The present document discloses a semiconductor device structure (1) comprising a sic substrate (11), an Inx1Aly1Ga1-x1-y1N buffer layer (13), wherein x1=0-1, y1=0-1 and x1+y1=1, and an Inx2Aly2Ga1-x2-y2N nucleation layer (12), wherein x2=0-1, y2=0-1 and x2+y2=1, sandwiched between the sic substrate (11) and the buffer layer (13). The buffer layer (13) presents a rocking curve with a (102) peak having a fwhm below 250 arcsec, and the nucleation layer (12) presents a rocking curve with a (105) peak having a fwhm below 200 arcsec, as determined by X-ray Diffraction (XRD).
Methods of making such a semiconductor device structure are disclosed.
|
1. A semiconductor device structure comprising:
a sic substrate,
an Inx1Aly1Ga1-x1-y1N buffer layer, wherein x1=0-1, y1=0-1 and x1+y1≤1, preferably x1<0.05 and y1<0.50, more preferably x1<0.03 and y1<0.30 and most preferably x1<0.01 and y1<0.10, and
an Inx2Aly2Ga1-x2-y2N nucleation layer, wherein x2=0-1, y2=0-1 and x2+y2≤1, preferably x2<0.05 and y2>0.50, more preferably x2<0.03 and y2>0.70 and most preferably x2<0.01 and y2>0.90, sandwiched between the sic substrate and the buffer layer,
wherein
the buffer layer has a thickness of 1 to 4 μm, preferably 1.3 to 3 μm and most preferably 1.5 to 2 μm,
the nucleation layer has a thickness of 10-100 nm, preferably 10-50 nm and most preferably 10-40 nm,
the buffer layer presents a rocking curve with a (102) peak having a fwhm below 250 arcsec, and
the nucleation layer presents a rocking curve with a (105) peak having a fwhm below 200 arcsec, as determined by X-ray Diffraction (XRD).
4. The semiconductor device structure according to
5. The semiconductor device structure according to
6. The semiconductor device structure according to
7. The semiconductor device structure according to according to
9. A high electron mobility transistor comprising the semiconductor device structure according to
10. A method of producing the semiconductor device structure according to
providing the sic substrate, and
providing the Inx2Aly2Ga1-x2-y2N nucleation layer, wherein x2=0-1, y2=0-1, preferably x2<0.05 and y2>0.50, more preferably x2<0.03 and y2>0.70 and most preferably x2<0.01 and y2>0.90, and x2+y2≤1, on the sic substrate,
providing the Inx1Aly1Ga1-x1-y1N buffer layer, wherein x1=0-1, y1=0-1 and x1+y1≤1, preferably x1<0.05 and y1<0.50, more preferably x1<0.03 and y1<0.30 and most preferably x1<0.01 and y1<0.10,
wherein the pressure upon growth of the nucleation layer and of the buffer layer is 200 mbar to 10 mbar, preferably 100 mbar to 20 mbar, most preferably 60 mbar to 40 mbar,
the starting temperature upon growth of the nucleation layer is 800° C. to 1150° C., preferably of 900° C.−1100° C., most preferably of 950° C.−1050° C., and
the temperature upon growth of the nucleation layer is 800° C. to 1150° C., preferably of 900° C.−1100° C., most preferably of 950° C.−1050° C., and
the nucleation layer and the buffer layer is grown by Metal Organic Chemical Vapor Deposition (MOCVD) or Metal Organic Vapor Phase Epitaxy (MOVPE),
wherein
the temperature upon growth of the nucleation layer is ramped up by 5-25° C./min, preferably by 7-20° C./min and most preferably by 10-15° C./min, for a time period of 2 min to 20 min,
the buffer layer is provided to a thickness of 1 to 4 μm, preferably 1.3 to 3 μm and most preferably 1.5 to 2 μm,
the nucleation layer is provided to a thickness of 10-100 nm, preferably 10-50 nm and most preferably 10-40 nm.
11. The method as claimed in
12. The method as claimed in
13. The method as claimed in
14. The method as claimed in
15. The method as claimed in
16. The method as claimed in
|
If the pretreatment is performed in situ, the flow of the pretreatment gases, e.g. HCl and/or H2, may be kept upon transition to AlN nucleation layer growth. If the pretreatment is performed ex situ the pretreated SiC substrate is transferred to the reactor in which the AlN nucleation layer growth should take place. The transfer of the substrate may take place in ambient conditions, i.e. air. If the pretreatment takes place ex situ the temperature and pressure of the reactor may be set, when the SiC substrate has been transferred into the reactor chamber, in the same way as discussed below.
The temperature of the reactor may be lowered while the pressure in the reactor may be maintained. The lowering of the temperature may be performed in one step, i.e. the heating may be turned off or set at a lower temperature value.
When the temperature of the reactor is stabilized at about 800-1150° C., i.e. the so-called starting temperature for the AlN nucleation layer growth, the pressure may be increased as compared to the pressure used during the pretreatment.
The pressure may be controlled by the use of a valve, such as a throttle valve, which may be situated between the reactor and a pump, such as a roots pump, dry process vacuum pump, or screw pump. When e.g. partly closing the throttle valve, the pumping on the reactor chamber is decreased and hence the pressure may increase due to the continuous flow of H2 and/or HCl.
Both the temperature and the pressure may be allowed to stabilize and after stabilization, if using HCl as pretreatment gas, the inlet of HCl to the reactor may be switched off (e.g. by closing a valve between the HCl source and the reactor). If using H2 as pretreatment gas the flow may be maintained as it may be used as carrier gas for transportation of at least one of the precursors upon AlN nucleation layer growth.
The carrier gas may be an inert gas such as H2 or N2. H2 or N2 may be used for transportation of the precursors to the reactor and H2 and N2 are used as carrier gas in the growth zone of the reactor. Preferably the carrier gas(es) are allowed to flow and optionally let into the reactor before the precursors are allowed to flow into the reactor (e.g. by opening a valve between the respective precursor and the reactor).
The containers storing the precursors may be temperature controlled, and the precursors may preferably be kept at room temperature. As an alternative, at least one of the precursors may be heated, which may increase the vapor pressure of the heated precursor such that the growth rate of the layer may be increased. However, as a too high flow rates/growth rate may lead to poorer quality of the layers, heating is not always optimal.
At least one mass flow controller may be placed between each precursor container and the reactor in order to control the flow rate of each precursor into the reactor.
The precursors, e.g. Al2(CH3)6, and NH3, are then simultaneously transported in gaseous form by the carrier gas into the reactor, hence the AlN nucleation layer growth on the SiC substrate may begin.
During AlN nucleation layer growth the temperature inside the reactor is ramped up by a ramping rate of 5-25° C./min as measured inside the reactor for a time period of 2 min to 20 min. Under such conditions, 7 min growth may result in an AlN thickness of about 30-40 nm. The thickness of the AlN nucleation layer should preferably be below 100 nm in the semiconductor device structure disclosed herein.
The temperature ramping may be incremental in small steps of e.g. 1/100 to ½ of the ramp rate. In the alternative, the ramping may be continuously linear, progressive or degressive. Preferably the ramping is continuously linear.
For AlN nucleation layer growth by HVPE, the starting temperature of the reactor may be the same, as for MOCVD growth. Also the pressure upon growth may be the same for HVPE as for MOCVD.
For AlN nucleation layer growth by MBE, the starting temperature of the reactor may be in the range of 500-1000° C., i.e. lower as compared to growth by MOCVD and HVPE. The lower starting temperature may be due to lower pressure during growth using MBE.
GaN Buffer Layer Growth
Growth of a buffer layer onto a nucleation layer (e.g. the AlN nucleation layer described above) will now be described with regard to a GaN buffer layer grown by the MOCVD (or MOVPE) method. As an alternative, the buffer layer may be deposited by HVPE or MBE as well.
The buffer layer may preferably, but need not, be grown in the same reactor as the nucleation layer.
The precursors used for GaN buffer layer growth may be trimethyl gallium, TMG, Ga(CH3)3, and ammonia, NH3. As an example, the flow rates of the precursors may be 2 l/min for NH3 and 0.62 ml/min for TMGa. The flow rate of the carrier gas flowing through the TMGa bubbler, e.g. H2, may be 42 ml/min. The precursors may be provided at room temperature. As an alternative at least one of the precursors may be heated in order to increase the flow rate and hence the growth rate of the GaN buffer layer.
The flow of each of the precursors may be controlled by at least one mass flow controller that may be situated between the precursor container and the reactor. Each or both of the precursors may be transported by a carrier gas, such as H2, N2 or Ar, into the reactor. The temperature of the reactor may be about 1050° C. upon growth of the GaN layer. The pressure in the reactor upon GaN growth may be about 50 mbar.
The growth of the GaN buffer layer may then be started when the temperature and pressure are stabilized. Under those conditions, the growth rate of the GaN layer may be about 700 to 2000 nm per hour. Preferably, the thickness of the GaN buffer layer may be about 1 to 4 μm in a SiC/AlN/GaN structure for e.g. a HEMT device.
Characterization of SiC/AlN/GaN
The interface of a SiC/AlN/GaN semiconductor device structure produced by the method disclosed herein, i.e. with pretreatment of the SiC substrate and ramp up of the starting temperature upon AlN growth, and the interface of a SiC/AlN/GaN reference semiconductor device structure produced according to a prior art method characterized by X-ray Diffraction (XRD). The structure according to the prior art method was produced without pretreatment of the SiC substrate and without temperature ramping upon AlN nucleation layer growth. The other parameters, such as temperature of the reactor and pressure upon growth, were the same for both AlN nucleation layer and GaN buffer layer growth. Both structures were produced by MOCVD and in the same reactor.
The thickness of the AlN nucleation layer grown according to the method disclosed herein was 38 nm and the thickness of the AlN nucleation layer grown according to the prior art method was 35 nm. The thickness of both the GaN buffer layer grown onto the AlN nucleation layer grown according to the method disclosed herein and the thickness of the GaN buffer layer grown onto a AlN nucleation layer grown according to prior art was 1.8 μm.
XRD measurements of different XRD planes like (002), (102), (103), (104), (105) for the same material lead to different peak width of the rocking curves. The (002) plane gives information of screw-type dislocations and the (102), (103), (104), (105) planes give information of edge- and mixed-type dislocations for different extent. The (105) plane usually gives more narrow peak width than the (102), (103), (104) planes.
A narrow rocking curve indicates a lower dislocation density and hence improved crystallinity as compared to a wide rocking curve. The thicker a layer is, the better the crystalline quality is, hence obtaining a narrower peak width for the material.
In
Hence, this indicates improved crystallinity of the AlN nucleation layer produced by the method disclosed herein as compared to AlN nucleation layers produced according to prior art.
The dislocation density of the AlN nucleation layer may be below 109 per cm2, and for the nucleation layer shown in
Rocking curves of the GaN (102) peak of a GaN buffer layer in a SiC/AlN/GaN device structure grown by the method disclosed herein and of reference GaN buffer layer in a SiC/AlN/GaN device structure grown by a prior art method, respectively, are shown in
Finally, in
The dislocation density of the GaN buffer layer may be 1·108 to 7×108 per cm2, as measured by XRD. Typically, the impurity level for GaN may be less than 1×1019 per cm3.
The GaN buffer layers in both
In
Experimental Details
X-ray photoelectron spectroscopy (XPS) characterization of pretreated SiC substrates were performed at beamline I311 at the MAX national synchrotron laboratory. High energy resolution of less than 100 and 300 meV at photon energy of 140 and 750 eV, respectively, were utilized to collect the surface core levels spectra.
For the X-ray Diffraction (XRD) characterization a high-resolution X-ray diffractometer (Philips X'Pert MRD) with λ=0.15406 nm of Cu Kα1 radiation was employed to characterize the crystalline quality of the AlN and GaN epitaxial layers. The HR-XRD system is equipped with a hybrid mirror and a triple-axis crystal as the primary and secondary optics, respectively, in which a resolution of ˜0.003° (˜11 arcsec) can be achieved.
For AlN, the full width half maximum (FWHM) of the rocking curves of the AlN (002) and (105) peaks were measured in the symmetric and the asymmetric diffraction geometry. For GaN, the FWHM of the rocking curves of the GaN (002) and (102) peaks were measured in the symmetric and the skew diffraction geometry.
The surface morphology of AlN epilayers on SiC substrates was characterized by Atomic Force Microscopy (AFM). An AFM system (Vecco Dimension 3100) was employed at tapping mode. The system permits the spatial resolution 0.3˜1 Å along the vertical direction and 1˜5 nm along the lateral direction, the resolutions of which are limited by the system background noise and the tip radius of curvature of 5˜10 nm used in this study, respectively.
Characterization by XRD, XPS and AFM were performed ex situ.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7777217, | Dec 12 2005 | KYMA TECHNOLOGIES, INC | Inclusion-free uniform semi-insulating group III nitride substrate and methods for making same |
20020106842, | |||
20070141823, | |||
20090045438, | |||
20090189192, | |||
20100032716, | |||
20100051961, | |||
20130200495, | |||
20140151748, | |||
20140264363, | |||
20140346441, | |||
20150076507, | |||
JP2006066834, | |||
JP2014110393, | |||
JP2014241387, | |||
KR1020080088993, | |||
WO2009001888, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 28 2020 | SWEGAN AB | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 28 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jan 04 2021 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Nov 08 2025 | 4 years fee payment window open |
May 08 2026 | 6 months grace period start (w surcharge) |
Nov 08 2026 | patent expiry (for year 4) |
Nov 08 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 08 2029 | 8 years fee payment window open |
May 08 2030 | 6 months grace period start (w surcharge) |
Nov 08 2030 | patent expiry (for year 8) |
Nov 08 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 08 2033 | 12 years fee payment window open |
May 08 2034 | 6 months grace period start (w surcharge) |
Nov 08 2034 | patent expiry (for year 12) |
Nov 08 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |