A packer apparatus usable in a downhole well casing or an open borehole to provide an annular seal in the well casing or borehole. The packer apparatus includes an activation member disposed in body wherein the activation member is moveable relative to the body to deform an elastomeric packer element outwardly relative to the body to form an annular seal in a well casing in use. A plurality of pistons is arranged to move the activation member relative to the body, each piston being disposed in a respective pressure chamber arranged to be filled with fluid in response to an increase in fluid pressure in the body.

Patent
   RE49029
Priority
Jan 20 2011
Filed
Nov 16 2020
Issued
Apr 12 2022
Expiry
Jan 12 2032

TERM.DISCL.
Assg.orig
Entity
Small
0
27
currently ok
22. A downhole work string comprising:
a first packer apparatus comprising:
a first body arranged to be disposed in a well casing or open borehole, the first body having an internal bore that receives fracturing fluid that is pumped into the downhole work string;
a first elastomeric packer element;
an a first activation member mounted to the first body, wherein the first activation member is moveable relative to the first body to deform an the first elastomeric packer element outwardly relative to the first body to form an a first annular seal in a the well casing or the open borehole in use; and
a first plurality of pistons arranged to move the first activation member relative to the first body, each said piston of the first plurality of pistons defining a respective pressure chamber arranged to be filled with the fracturing fluid in response to an increase in fluid pressure in the first body that is caused when the fracturing fluid is pumped into the downhole work string and to thereby move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body, characterised characterized in that the first activation member is maintained in the position deforming the first elastomeric packer element outwardly relative to the first body by fluid pressure only;
a second packer apparatus comprising:
a second body arranged to be disposed in the well casing or the open borehole, the second body having an internal bore that also receives the fracturing fluid that is pumped into the downhole work string;
a second elastomeric packer element;
a second activation member mounted to the second body, wherein the second activation member is moveable relative to the second body to deform the second elastomeric packer element outwardly relative to the second body to form a second annular seal in the well casing or the open borehole in use; and
a second plurality of pistons arranged to move the second activation member relative to the second body in response to the increase in fluid pressure that is caused when the fracturing fluid is pumped into the downhole work string to thereby deform the second elastomeric packer element and form the second annular seal; and
a ported sub comprising:
a third body arranged to be disposed in the well casing or the open borehole, the third body having an internal bore that also receives the fracturing fluid that is pumped into the downhole work string, the third body being connected between said the first body of the first packer apparatus and the second body of the second packer apparatuses apparatus; and
one or more ports that provide a fluid pathway from the internal bore of the third body to the downhole well casing or the open borehole such that, as the fracturing fluid is pumped into the downhole work string, the fracturing fluid:
(1) causes the first packer apparatus to form the first annular seal,
(2) causes the second packer apparatus to form the second annular seal, and
(3) ejects from the one or more ports of the ported sub to perform a fracturing operation between the first and second annular seals.
20. A downhole work string comprising:
a first packer apparatus comprising:
a first body arranged to be disposed in a well casing or open borehole, the first body having an internal bore that receives fracturing fluid that is pumped into the downhole work string;
a first elastomeric packer element;
an a first activation member mounted to the first body, wherein the first activation member is moveable relative to the first body to deform an the first elastomeric packer element outwardly relative to the first body to form an a first annular seal in a the well casing or the open borehole in use; and
a first plurality of pistons arranged to move the first activation member relative to the first body, each said piston of the first plurality of pistons defining a respective pressure chamber arranged to be filled with the fracturing fluid in response to an increase in fluid pressure in the first body that is caused when the fracturing fluid is pumped into the downhole work string and to thereby move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body, characterised characterized in that when the fluid pressure is reduced in the first body, the first activation member is able to move to return the first elastomeric packer element to an undeformed condition;
a second packer apparatus comprising:
a second body arranged to be disposed in the well casing or the open borehole, the second body having an internal bore that also receives the fracturing fluid that is pumped into the downhole work string;
a second elastomeric packer element;
a second activation member mounted to the second body, wherein the second activation member is moveable relative to the second body to deform the second elastomeric packer element outwardly relative to the second body to form a second annular seal in the well casing or the open borehole in use; and
a second plurality of pistons arranged to move the second activation member relative to the second body in response to the increase in fluid pressure that is caused when the fracturing fluid is pumped into the downhole work string to thereby deform the second elastomeric packer element and form the second annular seal; and
a ported sub comprising:
a third body arranged to be disposed in the well casing or the open borehole, the third body having an internal bore that also receives the fracturing fluid that is pumped into the downhole work string, the third body being connected between said the first body of the first packer apparatus and the second body of the second packer apparatuses apparatus; and
one or more ports that provide a fluid pathway from the internal bore of the third body to the downhole well casing or the open borehole such that, as the fracturing fluid is pumped into the downhole work string, the fracturing fluid:
(1) causes the first packer apparatus to form the first annular seal,
(2) causes the second packer apparatus to form the second annular seal, and
(3) ejects from the one or more ports of the ported sub to perform a fracturing operation between the first and second annular seals.
24. A downhole work string comprising:
a first packer apparatus comprising:
a first body arranged to be disposed in a well casing or open borehole, the first body having an internal bore that receives fracturing fluid that is pumped into the downhole work string;
a first elastomeric packer element;
an a first activation member mounted to the first body, wherein the first activation member is moveable relative to the first body to deform an the first elastomeric packer element outwardly relative to the first body to form an a first annular seal in a the well casing or the open borehole in use; and
a first plurality of pistons arranged to move the first activation member relative to the first body, each said piston of the first plurality of pistons defining a respective pressure chamber arranged to be filled with the fracturing fluid in response to an increase in fluid pressure in the first body that is caused when the fracturing fluid is pumped into the downhole work string and to thereby move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body, characterised characterized in that each said piston of the first plurality of pistons comprises an annular one or more annularly arranged pressure port ports to enable wellbore fluid to be exhausted from the first packer apparatus during activation of the respective piston;
a second packer apparatus comprising:
a second body arranged to be disposed in the well casing or the open borehole, the second body having an internal bore that also receives the fracturing fluid that is pumped into the downhole work string;
a second elastomeric packer element;
a second activation member mounted to the second body, wherein the second activation member is moveable relative to the second body to deform the second elastomeric packer element outwardly relative to the second body to form a second annular seal in the well casing or the open borehole in use; and
a second plurality of pistons arranged to move the second activation member relative to the second body in response to the increase in fluid pressure that is caused when the fracturing fluid is pumped into the downhole work string to thereby deform the second elastomeric packer element and form the second annular seal; and
a ported sub comprising:
a third body arranged to be disposed in the well casing or the open borehole, the third body having an internal bore that also receives the fracturing fluid that is pumped into the downhole work string, the third body being connected between said the first body of the first packer apparatus and the second body of the second packer apparatuses apparatus; and
one or more ports that provide a fluid pathway from the internal bore of the third body to the downhole well casing or the open borehole such that, as the fracturing fluid is pumped into the downhole work string, the fracturing fluid:
(1) causes the first packer apparatus to form the first annular seal,
(2) causes the second packer apparatus to form the second annular seal, and
(3) ejects from the one or more ports of the ported sub to perform a fracturing operation between the first and second annular seals.
0. 1. A packer apparatus for providing an annular seal in a downhole well casing or an open borehole, the apparatus comprising:
a body arranged to be disposed in a well casing;
an activation member mounted to the body, wherein the activation member is moveable relative to the body to deform an elastomeric packer element outwardly relative to the body to form an annular seal in the well casing in use; and
a plurality of pistons arranged to move the activation member relative to the body, each said piston defining a respective pressure chamber arranged to be filled with fluid in response to an increase in fluid pressure in the body to move each of the plurality of pistons relative to the body and cause the activation member to move relative to the body, characterised in that when fluid pressure is reduced in the body, the activation member is able to move to return the elastomeric packer element to an undeformed condition.
0. 2. The apparatus according to claim 1, wherein the body comprises:
a cylindrical member having an internal bore defining a longitudinal axis, wherein each said piston is mountable concentrically to the body and defines a part of the outer housing of the apparatus mountable to another piston defining a further part of the outer housing of the apparatus; and
a plurality of ports formed in the body enable fluid to flow from the bore to each said pressure chamber.
0. 3. The apparatus according to claim 2, wherein each said pressure chamber defines an annular chamber arranged concentrically around the body.
0. 4. The apparatus according to claim 2, wherein each said pressure chamber further comprises a stationary seal ring to provide a seal with the body for the respective pressure chamber.
0. 5. The apparatus according to claim 2, further comprising a plurality of annular pressure ports.
0. 6. The apparatus according to claim 2, wherein each said piston comprises an annular pressure port to enable wellbore fluid to be exhausted from the apparatus during activation of the respective piston.
0. 7. The apparatus according to claim 1, wherein the activation member comprises a ramp adapted to slide under and deform outwardly a portion of said elastomeric packer element.
0. 8. A packer apparatus for providing an annular seal in a downhole well casing or an open borehole, the apparatus comprising:
a body arranged to be disposed in a well casing;
an activation member mounted to the body, wherein the activation member is moveable relative to the body to deform an elastomeric packer element outwardly relative to the body to form an annular seal in a well casing in use; and
a plurality of pistons arranged to move the activation member relative to the body, each said piston defining a respective pressure chamber arranged to be filled with fluid in response to an increase in fluid pressure in the body to move each of the plurality of pistons relative to the body and cause the activation member to move relative to the body, characterised in that activation member is maintained in the position deforming the elastomeric packer element outwardly relative to the body by fluid pressure only.
0. 9. The apparatus according to claim 8, wherein the body comprises:
a cylindrical member having an internal bore defining a longitudinal axis, wherein each said piston is mountable concentrically to the body and defines a part of the outer housing of the apparatus mountable to another piston defining a further part of the outer housing of the apparatus; and
a plurality of ports formed in the body enable fluid to flow from the bore to each said pressure chamber.
0. 10. The apparatus according to claim 9, wherein each said pressure chamber defines an annular chamber arranged concentrically around the body.
0. 11. The apparatus according to claim 9, wherein each said pressure chamber further comprises a stationary seal ring to provide a seal with the body for the respective pressure chamber.
0. 12. The apparatus according to claim 9, further comprising a plurality of annular pressure ports.
0. 13. The apparatus according to claim 9, wherein each said piston comprises an annular pressure port to enable wellbore fluid to be exhausted from the apparatus during activation of the respective piston.
0. 14. The apparatus according to claim 8, wherein the activation member comprises a ramp adapted to slide under and deform outwardly a portion of said elastomeric packer element.
0. 15. A packer apparatus for providing an annular seal in a downhole well casing or an open borehole, the apparatus comprising:
a body arranged to be disposed in a well casing;
an activation member mounted to the body, wherein the activation member is moveable relative to the body to deform an elastomeric packer element outwardly relative to the body to form an annular seal in a well casing in use; and
a plurality of pistons arranged to move the activation member relative to the body, each said piston defining a respective pressure chamber arranged to be filled with fluid in response to an increase in fluid pressure in the body to move each of the plurality of pistons relative to the body and cause the activation member to move relative to the body, characterised in that each said piston comprises an annular pressure port to enable wellbore fluid to be exhausted from the apparatus during activation of the respective piston.
0. 16. The apparatus according to claim 15, wherein the body comprises:
a cylindrical member having an internal bore defining a longitudinal axis, wherein each said piston is mountable concentrically to the body and defines a part of the outer housing of the apparatus mountable to another piston defining a further part of the outer housing of the apparatus; and
a plurality of ports formed in the body enable fluid to flow from the bore to each said pressure chamber.
0. 17. The apparatus according to claim 16, wherein each said pressure chamber defines an annular chamber arranged concentrically around the body.
0. 18. The apparatus according to claim 16, wherein each said pressure chamber further comprises a stationary seal ring to provide a seal with the body for the respective pressure chamber.
0. 19. The apparatus according to claim 15, wherein the activation member comprises a ramp adapted to slide under and deform outwardly a portion of said elastomeric packer element.
21. A method of repeatedly providing an annular seal seals in a well casing or an open borehole and simultaneously performing a fracturing operation between the annular seals, the method comprising:
positioning a the downhole work string according to of claim 20 at a first location in a the well casing or the open borehole; and
increasing while the downhole work string is positioned at the first location, pumping the fracturing fluid into the downhole work string to increase the fluid pressure in the body first, second and third bodies to thereby:
move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body and deform the first elastomeric packer element outwardly relative to the first body to form an the first annular seal in the well casing or the open borehole;
move each of the second plurality of pistons to cause the second activation member to move relative to the second body and deform the second elastomeric packer element outwardly relative to the second body to form the second annular seal in the well casing or the open borehole; and
cause the fracturing fluid to be ejected from the one or more ports of the ported sub to perform the fracturing operation at the first location;
moving the downhole work string from the first location to a second location in the well casing or the open borehole;
while the downhole work string is positioned at the second location, pumping the fracturing fluid into the downhole work string to increase the fluid pressure in the first, second and third bodies to thereby:
move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body and deform the first elastomeric packer element outwardly relative to the first body to form the first annular seal at the second location in the well casing or the open borehole;
move each of the second plurality of pistons to cause the second activation member to move relative to the second body and deform the second elastomeric packer element outwardly relative to the second body to form the second annular seal at the second location in the well casing or the open borehole; and
cause the fracturing fluid to be ejected from the one or more ports of the ported sub to perform the fracturing operation at the second location.
23. A method of repeatedly providing an annular seal seals in a well casing or an open borehole and simultaneously performing a fracturing operation between the annular seals, the method comprising:
positioning a the downhole work string according to of claim 22 at a first location in a the well casing or the open borehole; and
increasing while the downhole work string is positioned at the first location, pumping the fracturing fluid into the downhole work string to increase the fluid pressure in the body first, second and third bodies to thereby:
move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body and deform the first elastomeric packer element outwardly relative to the first body to form an the first annular seal in the well casing or the open borehole;
move each of the second plurality of pistons to cause the second activation member to move relative to the second body and deform the second elastomeric packer element outwardly relative to the second body to form the second annular seal in the well casing or the open borehole; and
cause the fracturing fluid to be ejected from the one or more ports of the ported sub to perform the fracturing operation at the first location;
moving the downhole work string from the first location to a second location in the well casing or the open borehole;
while the downhole work string is positioned at the second location, pumping the fracturing fluid into the downhole work string to increase the fluid pressure in the first, second and third bodies to thereby:
move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body and deform the first elastomeric packer element outwardly relative to the first body to form the first annular seal at the second location in the well casing or the open borehole;
move each of the second plurality of pistons to cause the second activation member to move relative to the second body and deform the second elastomeric packer element outwardly relative to the second body to form the second annular seal at the second location in the well casing or the open borehole; and
cause the fracturing fluid to be ejected from the one or more ports of the ported sub to perform the fracturing operation at the second location.
25. A method of repeatedly providing an annular seal seals in a well casing or an open borehole and simultaneously performing a fracturing operation between the annular seals, the method comprising:
positioning a the downhole work string according to of claim 24 at a first location in a the well casing or the borehole; and
increasing while the downhole work string is positioned at the first location, pumping the fracturing fluid into the downhole work string to increase the fluid pressure in the body first, second and third bodies to thereby:
move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body and deform the first elastomeric packer element outwardly relative to the first body to form an the first annular seal in the well casing or the open borehole;
move each of the second plurality of pistons to cause the second activation member to move relative to the second body and deform the second elastomeric packer element outwardly relative to the second body to form the second annular seal in the well casing or the open borehole; and
cause the fracturing fluid to be ejected from the one or more ports of the ported sub to perform the fracturing operation at the first location;
moving the downhole work string from the first location to a second location in the well casing or the open borehole;
while the downhole work string is positioned at the second location, pumping the fracturing fluid into the downhole work string to increase the fluid pressure in the first, second and third bodies to thereby:
move each of the first plurality of pistons relative to the first body and cause the first activation member to move relative to the first body and deform the first elastomeric packer element outwardly relative to the first body to form the first annular seal at the second location in the well casing or the open borehole;
move each of the second plurality of pistons to cause the second activation member to move relative to the second body and deform the second elastomeric packer element outwardly relative to the second body to form the second annular seal at the second location in the well casing or the open borehole; and
cause the fracturing fluid to be ejected from the one or more ports of the ported sub to perform the fracturing operation at the second location.
0. 26. The downhole work string of claim 20, wherein the second plurality of pistons are mounted around the second body.
0. 27. The downhole work string of claim 20, wherein each of the second plurality of pistons define a respective pressure chamber arranged to be filled with the fracturing fluid in response to the increase in fluid pressure that is caused when the fracturing fluid is pumped into the downhole work string.
0. 28. The downhole work string of claim 20, wherein the first activation member extends between the first elastomeric element and one of the first plurality of pistons and the second activation member extends between the second elastomeric element and one of the second plurality of pistons.
0. 29. The downhole work string of claim 20, wherein the first activation member moves in a first direction relative to the first body to form the first annular seal and the second activation member also moves in the first direction to form the second annular seal.
0. 30. The downhole work string of claim 20, wherein the first elastomeric packer element is mounted around the first body and the second elastomeric packer element is mounted around the second body.
0. 31. The method of claim 21, wherein moving the downhole work string from the first location to the second location in the well casing or the open borehole causes the first elastomeric element and the second elastomeric element to return to the undeformed condition.
0. 32. The method of claim 21, further comprising:
prior to moving the downhole work string from the first location to the second location in the well casing or the open borehole, reducing the fluid pressure of the fracturing fluid that is pumped into the downhole work string.
0. 33. The method of claim 32, wherein reducing the fluid pressure of the fracturing fluid that is pumped into the downhole work string comprises ceasing pumping the fracturing fluid into the downhole work string.
0. 34. The method of claim 21, wherein the first activation member moves in a first direction relative to the first body to deform the first elastomeric packer element and the second activation member also moves in the first direction to deform the second elastomeric packer element.
0. 35. The method of claim 21, wherein pumping the fracturing fluid into the downhole work string to increase the fluid pressure in the first, second and third bodies also causes wellbore fluid to be ejected from the downhole work string.
0. 36. The downhole work string of claim 22, wherein the second plurality of pistons are mounted around the second body.
0. 37. The downhole work string of claim 24, wherein the second plurality of pistons are mounted around the second body.
0. 38. The downhole work string of claim 22, wherein the first activation member extends between the first elastomeric element and one of the first plurality of pistons and the second activation member extends between the second elastomeric element and one of the second plurality of pistons.
0. 39. The downhole work string of claim 24, wherein the first activation member extends between the first elastomeric element and one of the first plurality of pistons and the second activation member extends between the second elastomeric element and one of the second plurality of pistons.

This application is a continuation application of U.S. patent application Ser. No. 14/712,654, filed May 14, 2015, entitled DOWNHOLE TOOLS, which is a continuation application of U.S. patent application Ser. No. 13/820,091, filed Mar. 28, 2013, entitled DOWNHOLE TOOLS, which application is U.S. National Stage of PCT/GB2012/050053, filed Jan. 12, 2012.

The present invention relates to a perforating tool for perforating a downhole well casing and relates to a packer apparatus for providing an annular seal in a downhole well bore. The present invention relates particularly, but not exclusively to a downhole work string incorporating such a perforating tool and/or packer apparatus and to a method of completion of a hydrocarbon well using such a work string.

In most oil and gas wells, steel casing is run through the productive zone as a conduit to keep the formation from breaking down and falling into the well bore. In order to produce oil and/or gas from the well, the casing must be perforated so the producing fluid can enter the well bore and be extracted. The most common technique for perforating a well casing is to use explosives and blow holes in the casing at predetermined intervals. However, it is desirable to be able to perforate a well casing in a more controlled and reliable manner

It is also desirable to provide a reliable and repeatable method of fracturing formations to enable the production of oil and gas once the well casing has been perforated. To accomplish this, it is desirable to provide a packer apparatus that enables sections of perforated well casings to be reliably isolated and sealed to enable hydraulic fracturing to take place.

Preferred embodiments of the present invention seek to overcome the above disadvantages of the prior art.

According to an aspect of the present invention, there is provided a perforating tool for perforating a downhole well casing, the tool comprising:

a body arranged to be disposed in a well casing and at least one cutter block moveable relative to the body between an inwardly retracted condition and an outwardly deployed condition to cut a perforation in the well casing;

an activation member disposed in the body, wherein the activation member is moveable relative to the body to move at least one said cutter block between the inwardly retracted condition and the outwardly deployed condition relative to the body;

a plurality of pistons arranged to move the activation member relative to the body, each said piston being disposed in a respective pressure chamber; and

wherein the activation member defines a bore disposed along a longitudinal axis of the body, and wherein a plurality of ports are formed in the activation member to enable fluid to flow from the bore to each said pressure chamber such that an increase in fluid pressure in the body increases fluid pressure in each said pressure chamber to move each of the plurality of pistons relative to the body and cause the activation member to move relative to the body.

This provides the advantage of a perforating tool that can be used to reliably cut perforations through a well casing. This is advantageous because when a casing has been placed in a well bore, and particularly in long horizontal well bores through tight formations, there is generally only a very small diameter, usually less than 4 inches, available for a downhole tool. As a result, there is a lack of hydraulic working area available in the downhole tool to provide a force for moving parts to operate.

Consequently, providing a plurality of pistons arranged to move the activation member relative to the body, each said piston being disposed in a respective pressure chamber arranged to be filled with fluid in response to an increase in fluid pressure in the body to move each of the plurality of pistons relative to the body and cause the activation member to move relative to the body increases the force available to the operator which provides a tool capable of perforating a well. This therefore enables the operator to use a downhole tool rather than explosives to perforate the well casing during completion operations.

By providing an activation member defining a bore disposed along a longitudinal axis of the body, and wherein a plurality of ports are formed in the activation member to enable fluid to flow from the bore to each said pressure chamber, this also provides a compact arrangement that can fit in the limited confines of a well casing to enable a plurality of pressure chambers to be operated to increase the force available to the operator for a given fluid pressure.

In a preferred embodiment, each said piston is disposed concentrically around the activation member.

This provides the advantage of helping to enable location of a plurality of pressure chambers in a downhole tool usable in small diameter well casings to increase working force available to the operator.

In preferred embodiment, each said pressure chamber defines an annular chamber arranged concentrically around the activation member.

This provides the advantage of helping to enable location of a plurality of pressure chambers in a downhole tool usable in small diameter well casings to increase working force available to the operator.

Each said pressure chamber may further comprise a stationary seal ring to provide a seal with the body for the respective pressure chamber.

The tool may further comprise a plurality of a4 activation member 4 relative to the body. Each piston 10 is disposed in a respective pressure chamber 12 arranged to be filled with fluid in response to an increase in fluid pressure in the body 6 to move each of the plurality of pistons relative to the body and cause the activation member 4 to move relative to the body.

The activation member defines a bore 18 disposed along a longitudinal axis of the body. A plurality of ports 42 are formed in the activation member to enable fluid to flow from the bore to each said pressure chamber such that an increase in fluid pressure in the body increases fluid pressure in each said pressure chamber to move each of the plurality of pistons relative to the body and cause the activation member to move relative to the body.

As will be familiar to persons skilled in the art, the body 6 is formed from a plurality of interconnected subs, 6a, 6b and 6c to form a perforating tool 2 that can be interconnected in a downhole work string. The activation member 4 comprises a mandrel interconnected with a plurality of lengths of tubing 14 interconnected with each respective piston 10. Tubing 14 forms a plurality of interconnected piston rods. In this way, the length of the activation member 4 can be modified although the activation member 4 and lengths of tubing 14 can be formed by a single length of tubing rather than a plurality of interconnected lengths of tubing.

The activation member 4 defines a bore 18 disposed along the longitudinal axis of the body 6. The bore 8 18 is arranged to be filled with fluid pumped from the surface when the tool 2 is disposed downhole in a well casing. In order to enable the bore 18 to be filled with fluid, a valve assembly 20 is disposed at the lowermost part of the tool 2. Referring to FIGS. 5a and 5b, the valve assembly 20 comprises a plunger 22 arranged to move against the bias of coil spring 24 to seal against valve seat 26 in response to an increase in fluid pressure in the tool. The valve is shown in the open condition in FIGS. 5a and 5b.

Cutter blocks 8 each have a respective sharp edge 16 which is arranged to be driven into a well casing to perforate the well casing. The cutter blocks or other working members 8 are provided with a plurality of inclined grooves 28 (FIG. 2b) which are slidable in a plurality of corresponding inclined grooves 30 (FIG. 1b) formed in the body 6. Respective inclined grooves 28 and 30 define an inclined track which enables the working member 8 to slide between the inwardly retracted and outwardly deployed conditions. Activation member 4 comprises a recess 32 in which a drive member 34 is located. Consequently, when the activation member 4 moves to the left in FIGS. 1a and 1b, the drive member 34 is moved leftwardly which pushes cutter block 8 to the left such that grooves 28 of cutter block 8 slide up grooves 30 of the body 6 to move the cutter block 8 to the outwardly deployed condition to drive edge 16 into the well casing (not shown) to perforate the well casing.

A return spring 36 is provided to return the cutter block 8 to the inwardly retracted condition when fluid pressure is reduced in the bore 18. To further assist the cutter blocks to move back to the inwardly retracted condition, the inclined track 28, 30 is inclined relative to the longitudinal axis of the body such that pulling the tool 2 upwardly out of the well casing in which it is located pushes the cutter blocks 8 into the inwardly retracted condition.

Referring to FIGS. 1a, 1b and 5a, each pressure chamber 12 is defined at one end by piston 10 and at an opposite end by a stationary seal 38 that is fixed relative to the body 6 by threaded fasteners 40. Each pressure chamber 12 is in fluid communication with the bore 18 via a plurality of ports 42 formed in the tubing 14 which forms part of activation member 4. Consequently, when fluid pressure in bore 18 increases, fluid flows through ports 42 and into pressure chamber 12, pushing each piston 10 leftwardly as can be seen in moving from FIGS. 1a to 1b. A plurality of annular annularly arranged pressure ports 44 are formed through the body 6 adjacent each pressure chamber 12 to enable the pistons to move relative to the body 6. In particular, fluid is exhausted through annular annularly arranged pressure ports 44 when the pistons move.

It can be seen from the drawings that each piston 10 is disposed concentrically around activation member 4, 14 and each pressure chamber defines an annular chamber arranged concentrically around the activation member. This provides a compact and convenient arrangement to increase the force available to the operator.

Referring to FIGS. 1 to 6 and 10, the operation of downhole tool 2 to perforate a well casing will now be described.

The downhole tool 2 is placed in a well casing 3 to be perforated with the cutter blocks 8 in the configuration in which they are inwardly retracted relative to the body 6 as shown in FIG. 1a. An operator on the surface then pumps fluid down the string in which the downhole tool 2 is located, such that fluid moves into bore 18. This drives plunger 22 of valve assembly 20 against seat 26. The bore 18 therefore fills with fluid and the pressure of the fluid increases in response to further pumping from the surface.

This causes fluid 18 to move through ports 42 and into pressure chambers 12. When the pressure in chambers 12 increases, pistons 10 are driven to the left or upwardly in relation to the well bore which moves activation member 4, drive member 34 and pushes the cutter member 8 along tracks 30 to the outwardly deployed condition as shown in FIG. 1b. This drives edge 16 into the inner surface of the well casing to perforate the well casing. If each of the pistons 12 has two square inches of area, by using four pressure chambers 12 as shown, the tool 2 has eight square inches of area and this creates enough force to push the activation member 4 cutter block 8 out to cut or perforate the casing.

When fluid pressure is removed, return spring 36 pushes activation member 4 and therefore pistons 10 downwardly to return the working members 8 to the inwardly retracted position. Alternatively, the tool 2 could be used without a return spring 36 because the action of pulling the tool 2 out of the well casing would return the cutter blocks 8 to the inwardly retracted condition.

Referring to FIGS. 7a and 7b, a further improvement can be made to perforating tool 2 by the addition of a floating piston 50 disposed in the upper part of bore 18. The upper part of bore 18 is disposed in top sub 6a. A plug 52 is mounted at the lowermost extent of bore 18. This effectively seals the bottom end of the bore 18. Bore 18 is also filled with oil or another working fluid and movement of floating piston 50 downwardly as shown in moving from FIGS. 7a to 7b increases the pressure of the oil in bore 18 to cause the cutter blocks to move outwardly in the manner described above. In the upper portion 19 of the bore, a different fluid is used to apply pressure to floating piston 50. By providing oil in bore 18, sealed at one end by plug 52 and at the other end by floating piston 50, the internal diameter of the tool 2 can be kept clean. This also helps to prevent debris from moving into the working parts of the perforating tool 2.

Referring to FIGS. 10a and 10b, a downhole work string 60 is located in a well casing 3 and comprises a perforating tool 2 as described above and a cup tool 62 as shown in FIGS. 8 and 9. The perforating tool 2 comprises a floating piston 50 to increase oil pressure in bore 18.

Referring to FIGS. 8 and 9, cup tool 62 is formed from a work string sub 64 to which a plurality of annular elastomeric cup elements 66 is mounted. Cup elements 66 define recesses 68 into which hydraulic fracturing fluid is forced under pressure to form an annular seal between the cup elements 66 and casing 3. The interconnection of downhole work string elements will be familiar to persons skilled in the art and will not be described in any further detail herein.

Referring to FIGS. 8 to 10b, a method of completion of a hydrocarbon well using a work string comprising perforating tool 2 and cup tool 62 will be described. Firstly, the work string is lowered down a well in which casing 3 has been installed. A perforating operation is conducted which comprises increasing pressure on floating piston 50 from the surface to repeatedly deploy cutter blocks 8 outwardly to punch perforations 5 in the well casing 3. The work string is lowered in steps to punch perforations 5 along a length of casing 3.

When the perforation operation has been completed, the formation behind the perforations 5 must be fractured in order to enable production of oil and gas from the well. To accomplish this, fracturing fluid is pumped down the annulus 70 defined by the outside of the work string. The fracturing fluid sits in recesses 68 of the cup elements 66 of the cup tool 62 to form a seal. The fracturing fluid is therefore pumped under pressure through perforations 5 to cause fracturing of the formation in which casing 3 is located. The perforation and fracturing operations can be repeated by perforating a section of casing and then subsequently lowering the cup tool past the perforations and conducting an annular pumping of fracturing fluid.

It should also be noted that when fracturing fluid is pumped under pressure, the floating piston 50 will be moved downwardly to deploy cutter blocks 8 and perforate casing 3. This forms an anchor by means of the cutter blocks 8 anchoring in the casing 3. This condition is shown in FIG. 10b.

Referring to FIG. 11, an alternative example of a work string comprises perforating tool 2 mounted in a work string in which two cup tools 62 are mounted above and below a ported sub 70 comprising a plurality of annular ports 72. Operation of the work string of FIGS. 11 to 13 is similar to that of the work string of FIGS. 10a and 10b with the following differences. Once the perforation operation has been completed by perforating tool 2, the work string is lowered such that one or more perforations 5 in casing 3 are located between the cup elements 66 of respective cup tools 62. Fracturing fluid is then pumped down the internal bore 74 of the string to exit port 72 under pressure and fracture the formation behind perforations 5. Respective cup tools 62 provide seals above and below ports 72 to isolate a section of casing 3.

Packer Apparatus

Referring to FIGS. 14a to 16b, packer apparatus 102 comprises a body 106 arranged to be disposed in a well casing. An activation member 104 is mounted to body 106 wherein the activation member is moveable relative to the body to deform an elastomeric packer element 108 outwardly relative to the body to form an annular seal in a well casing in use.

A plurality of pistons 110 are arranged to move activation member 104 relative to the body. Each piston defines a respective pressure chamber 112 arranged to be filled with fluid in response to an increase in fluid pressure in the body 106 to move each of the plurality of pistons 110 relative to the body 106 and cause the activation member 104 to move relative to the body.

It can be seen that the body 106 comprises a cylindrical member having an internal bore 118 arranged to receive fluid under pressure. Each piston 112 is mounted concentrically on the body 106. A plurality of ports 142 are formed through body 106 to enable fluid to flow from bore 118 into pressure chambers 112.

It can therefore be seen that each pressure chamber 112 defines an annular chamber arranged concentrically around body 106. This configuration enables more pistons 112 110 to be mounted to the body 106 if required to increase the force available to the operator. Respective stationary seal rings 138 define the opposite ends of pressure chambers 112. The configuration of the packer apparatus 102 enables the outer housing of the apparatus to be energized by fluid under pressure rather than an internal mandrel in the manner of the perforating tool of FIGS. 1a and 1b. A plurality of annular annularly arranged pressure ports 144 are provided to enable fluid in the well bore to escape to allow pistons 112 to operate.

In order to deform elastomeric packer element 108 outwardly to form a seal in a well casing, fluid is pumped under pressure down bore 118. This causes the fluid to move through ports 142 and into pressure chambers 112. This pushes pistons 110 upwardly along body 106 causing activation member 104 to deform the elastomeric packer element 108 outwardly. When the fluid pressure is removed from bore 118, a return spring (not shown) or the action of pulling packer 102 out of the well casing will return the packer element 108 to the undeformed condition as shown in FIG. 14a.

An alternative embodiment of the packer apparatus is shown in FIGS. 20 to 22. Packer apparatus 202 comprises an activation member 204 having a ramp portion 207. Ramp portion 207 is mounted to piston 210 comprising pressure chamber 212. The activation of piston 210 is achieved in the same manner as the packer apparatus 102 and will not be described in any further detail herein. It can be seen that the ramp 207 protrudes under the elastomeric deformable packer element when activated to push the packer element 208 outwardly.

Referring to FIGS. 17 to 19, a downhole work string usable in completion of a hydrocarbon well incorporating perforating tool 2 and two packer apparatuses 102 is shown. The work string also comprises a ported sub 70 having ports 72 to allow fracturing fluid to be pumped through perforations 5. By pumping fracturing fluid under pressure along bore 119, floating piston 50 is actuated and also pistons 110 of packer apparatuses 102 to cause outward deployment of packer seal element 108. This enables a fracturing operation to be conducted on an isolated portion of casing between packer elements 108 which form annular seals.

Referring to FIGS. 19a and 19b, packer apparatuses 102 are also particularly suited for use in open formation 90. Elastomeric deformable packer elements 108 are suited to forming a seal in the internal undulating surface 92 of open formation borehole 90. Ported sub 70 can then be used to conduct a fracturing operation of open formation borehole 90.

It will be appreciated that persons skilled in the art that the above embodiments have been described by way of example only, and not in any limitative sense, and that various alterations and modifications are possible without departure from the scope of the invention as defined by the appended claims.

Lee, Paul Bernard

Patent Priority Assignee Title
Patent Priority Assignee Title
2136518,
2624412,
2715444,
2836250,
2997107,
3171492,
3196961,
3211221,
3659647,
4099563, Mar 31 1977 Chevron Research Company Steam injection system for use in a well
4487258, Aug 15 1983 Halliburton Company Hydraulically set well packer
4519456, Dec 10 1982 BJ Services Company Continuous flow perforation washing tool and method
4791992, Aug 18 1987 Dresser Industries, Inc. Hydraulically operated and released isolation packer
5152340, Jan 30 1991 HALLIBURTON COMPANY A DE CORPORATION Hydraulic set packer and testing apparatus
6957701, Feb 15 2000 ExxonMobile Upstream Research Company Method and apparatus for stimulation of multiple formation intervals
8336615, Nov 27 2006 BJ TOOL SERVICES LTD Low pressure-set packer
20030079887,
20080011471,
20100089583,
20100258354,
20150090465,
RU2118442,
RU2249669,
RU2384692,
SU1548407,
WO208569,
WO134938,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Nov 16 2020BIG: Entity status set to Undiscounted (note the period is included in the code).
Nov 17 2020SMAL: Entity status set to Small.


Date Maintenance Schedule
Apr 12 20254 years fee payment window open
Oct 12 20256 months grace period start (w surcharge)
Apr 12 2026patent expiry (for year 4)
Apr 12 20282 years to revive unintentionally abandoned end. (for year 4)
Apr 12 20298 years fee payment window open
Oct 12 20296 months grace period start (w surcharge)
Apr 12 2030patent expiry (for year 8)
Apr 12 20322 years to revive unintentionally abandoned end. (for year 8)
Apr 12 203312 years fee payment window open
Oct 12 20336 months grace period start (w surcharge)
Apr 12 2034patent expiry (for year 12)
Apr 12 20362 years to revive unintentionally abandoned end. (for year 12)