell, and configured to receive at least a portion of the liquid reagent back from the flow cell for re-use in the flow cell and maintain a gradient of the portion of the liquid reagent back from the flow cell and fresh liquid reagent within the cache reservoir; and
a pump coupled to the flow cell and configured to draw the liquid reagent from the reagent reservoir into the cache reservoir and into the flow cell, and configured to return the at least a portion of the liquid reagent back to the cache reservoir for re-use.
7. A method of reagent re-use comprising:
a) drawing a liquid reagent from a reagent reservoir into a cache reservoir, the cache reservoir in fluid communication with the reagent reservoir and at least one channel of a flow cell;
b) transporting the liquid reagent from the cache reservoir onto the at least one channel of the flow cell;
c) transporting at least a portion of the liquid reagent on the flow cell channel to the cache reservoir such that the liquid reagent from the flow cell is not directed back to the reagent reservoir after contacting the flow cell and maintaining a gradient of the transported portion of the liquid reagent and fresh liquid reagent within the cache reservoir;
d) diverting a portion of the liquid reagent from the cache reservoir to waste; and
e) repeating at least b) to achieve re-use of the liquid reagent on the flow cell.
2. The method of
4. The method of
0. 6. The method of
8. The method of
9. The method of
10. The method of
0. 12. The method of
14. The system of
15. The system of
16. The system of
17. The system of
18. The system of
19. The system of
20. The system of
0. 21. The method of claim 1, wherein the transported at least 30% of the liquid reagent is downstream of at least part of the fresh reagent in the cache reservoir.
|
This application is a reissue application of U.S. Pat. No. 9,777,325, which issued on Oct. 3, 2017 from U.S. patent application Ser. No. 15/204,717, filed Jul. 7, 2016, which is a divisional of U.S. patent application Ser. No. 14/453,868, filed Aug. 7, 2014, now pending, and issued as U.S. Pat. No. 9,410,977, which claims the benefit of, U.S. Provisional Application No. 61/863,795, filed Aug. 8, 2013, each of which is incorporated herein by reference.
Embodiments of the present disclosure relate generally to apparatus and methods for fluidic manipulation and optical detection of samples, for example, in nucleic acid sequencing procedures.
Our genome provides a blue print for predicting many of our inherent predispositions such as our preferences, talents, susceptibility to disease and responsiveness to therapeutic drugs. An individual human genome contains a sequence of over 3 billion nucleotides. Differences in just a fraction of those nucleotides impart many of our unique characteristics. The research community is making impressive strides in unraveling the features that make up the blue print and with that a more complete understanding of how the information in each blue print relates to human health. However, our understanding is far from complete and this is hindering movement of the information from research labs to the clinic where the hope is that one day each of us will have a copy of our own personal genome so that we can sit down with our doctor to determine appropriate choices for a healthy lifestyle or a proper course of treatment.
The current bottleneck is a matter of throughput and scale. A fundamental component of unraveling the blue print for any given individual is to determine the exact sequence of the 3 billion nucleotides in their genome. Techniques are available to do this, but those techniques typically take many days and thousands upon thousands of dollars to perform. Furthermore, clinical relevance of any individual's genomic sequence is a matter of comparing unique features of their genomic sequence (i.e. their genotype) to reference genomes that are correlated with known characteristics (i.e. phenotypes). The issue of scale and throughput becomes evident when one considers that the reference genomes are created based on correlations of genotype to phenotype that arise from research studies that typically use thousands of individuals in order to be statistically valid. Thus, billions of nucleotides can eventually be sequenced for thousands of individuals to identify any clinically relevant genotype to phenotype correlation. Multiplied further by the number of diseases, drug responses, and other clinically relevant characteristics, the need for very inexpensive and rapid sequencing technologies becomes ever more apparent.
What is needed is a reduction in the cost of sequencing that drives large genetic correlation studies carried out by research scientists and that makes sequencing accessible in the clinical environment for the treatment of individual patients making life changing decisions. Embodiments of the invention set forth herein satisfy this need and provide other advantages as well.
The present disclosure provides a fluidic system that includes a reagent manifold comprising a plurality of channels configured for fluid communication between a reagent cartridge and an inlet of a flow cell; a plurality of reagent sippers extending downward from ports in the manifold, each of the reagent sippers configured to be placed into a reagent reservoir in a reagent cartridge so that liquid reagent can be drawn from the reagent reservoir into the sipper; at least one valve configured to mediate fluid communication between the reservoirs and the inlet of the flow cell.
This disclosure further provides a reagent cartridge that includes a plurality of reagent reservoirs configured to simultaneously engage a plurality of reagent sippers of a fluidic system along a z dimension such that liquid reagent can be drawn from the reagent reservoir into the sippers, the reagent reservoirs arranged in x and y dimensions into top, middle and bottom rows, wherein reagent reservoirs along top and bottom rows of the cartridge are deeper along the z dimension than reagent reservoirs in one or more middle rows; and at least two interface slots configured to engage with corresponding alignment pins of the fluidic system.
Also provided is a multi-layer diffusion bonded reagent manifold comprising at least 10, 15, or at least 20 ports, each port configured to pull reagent from a separate reagent reservoir via a sipper, wherein the ports are in fluid communication with one or more channels of a flow cell via fluidic channels in the manifold.
This disclosure further provides a method of reagent re-use that includes a) drawing a liquid reagent from a reagent reservoir into a cache reservoir, the cache reservoir in fluid communication with the reagent reservoir and at least one channel of a flow cell; b) transporting the reagent from the cache reservoir onto the at least one channel of the flow cell; c) transporting at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the reagent on the flow cell channel to the cache reservoir such that the liquid reagent from the flow cell is not directed back to the reagent reservoir after contacting the flow cell; and d) repeating steps b) and c) to achieve re-use of the liquid reagent on the flow cell.
This disclosure further provides a sequencing method that includes the steps of (a) providing a fluidic system comprising (i) a flow cell comprising an optically transparent surface, (ii) a nucleic acid sample, (iii) a plurality of reagents for a sequencing reaction, and (iv) a fluidic system for delivering the reagents to the flow cell; (b) providing a detection apparatus comprising (i) a plurality of microfluorometers, wherein each of the microfluorometers comprises an objective configured for wide-field image detection in an image plane in x and y dimensions, and (ii) a sample stage; and (c) carrying out fluidic operations of a nucleic acid sequencing procedure in the cartridge and detection operations of the nucleic acid sequencing procedure in the detection apparatus, wherein (i) the reagents are delivered to the flow cell by the fluidic system, (ii) wide-field images of the nucleic acid features are detected by the plurality of microfluorometers, and (iii) at least some reagents are removed from the flow cell to a cache reservoir.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
This disclosure provides fluidic systems and methods for providing reagents to a chamber such as a flow cell. A particularly useful application is detection of an immobilized biological sample. For example, the methods and systems set forth herein can be used in nucleic acid sequencing applications. A variety of nucleic acid sequencing techniques that utilize optically and non-optically detectable samples and/or reagents can be used. These techniques are particularly well suited to the methods and apparatus of the present disclosure and therefore highlight various advantages for particular embodiments of the invention. Some of those advantages are set forth below for purposes of illustration and, although nucleic acid sequencing applications are exemplified, the advantages can be extended to other applications as well.
The fluidic systems set forth herein are particularly useful with any of the detection apparatus configurations and sequencing methods set forth in U.S. patent application Ser. No. 13/766,413 filed on Feb. 13, 2013 and entitled “INTEGRATED OPTOELECTRONIC READ HEAD AND FLUIDIC CARTRIDGE USEFUL FOR NUCLEIC ACID SEQUENCING,” the content of which is incorporated by reference in its entirety.
In particular embodiments, a sample that is to be detected can be provided to a detection chamber using a fluidic system as provided herein. Taking the more specific example of a nucleic acid sequencing application, the fluidic system can include a manifold assembly that can be placed into fluidic communication with one or more of reservoirs for holding sequencing reagents, reservoirs for holding sample preparation reagents, reservoirs for holding waste products generated during sequencing, and/or pumps, valves and other components capable of moving fluids through a flow cell.
In particular embodiments a fluidic system can be configured to allow re-use of one or more reagents. For example, the fluidic system can be configured to deliver a reagent to a flow cell, then remove the reagent from the flow cell, and then re-introduce the reagent to the flow cell. An advantage of re-using reagents is to reduce waste volume and reduce the cost of processes that utilize expensive reagents and/or reagents that are delivered at high concentrations (or in high amounts). Reagent re-use takes advantage of the understanding that depletion of reagent occurs only or primarily at the flowcell surface, and therefore a majority of the reagent goes unused and may be subject to re-use.
Shown in
The apparatuses shown in
Also shown in
As demonstrated by the exemplary embodiments above, a fluidic system for delivering reagents from a reagent cartridge to a flow cell can include a reagent manifold comprising a plurality of channels configured for fluid communication between a reagent cartridge and an inlet of a flow cell. Use of a manifold in fluidic systems provides several advantages over the use of tubing alone. For example, a manifold with fixed channels reduces the likelihood of error during assembly, such as misplacement of tubing attachments, as well as over- or under-tightening of connections. In addition, a manifold provides ease of maintenance, allowing, for example, quick replacement of an entire unit rather than time-intensive testing and replacement of individual lines.
The one or more of the channels of the manifold can include a fluidic track through a solid material. The track can be of any diameter to allow desired level of fluid transfer through the track. The track can have an inner diameter of, for example, less than 0.1 mm, 0.2 mm, 0.3 mm 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 2 mm, 3 m, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm or less than 10 mm in diameter. The track configuration can be, for example, straight or curved. Alternatively or additionally, the track can have a combination of curved portions and straight portions. The cross section of the track can be, for example, square, round, “D”-shaped, or any other shape that enables a desired level of fluid transfer through the track.
The channel between the sipper and the valve can be housed entirely within the manifold body. Alternatively or additionally, the channel can include one or more portions that are external to the manifold. For example, tubing such as, for example, flexible tubing can connect a portion of the fluidic track to another portion of the track on the manifold. Alternatively or additionally, flexible tubing can connect a flow cell to fixed fluidic components of the system, including, for example, pumps, valves, sensors and gauges. As an example, flexible tubing can be sued to connect a flow cell or a channel of the present system to a pump such as a syringe pump or a peristaltic pump.
The manifold body can be, for example, made of any suitable solid material that is capable of supporting one or more channels therein. Thus, the manifold body can be a resin such as polycarbonate, polyvinyl chloride, DELRIN® (Polyoxymethylene); HALAR®; PCTFE (PolyChloroTriFluoroEthylene); PEEK™ (Polyetheretherketone); PK (Polyketone); PERLAST®; Polyethylene; PPS (Polyphenylene Sulfide); Polypropylene; Polysulfone; FEP; PFA; High Purity PFA; RADEL® R; 316 Stainless Steel; TEFZEL® ETFE (Ethylene Tetrafluoroethylene); TPX® (Polymethylpentene); Titanium; UHMWPE (Ultra High Molecular Weight Polyethylene); ULTEM® (polyetherimide); VESPEL® or any other suitable solid material that is compatible with the solvents and fluids transported through the channels of the manifold in the embodiments presented herein. The manifold body can be formed from a single piece of material. Alternatively or additionally, the manifold body can be formed from multiple layers that are bonded together. Methods of bonding include, for example, the use of adhesives, gaskets, and diffusion bonding. The channels can be formed in the solid material by any suitable method. For example, channels can be drilled, etched or milled into the solid material. Channels can be formed in the solid material prior to bonding multiple layers together. Alternatively or additionally, channels can be formed after bonding layers together.
The manifold assemblies presented here are configured for delivery of liquid reagents from a reagent cartridge to a flow cell. Thus, the manifold can have any number of ports coupled to reagent sippers. More specifically, the number of ports can correspond to the number and configuration of reagent reservoirs in a reagent cartridge. In some embodiments, the manifold comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or at least 30 ports, each port configured to couple a reagent sipper to a channel in fluid communication with the at least one valve.
The fluidic systems presented herein can also include an array of sipper tubes extending downward along the z dimension from ports in the manifold, each of the reagent sippers configured to be inserted into a reagent reservoir in a reagent cartridge so that liquid reagent can be drawn from the reagent reservoir into the sipper. The reagent sippers can comprise, for example, a tubular body with a proximal end and a distal end. The distal end can taper to a sharp tip that is configured to pierce a film or foil layer used as a seal over a reagent reservoir in a reagent cartridge. Various exemplary sipper tips are shown in
In some embodiments, as exemplified in
The sippers can be formed of any suitable material that allows fluid transfer through a lumen and which is compatible with the solvents and fluids transported through the channels of the manifold in the embodiments presented herein. The sippers can be formed from a single tube. Alternatively or additionally, one or more sippers can be made of multiple segments that together form a sipper of a desired length and diameter.
In some embodiments, at least one of the reagent sippers includes a compliant tip configured to flex when the tip impinges upon the bottom of a reagent well in a reagent cartridge. By flexing or deforming, a compliant tip allows the lumen of the sipper to more fully approach or even contact the bottom of the reagent well, thereby reducing or even eliminating the evacuation volume in the reagent well. A compliant tip can be especially advantageous for uptake of sample or reagents where small volumes are used, or in situations where it is desirable for uptake of most or all of the liquid in a reagent reservoir. The body of the sipper having a compliant tip can be made entirely of the same flexible material as the tip. Alternatively or additionally, the body of the sipper can be made of a distinct material than the tip. The compliant tip can be made of any suitable material such that the compliant tip may deform or yield when urged into contact with the bottom of a reagent reservoir. Some suitable materials include polymeric and/or synthetic foams, rubber, silicone and/or elastomers, including thermoplastic polymers such as polyurethane.
The fluidic systems presented herein may also include, for example, pumps and valves that are selectively operable for controlling fluid communication between the reservoirs and the inlet of the flow cell. As exemplified by the manifold assembly shown in
In embodiments where the fluidic system comprises at least a first valve and a second valve, each valve can be configured to simultaneously deliver separate reagents across a first channel and a second channel of a flow cell, respectively. Thus, one valve can deliver one reagent to a first flow cell channel while the second valve can simultaneously deliver a different reagent to a second flow cell channel. As shown in exemplary embodiments of
The fluidic systems described herein can be used advantageously for fluidic manipulation of flow cell channels during nucleic acid sequencing. More specifically, a fluidic system described herein can be operably associated with a detection apparatus in a configuration for detection of nucleic acid features in the flow cell by the detection apparatus. In some embodiments, the detection apparatus can comprise a plurality of microfluorometers, wherein each of the microfluorometers comprises an objective configured for wide-field image detection in an image plane in x and y dimension. The fluidic systems set forth herein are particularly useful with any of the detection apparatus configurations set forth in U.S. patent application Ser. No. 13/766,413 filed on Feb. 13, 2013 and entitled “INTEGRATED OPTOELECTRONIC READ HEAD AND FLUIDIC CARTRIDGE USEFUL FOR NUCLEIC ACID SEQUENCING,” the content of which is incorporated by reference in its entirety.
As an example, in particular nucleic acid sequencing embodiments, a flow cell that contains a plurality of channels can be fluidically manipulated and optically detected in a staggered fashion. More specifically, the fluidic manipulations can be carried out on a first subset of the channels in the flow cell while optical detection occurs for a second subset of the channels. For example, in one configuration at least four linear channels can be disposed parallel to each other in the flow cell (e.g. channels 1 through 4 can be ordered in sequential rows). Fluidic manipulations can be carried out on every other channel (e.g. channels 1 and 3) while detection occurs for the other channels (e.g. channels 2 and 4). This particular configuration can be accommodated by using a read head having detectors positioned in a spaced apart configuration such that the objectives are directed to every other channel of the flow cell. In this case, valves can be actuated to direct flow of reagents for a sequencing cycle to alternating channels while the channels that are being detected are maintained in a detection state. In this example, a first set of alternating channels can undergo fluidic steps of a first sequencing cycle and a second set of alternating channels undergo detection steps of a second sequencing cycle. Once the fluidic steps of the first cycle are completed and detection steps of the second cycle are completed, the read head can be stepped over (e.g. along the x dimension) to the first set of alternating channels and valves can be actuated to deliver sequencing reagents to the second set of channels. Then detection steps for the first cycle can be completed (in the first set of channels) and fluidic steps for a third cycle can occur (in the second set of channels). The steps can be repeated in this way several times until a desired number of cycles have been performed or until the sequencing procedure is complete.
An advantage of the staggered fluidic and detection steps set forth above is to provide for a more rapid overall sequencing run. In the above example, a more rapid sequencing run will result from the staggered configuration (compared to fluidically manipulating all channels in parallel followed by detection of all channels in parallel) if the time required for fluidic manipulation is about the same as the time required for detection. Of course, in embodiments where the timing for detection steps is not the same as the timing for fluidic steps, the staggered configuration can be changed from every other channel to a more appropriate pattern to accommodate parallel scanning of a subset of channels while another subset of channels undergoes the fluidic steps.
An additional advantage to having fluid flow in opposite directions is to provide a means of comparison of individual microfluorometer performance. For example, where multiple microfluorometers are used per flow cell lane, it can be difficult to distinguish if decreased microfluorometer performance is caused by the detector or from decreased chemistry efficiency from one end of the lane to the other. By having opposing directions of liquid flow, microfluorometer performance across the lanes can be compared, effectively distinguishing whether decreased performance is due to the microfluorometer or not.
A fluidic map for an exemplary fluidic system is shown in
Flow of fluids through the system of
The fluidic system exemplified in
A cross-section of an exemplary reagent cartridge is shown in
A top view of an exemplary reagent tray interface having reagent wells and interface slots for alignment pins is shown in
The reagent cartridges presented herein can include any number of reagent reservoirs or wells. The reagent reservoirs or wells can be arranged in any format along the x and y dimensions to facilitate transport and storage of reagents in the cartridge. Alternatively or additionally, reagent reservoirs or wells can be arranged in any format along the x and y dimensions suitable for interaction with an array of sipper tubes extending downward along the z dimension from ports in the manifold. More specifically, the reagent reservoirs or wells can be arranged in any format suitable for simultaneously engaging a matrix of reagent sippers such that liquid reagent can be drawn from the reagent reservoir into the sippers.
Not all reagent wells need interact simultaneously with all sipper tubes of a manifold assembly. For example, the reagent cartridge can include a subset of one or more reagent reservoirs or wells that are configured to remain in a non-interacting state while other reservoirs or wells are engaged by an array of sipper tubes. As one example, a cartridge presented herein can comprises a plurality of wash reservoirs arranged in a configuration corresponding to the plurality of reagent reservoirs, whereby wash reservoirs are configured to simultaneously engage the reagent sippers when the reagent sippers are not engaged with the reagent reservoirs so that wash buffer can be drawn from the wash reservoirs into the sippers. An exemplary embodiment is presented in
Alternatively or additionally, other reservoirs that are empty, or which hold buffer, sample or other reagents can be present on the cartridge. The additional reservoirs can, but need not interact with a sipper tube. For example, a reservoir can be configured to be filled with waste or overflow reagent or buffer over the course of cartridge use. Such a reservoir may be accessed, for example via a port that does not interface with a sipper tube.
To facilitate correct alignment of cartridge reservoirs with corresponding sipper tubes, alignment slots can be positioned in the cartridge. For example, in particular embodiments where an array of sipper tubes is removed from one set of reservoirs and translocated to another set of reagent or wash reservoirs, alignment slots can be positioned in the cartridge to ensure correct alignment of the array of reagent sippers with one or both sets of reservoirs. As shown in
In particular embodiments a fluidic system can be configured to allow re-use of one or more reagents. For example, the fluidic system can be configured to deliver a reagent to a flow cell, then remove the reagent from the flow cell, and then re-introduce the reagent to the flow cell. One configuration is exemplified in
As exemplified the diagram in the bottom portion of
The configuration shown in
A cache reservoir as presented herein can be configured to reduce mixing of fluid within the cache reservoir. In some such embodiments, reduced mixing can thereby maintain a gradient of liquid reagent along the length of the reservoir from the end proximal to the flow cell to the end distal to the flow cell. Alternatively or additionally, a cache reservoir as presented herein can comprise one or more mixing elements configured to promote mixing of fluid within the cache reservoir. Any suitable active or passive mixing element can be used in such embodiments. For example, the mixing element could comprise baffle elements, curved structures or any other passive or active structural or fluidic feature configured to promote mixing as fluid is transported across a cache reservoir. Alternatively or additionally, any suitable pump, rotor, blade, inlet and the like can be used for active mixing within a cache reservoir.
A cache reservoir as presented herein can have any shape, volume and length that is suitable for the purposes of a cache reservoir. In specific embodiments, cache reservoirs of any shape, volume and/or length can be used in the fluidic systems presented herein which allow a quantity of liquid reagent in one or more flow cell channels to flow to the cache reservoir such that the liquid reagent from the flow cell is not directed back to the reagent reservoir after contacting the flow cell. For example, a cache reservoir can comprise a serpentine channel. By way of another example, a cache reservoir can comprise a channel of cylindrical or non-cylindrical shape. Further, any number of fluidic channels in the fluidic system presented herein can include one or more individual cache reservoirs.
A cache reservoir as presented herein can be in fluid communication with a pump configured to move liquid reagent from the cache reservoir to the flow cell and from the flow cell back to the cache reservoir, wherein ingress of reagent to the flow cell and egress of reagent from the flow cell occur through the same port of the flow cell. Alternatively or additionally, ingress of reagent to the flow cell and egress of reagent from the flow cell may occur through distinct ports of the flow cell and still achieve reagent re-use. For example, the fluidic systems presented herein can make use of any of the reuse reservoirs and configurations described in connection with the apparatus configurations set forth in U.S. patent application Ser. No. 13/766,413 filed on Feb. 13, 2013 and entitled “INTEGRATED OPTOELECTRONIC READ HEAD AND FLUIDIC CARTRIDGE USEFUL FOR NUCLEIC ACID SEQUENCING,” the content of which is incorporated by reference in its entirety.
The schematic of
The configurations shown in
A particular reagent can be re-used any number of times desired to suit a particular process. For example, one or more of the reagents exemplified herein, described in a reference cited herein, or otherwise known for use in a process set forth herein can be re-used at least 2, 3, 4, 5, 10, 25, 50 or more times. Indeed any of a variety of desired regents can be re-used for at least as many times. Any portion of a particular reagent can be diverted back to a cache reservoir for re-use. For example, one or more of the reagents exemplified herein, described in a reference cited herein, or otherwise known for use in a process set forth herein can have 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the volume of reagent on one or more flow cell lanes directed back to a cache reservoir for subsequent re-use. Alternatively or additionally, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the volume of reagent on one or more flow cell lanes can be diverted to a waste receptacle or otherwise removed from subsequent use on a flow cell.
Fluidic configurations and methods for reagent re-use, although exemplified for a nucleic acid sequencing process, can be applied to other processes, in particular processes that involve repeated cycles of reagent delivery. Exemplary processes include sequencing of polymers such as polypeptides, polysaccharides or synthetic polymers and also include synthesis of such polymers.
As demonstrated by the exemplary embodiments above, a method of reagent re-use can include steps of: a) drawing a liquid reagent from a reagent reservoir into a cache reservoir, the cache reservoir in fluid communication with the reagent reservoir and at least one channel of a flow cell; b) transporting the reagent from the cache reservoir onto the at least one channel of the flow cell; c) transporting at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the reagent on the flow cell channel to the cache reservoir such that the liquid reagent from the flow cell is not directed back to the reagent reservoir after contacting the flow cell; d) repeating steps b) and c) to achieve re-use of the liquid reagent on the flow cell. The one or more of the cache reservoirs can be in fluid communication with a pump configured to move liquid reagent from the cache reservoir to the flow cell and from the flow cell back to the cache reservoir, such that ingress of reagent to the flow cell and egress of reagent from the flow cell occur through the same port of the flow cell. Alternatively or additionally, ingress of reagent to the flow cell and egress of reagent from the flow cell may occur through distinct ports of the flow cell and still achieve reagent re-use. In some embodiments, reagent from the flow cell that is not transported to the cache reservoir in step c) can be diverted. As an example, reagent from the flow cell that is not transported to the cache reservoir can be transported to a waste reservoir. Transport of reagent in one or both of steps b) and c) can be performed via a valve which fluidly connects the cache reservoir and the flow cell. Transport of reagent in one or both of steps b) and c) can be performed, for example with fluid flow in a single direction, or can be performed with reciprocating flow.
Embodiments of the present fluidic systems and methods find particular use for nucleic acid sequencing techniques. For example, sequencing-by-synthesis (SBS) protocols are particularly applicable. In SBS, extension of a nucleic acid primer along a nucleic acid template is monitored to determine the sequence of nucleotides in the template. The underlying chemical process can be polymerization (e.g. as catalyzed by a polymerase enzyme) or ligation (e.g. catalyzed by a ligase enzyme). In a particular polymerase-based SBS embodiment, fluorescently labeled nucleotides are added to a primer (thereby extending the primer) in a template dependent fashion such that detection of the order and type of nucleotides added to the primer can be used to determine the sequence of the template. A plurality of different templates can be subjected to an SBS technique on a surface under conditions where events occurring for different templates can be distinguished. For example, the templates can be present on the surface of an array such that the different templates are spatially distinguishable from each other. Typically the templates occur at features each having multiple copies of the same template (sometimes called “clusters” or “colonies”). However, it is also possible to perform SBS on arrays where each feature has a single template molecule present, such that single template molecules are resolvable one from the other (sometimes called “single molecule arrays”).
Flow cells provide a convenient substrate for housing an array of nucleic acids. Flow cells are convenient for sequencing techniques because the techniques typically involve repeated delivery of reagents in cycles. For example, to initiate a first SBS cycle, one or more labeled nucleotides, DNA polymerase, etc., can be flowed into/through a flow cell that houses an array of nucleic acid templates. Those features where primer extension causes a labeled nucleotide to be incorporated can be detected, for example, using methods or apparatus set forth herein. Optionally, the nucleotides can further include a reversible termination property that terminates further primer extension once a nucleotide has been added to a primer. For example, a nucleotide analog having a reversible terminator moiety can be added to a primer such that subsequent extension cannot occur until a deblocking agent is delivered to remove the moiety. Thus, for embodiments that use reversible termination a deblocking reagent can be delivered to the flow cell (before or after detection occurs). Washes can be carried out between the various delivery steps. The cycle can then be repeated n times to extend the primer by n nucleotides, thereby detecting a sequence of length n. Exemplary sequencing techniques are described, for example, in Bentley et al., Nature 456:53-59 (2008), WO 04/018497; U.S. Pat. No. 7,057,026; WO 91/06678; WO 07/123744; U.S. Pat. No. 7,329,492; U.S. Pat. No. 7,211,414; U.S. Pat. No. 7,315,019; U.S. Pat. No. 7,405,281, and US 2008/0108082, each of which is incorporated herein by reference.
For the nucleotide delivery step of an SBS cycle, either a single type of nucleotide can be delivered at a time, or multiple different nucleotide types (e.g. A, C, T and G together) can be delivered. For a nucleotide delivery configuration where only a single type of nucleotide is present at a time, the different nucleotides need not have distinct labels since they can be distinguished based on temporal separation inherent in the individualized delivery. Accordingly, a sequencing method or apparatus can use single color detection. For example, a microfluorometer or read head need only provide excitation at a single wavelength or in a single range of wavelengths. Thus, a microfluorometer or read head need only have a single excitation source and multiband filtration of excitation need not be necessary. For a nucleotide delivery configuration where delivery results in multiple different nucleotides being present in the flow cell at one time, features that incorporate different nucleotide types can be distinguished based on different fluorescent labels that are attached to respective nucleotide types in the mixture. For example, four different nucleotides can be used, each having one of four different fluorophores. In one embodiment the four different fluorophores can be distinguished using excitation in four different regions of the spectrum. For example, a microfluorometer or read head can include four different excitation radiation sources. Alternatively a read head can include fewer than four different excitation radiation sources but can utilize optical filtration of the excitation radiation from a single source to produce different ranges of excitation radiation at the flow cell.
In some embodiments, four different nucleotides can be detected in a sample (e.g. array of nucleic acid features) using fewer than four different colors. As a first example, a pair of nucleotide types can be detected at the same wavelength, but distinguished based on a difference in intensity for one member of the pair compared to the other, or based on a change to one member of the pair (e.g. via chemical modification, photochemical modification or physical modification) that causes apparent signal to appear or disappear compared to the signal detected for the other member of the pair. As a second example, three of four different nucleotide types can be detectable under particular conditions while a fourth nucleotides type lacks a label that is detectable under those conditions. In an SBS embodiment of the second example, incorporation of the first three nucleotide types into a nucleic acid can be determined based on the presence of their respective signals, and incorporation of the fourth nucleotide type into the nucleic acid can be determined based on absence of any signal. As a third example, one nucleotide type can be detected in two different images or in two different channels (e.g. a mix of two species having the same base but different labels can be used, or a single species having two labels can be used or a single species having a label that is detected in both channels can be used), whereas other nucleotide types are detected in no more than one of the images or channels. In this third example, comparison of the two images or two channels serves to distinguish the different nucleotide types.
The three exemplary configurations in the above paragraph are not mutually exclusive and can be used in various combinations. An exemplary embodiment is an SBS method that uses reversibly blocked nucleotides (rbNTPs) having fluorescent labels. In this format, four different nucleotide types can be delivered to an array of nucleic acid features that are to be sequenced and due to the reversible blocking groups one and only one incorporation event will occur at each feature. The nucleotides delivered to the array in this example can include a first nucleotide type that is detected in a first channel (e.g. rbATP having a label that is detected in the first channel when excited by a first excitation wavelength), a second nucleotide type that is detected in a second channel (e.g. rbCTP having a label that is detected in the second channel when excited by a second excitation wavelength), a third nucleotide type that is detected in both the first and the second channel (e.g. rbTTP having at least one label that is detected in both channels when excited by the first and/or second excitation wavelength) and a fourth nucleotide type that lacks a label that is detected in either channel (e.g. rbGTP having no extrinsic label).
Once the four nucleotide types have been contacted with the array in the above example, a detection procedure can be carried out, for example, to capture two images of the array. The images can be obtained in separate channels and can be obtained either simultaneously or sequentially. A first image obtained using the first excitation wavelength and emission in the first channel will show features that incorporated the first and/or third nucleotide type (e.g. A and/or T). A second image obtained using the second excitation wavelength and emission in the second channel will show features that incorporated the second and/or third nucleotide type (e.g. C and/or T). Unambiguous identification of the nucleotide type incorporated at each feature can be determined by comparing the two images to arrive at the following: features that show up only in the first channel incorporated the first nucleotide type (e.g. A), features that show up only in the second channel incorporated the second nucleotide type (e.g. C), features that show up in both channel incorporated the third nucleotide type (e.g. T) and features that don't show up in either channel incorporated the fourth nucleotide type (e.g. G). Note that the location of the features that incorporated G in this example can be determined from other cycles (where at least one of the other three nucleotide types is incorporated). Exemplary apparatus and methods for distinguishing four different nucleotides using detection of fewer than four colors are described for example in U.S. Pat. App. Ser. No. 61/538,294, which is incorporated herein by reference.
In some embodiments, nucleic acids can be attached to a surface and amplified prior to or during sequencing. For example, amplification can be carried out using bridge amplification to form nucleic acid clusters on a surface. Useful bridge amplification methods are described, for example, in U.S. Pat. No. 5,641,658; US 2002/0055100; U.S. Pat. No. 7,115,400; US 2004/0096853; US 2004/0002090; US 2007/0128624; or US 2008/0009420, each of which is incorporated herein by reference. Another useful method for amplifying nucleic acids on a surface is rolling circle amplification (RCA), for example, as described in Lizardi et al., Nat. Genet. 19:225-232 (1998) and US 2007/0099208 A1, each of which is incorporated herein by reference. Emulsion PCR on beads can also be used, for example as described in Dressman et al., Proc. Natl. Acad. Sci. USA 100:8817-8822 (2003), WO 05/010145, US 2005/0130173 or US 2005/0064460, each of which is incorporated herein by reference.
As set forth above, sequencing embodiments are an example of a repetitive process. The methods of the present disclosure are well suited to repetitive processes. Some embodiments are set forth below and elsewhere herein.
Accordingly, provided herein are sequencing methods that include (a) providing a fluidic system comprising (i) a flow cell comprising an optically transparent surface, (ii) a nucleic acid sample, (iii) a plurality of reagents for a sequencing reaction, and (iv) a fluidic system for delivering the reagents to the flow cell; (b) providing a detection apparatus comprising (i) a plurality of microfluorometers, wherein each of the microfluorometers comprises an objective configured for wide-field image detection in an image plane in x and y dimensions, and (ii) a sample stage; and (c) carrying out fluidic operations of a nucleic acid sequencing procedure in the cartridge and detection operations of the nucleic acid sequencing procedure in the detection apparatus, wherein (i) the reagents are delivered to the flow cell by the fluidic system, (ii) wide-field images of the nucleic acid features are detected by the plurality of microfluorometers, and (iii) at least some reagents are removed from the flow cell to a cache reservoir.
Throughout this application various publications, patents and/or patent applications have been referenced. The disclosure of these publications in their entireties is hereby incorporated by reference in this application.
The term comprising is intended herein to be open-ended, including not only the recited elements, but further encompassing any additional elements.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other embodiments are within the scope of the following claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5395587, | Jul 06 1993 | SmithKline Beecham Corporation | Surface plasmon resonance detector having collector for eluted ligate |
5641658, | Aug 03 1994 | ILLUMINA, INC | Method for performing amplification of nucleic acid with two primers bound to a single solid support |
5792431, | May 30 1996 | SmithKline Beecham Corporation | Multi-reactor synthesizer and method for combinatorial chemistry |
5891734, | Aug 01 1994 | Abbott Laboratories | Method for performing automated analysis |
6182719, | May 08 1998 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Distribution apparatus, distribution method and method of fitting distribution tips |
6238910, | Aug 10 1998 | DIGILAB, INC | Thermal and fluid cycling device for nucleic acid hybridization |
7057026, | Aug 23 2002 | Illumina Cambridge Limited | Labelled nucleotides |
7115400, | Sep 30 1998 | ILLUMINA, INC | Methods of nucleic acid amplification and sequencing |
7211414, | Dec 03 2001 | Life Technologies Corporation | Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity |
7315019, | Sep 17 2004 | PACIFIC BIOSCIENCES OF CALIFORNIA, INC | Arrays of optical confinements and uses thereof |
7329492, | Jul 07 2000 | Visigen Biotechnologies, Inc. | Methods for real-time single molecule sequence determination |
7405281, | Sep 29 2005 | PACIFIC BIOSCIENCES OF CALIFORNIA, INC | Fluorescent nucleotide analogs and uses therefor |
8173080, | Feb 14 2008 | ILLUMINA, INC | Flow cells and manifolds having an electroosmotic pump |
8354080, | Apr 10 2009 | CANON U S LIFE SCIENCES, INC | Fluid interface cartridge for a microfluidic chip |
8404198, | Aug 27 2008 | Life Technologies Corporation | Apparatus for and method of processing biological samples |
8597594, | Nov 26 2008 | The Arizona Board of Regents for and on Behalf of Arizona State University | Apparatus for fragmenting nucleic acids |
8748789, | Mar 06 2010 | Illumina, Inc. | Assay instrument for detecting optical signals from samples |
20020055100, | |||
20030072679, | |||
20030167822, | |||
20030175163, | |||
20040002090, | |||
20040096853, | |||
20050106707, | |||
20050129584, | |||
20050221281, | |||
20060223169, | |||
20070128624, | |||
20070212267, | |||
20080009420, | |||
20080047836, | |||
20080056948, | |||
20080058512, | |||
20080108082, | |||
20080249469, | |||
20090093625, | |||
20090155123, | |||
20100009871, | |||
20100300895, | |||
20100323350, | |||
20110008223, | |||
20110139752, | |||
20110287447, | |||
20120028364, | |||
20120178091, | |||
20120270305, | |||
20130079232, | |||
20130130243, | |||
20130260372, | |||
20130316336, | |||
20140017687, | |||
20140345372, | |||
CA2324354, | |||
CN101512018, | |||
CN101566489, | |||
EP1664335, | |||
JP11326341, | |||
JP2001523812, | |||
JP2002206994, | |||
JP2005534896, | |||
JP2010502217, | |||
JP2012506995, | |||
JP2013515260, | |||
JP56057690, | |||
JP5854558, | |||
JP9500208, | |||
WO1991006678, | |||
WO1999025476, | |||
WO2003104771, | |||
WO2004018497, | |||
WO2007024778, | |||
WO2007123744, | |||
WO2009086556, | |||
WO2011078777, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 11 2014 | STONE, MICHAEL | ILLUMINA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050436 | /0205 | |
Nov 24 2014 | VERKADE, DREW | ILLUMINA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050436 | /0205 | |
Aug 23 2019 | Illumina, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 23 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Mar 29 2025 | 4 years fee payment window open |
Sep 29 2025 | 6 months grace period start (w surcharge) |
Mar 29 2026 | patent expiry (for year 4) |
Mar 29 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 29 2029 | 8 years fee payment window open |
Sep 29 2029 | 6 months grace period start (w surcharge) |
Mar 29 2030 | patent expiry (for year 8) |
Mar 29 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 29 2033 | 12 years fee payment window open |
Sep 29 2033 | 6 months grace period start (w surcharge) |
Mar 29 2034 | patent expiry (for year 12) |
Mar 29 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |