A bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system includes a housing having a wall with a longitudinal opening extending a length along a portion thereof The system further includes a transport sled having a length that is shorter than the length of the longitudinal opening, the transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening. The system further includes a ribbon extending on opposing sides of the transport sled and substantially covering the longitudinal opening.

Patent
   RE49061
Priority
Oct 18 2012
Filed
Sep 20 2019
Issued
May 10 2022
Expiry
Oct 18 2032
Assg.orig
Entity
Large
0
578
currently ok
0. 19. An implantable dynamic apparatus comprising:
a first end and a second end, the first end configured for securing to a first portion of bone, the second end configured for securing to a second portion of bone:
a magnetic assembly disposed within the implantable dynamic apparatus and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly rotates a lead screw operatively coupled to a nut moveable along a length of the lead screw in response to rotation thereof, the nut containing at least one nut pulley affixed thereto;
at least one exit pulley disposed within the implantable dynamic apparatus at the first end;
at least one tension line fixed relative to the first end and passing over both the at least one nut pulley and the at least one exit pulley; and
wherein the tension line is configured to be secured to a third portion of bone.
0. 9. An implantable dynamic apparatus comprising:
a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone;
a housing having a wall with a longitudinal opening extending a length along a portion thereof;
a transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening; and
a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening,
wherein the magnetic assembly comprises a cylindrical permanent magnet, the cylindrical permanent magnet configured to be turned by the moving magnetic field and be held by a magnet holder rotationally coupled to the magnetic assembly.
0. 15. An implantable dynamic apparatus comprising:
a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone;
a housing having a wall with a longitudinal opening extending a length along a portion thereof;
a transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening; and
a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening, and
wherein the magnetic assembly comprises a magnetic housing containing a permanent magnet therein and a biasing member interposed between the magnetic housing and the permanent magnet, wherein the magnetic housing and the permanent magnet are rotationally locked by the biasing member up to a threshold torque value.
0. 8. An implantable dynamic apparatus comprising:
a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone;
a housing having a wall with a longitudinal opening extending a length along a portion thereof;
a transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening;
a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening; and
a lead screw, wherein actuation of the magnetic assembly is configured to rotate the lead screw,
wherein the transport sled comprises a first contact surface, and a stop secured to the lead screw and having a second contact surface, wherein when the first contact surface contacts the second contact surface in response to rotation of the lead screw, the stop is configured to radially expand and prevent additional rotation of the lead screw.
0. 17. An implantable dynamic apparatus comprising:
a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone;
a housing having a wall with a longitudinal opening extending a length along a portion thereof;
a transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening; and
a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening;
a lead screw, wherein actuation of the magnetic assembly is configured to rotate the lead screw and move the transport sled along the longitudinal opening, and wherein the lead screw is coupled to a nut moveable along a length of the lead screw in response to rotation thereof; and
a ribbon secured to the nut at one end and secured to the transport sled at an opposing end, the ribbon passing over at least one pulley, wherein movement of the nut in a first direction translates into movement of the transport sled in a second, opposing direction.
0. 2. An implantable dynamic apparatus comprising:
a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone;
a housing having a wall with a longitudinal opening extending a length along a portion thereof;
a transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening;
a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening;
a lead screw, wherein actuation of the magnetic assembly is configured to rotate the lead screw;
a first abutment surface coupled to the lead screw; and
a second abutment surface coupled to the distal end of the nail,
wherein rotation of the lead screw in a first direction causes the first abutment surface to contact the second abutment surface, stopping the motion of the lead screw with respect to the proximal end of the nail, and wherein subsequent turning of the nail in a second direction is substantially unimpeded by jamming between an internally threaded feature of the distal end of the nail and an externally threaded portion of the lead screw.
1. An implantable dynamic apparatus comprising:
a nail having a first portion and a second portion, the first portion of the nail configured for securing to a first portion of bone, the second portion of the nail configured for securing to a second portion of bone;
the second portion of the nail configured to be longitudinally moveable with respect to the first portion of the nail, wherein the second portion of the nail includes an internally threaded feature;
a magnetic assembly configured to be non-invasively actuated by a moving magnetic field;
a lead screw having an externally threaded portion, the lead screw coupled to the magnetic assembly, wherein the externally threaded portion of the lead screw engages the internally threaded feature of the second portion of the nail;
wherein actuation of the magnetic assembly turns the lead screw, which in turn changes the longitudinal displacement between the first portion of the nail and the second portion of the nail;
a first abutment surface coupled to the lead screw;
a second abutment surface coupled to the second portion of the nail; and
wherein the turning of the lead screw in a first direction causes the first abutment surface to contact the second abutmentsurface, stopping the motion of the lead screw with respect to the second portion of the nail, and wherein subsequent turning of the nail in a second direction is not impeded by any jamming between the internally threaded feature and the externally threaded portion.
0. 3. The implantable dynamic apparatus of claim 2, the transport sled comprising a length that is shorter than the length of the longitudinal opening.
0. 4. The implantable dynamic apparatus of claim 2, the lead screw comprising a threaded surface having a coating thereon.
0. 5. The implantable dynamic apparatus of claim 4, the coating selected from either molybdenum disulfide or amorphous diamond-like carbon.
0. 6. The implantable dynamic apparatus of claim 2, wherein the externally threaded portion of the lead screw engages the internally threaded feature of the distal end of the nail.
0. 7. The implantable dynamic apparatus of claim 2, the magnetic assembly comprising: a cylindrical permanent magnet, the cylindrical permanent magnet configured to be turned by a moving magnetic field.
0. 10. The implantable dynamic apparatus of claim 9,
comprising a friction applicator which couples the magnet holder to the cylindrical permanent magnet, wherein the friction applicator is configured to apply a static frictional torque to the magnet so that when a moving magnetic field couples to the cylindrical permanent magnet at a torque below the static frictional torque, the cylindrical permanent magnet and the magnet holder turn in unison, and when a moving magnetic field couples to the cylindrical permanent magnet at a torque above the static frictional torque, the cylindrical permanent magnet turns while the magnet holder remains rotationally stationary.
0. 11. The implantable dynamic apparatus of claim 10, wherein the friction applicator can be adjusted over a range of static frictional torques.
0. 12. The implantable dynamic apparatus implant of claim 10, wherein the friction applicator comprises a wave disc.
0. 13. The implantable dynamic apparatus of claim 10, wherein the friction applicator comprises a formed flat spring.
0. 14. The implantable dynamic apparatus of claim 10, wherein the cylindrical permanent magnet is a composite rare-earth magnet.
0. 16. The implantable dynamic apparatus of claim 15, wherein the permanent magnet is held by a magnet holder rotationally coupled to the magnetic assembly.
0. 18. The implantable dynamic apparatus of claim 17, wherein the magnetic assembly comprises a permanent magnet configured to be turned by the moving magnetic field.
0. 20. The implantable dynamic apparatus of claim 19, wherein the magnetic assembly comprises a permanent magnet configured to be turned by the moving magnetic field.

This application is a continuation of U.S. patent application Ser. No. 14/451,190, filed Aug. 4, 2014, which is a continuation of U.S. patent application Ser. No. 13/655,246, filed Oct. 18, 2012, now U.S. Pat. No. 9,044,281. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

Field of the Invention

The field of the invention generally relates to medical devices for treating disorders of the skeletal system.

Description of the Related Art

Distraction osteogenesis is a technique which has been used to grow new bone in patients with a variety of defects. For example, limb lengthening is a technique in which the length of a bone (for example a femur or tibia) may be increased. By creating a corticotomy, or osteotomy, in the bone, which is a cut through the bone, the two resulting sections of bone may be moved apart at a particular rate, such as one (1.0) mm per day, allowing new bone to regenerate between the two sections as they move apart. This technique of limb lengthening is used in cases where one limb is longer than the other, such as in a patient whose prior bone break did not heal correctly, or in a patient whose growth plate was diseased or damaged prior to maturity. In some patients, stature lengthening is desired, and is achieved by lengthening both femurs and/or both tibia to increase the patient's height.

Bone transport is a similar procedure, in that it makes use of osteogenesis, but instead of increasing the distance between the ends of a bone, bone transport fills in missing bone in between. There are several reasons why significant amounts of bone may be missing. For example, a prior non-union of bone, such as that from a fracture, may have become infected, and the infected section may need to be removed. Segmental defects may be present, the defects often occurring from severe trauma when large portions of bone are severely damaged. Other types of bone infections or osteosarcoma may be other reasons for a large piece of bone that must be removed or is missing.

Limb lengthening is often performed using external fixation, wherein an external distraction frame is attached to the two sections of bone by pins which pass through the skin. The pins can be sites for infection and are often painful for the patient, as the pin placement site remains a somewhat open wound “pin tract” throughout the treatment process. The external fixation frames are also bulky, making it difficult for patient to comfortably sit, sleep and move. Intramedullary lengthening devices also exist, such as those described in U.S. Patent Application Publication No. 2011/0060336, which is incorporated by reference herein. Bone transport is typically performed by either external fixation, or by bone grafting.

In external fixation bone transport, a bone segment is cut from one of the two remaining sections of bone and is moved by the external fixation, usually at a rate close to one (1.0) mm per day, until the resulting regenerate bone fills the defect. The wounds created from the pin tracts are an even worse problem than in external fixation limb lengthening, as the pins begin to open the wounds larger as the pins are moved with respect to the skin. In bone grafting, autograft (from the patient) or allograft (from another person) is typically used to create a lattice for new bone growth. Bone grafting can be a more complicated and expensive surgery than the placement of external fixation pins.

In one embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system includes a housing having a wall with a longitudinal opening extending a length along a portion thereof. The system further includes a transport sled having a length that is shorter than the length of the longitudinal opening, the transport sled configured for securing to a third portion of bone, the transport sled further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening. The system further includes a ribbon extending on opposing sides of the transport sled and substantially covering the longitudinal opening.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof and having a length. The system further includes a transport sled having a length that is shorter than the length of the longitudinal opening, the transport sled configured for securing to a third portion of bone, the transport sled further configured to move along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening. The system further includes a dynamic cover which is configured to cover substantially all of the portion of the longitudinal opening that is not occupied by the transport sled independent of the position of the transport sled along the length of the longitudinal opening.

In another embodiment of the invention, a method for performing a bone transport procedure includes placing a bone transport system within an intramedullary canal of a bone, the bone transport system comprising a nail having a proximal end and a distal end, a housing section having a wall with a longitudinal opening extending along a portion thereof, a transport sled disposed in the longitudinal opening and configured to move along the longitudinal opening in response to actuation of a magnetic assembly disposed within the nail, and a dynamic cover configured to cover substantially all of the longitudinal opening not occupied by the transport sled. The method further includes securing the proximal end of the nail to a first portion of bone, securing the distal end of the nail to a second portion of bone, and securing a third portion of bone to the transport sled. The method further includes applying a moving magnetic field to the magnetic assembly to actuate the magnetic assembly and cause the transport sled to move along the longitudinal opening, wherein the dynamic cover substantially covers all of the longitudinal opening regardless of the location of the transport sled within the longitudinal opening.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof and having a length. The system further includes a transport sled having a length that is shorter than the length of the longitudinal opening, the transport sled configured for securing to a third portion of bone, the transport sled disposed within the longitudinal opening and further configured to move along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly turns a lead screw, which in turn moves the transport sled along the longitudinal opening, and wherein the lead screw includes a threaded surface having a coating thereon, the coating selected from either molybdenum disulfide or amorphous diamond-like carbon.

In another embodiment of the invention, and implantable dynamic apparatus includes a nail having a first portion and a second portion, the first portion of the nail configured for securing to a first portion of bone, the second portion of the nail configured for securing to a second portion of bone, the second portion of the nail configured to be longitudinally moveable with respect to the first portion of the nail, wherein the second portion of the nail includes an internally threaded feature. The apparatus further includes a magnetic assembly configured to be non-invasively actuated by a moving magnetic field. The apparatus further includes a lead screw having an externally threaded portion, the lead screw coupled to the magnetic assembly, wherein the externally threaded portion of the lead screw engages the internally threaded feature of the second portion of the nail, wherein actuation of the magnetic assembly turns the lead screw, which in turn changes the longitudinal displacement between the first portion of the nail and the second portion of the nail. The apparatus further includes a first abutment surface coupled to the lead screw, a second abutment surface coupled to the second portion of the nail, and wherein the turning of the lead screw in a first direction causes the first abutment to contact the second abutment, stopping the motion of the lead screw with respect to the second portion of the nail, and wherein subsequent turning of the nail in a second direction is not impeded by any jamming between the internally threaded feature and the externally threaded portion.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof. The system further includes a transport sled configured for securing to a third portion of bone, the transport sled disposed within the longitudinal opening and further configured to be moveable along the longitudinal opening, the transport sled having a first stopping surface. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly rotates a lead screw operatively coupled thereto and moves the transport sled along the longitudinal opening. The system further includes a stop secured to the lead screw and having a second contact surface, and wherein when the first contact surface contacts the second contact surface in response to rotation of the lead screw, the stop is configured to radially expand and prevent additional rotation of the lead screw.

In another embodiment of the invention, a non-invasively adjustable implant includes a nail having a first portion and a second portion, the first portion of the nail configured for securing to a first portion of bone, the second portion of the nail configured for securing to a second portion of bone, the second portion of the nail configured to be longitudinally moveable with respect to the first portion of the nail. The implant further includes a magnetic assembly configured to be non-invasively actuated. The system further includes a cylindrical permanent magnet having at least two radially-directed poles, the cylindrical permanent magnet configured to be turned by a moving magnetic field, the cylindrical permanent magnet held by a magnet holder, the magnet holder rotationally coupled to the magnetic assembly, wherein actuation of the magnetic assembly changes the longitudinal displacement between the first portion of the nail and the second portion of the nail. The implant further includes a friction applicator which couples the magnet holder to the cylindrical permanent magnet, wherein the friction applicator is configured to apply a static frictional torque to the magnet so that when a moving magnetic field couples to the cylindrical permanent magnet at a torque below the static frictional torque, the cylindrical permanent magnet and the magnet hold turn in unison, and when a moving magnetic field couples to the cylindrical permanent magnet at a torque above the static frictional torque, the cylindrical permanent magnet turns while the magnet holder remains rotationally stationary.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof. The system further includes a transport sled configured for securing to a third portion of bone, the transport sled disposed within the longitudinal opening and further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening, the magnetic assembly having a magnetic housing containing a permanent magnet therein and a biasing member interposed between the magnetic housing and the permanent magnet, wherein the magnetic housing and the permanent magnet are rotationally locked by the biasing member up to a threshold torque value.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing having a wall with a longitudinal opening extending along a portion thereof. The system further includes a transport sled disposed within the longitudinal opening and further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly rotates a lead screw operatively coupled to a nut moveable along a length of the lead screw in response to rotation thereof. The system further includes a ribbon secured to the nut at one end and secured to the transport sled at an opposing end, the ribbon passing over at least one pulley, wherein movement of the nut in a first direction translates into movement of the transport sled in a second, opposing direction.

In another embodiment of the invention, a method for performing a bone transport procedure includes preparing the medullary canal of a bone for placement of a nail configured to change its configuration at least partially from a moving magnetic field supplied by an external adjustment device, the change in configuration including the longitudinal movement of a transport sled. The method further includes placing a nail within the medullary canal of the bone, securing a first end of the nail to a first portion of the bone, and securing a second end of the nail to a second portion of the bone. The method further includes storing information in the external adjustment device, the information including the orientation of the nail within the bone and the direction of planned movement of the transport sled.

In another embodiment of the invention, a bone transport system includes a nail having a first end and a second end, the first end configured for securing to a first portion of bone, the second end configured for securing to a second portion of bone. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly rotates a lead screw operatively coupled to a nut moveable along a length of the lead screw in response to rotation thereof, the nut containing at least one pulley affixed thereto. The system further includes at least one pulley disposed within the nail at the first end. The system further includes at least one tension line fixed relative to the first end and passing over both the at least one pulley of the nut and the at least one pulley disposed within the nail at the first end, and wherein the tension line is configured to be secured to a third portion of bone.

In another embodiment of the invention, a bone transport system includes a nail having a proximal end and a distal end, the proximal end configured for securing to a first portion of bone, the distal end configured for securing to a second portion of bone. The system further includes a housing section having a wall with a longitudinal opening extending along a portion thereof. The system further includes a transport sled configured for securing to a third portion of bone, the transport sled disposed within the longitudinal opening and further configured to be moveable along the longitudinal opening. The system further includes a magnetic assembly disposed within the nail and configured to be non-invasively actuated by a moving magnetic field, wherein actuation of the magnetic assembly moves the transport sled along the longitudinal opening, and wherein the nail has an ultimate failure torque greater than 19 Newton-meters.

FIG. 1 illustrates an intramedullary bone transport device for replacing lost bone according to one embodiment.

FIG. 2 illustrates a longitudinal section of the intramedullary bone transport device of FIG. 1.

FIG. 3 illustrates detail 3 of FIG. 2.

FIG. 4 illustrates detail 4 of FIG. 2.

FIG. 5 illustrates the intramedullary bone transport device secured within the medullary canal of a tibia, prior to transporting a bone segment.

FIG. 6 illustrates the intramedullary bone transport device secured within the medullary canal of a tibia, after transporting a bone segment.

FIG. 7 illustrates an exploded view of the internal components located within an enclosed housing portion of an actuator of the intramedullary bone transport device.

FIG. 8 illustrates an enclosed housing portion of the actuator of the intramedullary bone transport device.

FIG. 9 illustrates a screw assembly for securing a transport sled to a bone segment.

FIG. 10 illustrates detail view of an end stop for avoiding jamming of a transport sled.

FIG. 11 illustrates a spring friction slip clutch incorporated into a magnetic assembly.

FIG. 12 illustrates a longitudinal section of FIG. 11, taken along lines 12-12.

FIG. 13 illustrated a cross-section of FIG. 11, taken along lines 13-13.

FIG. 14 illustrates an adjustable friction slip clutch incorporated into a magnetic assembly.

FIG. 15 illustrates detail 15 of FIG. 14.

FIG. 16 illustrates a wave disc used as a spring component in the slip clutch of FIGS. 14 and 15.

FIG. 17 illustrates the actuator of an intramedullary bone transport device having a dynamic cover according to a first embodiment.

FIG. 18 illustrates the actuator of an intramedullary bone transport device having a dynamic cover according to a second embodiment.

FIG. 19 illustrates the actuator of an intramedullary bone transport device having a dynamic cover according to a third embodiment.

FIG. 20 is a longitudinal section of the actuator of FIG. 18.

FIG. 21 illustrates detail 21 of the actuator of FIG. 20.

FIG. 22 illustrates internal components of an external adjustment device for non-invasively adjusting an intramedullary bone transport device according to one embodiment.

FIG. 23 illustrates an external adjustment device in a configuration for adjusting an intramedullary bone transport device implanted within the femur.

FIG. 24 illustrates an external adjustment device in a configuration for adjusting an intramedullary bone transport device implanted within the tibia.

FIG. 25A illustrates the transport sled of the intramedullary bone transport device of FIG. 17.

FIG. 25B illustrates a cross-section of the transport sled in the open housing of the intramedullary bone transport device of FIG. 17.

FIG. 26 illustrates the transport sled of the intramedullary bone transport device of FIG. 18.

FIG. 27 illustrates an alternative embodiment of an end stop prior to reaching the end of travel.

FIG. 28 illustrates the end stop of FIG. 27 at the end of travel in one direction.

FIG. 29 illustrates an additional embodiment of an end stop prior to reaching the end of travel.

FIG. 30 illustrates the end stop of FIG. 29 at the end of travel in one direction.

FIG. 31A illustrates an intramedullary bone transport device having a reverse block and tackle arrangement.

FIG. 31B illustrates the intramedullary bone transport device of FIG. 31A with a portion of the housing removed.

FIG. 32 illustrates detail 32 of FIG. 31B with portions removed for clarity.

FIG. 33 illustrates an intramedullary bone transport device having an alternative drive system.

FIG. 34 illustrates a longitudinal section of the intramedullary bone transport device of FIG. 33 taken along lines 34-34.

FIG. 35 illustrates detail 35 of FIG. 34.

FIG. 36 illustrates detail 36 of FIG. 34.

FIG. 1 illustrates an intramedullary bone transport device 100 in a “nail” configuration, having an actuator 102, a first extension rod 104 coupled to the actuator 102 at a first end 108 of the intramedullary bone transport device 100, and a second extension rod 106 coupled to the actuator 102 a second end 110 of the intramedullary bone transport device 100. First extension rod 104 and second extension rod 106 are secured to actuator 102 by set screws 112, 114. A variety of different extension rods are available, each having a particular angulation and length. In FIG. 1, first extension rod 104 is angled for use in the proximal tibia while second extension rod 106 is straight for use in the distal tibia. Multiple configurations are contemplated for tibial use, as well as antegrade use in the femur and retrograde use in the femur. Holes 116, 118, 120, 122, 124 are configured with specific diameters and orientations, in order to accommodate bone screws 126, 128, 130, 132, 134 for securing intramedullary bone transport device 100 to the bone as seen in FIGS. 5 and 6. FIGS. 5 and 6 show the intramedullary bone transport device 100 secured in the medullary canal of a tibia 136. The tibia 136 is shown having a proximal portion 138 and a distal portion 140. Additionally, there is a missing section 142 of tibia 136. The bone that was originally in this missing section 142 may be missing because of several reasons. It may have been destroyed because of severe trauma to this area of the tibia. It may also have been removed as part of a treatment of osteosarcoma in this area. The intramedullary bone transport device 100 facilitates the replacement of this bone by facilitating the controlled movement of a bone segment 144, which can be cut from one of the two portions 138, 140 of the tibia 136. In the case illustrated in FIGS. 5 and 6, the bone segment 144 is cut from the proximal portion 138 of the tibia 136.

Returning to FIG. 1, the actuator 102 includes an enclosed housing 146 and an open housing 148. The open housing 148 contains a longitudinal slit 150 on one side along which a transport sled 152 is configured for axial movement. Longitudinal slit has a length of 140 mm, but can be a range of lengths, depending on the desired amount of bone transport. Referring more specifically to FIGS. 2, 3 and 4, the transport sled 152 includes a moveable transport tube 154 having an internal nut 156. A support stage 158 is attached to the transport tube 154, the support stage 158 being configured for axial movement within the longitudinal slit 150 of the open housing 148. The internal nut 156 is threaded and coupled to a correspondingly threaded lead screw 160, so that rotation of the lead screw 160 in a first rotational direction causes the transport tube 154 and support stage 158 (i.e., transport sled 152) to move along the longitudinal slit 150 in a first axial direction and rotation of the lead screw 160 in a second, opposite rotational direction causes the transport sled 152 to move along the longitudinal slit 150 in a second axial direction, opposite of the first axial direction. Internal nut 156 may have female threads cut directly into the transport tube 154. Alternatively, internal nut 156 may have external male threads and the transport tube 154 may have internal female threads, so that the internal female threads of the transport tube 154 and the external male threads of the internal nut 156 create a helical engagement surface. The two parts may be held together at this surface with adhesive, epoxy, etc. A representative thread design is 80 turns per inch.

Intramedullary bone transport device 100 is configured to allow controlled, precise translation of the transport sled 152 along the length of the longitudinal slit 150 by non-invasive remote control, and thus controlled, precise translation of the bone segment 144 that is secured to the transport sled 152. Within the enclosed housing 146 of the actuator 102 is located a rotatable magnetic assembly 176. Further detail can be seen in FIGS. 7 and 8. The magnetic assembly 176 includes a cylindrical, radially-poled permanent magnet 162 (FIG. 22) contained within a magnet housing 164 having an end cap 166. The permanent magnet 162 may include rare earth magnet materials, such as Neodymium-Iron-Boron. The permanent magnet 162 has a protective Phenolic coating and may be held statically within the magnet housing 164 and end cap 166 by epoxy or other adhesive. The magnet housing 164, end cap 166 and epoxy form a seal to further protect the permanent magnet 162. Magnet housing 164 may also be welded to end cap 166 to create a hermetic seal. End cap 166 includes cylindrical extension or axle 168 which fits within the inner diameter of a radial bearing 170, allowing for low friction rotation. Outer diameter of radial bearing 170 fits within cavity 172 of an actuator end cap 174 as seen, for example, in FIG. 4. Actuator end cap 174 may be welded to enclosed housing 146 of actuator 102. Referring to FIG. 7, the magnetic assembly 176 terminates at an opposing end in a first sun gear 178 which is integral to magnet housing 164. First sun gear 178 may also be made as a separate component and secured to magnet housing 164, for example by welding. First sun gear 178 turns with rotation of magnetic assembly 176 (in a 1:1 fashion) upon application of a moving magnetic field applied to the patient from an external location. The first sun gear 178 is configured to insert within opening 190 of a first gear stage 180 having three planetary gears 186 which are rotatably held in a frame 188 by axles 192. Second sun gear 194, which is the output of the first gear stage 180, turns with frame. The identical components exist in second gear stage 182, which outputs to a third sun gear 196, and third gear stage 184, which outputs to an output shaft 198 as best seen in FIG. 4. Along the length that the gear stages 180, 182, 184 extend, the inner wall 200 of enclosed housing 146 (as seen in FIG. 8) has internal teeth 202 along which the externally extending teeth 204 of the planetary gears 186 engage, as they turn. Each gear stage illustrated has a 4:1 gear ratio, so the output shaft 198 turns once for every 64 turns of the magnetic assembly 176. The output shaft 198 is coupled to lead screw 160 by a pin 206 (FIG. 4) which passes through holes 208 in a lead screw coupling cup 240 (FIG. 7) which is welded to output shaft 198 and a hole 210 in the lead screw 160 (FIG. 4). Pin 206 is held in place by retaining cylinder 242. A pin 206 diameter of 0.055 inches on a pin 206 made from 400 series stainless steel allows for a tensile break force of over 600 pounds between the lead screw 160 and the lead screw coupling cup 240. The torque applied on the magnetic assembly 176 by the action of the rotating magnetic field on the cylindrical permanent magnet 162, is therefore augmented on the order of 64 times in terms of the turning torque of the lead screw 160. This allows the transport sled 152 to be able to move with high precision. Returning to FIGS. 5 and 6, bone segment 144 is attached to transport sled 152 by three screw assemblies 212, which engage with internally threaded holes 214 of the support stage 158 of the transport sled 152. Because of the 64:1 gear ratio, the intramedullary bone transport device is able to axially displace the bone segment 144 against severe resisting forces, for example those created by soft tissue. A thrust bearing 262 (FIG. 4) is sandwiched between the lead screw 160 and the gear stages 180, 182, 184 in order to protect the gear stages 180, 182, 184 and the magnetic assembly 176 from high compressive forces. The thrust bearing 262 butts up against a flange 264 inside the enclosed housing 146. A shim spacer 270 can be added to assembly in order to maintain a desired amount of axial play. Shim spacer 270 can be a tube, chosen from a variety of lengths to optimize this axial spacing of the components.

FIG. 9 illustrates a bone segment 144 and a screw assembly 212 for securing the bone segment 144 to the support stage 158 of the transport sled 152. For clarity purposes, the remainder of the tibia is not shown, nor is the transport sled, which would be located inside the reamed medullary canal of the bone segment 144. A drill site 220 is chosen for drilling through the bone segment 144. This drill site 220 corresponds to one of the threaded holes 214 of the support stage 158 of the transport sled 152, and is located using fluoroscopy or surgical navigation during the surgical procedure. The holes 214 themselves may be made with radiopaque markings to further locate them. The cortex of a single wall of the bone segment 144 is drilled at the drill location 220 to make a pilot hole. A conventional tap (not shown) may then be used to cut internal threads in the bone at the drill location. Cannulated screw 216 is then secured into the tapped hole with external threads 222 engaging with tapped threads. Alternatively, if the cannulated screw 216 is self-tapping, then the initial hole need only be piloted. Cannulated screw is tightened into place with a hex driver, which engages with female hex 226. Torx® shapes may be used instead of hex shapes. Inner screw 218, having a head 228 and a threaded shaft 230 is then placed through a non-threaded through hole 224 in the cannulated screw 216 and threaded shaft 230 is engaged with and tightened into threaded hole 214 of the support stage 158 of the transport sled 152. Hex driver is placed into female hex 232 to tighten inner screw 218. As illustrated in FIGS. 5 and 6, there may be three of these connections made, to connect three screw assemblies 212 with the three threaded screw holes 214 of the support stage 158 of the transport sled 152, though at times it might be desired to make fewer than three connections or even more than three connections.

Referring back to FIG. 4, the gear stages 180, 182, 184 and the magnetic assembly 176 are protected from any biological material that may enter longitudinal slit 150, by a dynamic seal assembly 234. The lead screw 160 includes a long threaded portion 236 and a smooth diameter (non-threaded) portion 238. An O-ring 244 having an “X” cross-section seals over the outer diameter of the smooth diameter portion 238 and maintains the seal during rotation. A retaining structure 246 is welded with termination 248 of enclosed housing 146 and termination 250 of open housing at weld point 252. A face 254 of retaining structure 246 serves as an axial abutment of O-ring 244 while longitudinal extension 256 of retaining structure 246 retains O-ring 244 at its outer diameter. The retaining structure 246 also further retains thrust bearing 262. A seal gland 258 presses or snaps in place within the inner diameter of enclosed portion 260 of open housing, to further retain O-ring 244. The O-ring 244 material may be EPDM or other similarly performing material.

The majority of components in the intramedullary bone transport device can be made of titanium, or titanium alloys, or other metals such as stainless steel or cobalt chromium. Bearings 170, 262 and pin 206 can be made of 400 series stainless steel. A 10.7 mm diameter actuator having a longitudinal slit 150 length of approximately 134 mm has a total transport length of 110 mm. A 10.7 mm diameter actuator having a longitudinal slit 150 length of approximately 89 mm allows for a total transport length of 65 mm. A torsional finite element analysis was performed on a Titanium-6-4 alloy actuator having these dimensions. The yield torque was 25 Newton-meters. This compares favorably to commonly used trauma nails, some of which experience failure (ultimate torque) at 19 Newton-meters. Yield torque is defined as the torque at which the nail begins to deform plastically, and thus the ultimate torque of the 10.7 mm diameter actuator is above the 25 Newton-meter yield torque.

In FIGS. 2 through 4, the transport sled 152 abuts end stops 266, 268 at each respective end of its travel over the lead screw 160. FIG. 10 illustrates an end stop 266 having a threaded inner diameter 265 configured for engaging the external threads 161 of lead screw 160. Pin 276 is fit through hole 278 on end 272 of lead screw 160, and is sized so that pin 276 fits within the inner diameter of counterbore 280 on end stop 266, thus limiting the axial travel of the end stop 266 in first axial direction 274. An analogous assembly may be used, using instead a c-clip which clips over a circumferential groove around the end 272 of the lead screw 160, thus replacing the hole 278 and the pin 276. Still referring to FIG. 10, a spring portion 282 is laser cut at one end of end stop 266. End of transport tube 154 includes ledges 284, 286 which are configured so that when transport tube 154 approaches end stop 266, the end 288 of spring portion 282 abuts one of the ledges 284, 286. Because the end stop 266 is held statically by combination of counterbore 280, threads 161, 265, and pin 276, the end 288 places a tangential force on ledge 284 or 286 of transport tube 154. This causes spring portion 282 to increase in diameter until it is restrained by inner wall 290 of transport tube 154. The transport sled 152 is thus stopped axially, and even if a large torque is placed on permanent magnet 162 by an external rotating magnetic field. Thus, even a large force that pushes transport sled 152 will not cause the transport tube 154 to jam with lead screw 160, because the binding is between spring portion 282 of end stop 266 and inner wall 290 of transport tube 154, and not between internal nut 156 and lead screw 160. When subsequently a torque is placed in an opposite direction on permanent magnet 162 by a rotating magnetic field to move the transport sled 152 in a direction opposite the first axial direction 274 the tangential force between the end 288 and one of ledge 286 or 286 decreases, the spring portion 282 decreases in diameter and the transport tube 154 is free to move away from the end 288 of spring portion 282. End stop 268, seen at other end of lead screw 260 in FIG. 4, does not need a pin 276 or c-clip to hold it axially, but instead abuts the increase in diameter between the smaller diameter threaded portion 236 of the lead screw 260 and the smooth diameter portion 238 of the lead screw 260. The spring portion 282 of end stop 266, 268 may alternatively be made from a split lock washer, for simplicity and cost purposes.

FIGS. 11-13 illustrate an alternative magnetic assembly 376 having a spring friction slip clutch 377. The slip clutch 377 serves to limit the maximum amount of force applied on the body tissue, in this case the bone segment 144 and its neighboring soft tissue. It should be noted that the assembly described may be used on other devices that are not bone transport devices, for example, limb lengthening devices, spine distraction devices, jaw distraction devices and cranial distraction devices in which too large of a torque applied to the permanent magnet 162 results in too large of a distraction force, and thus possible damage to tissue or pain. In the alternative magnetic assembly 376, the permanent magnet 162 is held inside a magnetic housing 364 and an end cap 366 having a cylindrical extension or axle 368. In this case, however, the permanent magnet 162 is not bonded in place, but is held in place with respect to the magnetic housing 364 and end cap 366 by the use of friction. The magnetic housing 364 and end cap 366 are welded together along a circumferential weld 292. A spring 294 is laser cut or etched from a material such as superelastic Nitinol®, and may be heat formed so that center portion 296 is axially displaced from outer portion 298, giving it spring capabilities in the axial direction. FIG. 12 shows the spring 294 trapped between the permanent magnet 162 and the end cap 366, so that the center portion 296 of spring 294 is axially compressed and therefore places a normal force on the end 300 of the permanent magnet 162. By controlling the material, the thickness and the dimensions of the spring 294, a controlled spring constant is achieved, thus applying a consistent normal force, and proportional frictional torque that must be overcome in order to allow permanent magnet 162 to rotate freely within magnet housing 364 and end cap 366. For example, in a scoliosis distraction device, it is desired that at a torque up to two inch-pounds (0.23 Newton-meter), the permanent magnet 162 and the magnet housing/end cap 364/366 remain static to each other, thus allowing the magnetic assembly 376 to turn the lead screw 160. In this application, the gear stages 180, 182, 184 may be omitted. This represents a distraction force of approximately 125 pounds (556 Newton), at which damage may occur to vertebrae at their attachment point to the implant. Above two inch-pounds, it may be desired that the spring 294 allow the permanent magnet 162 to turn freely with respect to the magnet housing/end cap 364/366, thus stopping the turning of the lead screw. Alternatively, in a bone transport or limb lengthening device having gear stages 180, 182, 184, and a total gear ratio of 64:1, it may be desired that this slippage occur at 0.046 inch-pounds (0.005 Newton-meter). This limit would potentially be desired in order to protect the device itself or to protect the bone or soft tissue, for example in a patient with an intramedullary tibial implant, in which the external moving magnetic field is placed extremely close to the permanent magnet 162, and thus able to apply a significantly large torque to it.

FIGS. 14-16 illustrate an alternative magnetic assembly 476 which can be adjusted upon assembly in order to set a specific amount of slip torque between the permanent magnet 162 and the magnet housing 464 and end cap 466. A wave disc 302 (similar to a wave washer, but without a center hole) is held between a flat washer 304 and an adjustable compression stage 306. The flat washer 304 serves to protect the permanent magnet 162 and also provide a consistent material surface for friction purposes. The wave disc 302 may be made from stainless steel, and the flat washer 304 may be made from a titanium alloy. Adjustable compression stage 306 has a shaft 316 with a male thread 308 which is engaged within female threads 310 of a cylindrical extension 468. A hex tool may be placed within access hole 314 of the cylindrical extension 468 and into female hex 312 of the shaft 316 of the adjustable compression stage 306. Turning in one direction increases compression on the wave disc 302 and thus increases the normal force and frictional slip torque. Turning in the opposite direction decreases these values. Upon assembly, adhesive may be placed on the threads 308, 310 to permanently bond the adjustable compression stage 306 to the cylindrical extension 468 and maintain the desired amount of frictional slip torque.

The intramedullary bone transport device 100 having a longitudinal slit 150 as shown in FIGS. 1-4 is configured to be implanted within a reamed medullary canal. For example a 10.7 mm diameter device may necessitate reaming to a diameter of 11.0 mm to 13.0 mm. At the beginning of implantation, a certain portion of the longitudinal slit 150 is located where there is no bone (FIG. 5). Because the longitudinal slit 150 is thus exposed to both the internal environment of the medullary canal and the soft tissue (muscle, etc.) of the limb being treated, there is a potential for biological tissue growth on the moveable portions of the mechanism, such as the lead screw 160. One way to protect the threads of the lead screw 160, is by adding a special coating to the surface of the lead screw 160. Coatings may be applied a variety of ways, for example through deposition, and preferably are biocompatible, hard, thin and resistant to adherence of body tissues or fluids. Exemplary coatings include MoST® (based on molybdenum disulfide) or ADLC (Amorphous Diamond-like Carbon).

Though the coating of the lead screw 160 may prevent biological adherence, it may also be desired to prevent any ingrowth or protuberance of bone material into the longitudinal slit 150. One reason that this protuberance may interfere with the treatment of the patient is that it may push against some of the dynamic structures of the bone transport device 100, limiting their functionality. Another reason is that ingrowth of bone into the longitudinal slit 150 may make removal of the bone transport device 100 more difficult, more or less “locking” it in place. Several embodiments of bone transport device 100 having dynamic covers 320 are presented in FIGS. 17 through 19, each dynamic cover 320 with the capability of protecting the longitudinal slit 150 from the ingrowth of bone, while still allowing for the functionality of the transport sled 152 mechanism of the bone transport device 100. FIG. 17 illustrates a bone transport device 318 having a dynamic cover 320 including two opposing combs 322, 324, each of whose teeth extend towards the center line 326 of the longitudinal slit 328. The dynamic cover 320 substantially covers the portion of the longitudinal slit 328 not occupied by the transport sled 152. Comb material may be chosen from superelastic Nitinol, MP35N, Elgiloy® which are biocompatible and have a good combination of strength and repetitive bending characteristics. Individual comb teeth 334 may be 0.105″ in length, 0.050″ in width and 0.003″ in thickness. Transport sled 330 has a specially angled prow 332 on each end, the prows causing the teeth 334 of the combs 322, 324 on each side to be pushed against the side of the slit 328 with relatively low force as the transport sled 330 passes by that particular area. The prow 322 is symmetric along the centerline 326. After the transport sled 330 passes by, the teeth 334 return to their original position covering their half of the slit 328. The angulation of the prow 332, allows the transport sled 330 to slide past the flexing teeth 334 with minimal interference or frictional force. An exemplary included angle of the top of the prow 332 (in relation to the centerline 326) is 60°. A more detailed view of the transport sled 330 is seen in FIGS. 25A and 25B. Grooves 335 on each side of transport sled 330 allow transport sled 330 to ride along rails 337 at edges of slit 328 along the open housing 331 of bone transport device 318.

FIG. 18 illustrates a bone transport device 336 having a dynamic cover 320 having a static ribbon 338 which covers the slit 340. Transport sled 342 is configured to slide over the static ribbon 338. The bone transport device 336 having a static ribbon 338 is shown in more detail in FIGS. 20 and 21. Static ribbon 338 is secured to the open housing 348 at first end 344 and second end 346, both ends adjacent to slit 340. Static ribbon 338 is made of 0.002″ thick Nitinol and has a width of 0.140″. A detailed view of the transport sled 342 is shown in FIG. 26. The transport sled 342 has a total width (W1) of 0.288″. A channel 350 is wirecut in each end of transport sled 342, the channel 350 allows the static ribbon 338 to pass from the outside to the inside of transport sled 342 (and vice versa). During operation, the static ribbon 338 stays in place, while the transport sled 342 slides over it. The channel 350 width (W2) is 0.191″, and channel thickness is 0.012″ giving enough space for the 0.002″ thick static ribbon 338 to slide freely with respect to the transport sled 342. A first radius 352 and a second radius 354 further aid in smooth sliding of the transport sled 342 over the static ribbon 338. The centerline of channel 350 through each radius 352, 354 follows a 0.036″ radius. As with many components of the bone transport device 336, the transport sled 342 may be made from Titanium alloy, for example titanium-6A1-4V. Alternatively, the components may be made of cobalt chromium or stainless steel. By controlling the tension at which the static ribbon 338 is held, the dynamic frictional force as the transport sled 342 slides over the static ribbon 338 can be varied, but is typically on the order of about one pound. An alternative to bone transport device 336 is envisioned, wherein the static ribbon 338 is replaced by a ribbon which is fixedly secured to the transport sled 342, and which slides in a similar manner to a conveyor belt.

FIG. 19 illustrates a bone transport device 356 with a dynamic cover 320 having a freely rotatable spiral-cut tube 358 configured to cover the slit 360. Spiral-cut tube 358 has a single spiral gap or cut 362 in its wall, helically oriented along its length. The width of the spiral gap 362 in the axial direction is about the same as the length of the transport sled 370. As the transport sled 370 moves in an axial direction 372, the spiral cut tube 358 is forced to turn in a rotational direction 374, as the leading end 359 transport sled 370 contacts the edge 361 of the spiral cut tube 358 along the spiral gap 362. In this manner, the spiral-cut tube 358 always covers the portion of the slit 360 that is not already covered by the transport sled 370. Spiral-cut tube 358 may be formed from a number of different materials, such as PEEK (polyether ether ketone) or titanium, stainless steel or cobalt chromium.

An alternative to the mechanical dynamic covers 320 of FIGS. 17-19, a self-healing hydrogel may be coated or sprayed over the longitudinal slit 150. Hydrogels of this type have been described in “Rapid self-healing hydrogels” by Phadke et. al., Proceedings of the National Academy of Sciences, Volume 109, No. 12, pages 4383-4388, which is incorporated by reference herein. A self-healing hydrogel acts like molecular Velcro®, and can cover the area of the longitudinal slit 150. As the transport sled 152 moves longitudinally, the hydrogel is slit open in the direction of longitudinal movement of the transport sled 152, while the transport sled 152 moves away from an already slit portion of the hydrogel. By controlling the pH and side chain molecule lengths in the manufacture of the hydrogel, a hydrogel can be made that both allows the slitting by the transport sled 152 and allows the rebinding of the prior slit.

FIGS. 22-24 illustrate an external adjustment device 378 configured for applying a moving magnetic field to allow for non-invasive adjustment of the bone transport device 100, 318, 336, 356 by turning a permanent magnet 162 within the bone transport device 100, 318, 336, 356, as described. FIG. 22 illustrates the internal components of the external adjustment device 378, and for clear reference, shows the permanent magnet 162 of the bone transport device 100, 318, 336, 356, without the rest of the assembly. The internal working components of the external adjustment device 378 may, in certain embodiments, be similar to that described in U.S. Patent Application Publication No. 2012/0004494, which is incorporated by reference herein. A motor 380 with a gear box 382 outputs to a motor gear 384. Motor gear 384 engages and turns central (idler) gear 386, which has the appropriate number of teeth to turn first and second magnet gears 388, 390 at identical rotational speeds. First and second magnets 392, 394 turn in unison with first and second magnet gears 388, 390, respectively. Each magnet 392, 394 is held within a respective magnet cup 396 (shown partially). An exemplary rotational speed is 60 RPM or less. This speed range may be desired in order to limit the amount of current density induced in the body tissue and fluids, to meet international guidelines or standards. As seen in FIG. 22, the south pole 398 of the first magnet 392 is oriented the same as the north pole 404 of the second magnet 394, and likewise, the first magnet 392 has its north pole 400 oriented the same as the south pole 402 of the second magnet 394. As these two magnets 392, 394 turn synchronously together, they apply a complementary and additive moving magnetic field to the radially-poled, permanent magnet 162, having a north pole 406 and a south pole 408. Magnets having multiple north poles (for example, two) and multiple south poles (for example, two) are also contemplated in each of the devices. As the two magnets 392, 394 turn in a first rotational direction 410 (e.g., counter-clockwise), the magnetic coupling causes the permanent magnet 162 to turn in a second, opposite rotational direction 412 (e.g., clockwise). The rotational direction of the motor 380 and corresponding rotational direction of the magnets 392, 394 is controlled by buttons 414, 416. One or more circuit boards 418 contain control circuitry for both sensing rotation of the magnets 392, 394 and controlling the rotation of the magnets 392, 394.

FIGS. 23 and 24 show the external adjustment device 378 for use with a bone transport device 100, 318, 336, 356 placed in the femur (FIG. 23) or the tibia (FIG. 24). The external adjustment device 378 has a first handle 424 for carrying or for steadying the external adjustment device 378, for example, steadying it against an upper leg 420, as in FIG. 23. An adjustable handle 426 is rotationally attached to the external adjustment device 378 at pivot points 428, 430. Pivot points 428, 430 have easily lockable/unlockable mechanisms, such as a spring loaded brake, ratchet or tightening screw, so that a desired angulation of the adjustable handle 426 in relation to housing 436 can be adjusted and locked in orientation. Adjustable handle 426 is shown in two different positions in FIGS. 23 and 24. In FIG. 23, adjustable handle 426 is set so that apex 432 of loop 434 rests against housing 436. In this position, patient 438 is able to hold onto one or both of grips 440, 442 while the adjustment procedure (for example transporting bone between 0.10 mm to 1.50 mm) is taking place. It is contemplated that the procedure could also be a lengthening procedure for an intramedullary bone lengthening device or a lengthening procedure for a lengthening plate which is attached external to the bone. Turning to FIG. 24, when the bone transport device 100, 318, 336, 356 is implanted in a tibia, the adjustable handle 426 may be changed to a position in which the patient 438 can grip onto the apex 432 so that the magnet area 444 of the external adjustment device 378 is held over the portion the bone transport device 100, 318, 336, 356 containing the permanent magnet 162. In both cases, patient is able to clearly view control panel 446 including a display 448. In a different configuration from the two directional buttons 414, 416 in FIG. 22, control panel 446 includes a start button 450, a stop button 452 and a mode button 454. Control circuitry contained on circuit boards 418 may be used by the surgeon to store important information related to the specific aspects of each particular patient. For example, in some patients an implant may be placed antegrade into the tibia. In other patients the implant may be placed either antegrade or retrograde into the femur. In each of these three cases, it may be desired to transport the bone either from distal to proximal or from proximal to distal. There are thus six (6) different scenarios. By having the ability to store information of this sort that is specific to each particular patient within the external adjustment device 378, the external adjustment device 378 can be configured to direct the magnets 392, 394 to turn in the correct direction automatically, while the patient need only place the external adjustment device 378 at the desired position, and push the start button 450. The information of the maximum allowable bone transport length per day and maximum allowable bone transport length per session can also be input and stored by the surgeon for safety purposes. These may also be added via an SD card or USB device, or by wireless input. An additional feature is a camera at the portion of the external adjustment device 378 that is placed over the skin. For example, the camera may be located between first magnet 392 and second magnet 394. The skin directly over the implanted permanent magnet 162 may be marked with indelible ink. A live image from the camera is then displayed on the display 448 of the control panel 446, allowing the user to place the first and second magnets 392, 394 directly over the area marked on the skin. Crosshairs can be overlayed on the display 448 over the live image, allowing the user to align the mark on the skin between the crosshairs, and thus optimally place the external adjustment device 378.

FIGS. 27 and 28 illustrate an alternative embodiment to the anti-jamming end stop described in FIGS. 2-4 and in FIG. 10. Transport sled 152 has been removed so that the rest of the anti-jamming assembly 482 can clearly be seen. Internal nut 456 is similar to internal nut 156 of FIGS. 2-4, 10 in that it can be made, simply as an internal thread of the transport tube 154, or alternatively, it can be a separate component. For example, the outer surface of the internal nut 456 may be made with an external thread 458 and the inner surface of the transport tube 154 may be made with a mating internal thread. These two surfaces may be bonded to each other, with adhesives, epoxies, etc., so that the internal thread of the internal nut 456 mates with the external threads 161 of the lead screw 160. In FIG. 27, a single pawl ring 460, having a single pawl 462 is secured to the lead screw 160 by welding, adhesive, epoxy or other methods. The single pawl 462 thus turns in unison with the lead screw 160. The end of the internal nut 456 has a ledge 470 at its end. This ledge 470 is configured to abut the single pawl 462 when the lead screw 160 reaches the end of its desired travel in relation to the internal nut 456. In FIG. 27, there are several turns remaining in the travel of the lead screw 160. In FIG. 28, the lead screw has reached the end of its desired travel and the single pawl 462 now abuts the ledge 470, thus not allowing any more rotation in this direction for the lead screw 160. The opposing forces between the single pawl 462 and the ledge 470 assure that the internal threads of the internal nut 456 will not jam with the external threads 161 of the lead screw 160. Another single pawl 480 at the opposite end of the internal nut 456 may be used to engage with another ledge (not shown) at the opposite end of the lead screw 160, thus eliminating jamming at the opposite end of travel of the internal nut 456 and lead screw 160.

FIGS. 29 and 30 show an alternative anti jamming assembly 484 to the embodiment of FIGS. 27 and 28. In FIG. 29, the end piece 472 of the lead screw 160 has multiple pawls 474, which engage multiple ledges or teeth 478 when lead screw 160 reaches the end of its travel. The stress between the pawl and ledge is now distributed amongst multiple pawls 474 and ledges or teeth 478, thus also allowing a smaller axial dimension of the pawls 474 and ledges 478.

Returning to FIGS. 5 and 6, a bone transport procedure is described. After patient is prepped for surgery, a drill entry point 131 is chosen to ream a hole in the medullary canal of the tibia 136. Intramedullary bone transport device 100 is inserted into reamed medullary canal and secured with bone screws 126, 128, 130, 132, 134. Prior to creating an osteotomy 147, bone segment 144 for transport is chosen and secured to transport sled 152 with screw assemblies 112 as described herein. Osteotomy 147 is then made, freeing bone segment 144 from proximal portion of tibia 138. Osteotomy 147 may be made with osteotomes or a Gigli saw. As an alternative, the osteotomy 147 may be made prior to securing the bone segment 144 to the transport sled 152. Prior to recovering the patient, a test transport procedure may be performed in the operating theater, for example using an external adjustment device 378 covered with a sterile drape. This test transport procedure may be done either to confirm that the intramedullary bone transport device 100 has not been damaged by the insertion procedure or to set the osteotomy 147 at a desired initial gap distance, for example zero (0) to five (5.0) mm. The patient is then recovered, and within the first week after surgery, non-invasive bone transport procedures are initiated by the physician, patient or family or friend of patient, typically consisting of transporting about 1 mm per day. For example 1 mm, once per day, or 0.5 mm, twice per day, 0.33 mm, three times per day, etc. using the external adjustment device 378 as in FIGS. 23 and 24. As the bone segment 144 transports, new bone 153 begins to form where the missing portion 142 had previously been. Towards the end of the patient's transport period of treatment, the bone segment 144 nears the proximal end 135 of the distal portion 140 of the tibia 136. (All procedures described may be done on a variety of different bones.) A final gap 151 may be decided upon by the physician, and when this final gap 151 is reached (for example, 5 mm), the surgeon may desire to do a grafting procedure to facilitate the continuity of bone between the bone segment 144 and the distal portion 140 of the tibia 136. The new bone 153 is typically allowed approximately one month per 10 mm of transported length to consolidate, but this time period can vary greatly depending upon the biological characteristic (e.g. diabetes) and habits (e.g. smoking) of the patient.

FIG. 31A illustrates an intramedullary bone transport device 550 having a reverse block and tackle arrangement according to another embodiment. A first housing portion 578 and a second housing portion 548 enclose the internal reverse block and tackle components, shown in FIGS. 31B and 32. First housing portion 578 contains two slits 551 through which first tension line 552 and second tension line 554 exit. After implantation, bone segment 144 is secured to tension lines 552, 554 using bone screws having a clamp feature at their tips that enters the intramedullary canal and grips each of the tension lines 552, 554. The lead screw 556 is turned by permanent magnet 162 and gear stages 180, 182, 184 as in other embodiments. The nut 558 moves along lead screw 556 in first direction 553 as lead screw 556 is turned. The tension lines 552, 554 wrap around nut pulleys 566, 565 respectively (shown without nut 558 in FIG. 32). The nut pulleys 566, 565 are held rotatably to the nut 558 by pins 555, 557. The exit pulleys 563, 564 are held rotatably to the wire seal block 562 and first housing portion 578 with axle pin 574, which may be welded to the first housing portion 578 at each end. The tension lines 552, 554 wrap around exit pulleys 564, 563 respectively. At the end of tension lines 552, 554 are crimped lugs 576, which are secured axially within cavities in the wire seal block 562. A seal 570 is sandwiched between the wire seal block 562 and a seal support plate 568 by screw 572. The four (4) inner diameters 571 passing through the seal 570 are sized to be slightly smaller than the outer diameter of the tension lines 552, 554, so that any body fluids entering through slits 551 cannot enter further into the section of first housing portion 578 and second housing portion 548 containing lead screw 556, nut 558, permanent magnet 162 and gear stages 180, 182, 184. The seal 570 is made from an elastomer such as EPDM, so that tension lines 552, 554 may move through inner diameters 571 while still maintaining a sealed condition. In FIG. 32, the nut 558 and the wire seal block 562 are not shown so that more detail of the pathway of the tension lines 552, 554 may be seen. A guide rod 560 is secured to the assembly of the wire seal block 562, seal 570, and seal support plate 568. The nut 558 has an off center guide hole sized for sliding over the guide rod 560. As the nut 558 moves in first direction 553 over turning lead screw 556, nut pulleys 566, 565 move along with nut 558, causing each tension line 552, 554 to be pulled around exit pulleys 564, 563, thus allowing tension lines 552, 554 to pull bone segment 144 in second direction 559. Because of the reverse block and tackle arrangement, the tension lines 552, 554 move at a axial rate that is twice as fast as the rate of axial movement rate of the nut 558. Thus, for a nut 558 that travels only 55 mm total travel over lead screw 556, the tension lines 552, 554 are each pulled for 110 mm total travel, allowing for a compact device which still produces a large amount of bone transport length capability.

FIGS. 33 through 36 illustrate an intramedullary bone transport device 528 according to another embodiment having a ribbon-driven transport sled 530. Lead screw 160 is driven by permanent magnet 162, with gear stages 180, 182, 184 as in FIGS. 1-4, however, the connection between lead screw 160 and transport sled 530 is no longer direct. Nut 532 having internal threading is coupled to lead screw 160 and moves longitudinally as lead screw 160 turns. Ribbon 534 is secured to nut 532, for example by welding or crimping, at one end and to transport sled 530 at the other end. Pulley 536 is rotatably coupled to enclosed housing 546 via axle 538. Ribbon 534 extends around pulley 536 so that movement of nut 532 in first direction 540 pulls ribbon 534 around pulley 536, causing transport sled to move in second direction 542. The multiple types of dynamic covers 320 described in prior embodiments, would also be usable in this embodiment. The ribbon in FIGS. 33-36 is a single material ribbon made from Nitinol or stainless steel, for example 0.006″ thick Nitinol ribbon. As yet a further embodiment, ribbon 534 may be constructed of a laminate of several ribbon layers bonded together, for example four layers of 0.002″ thick Nitinol or three layers of 0.003″ thick Nitinol. The layers are bonded together with a flexible adhesive, such as a urethane adhesive, which allows the layers to slide slightly in longitudinal relation to each other, as they move around the pulley 536. Each of the layers may be a single ribbon structure as described, or may also be a multifilar, woven ribbon. The laminate construction allows for a nut 532 that not only can pull transport sled 530, but also push transport sled 530, due to the increased column stiffness during compression. When this push/pull embodiments is in push mode, radii 544 (as seen in FIG. 35) in the inner walls of enclosed housing 546 serve as a path for the ribbon 534 when the ribbon 534 is in compression (pushing). Ribbon 534 can refer to any analogous tensile member, for example one or more wires or cables configured to extend around pulley 536.

Other alternatives exist for constructing any of the embodiments presented herein. As one example, instead of solid rare earth magnet material, the magnets presented may be made as composite rare earth magnets, such as those described in U.S. Patent Application Publication Nos. 2011/0057756, 2012/0019341, and 2012/0019342, which are incorporated by reference herein.

A maintenance feature, such as a magnetic plate, may be incorporated on any of the embodiments of the implant devices presented herein, such as those described in U.S. Patent Application Publication No. 2012/0035661.

While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention. The invention, therefore, should not be limited, except to the following claims, and their equivalents.

Pool, Scott, Walker, Blair

Patent Priority Assignee Title
Patent Priority Assignee Title
2702031,
3111945,
3372476,
3377576,
3512901,
3597781,
3900025,
3915151,
3976060, Apr 09 1974 Messerschmitt-Bolkow-Blohm GmbH Extension apparatus, especially for osteotomic surgery
4010758, Sep 03 1975 Medtronic, Inc. Bipolar body tissue electrode
4056743, Jul 30 1973 Horstmann Clifford Magnetics Ltd. Oscillating reed electric motors
4068821, Sep 13 1976 Cooper Cameron Corporation Valve seat ring having a corner groove to receive an elastic seal ring
4078559, Oct 06 1975 Straightening and supporting device for the spinal column in the surgical treatment of scoliotic diseases
4164794, Apr 14 1977 AMOCO CORPORATION, A CORP OF INDIANA Prosthetic devices having coatings of selected porous bioengineering thermoplastics
4204541, Jan 24 1977 Surgical instrument for stitching up soft tissues with lengths of spiked suture material
4357946, Mar 24 1980 Medtronic, Inc. Epicardial pacing lead with stylet controlled helical fixation screw
4386603, Mar 23 1981 TWIN CITY SURGICAL, INC , CORP OF MN Distraction device for spinal distraction systems
4448191, Jul 07 1981 Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature
4486176, Oct 08 1981 Kollmorgen Technologies Corporation Hand held device with built-in motor
4501266, Mar 04 1983 ZIMMER TECHNOLOGY, INC Knee distraction device
4522501, Apr 06 1984 Northern Telecom Limited Monitoring magnetically permeable particles in admixture with a fluid carrier
4537520, Nov 16 1982 Tokyo Electric Co., Ltd. Dot printer head with reduced magnetic interference
4550279, Sep 10 1982 ETA SA FABRIQUES D EBAUCHES OF SCHLID-RUST-STRASSE 17, 2540 GRANGES, SWITZERLAND Step-by-step motor unit
4561798, Mar 09 1982 Thomson CSF Telescopic cylindrical tube column
4573454, May 17 1984 Spinal fixation apparatus
4592355, Jan 28 1983 Process for tying live tissue and an instrument for performing the tying operation
4595007, Mar 14 1983 Ethicon, Inc. Split ring type tissue fastener
4642257, Jun 13 1985 CHASE, MICHAEL C Magnetic occluding device
4658809, Feb 25 1983 Firma Heinrich C. Ulrich Implantable spinal distraction splint
4700091, Aug 22 1986 Timex Corporation Bipolar stepping motor rotor with drive pinion and method of manufacture
4747832, Sep 02 1983 Device for the injection of fluid, suitable for implantation
4854304, Mar 19 1987 Oscobal AG Implant for the operative correction of spinal deformity
4904861, Dec 27 1988 AVAGO TECHNOLOGIES ECBU IP SINGAPORE PTE LTD Optical encoder using sufficient inactive photodetectors to make leakage current equal throughout
4931055, Jun 01 1987 Distraction rods
4940467, Feb 03 1988 Variable length fixation device
4957495, Apr 01 1987 ULRICH GMBH & CO KG Device for setting the spinal column
4973331, Mar 08 1989 BLUE LINE PARTNERS; EDWARDS, CHARLES, DR ; PATON, WILLIAM; STURGULEWSKI, ARLISS; WILSON, JOE AND CAROL; DRAPER, TIM Automatic compression-distraction-torsion method and apparatus
5010879, Mar 31 1989 Tanaka Medical Instrument Manufacturing Co. Device for correcting spinal deformities
5030235, Apr 20 1990 Synthes USA, LLC Prosthetic first rib
5041112, Nov 30 1989 CITIEFFE S.r.l. External splint for the treatment of fractures of the long bones of limbs
5064004, Oct 15 1986 Sandvik AB Drill rod for percussion drilling
5074882, Jun 09 1988 Depuy France Progressive elongation centro-medullar nail
5092889, Apr 14 1989 Synthes USA, LLC Expandable vertical prosthetic rib
5133716, Nov 07 1990 Codespi Corporation Device for correction of spinal deformities
5142407, Dec 22 1989 Donnelly Corporation Method of reducing leakage current in electrochemichromic solutions and solutions based thereon
5156605, Jul 06 1990 BLUE LINE PARTNERS; EDWARDS, CHARLES, DR ; PATON, WILLIAM; STURGULEWSKI, ARLISS; WILSON, JOE AND CAROL; DRAPER, TIM Automatic internal compression-distraction-method and apparatus
5263955, Jul 04 1989 Medullary nail
5290289, May 22 1990 BioMedical Enterprises, Inc Nitinol spinal instrumentation and method for surgically treating scoliosis
5306275, Dec 31 1992 Lumbar spine fixation apparatus and method
5330503, May 16 1989 Spiral suture needle for joining tissue
5334202, Apr 06 1993 Portable bone distraction apparatus
5336223, Feb 04 1993 Telescoping spinal fixator
5356411, Feb 18 1993 Genesis Orthopedics Bone transporter
5356424, Feb 05 1993 Sherwood Services AG Laparoscopic suturing device
5364396, Mar 29 1993 ORTHONETX, INC Distraction method and apparatus
5403322, Jul 08 1993 Smith & Nephew Richards Inc. Drill guide and method for avoiding intramedullary nails in the placement of bone pins
5429638, Feb 12 1993 CLEVELAND CLINIC FOUNDATION, THE Bone transport and lengthening system
5437266, Jul 02 1992 VASCUTECH ACQUISITION LLC Coil screw surgical retractor
5466261, Nov 19 1992 WRIGHT MEDICAL TECHNOLOGY, INC Non-invasive expandable prosthesis for growing children
5468030, Jan 04 1994 Caterpillar Inc. Tube clamp and coupling
5480437, Jun 05 1990 THURGAUER KANTONALBANK, A CORPORATION CHARTERED IN AND EXISTING UNDER THE LAWS OF SWITZERLAND, THAT MAINTAINS ITS PRINCIPAL OFFICES AT: Prestressed surgical network
5509888, Jul 26 1994 MILLER, PAUL LEONARD Controller valve device and method
5516335, Mar 24 1993 Hospital for Joint Diseases Orthopaedic Institute Intramedullary nail for femoral lengthening
5527309, Apr 21 1993 TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE Pelvo-femoral fixator
5536269, Feb 18 1993 Genesis Orthopedics Bone and tissue lengthening device
5549610, Oct 31 1994 SMITH & NEPHEW RICHARDS INC Femoral intramedullary nail
5573012, Aug 09 1994 Lawrence Livermore National Security LLC Body monitoring and imaging apparatus and method
5575790, Mar 28 1995 Rensselaer Polytechnic Institute Shape memory alloy internal linear actuator for use in orthopedic correction
5582616, Aug 05 1994 Tyco Healthcare Group LP Surgical helical fastener with applicator
5620445, Jul 15 1994 Smith & Nephew, Inc Modular intramedullary nail
5620449, Jul 28 1994 ORTHOFIX S R L Mechanical system for blind nail-hole alignment of bone screws
5626579, Feb 12 1993 CLEVELAND CLINIC FOUNDATION, THE Bone transport and lengthening system
5626613, May 04 1995 Arthrex, Inc. Corkscrew suture anchor and driver
5632744, Jun 08 1992 Synthes USA, LLC Segmental rib carriage instrumentation and associated methods
5659217, Feb 10 1995 Petersen Technology Corporation Permanent magnet d.c. motor having a radially-disposed working flux gap
5662683, Aug 22 1995 ORTHOHELIX SURGICAL DESIGNS, INC Open helical organic tissue anchor and method of facilitating healing
5672175, Feb 15 1994 Dynamic implanted spinal orthosis and operative procedure for fitting
5672177, Jan 31 1996 The General Hospital Corporation; General Hospital Corporation, The Implantable bone distraction device
5700263, Jun 17 1996 OsteoMed LLC Bone distraction apparatus
5704938, Mar 27 1996 Volunteers for Medical Engineering Implantable bone lengthening apparatus using a drive gear mechanism
5704939, Apr 09 1996 ORTHODYNE INC Intramedullary skeletal distractor and method
5720746, Nov 16 1994 Device for displacing two bodies relative to each other
5743910, Nov 14 1996 XOMED SURGICAL PRODUCTS, INC ; COALESCE, INC Orthopedic prosthesis removal instrument
5762599, May 02 1994 Boston Scientific Scimed, Inc Magnetically-coupled implantable medical devices
5771903, Sep 22 1995 Obtech Medical AG Surgical method for reducing the food intake of a patient
5810815, Sep 20 1996 Surgical apparatus for use in the treatment of spinal deformities
5827286, Feb 14 1997 ORTHOPAEDICS DESIGN, L L C Incrementally adjustable tibial osteotomy fixation device and method
5830221, Sep 20 1996 United States Surgical Corporation Coil fastener applier
5879375, Aug 06 1992 Electric Boat Corporation Implantable device monitoring arrangement and method
5902304, Dec 01 1995 Telescopic bone plate for use in bone lengthening by distraction osteogenesis
5935127, Dec 17 1997 Biomet Manufacturing, LLC Apparatus and method for treatment of a fracture in a long bone
5945762, Feb 10 1998 Light Sciences Corporation Movable magnet transmitter for inducing electrical current in an implanted coil
5961553, Feb 13 1995 DEPUY IRELAND LIMITED Long bone elongation device
5976138, Feb 28 1997 Distraction system for long bones
5979456, Apr 22 1996 Koninklijke Philips Electronics N V Apparatus and method for reversibly reshaping a body part
6022349, Feb 12 1997 AMERICAN MEDICAL INNOVATIONS, L L C Method and system for therapeutically treating bone fractures and osteoporosis
6033412, Apr 03 1997 Automated implantable bone distractor for incremental bone adjustment
6034296, Mar 11 1997 EEG LTD Implantable bone strain telemetry sensing system and method
6102922, Jun 29 1998 Obtech Medical AG Surgical method and device for reducing the food intake of patient
6106525, Sep 22 1997 Fully implantable bone expansion device
6126660, Jul 29 1998 SOFAMOR DANEK HOLDINGS, INC Spinal compression and distraction devices and surgical methods
6126661, Jan 20 1997 ORTHOFIX S R L Intramedullary cavity nail and kit for the treatment of fractures of the hip
6138681, Oct 13 1997 Light Sciences Corporation Alignment of external medical device relative to implanted medical device
6139316, Jan 26 1999 Device for bone distraction and tooth movement
6162223, Apr 09 1999 Smith & Nephew, Inc Dynamic wrist fixation apparatus for early joint motion in distal radius fractures
6183476, Jun 26 1998 GERHARDT, DR HARALD Plate arrangement for osteosynthesis
6200317, Dec 23 1996 STRYKER EUROPEAN HOLDINGS III, LLC Device for moving two objects relative to each other
6234956, Aug 11 1999 Magnetic actuation urethral valve
6241730, Nov 26 1997 SCIENT X SOCIETE A RESPONSABILITA LIMITEE Intervertebral link device capable of axial and angular displacement
6245075, Jan 07 1997 Wittenstein Motion Control GmbH Distraction device for moving apart two bone sections
6315784, Feb 03 1999 Surgical suturing unit
6319255, Dec 18 1996 ESKA IMPLANTS GMBH & CO Prophylactic implant against fracture of osteoporosis-affected bone segments
6331744, Jun 03 1999 LIGHT SCIENCES ONCOLOGY, INC Contactless energy transfer apparatus
6336929, Jan 05 1998 Orthodyne, Inc. Intramedullary skeletal distractor and method
6343568, Mar 25 1998 Non-rotating telescoping pole
6358283, Jun 21 1999 Implantable device for lengthening and correcting malpositions of skeletal bones
6375682, Aug 06 2001 X-Pantu-Flex DRD Limited Liability Company Collapsible, rotatable and expandable spinal hydraulic prosthetic device
6389187, Jun 20 1997 OPTASENSE HOLDINGS LIMITED Optical fiber bend sensor
6400980, Nov 05 1996 System and method for treating select tissue in a living being
6402753, Jun 10 1999 Orthodyne, Inc. Femoral intramedullary rod system
6409175, Jul 13 1999 ENVENTURE GLOBAL TECHNOLOGY, INC Expandable joint connector
6416516, Feb 16 1999 Wittenstein GmbH & Co. KG Active intramedullary nail for the distraction of bone parts
6499907, Feb 24 1998 Franz Haser Connecting means for the releasable connection and method for releasing a connection between a first component and a second component
6500110, Aug 15 1996 MAGIC RACE LLC Magnetic nerve stimulation seat device
6508820, Feb 03 2000 Alphatec Spine, Inc Intramedullary interlock screw
6510345, Apr 24 2000 Medtronic, Inc System and method of bridging a transreceiver coil of an implantable medical device during non-communication periods
6537196, Oct 24 2000 STEREOTAXIS, INC Magnet assembly with variable field directions and methods of magnetically navigating medical objects
6554831, Sep 01 2000 Hopital Sainte-Justine Mobile dynamic system for treating spinal disorder
6565573, Apr 16 2001 Smith & Nephew, Inc Orthopedic screw and method of use
6565576, Dec 04 1998 WITTENSTEIN GMBH & CO KG Distraction assembly
6582313, Dec 22 2000 Steering Solutions IP Holding Corporation Constant velocity stroking joint having recirculating spline balls
6583630, Jan 31 2001 INTELLIJOINT SYSTEMS LTD Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants
6616669, Apr 23 1999 SDGI Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
6626917, Oct 26 2000 Edwards Lifesciences AG Helical suture instrument
6656135, May 01 2000 Southwest Research Institute Passive and wireless displacement measuring device
6656194, Nov 05 2002 Ethicon Endo-Surgery, Inc Magnetic anchoring devices
6667725, Aug 20 2002 The United States of America as represented by the Administrator of the National Aeronautics and Space Administration Radio frequency telemetry system for sensors and actuators
6673079, Aug 16 1999 Washington University Device for lengthening and reshaping bone by distraction osteogenesis
6702816, May 25 2001 Sulzer Orthopedics LTD Femur marrow nail for insertion at the knee joint
6706042, Mar 16 2001 FINSBURY DEVELOPMENT LIMITED Tissue distractor
6709293, Aug 09 2001 Kabushiki Kaisha Tokai Rika Denki Seisakusho Printed-circuit board connector
6730087, Jul 02 1998 Wittenstein AG Bone distraction device
6761503, Apr 24 2002 Torque-Traction Technologies LLC Splined member for use in a slip joint and method of manufacturing the same
6769499, Jun 28 2001 Halliburton Energy Services, Inc. Drilling direction control device
6789442, Sep 15 2000 Heidelberger Druckmaschinen Aktiengesellschaft Gear stage assembly with preload torque
6796984, Feb 29 2000 Device for relative displacement of two bodies
6802844, Mar 26 2001 NuVasive, Inc; SPINE PARTNERS, LLC Spinal alignment apparatus and methods
6809434, Jun 21 1999 Fisher & Paykel Limited Linear motor
6835207, Jul 22 1996 Fred, Zacouto Skeletal implant
6852113, Dec 14 2001 ORTHOPAEDIC DESIGNS LLC Internal osteotomy fixation device
6918838, Nov 29 2001 GKN Lobro GmbH Longitudinal plunging unit with a hollow profiled journal
6918910, Dec 16 2002 Implantable distraction device
6921400, Oct 21 1999 Modular intramedullary nail
6923951, Jul 01 1994 Board of Trustees of the Leland Stanford University Non-invasive localization of a light-emitting conjugate in a mammal
6971143, Feb 20 2002 Terumo Cardiovascular Systems Corporation Magnetic detent for rotatable knob
7001346, Nov 14 2001 Michael R., White Apparatus and methods for making intraoperative orthopedic measurements
7008425, May 27 1999 Pediatric intramedullary nail and method
7011658, Mar 04 2002 Warsaw Orthopedic, Inc Devices and methods for spinal compression and distraction
7029472, Jun 01 1999 PARADIGM SPINE, LLC Distraction device for the bones of children
7029475, May 02 2003 Yale University Spinal stabilization method
7041105, Jun 06 2001 Warsaw Orthopedic, Inc Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
7060080, Sep 04 2002 APOLLO ENDOSURGERY US, INC Closure system for surgical ring
7063706, Nov 19 2001 Wittenstein AG Distraction device
7105029, Feb 04 2002 Spinal LLC Skeletal fixation device with linear connection
7105968, Dec 03 2004 Magnetic transmission
7114501, Aug 14 2000 SPINE WAVE, INC Transverse cavity device and method
7115129, Oct 19 2001 Baylor College of Medicine Bone compression devices and systems and methods of contouring and using same
7135022, May 23 2001 ORTHOGON 2003 LTD Magnetically-actuable intramedullary device
7160312, Jun 25 1999 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Implantable artificial partition and methods of use
7163538, Feb 13 2002 ZIMMER BIOMET SPINE, INC Posterior rod system
7189005, Mar 14 2005 Borgwarner Inc. Bearing system for a turbocharger
7191007, Jun 24 2004 ETHICON-ENDO SURGERY, INC Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics
7218232, Jul 11 2003 DePuy Products, Inc.; DEPUY PRODUCTS, INC Orthopaedic components with data storage element
7238191, Sep 04 2002 APOLLO ENDOSURGERY US, INC Surgical ring featuring a reversible diameter remote control system
7241300, Apr 29 2000 Medtronic, Inc Components, systems and methods for forming anastomoses using magnetism or other coupling means
7243719, Jun 07 2004 Schlumberger Technology Corporation Control method for downhole steering tool
7255682, Sep 09 2004 BARTOL, ROBERT MIKEL Spot locator device
7282023, Sep 11 2000 Magnetic Developpement Medical Method and device for controlling the inflation of an inflatable prosthetic envelope
7285087, Jul 15 2004 MiCardia Corporation Shape memory devices and methods for reshaping heart anatomy
7302015, Jan 02 2003 Samsung Electronics Co., Ltd. Motion estimation method for moving picture compression coding
7302858, Sep 24 2004 Globus Medical, Inc MEMS capacitive cantilever strain sensor, devices, and formation methods
7314443, Mar 08 2002 RESHAPE LIFESCIENCES INC Implantable device
7333013, May 07 2004 Data Trace Publishing Company Medical implant device with RFID tag and method of identification of device
7357037, Jul 10 2002 Globus Medical, Inc Strain sensing system
7357635, May 19 2004 ADVANCED FACIALDONTICS LLC System and method to bioengineer facial form in adults
7360542, Sep 06 2002 Koninklijke Philips Electronics N V Devices, systems, and methods to fixate tissue within the regions of body, such as the pharyngeal conduit
7390007, Jun 06 2005 IBIS TEK, LLC Towbar system
7390294, May 28 2004 Ethicon Endo-Surgery, Inc. Piezo electrically driven bellows infuser for hydraulically controlling an adjustable gastric band
7402134, Jul 15 2004 MiCardia Corporation Magnetic devices and methods for reshaping heart anatomy
7402176, Sep 30 2003 ST CLOUD CAPITAL PARTNERS III SBIC, LP Intervertebral disc prosthesis
7429259, Dec 02 2003 Board of Regents, The University of Texas System Surgical anchor and system
7445010, Jan 29 2003 Torax Medical, Inc. Use of magnetic implants to treat issue structures
7458981, Mar 09 2004 BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE Spinal implant and method for restricting spinal flexion
7485149, Oct 06 2003 Biomet Manufacturing, LLC Method and apparatus for use of a non-invasive expandable implant
7489495, Apr 15 2004 Greatbatch Ltd Apparatus and process for reducing the susceptibility of active implantable medical devices to medical procedures such as magnetic resonance imaging
7530981, Feb 18 2002 CRIMEAN TRAUMATOLOGY AND ORTHOPEDICS CENTRE NAMED AFTER A I BLISKUNOV ABAS Bliskunov device for elongating long bones
7531002, Apr 16 2004 Depuy Spine, Inc Intervertebral disc with monitoring and adjusting capabilities
7553298, Jun 24 2005 Ethicon Endo-Surgery, Inc Implantable medical device with cover and method
7561916, Jun 24 2005 Ethicon Endo-Surgery, Inc Implantable medical device with indicator
7601156, Dec 05 2001 ROBINSON, RANDOLPH C Limb lengthener
7611526, Aug 03 2004 K2M, INC Spinous process reinforcement device and method
7618435, Mar 04 2003 W L GORE & ASSOCIATES, INC Magnetic attachment systems
7658754, Sep 04 2003 Warsaw Orthopedic, Inc Method for the correction of spinal deformities using a rod-plate anterior system
7666184, Aug 28 2003 Wittenstein AG Planetary roll system, in particular for a device for extending bones
7666210, Feb 11 2002 SCIENT X SA Connection system between a spinal rod and a transverse bar
7678136, Feb 04 2002 Spinal LLC Spinal fixation assembly
7678139, Apr 20 2004 PHYGEN, LLC Pedicle screw assembly
7708737, Jul 12 2005 Intramed Systems Ltd Intramedullar distraction device with user actuated distraction
7708762, Apr 08 2005 Warsaw Orthopedic, Inc Systems, devices and methods for stabilization of the spinal column
7727143, May 31 2006 APOLLO ENDOSURGERY US, INC Locator system for implanted access port with RFID tag
7753913, Oct 03 2002 Virginia Tech Intellectual Properties, Inc Magnetic targeting device
7753915, Jun 14 2007 Bi-directional bone length adjustment system
7762998, Sep 15 2003 RESHAPE LIFESCIENCES INC Implantable device fastening system and methods of use
7763080, Apr 30 2004 DePuy Products, Inc.; DEPUY PRODUCTS, INC Implant system with migration measurement capacity
7766855, Mar 27 2004 CHRISTOPH MIETHKE GMBH & CO KG Adjustable hydrocephalus valve
7775215, Feb 24 2005 Ethicon Endo-Surgery, Inc System and method for determining implanted device positioning and obtaining pressure data
7776068, Oct 23 2003 MIS IP HOLDINGS LLC Spinal motion preservation assemblies
7776075, Jan 31 2006 Warsaw Orthopedic, Inc Expandable spinal rods and methods of use
7776091, Jun 30 2004 Depuy Spine, Inc Adjustable posterior spinal column positioner
7787958, Mar 21 2005 Greatbatch Ltd.; Greatbatch Ltd RFID detection and identification system for implantable medical lead systems
7794476, Aug 08 2003 Warsaw Orthopedic, Inc Implants formed of shape memory polymeric material for spinal fixation
7811328, Apr 29 2005 Warsaw Orthopedic, Inc System, device and methods for replacing the intervertebral disc with a magnetic or electromagnetic prosthesis
7835779, Mar 27 2002 General Electric Company; NORTHERN DIGITAL INC Magnetic tracking system
7837691, Feb 06 2004 SYNVASIVE TECHNOLOGY, INC Dynamic knee balancer with opposing adjustment mechanism
7862586, Nov 25 2003 ST CLOUD CAPITAL PARTNERS III SBIC, LP Spinal stabilization systems
7867235, Jun 14 2005 System and method for joint restoration by extracapsular means
7875033, Jul 19 2004 Synthes USA, LLC Bone distraction apparatus
7887566, Sep 16 2004 WARSAW ORHTOPEDIC, INC Intervertebral support device with bias adjustment and related methods
7901381, Sep 15 2003 APOLLO ENDOSURGERY US, INC Implantable device fastening system and methods of use
7909852, Mar 31 2004 MEDOS INTERNATIONAL SARL Adjustable-angle spinal fixation element
7918844, Jun 24 2005 Ethicon Endo-Surgery, Inc Applier for implantable medical device
7938841, Apr 29 2000 Medtronic, Inc. Components, systems and methods for forming anastomoses using magnetism or other coupling means
7985256, Sep 26 2006 HOWMEDICA OSTEONICS CORP Selectively expanding spine cage, hydraulically controllable in three dimensions for enhanced spinal fusion
7988709, Feb 17 2005 MEDTRONIC EUROPE SARL Percutaneous spinal implants and methods
8002809, Feb 10 2004 Atlas Spine, Inc.; ATLAS SPINE, INC Dynamic cervical plate
8011308, Nov 14 2006 UNIFOR S.p.A. Telescopic table support
8034080, Feb 17 2005 Kyphon SARL Percutaneous spinal implants and methods
8043299, Nov 06 2006 Internal bone transport
8043338, Dec 03 2008 ZIMMER BIOMET SPINE, INC Adjustable assembly for correcting spinal abnormalities
8057473, Oct 31 2007 WRIGHT MEDICAL TECHNOLOGY, INC Orthopedic device
8057513, Feb 17 2005 MEDTRONIC EUROPE SARL Percutaneous spinal implants and methods
8083741, Jun 07 2004 Synthes USA, LLC Orthopaedic implant with sensors
8092499, Jan 11 2008 Skeletal flexible/rigid rod for treating skeletal curvature
8095317, Oct 22 2008 Gyrodata Incorporated Downhole surveying utilizing multiple measurements
8105360, Jul 16 2009 Orthonex LLC Device for dynamic stabilization of the spine
8105363, Mar 09 2004 The Board of Trustees of the Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
8114158, Aug 03 2004 K2M, INC Facet device and method
8123805, Apr 30 2008 MOXIMED, INC Adjustable absorber designs for implantable device
8133280, Dec 19 2008 Depuy Spine, Inc Methods and devices for expanding a spinal canal
8147517, May 23 2006 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
8147549, Nov 24 2008 Warsaw Orthopedic, Inc.; Warsaw Orthopedic, Inc Orthopedic implant with sensor communications antenna and associated diagnostics measuring, monitoring, and response system
8162897, Dec 19 2003 Ethicon Endo-Surgery, Inc Audible and tactile feedback
8162979, Jun 06 2007 K2M, INC Medical device and method to correct deformity
8177789, Oct 01 2007 PHYSICAL SCIENCES, INC ; THE GENERAL HOSPITAL CORPORATION D B A MASSACHUSETTS GENERAL HOSPITAL Distraction osteogenesis methods and devices
8197490, Feb 23 2009 NuVasive, Inc; NUVASIVE SPECIALIZED ORTHOPEDICS, INC Non-invasive adjustable distraction system
8211149, May 12 2008 Warsaw Orthopedic Elongated members with expansion chambers for treating bony members
8211151, Oct 30 2009 Warsaw Orthopedic, Inc Devices and methods for dynamic spinal stabilization and correction of spinal deformities
8211179, Apr 29 2005 Warsaw Orthopedic System, device and methods for replacing the intervertebral disc with a magnetic or electromagnetic prosthesis
8216275, Mar 09 2004 The Board of Trustees of the Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
8221420, Feb 16 2009 AOI MEDICAL, INC Trauma nail accumulator
8226690, Jul 22 2005 The Board of Trustees of the Leland Stanford Junior University Systems and methods for stabilization of bone structures
8236002, Aug 13 2002 PARADIGM SPINE, LLC Distraction and damping system which can be adjusted as the vertebral column grows
8241331, Nov 08 2007 Spine21 Ltd. Spinal implant having a post-operative adjustable dimension
8246630, Jan 08 2004 Spine Wave, Inc. Apparatus and method for injecting fluent material at a distracted tissue site
8252063, Mar 04 2009 ORTHOFIX S R L Growing prosthesis
8267969, Oct 20 2004 Choice Spine, LP Screw systems and methods for use in stabilization of bone structures
8278941, Sep 16 2003 ST JUDE MEDICAL LUXEMBOURG HOLDINGS II S A R L SJM LUX II Strain monitoring system and apparatus
8282671, Oct 25 2010 Orthonex LLC Smart device for non-invasive skeletal adjustment
8298240, Apr 06 2006 Synthes USA, LLC Remotely adjustable tissue displacement device
8323290, Mar 03 2006 Biomet Manufacturing, LLC Tensor for use in surgical navigation
8357182, Mar 26 2009 K2M, INC Alignment system with longitudinal support features
8366628, Jun 07 2007 Kenergy, Inc. Signal sensing in an implanted apparatus with an internal reference
8372078, Jun 30 2006 HOWMEDICA OSTEONICS CORP Method for performing a high tibial osteotomy
8386018, Dec 13 2006 WITTENSTEIN SE Medical device for determining the position of intracorporeal implants
8394124, Jun 18 2009 The University of Toledo Unidirectional rotatory pedicle screw and spinal deformity correction device for correction of spinal deformity in growing children
8403958, Aug 21 2006 Warsaw Orthopedic, Inc System and method for correcting spinal deformity
8414584, Jul 09 2008 ORTHOFIX SRL Ankle arthrodesis nail and outrigger assembly
8419801, Sep 30 2004 Depuy Synthes Products, LLC Adjustable, remote-controllable orthopaedic prosthesis and associated method
8425608, Jan 18 2008 Warsaw Orthopedic, Inc Lordotic expanding vertebral body spacer
8435268, Jan 19 2007 REDUCTION TECHNOLOGIES INC Systems, devices and methods for the correction of spinal deformities
8439915, Sep 29 2004 Regents of the University of California, The Apparatus and methods for magnetic alteration of anatomical features
8439926, May 25 2001 CONFORMIS, INC Patient selectable joint arthroplasty devices and surgical tools
8444693, Aug 09 2004 SI-BONE, INC Apparatus, systems, and methods for achieving lumbar facet fusion
8469908, Apr 06 2007 ASFORA IP, LLC Analgesic implant device and system
8470004, Aug 09 2004 SI-BON, INC ; SI-BONE, INC Apparatus, systems, and methods for stabilizing a spondylolisthesis
8486070, Aug 23 2005 Smith & Nephew, Inc Telemetric orthopaedic implant
8486076, Jan 28 2011 DEPUY SYNTHES PRODUCTS, INC Oscillating rasp for use in an orthopaedic surgical procedure
8486110, Mar 09 2004 The Board of Trustees of the Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
8486147, Apr 12 2006 Simplify Medical Pty Ltd Posterior spinal device and method
8494805, Nov 28 2005 Orthosensor Inc Method and system for assessing orthopedic alignment using tracking sensors
8496662, Jan 31 2005 ARTHREX, INC Method and apparatus for forming a wedge-like opening in a bone for an open wedge osteotomy
8518062, Apr 29 2000 Medtronic, Inc Devices and methods for forming magnetic anastomoses between vessels
8523866, Feb 09 2007 LRS SCIENCE AND TECHNOLOGY, LLC Modular tapered hollow reamer for medical applications
8529474, Jul 08 2004 MUNRO, DEBORAH SUSAN Strain monitoring system and apparatus
8529606, Mar 10 2009 EMPIRICAL SPINE, INC Surgical tether apparatus and methods of use
8529607, Feb 02 2009 EMPIRICAL SPINE, INC Sacral tether anchor and methods of use
8556901, Dec 31 2009 Depuy Synthes Products, LLC Reciprocating rasps for use in an orthopaedic surgical procedure
8556911, Jan 27 2009 MEHTA, VISHAL M Arthroscopic tunnel guide for rotator cuff repair
8556975, Sep 28 2009 LFC SP. Z.O.O. Device for surgical displacement of vertebrae
8562653, Mar 10 2009 EMPIRICAL SPINE, INC Surgical tether apparatus and methods of use
8568457, Dec 01 2009 DEPUY SPINE, LLC; Hand Innovations, LLC Non-fusion scoliosis expandable spinal rod
8579979, May 01 2006 Warsaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
8585595, Jan 27 2011 Biomet Manufacturing, LLC Method and apparatus for aligning bone screw holes
8585740, Jan 12 2010 AMB ORTHOPEDICS, INC Automated growing rod device
8591549, Apr 08 2011 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
8591553, Feb 12 2003 COMPANION SPINE, LLC Spinal disc prosthesis and associated methods
8613758, Oct 23 2008 LINARES SPINAL DEVICES, LLC Two piece spinal jack incorporating varying mechanical and fluidic lift mechanisms for establishing a desired spacing between succeeding vertebrae
8617220, Jan 04 2012 Warsaw Orthopedic, Inc. System and method for correction of a spinal disorder
8623036, Sep 29 2004 The Regents of the University of California Magnamosis
8632544, Mar 19 2008 Synoste Oy Internal osteodistraction device
8632548, Oct 03 2006 Intracorporeal elongation device with a permanent magnet
8632563, May 08 2003 Olympus Corporation Surgical instrument
8636771, Nov 29 2010 ST CLOUD CAPITAL PARTNERS III SBIC, LP Spinal implants for lumbar vertebra to sacrum fixation
8636802, Mar 06 2004 DEPUY SYNTHES PRODUCTS, INC Dynamized interspinal implant
8641719, Feb 23 2005 XTANT MEDICAL HOLDINGS, INC Minimally invasive surgical system
8641723, Jun 03 2010 Orthonex LLC Skeletal adjustment device
8657856, Aug 28 2009 PIONEER SURGICAL TECHNOLOGY, INC Size transition spinal rod
8663285, Sep 03 2009 DALMATIC LYSTRUP A S Expansion devices
8663287, Jan 10 2006 ST CLOUD CAPITAL PARTNERS III SBIC, LP Pedicle screw constructs and spinal rod attachment assemblies
8668719, Mar 30 2009 EMPIRICAL SPINE, INC Methods and apparatus for improving shear loading capacity of a spinal segment
8709090, May 01 2007 MOXIMED, INC Adjustable absorber designs for implantable device
8758347, Mar 19 2010 Medartis AG Dynamic bone plate
8758355, Feb 06 2004 Synvasive Technology, Inc. Dynamic knee balancer with pressure sensing
8771272, Jun 18 2010 Kettering University Easily implantable and stable nail-fastener for skeletal fixation and method
8777947, Mar 19 2010 Smith & Nephew, Inc. Telescoping IM nail and actuating mechanism
8777995, Feb 07 2008 K2M, INC Automatic lengthening bone fixation device
8790343, Oct 11 2008 ANTHEM ORTHOPAEDICS VAN, LLC Intramedullary rod with pivotable and fixed fasteners and method for using same
8790409, Dec 07 2012 Cochlear Limited Securable implantable component
8828058, Nov 11 2008 K2M, INC Growth directed vertebral fixation system with distractible connector(s) and apical control
8828087, Feb 27 2006 Biomet Manufacturing, LLC Patient-specific high tibia osteotomy
8840651, Aug 09 2004 SI-Bone Inc. Systems and methods for the fixation or fusion of bone
8870881, Apr 06 2012 WASAW ORTHOPEDIC, INC Spinal correction system and method
8870959, Nov 24 2009 SPINE21 LTD Spinal fusion cage having post-operative adjustable dimensions
8894663, Apr 06 2006 Depuy Synthes Products, LLC Remotely adjustable tissue displacement device
8915915, Sep 29 2004 The Regents of the University of California Apparatus and methods for magnetic alteration of anatomical features
8915917, Aug 13 2009 ORTHOXEL DAC Intramedullary nails for long bone fracture setting
8920422, Sep 16 2011 STRYKER EUROPEAN HOLDINGS III, LLC Method for tibial nail insertion
8945188, Apr 06 2012 WARSAW OTHROPEDIC, INC Spinal correction system and method
8961521, Dec 31 2009 DEPUY SYNTHES PRODUCTS, INC Reciprocating rasps for use in an orthopaedic surgical procedure
8961567, Nov 22 2010 Depuy Synthes Products, LLC Non-fusion scoliosis expandable spinal rod
8968402, Oct 18 2011 Arthrocare Corporation ACL implants, instruments, and methods
8968406, Nov 08 2007 SPINE21 LTD Spinal implant having a post-operative adjustable dimension
8992527, Jun 24 2009 Elongation nail for long bone or similar
9022917, Jul 16 2012 SOPHONO, INC Magnetic spacer systems, devices, components and methods for bone conduction hearing aids
9044218, Apr 14 2010 DEPUY IRELAND UNLIMITED COMPANY Distractor
9044281, Oct 18 2012 NuVasive, Inc; NUVASIVE SPECIALIZED ORTHOPEDICS, INC Intramedullary implants for replacing lost bone
9060810, May 28 2008 University of Utah Research Foundation Fluid-powered elongation instrumentation for correcting orthopedic deformities
9078703, Nov 25 2009 SPINE21 LTD Spinal rod having a post-operative adjustable dimension
9113967, Sep 09 2009 Intracorporeal device for moving tissue
9138266, Sep 15 2011 ORTHOFIX S R L Intramedullary nail
20020050112,
20020072758,
20020164905,
20030040671,
20030144669,
20030220643,
20030220644,
20040011137,
20040011365,
20040019353,
20040023623,
20040055610,
20040133219,
20040138725,
20040193266,
20050034705,
20050049617,
20050065529,
20050090823,
20050159754,
20050234448,
20050234462,
20050246034,
20050261779,
20050272976,
20060004459,
20060009767,
20060036259,
20060036323,
20060036324,
20060047282,
20060058792,
20060069447,
20060074448,
20060079897,
20060136062,
20060142767,
20060155279,
20060195087,
20060195088,
20060200134,
20060204156,
20060235299,
20060235424,
20060241746,
20060241767,
20060249914,
20060271107,
20060282073,
20060293683,
20070010814,
20070010887,
20070021644,
20070031131,
20070043376,
20070050030,
20070118215,
20070161984,
20070173837,
20070179493,
20070185374,
20070233098,
20070239159,
20070239161,
20070255088,
20070264605,
20070270803,
20070276368,
20070276369,
20070276373,
20070276378,
20070276493,
20070288024,
20070288183,
20080009792,
20080015577,
20080021454,
20080021455,
20080021456,
20080027436,
20080033431,
20080033436,
20080051784,
20080082118,
20080086128,
20080097487,
20080097496,
20080108995,
20080161933,
20080167685,
20080172063,
20080177319,
20080177326,
20080190237,
20080228186,
20080255615,
20080272928,
20080275557,
20090030462,
20090062798,
20090076597,
20090082815,
20090088803,
20090093820,
20090093890,
20090112263,
20090163780,
20090171356,
20090192514,
20090198144,
20090216113,
20090254088,
20090275984,
20090281542,
20090318919,
20100004654,
20100057127,
20100094306,
20100100185,
20100106192,
20100114322,
20100130941,
20100137872,
20100145449,
20100145462,
20100168751,
20100249782,
20100249847,
20100256626,
20100262239,
20100318129,
20100331883,
20110004076,
20110057756,
20110060336,
20110066188,
20110098748,
20110152725,
20110196435,
20110202138,
20110238126,
20110257655,
20110284014,
20120019341,
20120019342,
20120035661,
20120053633,
20120088953,
20120109207,
20120116535,
20120158061,
20120172883,
20120179215,
20120203282,
20120221106,
20120271353,
20120283781,
20120296234,
20120329882,
20130013066,
20130072932,
20130123847,
20130138017,
20130138154,
20130150863,
20130150889,
20130178903,
20130211521,
20130245692,
20130253344,
20130253587,
20130261672,
20130296863,
20130296864,
20130296940,
20130325006,
20130325071,
20140005788,
20140025172,
20140052134,
20140058392,
20140058450,
20140066987,
20140088715,
20140128920,
20140142631,
20140163664,
20140236234,
20140236311,
20140257412,
20140277446,
20140296918,
20140303538,
20140303539,
20140324047,
20140358150,
20150105782,
20150105824,
CN101040807,
CN1697630,
DE102005045070,
DE1541262,
DE19626230,
DE19745654,
DE8515687,
EP663184,
EP1905388,
FR2892617,
FR2900563,
FR2901991,
FR2916622,
FR2961386,
JP2002500063,
JP2011502003,
JP956736,
RE28907, Jun 05 1967 Self-tapping threaded bushings
WO1998044858,
WO1999051160,
WO2001024697,
WO2001045485,
WO2001045487,
WO2001067973,
WO2001078614,
WO2007013059,
WO2007015239,
WO2011116158,
WO2013119528,
WO2014040013,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 20 2019NuVasive Specialized Orthopedics, Inc.(assignment on the face of the patent)
Feb 24 2020NuVasive, IncBANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0529180595 pdf
Feb 24 2020NUVASIVE CLINICAL SERVICES MONITORING, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0529180595 pdf
Feb 24 2020NUVASIVE CLINICAL SERVICES, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0529180595 pdf
Feb 24 2020NUVASIVE SPECIALIZED ORTHOPEDICS, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0529180595 pdf
Date Maintenance Fee Events
Sep 20 2019BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
May 10 20254 years fee payment window open
Nov 10 20256 months grace period start (w surcharge)
May 10 2026patent expiry (for year 4)
May 10 20282 years to revive unintentionally abandoned end. (for year 4)
May 10 20298 years fee payment window open
Nov 10 20296 months grace period start (w surcharge)
May 10 2030patent expiry (for year 8)
May 10 20322 years to revive unintentionally abandoned end. (for year 8)
May 10 203312 years fee payment window open
Nov 10 20336 months grace period start (w surcharge)
May 10 2034patent expiry (for year 12)
May 10 20362 years to revive unintentionally abandoned end. (for year 12)