The present invention relates to a system and a method for correcting position information of a surrounding vehicle, which provide accurate position information of a surrounding vehicle by correcting the position information of the surrounding vehicle received through vehicle-to-vehicle communication, and identifies a license-plate number of a front vehicle through a sensor mounted in a vehicle, calculates a position of the front vehicle, and compare position information, which is included in information including the identified number of the front vehicle in information received from the surrounding vehicle, with the calculated position of the front vehicle to correct the position information of the surrounding vehicle.
|
0. 24. A method performed in a first vehicle travelling on a road to correct position information of a surrounding vehicle, the method comprising:
obtaining, by a sensor, identifier information of a front travelling vehicle that is visible from the first vehicle and is travelling on the road in front of the first vehicle;
determining a position of the front travelling vehicle using a measured distance to the front travelling vehicle and information of the road;
receiving identifier information and position information of one or more surrounding vehicles that are travelling in a surrounding area of the first vehicle;
identifying a surrounding vehicle comprising identifier information corresponding to the identifier information of the front travelling vehicle among the received identifier information of the one or more surrounding vehicles as being a matching surrounding vehicle corresponding to the front travelling vehicle;
correcting the received position information of the matching surrounding vehicle according to the determined position of the front travelling vehicle; and
generating a travel map of the matching surrounding vehicle using the corrected position information of the matching surrounding vehicle.
0. 18. An apparatus in a first vehicle to correct position information of a surrounding vehicle, the surrounding vehicle being located in a surrounding area of the first vehicle, the apparatus comprising:
a front vehicle location unit comprising one or more processors configured to:
obtain identifier information of a second vehicle that is visible from the first vehicle and is travelling in front of the first vehicle while the first vehicle is travelling on a curved road,
measure a distance from the first vehicle to the second vehicle, and
determine a relative position of the second vehicle with respect to a current position of the first vehicle using the measured distance from the first vehicle to the second vehicle and information of the curved road on which the first vehicle is travelling;
a surrounding vehicle information receiver configured to receive identifier information and position information of one or more surrounding vehicles that are travelling in the surrounding area of the first vehicle; and
a position information correcting unit comprising one or more processors configured to:
identify the identifier information of the second vehicle among the identifier information of the one or more surrounding vehicles received by the surrounding vehicle information receiver,
compare the determined relative position of the second vehicle with received position information of the second vehicle among the position information of the one or more surrounding vehicles received by the surrounding vehicle information receiver,
correct the received position information of the second vehicle according to a result of the comparing, and
generate a travel map of the second vehicle using the corrected position information of the second vehicle.
0. 1. An apparatus in a first vehicle to correct position information of a surrounding vehicle, the surrounding vehicle being located in a surrounding area of the first vehicle, the apparatus comprising:
a front vehicle location unit configured to
obtain a license-plate number of a second vehicle that is travelling in front of the first vehicle,
measure a distance from the first vehicle to the second vehicle, and
calculate a position of the second vehicle;
a surrounding vehicle information receiving unit configured to receive license-plate numbers and position information of one or more surrounding vehicles that are travelling in the surrounding area of the first vehicle;
a position information correcting unit configured to
search for the license-plate number of the second vehicle among the license-plate numbers of the one or more surrounding vehicles received by the surrounding vehicle information receiving unit,
compare the calculated position information of the second vehicle among the position information of the one or more surrounding vehicles with a received position information of the second vehicle received from the surrounding vehicle information receiving unit,
correct the received position information of the second vehicle according to a result of the comparing, and
transmit the corrected position information to a driving assist system to prevent a collision between the first vehicle and the second vehicle,
wherein the collision between the first vehicle and the second vehicle is prevented by an autonomous emergency braking system.
0. 2. The apparatus of
0. 3. The apparatus of
0. 4. The apparatus of
0. 5. The apparatus of
0. 6. The apparatus of
0. 7. The apparatus of
0. 8. The apparatus of
0. 9. The apparatus of
a display unit configured to display a position of the second vehicle according to the position information which is corrected by the position information correcting unit.
0. 10. A method to correct position information of a surrounding vehicle, the method comprising:
obtaining, by a camera, a license-plate number of a front travelling vehicle, and determining, by a measurement device, a calculated position of the front travelling vehicle;
receiving a license-plate number and position information of one or more surrounding vehicles that are travelling in a surrounding area;
searching for a surrounding vehicle comprising a license-plate number corresponding to the license-plate number of the front travelling vehicle among the received license-plate numbers of surrounding vehicles to determine a matching surrounding vehicle;
correcting received position information of the matching surrounding vehicle according to the calculated position of the front travelling vehicle; and
transmitting the corrected position information to a driving assist system to prevent a collision with the surrounding vehicle,
wherein the collision with the surrounding vehicle is prevented by an autonomous emergency braking system.
0. 11. The method of
0. 12. The method of
0. 13. The method of
calculating a correction value according to a difference between the received position information of the matching surrounding vehicle and the calculated position of the front travelling vehicle; and
correcting the received position information of the matching surrounding vehicle according to the calculated correction value.
0. 14. The method of
0. 15. The method of
0. 16. The apparatus of
0. 17. The method of
0. 19. The apparatus of claim 18, wherein the front vehicle location unit comprising one or more processors is further configured to determine the relative position of the second vehicle with respect to the current position of the first vehicle using the measured distance to the second vehicle and a direction of the second vehicle.
0. 20. The apparatus of claim 19, wherein the information of the curved road on which the first vehicle is travelling comprises a total number of lanes and a curvature of the curved road on which the first vehicle is travelling.
0. 21. The apparatus of claim 18, wherein the position information correcting unit comprising one or more processors is further configured to:
determine a correction value based on a difference between the received position information of the second vehicle and the determined relative position of the second vehicle, and
correct the received position information of the one or more surrounding vehicles according to the determined correction value.
0. 22. The apparatus of claim 18, wherein the front vehicle location unit is further configured to measure the distance from the first vehicle to the second vehicle through a radar or a laser scanner.
0. 23. The apparatus of claim 18, wherein the position information correcting unit is further configured to transmit the travel map of the second vehicle to a driving assist system to prevent a collision between the first vehicle and the second vehicle, and
the collision between the first vehicle and the second vehicle is prevented by an autonomous emergency braking system.
0. 25. The method of claim 24, wherein the determining a position of the front travelling vehicle using a measured distance to the front travelling vehicle and information of a road comprises:
determining a relative position of the front travelling vehicle with respect to a current position of the first vehicle using a measured distance from the first vehicle to the front travelling vehicle and a direction of the front travelling vehicle in response to the road on which the first vehicle is travelling being a curved road.
0. 26. The method of claim 25, wherein the information of the road comprises a total number of lanes and a curvature of the road on which the first vehicle is travelling.
0. 27. The method of claim 24, wherein the determining of the position of the front travelling vehicle comprises:
measuring a distance from the first vehicle to the front travelling vehicle through a radar or a laser scanner; and
determining the position of the front travelling vehicle using the measured distance from the first vehicle to the front travelling vehicle.
0. 28. The method of claim 24, wherein the receiving of the identifier information and the position information comprises receiving the identifier information and the position information from the one or more surrounding vehicles including the matching surrounding vehicle via vehicle-to-vehicle (V2V) communication, and
the correcting of the received position information comprises correcting the received position information of the matching surrounding vehicle received via the vehicle-to-vehicle (V2V) communication according to the determined position of the front travelling vehicle.
0. 29. The method of claim 24, wherein the obtaining, by the sensor, of the identifier information of the front travelling vehicle, the determining of the position of the front travelling vehicle, the receiving of the identifier information and the position information of the one or more surrounding vehicles, the identifying of the surrounding vehicle, the correcting of the received position information of the matching surrounding vehicle, and the generating of the travel map of the matching surrounding vehicle are collectively performed in sufficient time to enable a driving assist system to prevent a collision between the first vehicle and the matching surrounding vehicle based on the travel map of the matching surrounding vehicle.
0. 30. The method of claim 24, further comprising transmitting the travel map of the matching surrounding vehicle to a driving assist system to prevent a collision with the front travelling vehicle,
wherein the collision with the front travelling vehicle is prevented by an autonomous emergency braking system.
|
100 for correcting position information of a surrounding vehicle according to an exemplary embodiment of the present invention includes a front vehicle information obtaining unit 101, a surrounding vehicle information receiving unit 102, a position information correcting unit 130 103, and a display unit 104.
The front vehicle information obtaining unit 101 obtains a license-plate number of a vehicle travelling at a front side of the vehicle, measures a distance to the front vehicle, and calculates a position of the front vehicle based on the measured distance.
The front vehicle information obtaining unit 101 processes an image photographed through a camera 110 mounted in the vehicle, and identifies the license-plate number of the front vehicle. That is, the front vehicle information obtaining unit 101 obtains the license-plate number of the front vehicle and uses the obtained number of the front vehicle for identifying information received from the vehicle travelling at the front side among information received from surrounding vehicles.
The front vehicle information obtaining unit 101 measures a distance to the front vehicle through a radar 120 or a laser scanner 130 mounted in the vehicle.
The front vehicle information obtaining unit 101 may calculate a position of the front vehicle by using the distance to the front vehicle measured through the radar 120 or the laser scanner 130, a current position of the vehicle calculated based on a signal of a GPS 140, and information of a road, which the vehicle is travelling on, obtained from a road map DB 150. In this case, the road map DB 150 provides information, such as the total lanes ad and a curvature of the road, which the vehicle is travelling on.
Otherwise, the front vehicle information obtaining unit 101 may calculate a relative position (for example, 00 m in an X-axis and 00 m in a Y-axis) of the front vehicle with respect to the current position of the vehicle by using the distance to the front vehicle, and calculate a relative position of the front vehicle by using a distance to the front vehicle and a direction of the front vehicle while the vehicle travels a curved road.
The front vehicle information obtaining unit 101 transmits the obtained number of the front vehicle and the calculated position of the front vehicle to the position information correcting unit 103.
The surrounding vehicle information receiving unit 102 receives travelling information of a surrounding vehicle from the surrounding vehicles, which are travelling in an area, in which the surrounding vehicles may be communicated with the vehicle through V2V communication, and the travelling information includes a license-plate number of the surrounding vehicle and position information of the surrounding vehicle.
The surrounding vehicle information receiving unit 102 transmits the received number and position information of the surrounding vehicle to the position information correcting unit 103.
The position information correcting unit 103 compares the information of the front vehicle received from the front vehicle information obtaining unit 101 and the information of the surrounding vehicle received from the surrounding vehicle information receiving unit 102, corrects the position information of the surrounding vehicle, and generates a travel map of the surrounding vehicle according to the corrected position information.
The position information correcting unit 103 searches for information of the surrounding vehicle including the same license-plate number as the license-plate number of the front vehicle in the information of the surrounding vehicle received from the surrounding vehicle information receiving unit 102.
When the information of the surrounding vehicle including the same license-plate number as the license-plate number of the front vehicle is confirmed, the position information correcting unit 103 may recognize that the confirmed information of the surrounding vehicle is the information transmitted by the vehicle actually travelling at the front side, so that the position information correcting unit 103 compares the position information received from the corresponding surrounding vehicle with the position of the front vehicle received from the front vehicle information obtaining unit 101.
When the position information received from the surrounding vehicle, which is recognized as the front vehicle, is the same as the position of the front vehicle calculated by the front vehicle information obtaining unit 101 or is within a predetermined range from the position of the front vehicle, the position information received from the surrounding vehicle may be considered as accurate information having no error, so that the position information correcting unit 103 generates the travel map of the surrounding vehicle, which is travelling around the vehicle, according to the position information received from the surrounding vehicle.
When a distance between the position information received from the surrounding vehicle and the position calculated by the front vehicle information obtaining unit 101 is out of a predetermined range, the position information correcting unit 103 may recognize that the position information from the surrounding vehicle is inaccurate information due to an error of the GPS.
Accordingly, the position information correcting unit 103 calculates a correction value according to the difference between the position information received from the surrounding vehicle and the position calculated by the front vehicle information obtaining unit 101, and corrects the position information received from the surrounding vehicle according to the calculated correction value.
In this case, the position information correcting unit 103 may correct only the position information received from the surrounding vehicle, which is recognized as the front vehicle, according to the calculated correction value, but may also correct position information of all of the surrounding vehicles received by the surrounding vehicle information receiving unit 102 according to the calculated correction value.
The position information correcting unit 103 may generate a travel map of the surrounding vehicle, which is travelling around the vehicle, based on the corrected position information, and display the generated travel map through a display unit 104, thereby providing a driver with accurate position information of the surrounding vehicle which is travelling in a surrounding area.
The position information correcting unit 103 transmits the corrected position information of the surrounding vehicle or the generated travel map to a driving assist system 200 to enable the driving assist system 200 to use the corrected position information of the surrounding vehicle or the generated travel map for identifying the information of the front vehicle.
Accordingly, according to the present invention, the position information, which is received from the surrounding vehicle recognized as the front vehicle in the position information of the surrounding vehicles received through the V2V communication is compared with the position of the front vehicle calculated based on the information obtained through the sensor and corrected, so that even through the position information received through the V2V communication has an error, it is possible to provide a driver or the driving assist system 200 with accurate position information.
The system for correcting position information of a surrounding vehicle according to the exemplary embodiment of the present invention may compare position information of a surrounding vehicle received from the surrounding vehicle and information of a front vehicle obtained through the sensor and correct the position information of the surrounding vehicle to provide accurate position information of the surrounding vehicle.
The system for correcting position information of a surrounding vehicle recognizes a license-plate number of a vehicle, which is travelling at a front side, through a camera mounted in the vehicle (S300), and measures a distance to the front vehicle using a radar, and the like (S310). Further, the system for correcting position information of a surrounding vehicle calculates a position of the front vehicle based on a distance to the front vehicle and a current position of the vehicle and information of a road which the vehicle travels on (S320).
That is, the present invention may correct even position information of vehicles travelling in an area, which is not detected by the sensor, by determining accuracy of the position information received through the V2V communication based on the information of the front vehicle.
The system for correcting position information of a surrounding vehicle obtains the information of the front vehicle, and receives travel information including a number and position information of the surrounding vehicle from the surrounding vehicle (S330).
The system for correcting position information of a surrounding vehicle searches for information including the same license-plate number as the license-plate number of the front vehicle in the information received from the surrounding vehicle (S340).
When the information including the same license-plate number as the license-plate number of the front vehicle is identified in the information received from the surrounding vehicle, the system for correcting position information of a surrounding vehicle may recognize that the identified surrounding vehicle is the vehicle travelling at the front side, so that the system for correcting position information of a surrounding vehicle compares the position information of the identified surrounding vehicle with the obtained position of the front vehicle obtained through the sensor (S350).
When the position information of the identified surrounding vehicle is the same as the position of the front vehicle obtained through the sensor, or a difference between the position information of the identified surrounding vehicle and the position of the front vehicle obtained through the sensor is within a predetermined range (S360), the position information received from the surrounding vehicle may be determined as information having no error, so that the system for correcting position information of a surrounding vehicle provides the received position information to the driving assist system or generates a travel map of the surrounding vehicle based on the received position information (S390).
When the difference between the position information of the identified surrounding vehicle and the position of the front vehicle obtained through the sensor is out of the predetermined range (S360), the position information received from the surrounding vehicle may be considered as inaccurate information due to an error of GPS information, so that the system for correcting position information of a surrounding vehicle calculates a correction value based on the difference between the received position information and the position of the front vehicle (S370).
The system for correcting position information of a surrounding vehicle corrects the received position information according to the calculated correction value (S380). In this case, the system for correcting position information of a surrounding vehicle may also correct position information of a surrounding vehicle, which is travelling in an area that is communication available with a vehicle, but is not detected by the sensor, by correcting all of the received position information of the surrounding vehicles according to the calculated correction value.
Accordingly, according to the present invention, it is possible to provide a driver with accurate position information of a surrounding vehicle by correcting an error of position information received from the surrounding vehicle, and provide accurate driving assist services according to a travel situation of a front vehicle by enabling the driving assist system to accurately identify information of a front vehicle received through the V2V communication.
Although an exemplary embodiment of the present invention has been described for illustrative purposes, those skilled in the art will appreciate that various modifications and changes are possible, without departing from the scope and spirit of the invention. Accordingly, the exemplary embodiments disclosed in the present invention are not intended to limit but illustrate the technical spirit of the present invention, and the scope of the technical spirit of the present invention is not limited by the exemplary embodiments. The protection scope of the present invention should be construed based on the following appended claims and it should be interpreted that all the technical spirit included within the scope identical or equivalent to the claims belongs to the scope of the present invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10091855, | Jan 13 2017 | ETi Solid State Lighting Inc. | Manually controllable LED correlated color temperature light fixture |
10518877, | Dec 19 2012 | ELWHA LLC, A LIMITED LIABILITY COMPANY OF THE STATE OF DELAWARE | Inter-vehicle communication for hazard handling for an unoccupied flying vehicle (UFV) |
10843685, | Apr 19 2013 | CONTINENTAL TEVES AG & CO OHG | Method and system for preventing a following vehicle from driving up on a vehicle driving directly in front and use of the system |
6766038, | May 28 1999 | Nippon Telegraph and Telephone Corporation | Apparatus and method for image processing |
7982634, | Mar 22 2006 | KRIA S R L | System for detecting vehicles |
8520695, | Apr 24 2012 | ZETTA RESEARCH AND DEVELOPMENT, LLC FORC SERIES | Time-slot-based system and method of inter-vehicle communication |
9147353, | May 29 2013 | Allstate Insurance Company | Driving analysis using vehicle-to-vehicle communication |
9360328, | Sep 02 2014 | Hyundai Motor Company | Apparatus and method for recognizing driving environment for autonomous vehicle |
9630625, | Apr 09 2015 | Hyundai Motor Company | Apparatus and method for identifying surrounding vehicles |
9836961, | Nov 11 2014 | Hyundai Mobis Co., Ltd. | System and method for correcting position information of surrounding vehicle |
9892567, | Oct 18 2013 | State Farm Mutual Automobile Insurance Company | Vehicle sensor collection of other vehicle information |
20040230373, | |||
20060123051, | |||
20070109111, | |||
20070265777, | |||
20090237291, | |||
20100036578, | |||
20100052944, | |||
20100112529, | |||
20100164789, | |||
20100214085, | |||
20110109475, | |||
20120029813, | |||
20120287276, | |||
20120290146, | |||
20120303176, | |||
20130030687, | |||
20130060443, | |||
20130093618, | |||
20130131976, | |||
20130188837, | |||
20130238181, | |||
20130265414, | |||
20140032100, | |||
20140070980, | |||
20140292545, | |||
20140300743, | |||
20140375813, | |||
20150002620, | |||
20150022426, | |||
20150073705, | |||
20150081202, | |||
20150146605, | |||
20150153178, | |||
20150170522, | |||
20150178998, | |||
20150185735, | |||
20150200957, | |||
20150201120, | |||
20170154531, | |||
20180151072, | |||
20180209795, | |||
20190035279, | |||
CN101221049, | |||
CN102460535, | |||
CN102844800, | |||
CN103124994, | |||
CN103733084, | |||
JP2009230390, | |||
JP2009257763, | |||
JP2011175572, | |||
RE48288, | Nov 11 2014 | Hyundai Mobis Co., Ltd. | System and method for correcting position information of surrounding vehicle |
WO2013115470, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 15 2020 | Hyundai Mobis Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 15 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Sep 12 2026 | 4 years fee payment window open |
Mar 12 2027 | 6 months grace period start (w surcharge) |
Sep 12 2027 | patent expiry (for year 4) |
Sep 12 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 12 2030 | 8 years fee payment window open |
Mar 12 2031 | 6 months grace period start (w surcharge) |
Sep 12 2031 | patent expiry (for year 8) |
Sep 12 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 12 2034 | 12 years fee payment window open |
Mar 12 2035 | 6 months grace period start (w surcharge) |
Sep 12 2035 | patent expiry (for year 12) |
Sep 12 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |