Wired portable or permanent pylon-mounted, single or multiple camera assemblies providing high-definition images, remote video parameter adjustment, real time imaging, lower camera mounting, microphone use, no overheating problems, longer run times, and installation and removal without disturbing field surface. pylon is molded from high-density, impact resistant foam, integrated with a break-away connect providing for non-destructively breaking and remaking electrical connections. Increased content of high impact, resistant material provides player and pylon protection. camera wiring extends internally to integral connecting base fitted with magnets for quick and accurate mating with stationary turf base. Wires in turf carry signals from camera to a fiber optic transmitter that powers the pylon cameras, converts the electrical signals to optical signals, and receives control signals converting them to electrical signals. Thousands of meters range optical signals converted back to electrical high-definition video signals by fiber optic receiver and recorded by replay devices for instant viewing.

Patent
   RE49738
Priority
Jul 23 2015
Filed
Nov 13 2019
Issued
Nov 28 2023
Expiry
Jul 22 2036
Assg.orig
Entity
Small
0
45
currently ok
0. 21. A wired high-definition pylon-mounted camera assembly, comprising:
a pylon;
two or more high-definition camera sub-assemblies;
one or more cooling fan sub-assemblies;
electrical wiring, and
electrical connectors,
said pylon having one or more cavities therethrough, each of said one or more cavities having a first cavity end and a second cavity end,
at least one of said one or more cavities having one of said camera sub-assemblies contained in said first end and one of said fan assemblies contained in said second end,
said electrical wiring connecting each camera sub-assembly to an electrical-conducting break-away pylon connector.
1. A wired high-definition pylon-mounted camera assembly, comprising:
a pylon;
one or more high-definition camera sub-assemblies;
one or more cooling fan sub-assemblies;
electrical wiring, and
electrical connectors,
said pylon molded from high-density, impact resistant foam,
said pylon having one or more cavities therethrough, each of said one or more cavities having a first cavity end and a second cavity end,
at least one of said one or more cavities having one of said camera sub-assemblies contained in said first end and one of said fan assemblies contained in said second end,
said electrical wiring connecting each camera sub-assembly to a pylon-integral electric-conducting break-away pylon connector.
19. A wired high-definition pylon-mounted camera assembly, comprising:
a pylon;
one or more high-definition camera sub-assemblies;
one or more cooling fan sub-assemblies;
electrical wiring, and
electrical connectors,
said pylon molded from high-density, impact resistant foam,
said pylon having one or more cavities therethrough, each of said one or more cavities having a first cavity end and a second cavity end,
at least one of said one or more cavities having one of said camera sub-assemblies contained in said first end and one of said fan assemblies contained in said second end,
said electrical wiring connecting each camera sub-assembly to a pylon-integral electric-conducting break-away pylon connector,
said pylon connector is fitted with electric conducting pogo pins,
a base connector fitted with electrical connection pads for electrical connection with said pogo pins,
said pylon connector shaped to key-fit said base connector,
wherein when said pylon-mounted camera assembly is assembled and installed for use, electrical wires extending from said electrical connection pads are connected to a transmitter, completing the electrical circuit to carry power, data, and video signals between the camera and a transmitter causing said pylon-mounted camera assembly to provide high-definition images, remote video parameter adjustment, real-time imaging, lower camera mounting, and no overheating problems.
0. 22. A pylon-mounted camera assembly, comprising:
a pylon having a body comprised of resilient foam;
at least a first camera sub-assembly arranged to be mounted at least partially within said body, said first camera sub-assembly including an open and rigid frame, the open and rigid frame including:
a first flange;
a second flange spaced apart from said first flange; and,
a plurality of rigid connectors, each of said plurality of rigid connectors comprising an elongated spacer having a first end and a second end, said first end of each of said elongated spacers connected to said first flange proximate an outer edge of said first flange, said second end of each of said elongated spacers connected to said second flange proximate an outer edge of said second flange, each of said elongated spacers having a length extending substantially between said first and said second flanges;
a first camera having a lens, said first camera affixed to and at least partially surrounded by said open and rigid frame of said first camera sub-assembly; and,
an internal electrical wiring assembly comprising at least one cable at least partially contained within said pylon and in electrical communication with said first camera, said at least one cable terminated by one of: a plug and a receptacle,
wherein one of: said plug and said receptacle of said at least one cable is arranged to engage at least one external cable, said at least one external cable terminated by one of: an other plug and an other receptacle, thereby forming a non-locking connector between said at least one cable and said at least one external cable.
20. A wired high-definition pylon-mounted camera assembly, comprising:
a pylon;
one or more high-definition camera sub-assemblies;
one or more cooling fan sub-assemblies;
electrical wiring, and
electrical connectors,
said pylon molded from high-density, impact resistant foam,
said pylon having one or more cavities therethrough, each of said one or more cavities having a first cavity end and a second cavity end,
at least one of said one or more cavities having one of said camera sub-assemblies contained in said first end and one of said fan assemblies contained in said second end,
said electrical wiring connecting each camera sub-assembly to a pylon-integral electric-conducting break-away pylon connector,
said pylon connector is fitted with electric conducting pogo pins,
a base connector fitted with electrical connection pads for electrical connection with said pogo pins,
said pylon connector shaped to key-fit said base connector,
said pylon connector and said connector base are each fitted with magnets that assist in the orientation of the connectors for quick and accurate mating,
said cavities of a pylon containing a multiple number of said cavities do not intersect providing for a “crush zone” between cavities,
said pylon containing a stabilizing weight,
said pylon-mounted camera assembly further comprising a microphone,
said pylon-mounted camera assembly being either a permanently mountable pylon-mounted camera assembly or a portable pylon-mounted camera assembly,
wherein when said pylon-mounted camera assembly is assembled and installed for use, electrical wires extending from said electrical connection pads are connected to a transmitter, completing the electrical circuit to carry power, data, and video signals between the camera and a transmitter causing said pylon-mounted camera assembly to provide high-definition images, remote video parameter adjustment, real-time imaging, lower camera mounting, and no overheating problems.
2. The wired high-definition pylon-mounted camera assembly, as recited in claim 1, wherein said pylon connector is fitted with electric conducting pogo pins.
3. The wired high-definition pylon-mounted camera assembly, as recited in claim 2, further comprising a base connector fitted with electrical connection pads for electrical connection with said pogo pins.
4. The wired high-definition pylon-mounted camera assembly, as recited in claim 3, wherein said pylon connector is shaped to key-fit said base connector.
5. The wired high-definition pylon-mounted camera assembly, as recited in claim 4, wherein when said pylon-mounted camera assembly is assembled and installed for use, electrical wires extending from said electrical connection pads are connected to a transmitter, completing the electrical circuit to carry power, data, and video signals between the camera and a transmitter causing said pylon-mounted camera assembly to provide high-definition images, remote video parameter adjustment, real-time imaging, lower camera mounting, and no overheating problems.
6. The wired high-definition pylon-mounted camera assembly, as recited in claim 5, further comprising where said pylon connector and said connector base are fitted with magnets that assist in the orientation of the connector for quick and accurate mating.
7. The wired high-definition pylon-mounted camera assembly, as recited in claim 1, wherein when said pylon contains a multiple number of said cavities, said cavities do not intersect providing for a “crush zone” between cavities.
8. The wired high-definition pylon-mounted camera assembly, as recited in claim 1, wherein each camera sub-assembly includes a camera, interchangeable lens, a camera housing, and a camera-flange.
9. The wired high-definition pylon-mounted camera assembly, as recited in claim 1, wherein each fan sub-assembly includes a fan, and a fan-flange.
10. The wired high-definition pylon-mounted camera assembly, as recited in claim 1, further comprising a stabilizing weight in said pylon.
11. The wired high-definition pylon-mounted camera assembly, as recited in claim 1, further comprising a microphone.
12. The wired high-definition pylon-mounted camera assembly, as recited in claim 5, wherein said pylon-mounted camera assembly is a permanently mountable pylon-mounted camera assembly.
13. The wired high-definition pylon-mounted camera assembly, as recited in claim 12, wherein said permanently mountable pylon-mounted camera assembly is fitted with a base mounting structure.
14. The wired high-definition pylon-mounted camera assembly, as recited in claim 13, wherein said base mounting structure comprises:
a base member providing a ninety-degree horizontal to vertical conduit turn connected to
a coupler, said coupler having external fins arranged around a circumference of the coupler to provide resistance to any externally applied radial force, connected to
an upper conduit section having anti-rotation pins inserted into a portion of the upper conduit section,
a wedging plug and a rubber plug inserted into a top opening of the upper conduit section,
a foam rubber washer positioned on top of the rubber plug and
a locking nut screwed onto the wedging plug, said locking nut fastened to a bottom surface of said connector base of said pylon-mounted camera system, said base mounting structure therein providing for permanent electrical connection of said camera system to a transmitter.
15. The wired high-definition pylon-mounted camera assembly, as recited in claim 14, wherein said base mounting structure further comprises:
said base member connected to a base section of
a base mounting flange that is connected to
a lower conduit section that is connected to
a bottom of said coupler, said connected to
a lower section of said upper conduit section having said wedging plug and said rubber plug inserted into the top opening of the upper conduit section with said foam rubber washer positioned on top of the rubber plug, the locking nut screwed onto the wedging plug, said locking nut fastened to a bottom surface of said connector base, said connector base having said pylon-mounted camera system attached to its top surface of connector base.
16. The wired high-definition pylon-mounted camera assembly, as recited in claim 14, further comprising said electrical wires from said electrical connection pads extending through said base member of said base mounting structure to continue within a conduit in the ground to carry the electrical signals that travel from the camera through the pylon connector, connector base, base mounting structure and the conduit in the ground to a fiber optic transmitter that powers the pylon cameras and converts the electrical signals to optical signals.
17. The wired high-definition pylon-mounted camera assembly, as recited in claim 4, wherein said pylon-mounted camera assembly is a portable assembly having electrical connection between the camera and the transmitter made through a non-locking connector, said non-locking connector providing for said pylon to non-destructively break away from ground wires.
18. The wired high-definition pylon-mounted camera assembly, as recited in claim 16, wherein said non-locking connector is a USB3 connector.
0. 23. The pylon-mounted camera assembly recited in claim 22 further comprising a camera housing, said camera housing arranged to surround said first camera, said camera housing affixed to and at least partially surrounded by said open and rigid frame of said first camera sub-assembly.
0. 24. The pylon-mounted camera assembly recited in claim 23 further comprising a fan, said fan affixed to said open and rigid frame.
0. 25. The pylon-mounted camera assembly recited in claim 22, wherein each of said plurality of rigid connectors comprises:
a bolt; and,
a nut; wherein said bolt is arranged to engage said nut thereby connecting said first flange and said second flange of said open and frame.
0. 26. The pylon-mounted camera assembly recited in claim 25, wherein each of said plurality of rigid connectors further comprises a sleeve, said sleeve arranged between said first flange and said second flange, wherein said bolt is arranged within said sleeve.
0. 27. The pylon-mounted camera assembly recited in claim 22, wherein said first camera has a field of view in a direction outward from said pylon.
0. 28. The pylon-mounted camera assembly recited in claim 22, wherein said first camera is affixed to one of: said first flange and said second flange of said open and rigid frame.
0. 29. The pylon-mounted camera assembly recited in claim 22, wherein each of said plurality of rigid connectors comprise a bolt that secure said first flange to said second flange, each bolt of said plurality of rigid connectors are arranged to be received in a respective substantially cylindrical sleeve.
0. 30. The pylon-mounted camera assembly recited in claim 22, wherein said elongated spacer is substantially cylindrical.
0. 31. The pylon-mounted camera assembly recited in claim 22, wherein said elongated spacer comprises a bolt.
0. 32. The pylon-mounted camera assembly recited in claim 22, wherein said elongated spacer comprises at least one of:
a bolt;
a sleeve; and,
said bolt and said sleeve, wherein said bolt is arranged to be disposed within said sleeve.

This is a Non-Provisional Application of Provisional 62/195,894 filed on Jul. 23, 2015 and Provisional 62/306,358 filed on Mar. 10, 2016.

Not Applicable

Not Applicable

The present invention relates generally to a pylon-mounted camera assembly and, more particularly, to a high-definition pylon-mounted camera fitted with a break-away connect base, such that the camera assembly records and transmits high-definition images via electric cables and optical fibers to a receiver. Available are also a base mounting structure, and installation tools.

The background information discussed below is presented to better illustrate the novelty and usefulness of the present invention. This background information is not admitted prior art.

Pylon-mounted cameras have many uses. To describe some details of its use, a pylon camera that records images of a football game will be provided. This description should be understood to be only an example and should not be taken as limiting. A known pylon-mounted camera used to record images in a football end zone consists of a wireless receiver that receives signals from a transmitter to provide video images to a television production crew and to game officials, who may use the video images to determine, for example, whether a touchdown has been scored. In the game of football, a touchdown is scored when a player carries a football across a goal line. More specifically, the touchdown is scored when any part of the football “breaks the plane” of the goal line. The plane of the goal line is the imaginary vertical plane, with reference to a horizontal ground surface, that contains the goal line. In football games, situations often arise where it is not clear whether the football broke the plane of the goal line, such as when a player's forward progress is stopped at or very near the goal line. Similar questions can also arise such as whether a player was down before the football broke the plane, or whether a player had complete possession of the football when the football broke the plane. The images produced by the pylon-mounted camera provide for video-replays which can be reviewed to assist game officials in making the correct call. Football is a very rough sport. Any object on or near the field of play is subject to experiencing very high impact forces. These impact forces can measure hundreds, if not thousands, of pounds, as one or more players can collide or fall to the ground while moving very fast. Thus, pylon-mounted cameras must be rugged and reliable enough to withstand the punishment they will inevitably receive. In a stadium or other facility with an athletic playing surface where use of a pylon-mounted camera assembly is wanted on a continual basis (e.g. a football stadium), it is preferred that such an assembly would be installed once and left in place, rather than requiring that wires be buried and then removed from below the playing surface each time the assembly is used which in many cases could minimally be as frequent as once per week during an athletic season.

The present Inventor realized that the definition of images produced by known pylon-mounted cameras are, at best, limited to standard resolution. In fact, it is well-known that even though wireless pylon-mounted cameras are a good idea in theory, they are not likely to yield many valuable images in practice. Known wireless pylon cam assemblies must rely on RF (radio frequency) transmitters and receivers to convey their camera images. This, however, reduces image quality due to “compression” associated with RF. Moreover, the known wireless pylon-mounted cameras are not controllable—that is, the video parameters cannot be adjusted while the cameras are in use. In addition, the known wireless pylon-mounted cameras present latency—that is, the video signal is not real time. And, additionally, these assemblies often fail when used in a stadium due to limited RF spectrum. There are also problems with equipment overheating due to the fact that much equipment is in very limited pylon space. The batteries used in the wireless assemblies must be very small in order to fit inside the pylon creating battery problems. One problem posed by small batteries is that they limit operational time and require frequent recharging. The fact that these assemblies require a large amount of equipment to be housed in each pylon, in addition to the batteries, means that there is less room for impact-reducing foam in the pylon, making the pylons more dangerous to players who collide with a pylon.

Accordingly, the present Inventor developed an inventive concept of a pylon-mounted camera that would produce a reliable high-definition video signal. The inventive concept further includes the flexibility of installing the pylon-mounted camera as a permanent feature or as a portable assembly. The concept and the associated inventive principles that provide for the making and use of the high-definition pylon-mounted camera are described herein.

The inventive principles include requiring a pylon-mounted camera to be wired to produce high-definition images. In order to produce the highest-quality high-definition images, the signals must travel through both an electrical cable and a fiber optic cable to the receiver, which is typically located a long distance from the field. To accommodate a wired assembly in an environment as rough and tumble as a football field, another inventive principle introduces the novel use of a molded, high-density, impact resistant foam pylon integrated with a break-away connect that provides a simple and inexpensive technique for non-destructively breaking and remaking electrical connections. All of these benefits provide for a significant reduction of the volume of the pylon needed for housing the camera and related structure. In the present invention, the freed pylon volume provides for an increase in the thickness of the pylon's molded, high-density foam providing for greater impact resistance and safety for players.

High-definition video is video of higher resolution and quality than standard-definition. While there is no standardized meaning for high-definition, generally any video image with considerably more than 480 horizontal lines (North America) or 576 horizontal lines (Europe) is considered high-definition. 480 scan lines is generally the minimum even though the majority of assemblies greatly exceed that. Images of standard resolution captured by a high-speed camera at rates faster than normal (60 frames/second North America, 50 fps Europe) may be considered high-definition in some contexts. Some television series shot on high-definition video are made to look as if they have been shot on film, a technique which is often known as “filmizing”.

The wired high-definition pylon-mounted camera assembly, made following the inventive concept and principles, is able to present full high-definition images, in part, because there is no video compression. Sending the video images long distances via a combination of electrical and optical signals also means that when, for example, a football stadium using the wired pylon-mounted cameras is in use, the application of limited RF spectrum is not required resulting in reliable high-definition images. The wired high-definition pylon-mounted camera assembly provides for remote adjustment of video parameters, such as exposure, contrast, color, etc. An important part of the present invention is the use of a magnetic “break-away” connector for safety of the electrical connections when hit. The present invention allows cameras to be used “LIVE” since there is no delay in the video providing for real time use. The increased content of high impact, resistant material in the pylons means that both the structure of the invention is safer and the players that impact upon the pylon are safer. The reduced pylon volume required to be used for housing the camera and its related parts (e.g., no battery and transmitter needed) also provides for lower mounting of the cameras than has been previously possible. The reduction of the amount of equipment inside the pylon also means that there are no more overheating problems. The use of AC power, or a larger battery, in the fiber transmission box means the assembly can run for longer periods of time. If desired, a microphone, such as a Cardioid microphone, for example, is securely positioned on a pylon to ensure that its primary direction of pick-up is oriented to face the viewing areas of one or more of the cameras. The present Inventor realizing that when athletic playing fields are composed of natural grass, the root systems of the grass and the uniformity of the substrate materials can be adversely affected by the frequent earthwork that would be required to continually install and remove an assembly, and that for both natural grass and artificial turf playing fields, the ongoing cost of labor to continually install and remove an assembly over a long term period could make use of the assembly cost-prohibitive, devised an inventive concept, the principles of which are described as follows. In locations where a permanent installation is desired, the assembly derived from the inventive principles provides for permanent installation of a conduit that enables various types of wires and cables to be run to the pylon location without continually doing earthwork to place such wires and cables below the field surface. In addition to minimizing ongoing labor costs, this allows for the installation to be “future-proof,” in that as new types of cameras, video signals, or other requirements for the pylons arise, new types of wires or cables to support these functions can be placed in the conduits with minimal effort and without requiring the field playing surface to be disturbed.

The inventive principles provide for easy installation and removal of a connector base, cap, or pass-through cap at the pylon end of the installed conduit, providing for the mounting and removal of each of these parts without disturbing the field's playing surface. Moreover, in the event the installation site is outdoors, the pylon assembly is fabricated is to withstand the elements, and is constructed to withstand the forces that can be caused by player impact and by the impact of machinery used in routine field maintenance. Rigidity of the assembly at the pylon end of the installed conduit is achieved by securing a base mounting flange to the solid base substrate material of a field that may be concrete, compacted crushed stone, or another similar material. Fins on the internally threaded coupler provide resistance to any externally applied radial force once the area around the installed assembly is backfilled with soil.

Player safety is also taken into account by the inventive concept. The assembly allows for a certain amount of impact force absorption, so that if a player were to fall upon the installed connector base, cap, or pass-through cap, they would not be subject to any force substantially greater than if they had fallen upon the playing surface immediately surrounding the installed assembly. This impact force absorption is accomplished by using rubber or foam rubber for certain components of the mounting assembly.

After installation, the assembly is capable of being adjusted vertically to adapt to grade changes that may take place over time due to routine field maintenance practices such as “top dressing” or “de-thatching”.

In the example of a football field the location, with respect to the boundaries of the field where the assembly is installed, must be precisely located. This, in turn, can be helpful for the grounds crew who paint the boundaries onto the field as they can use the location of the installed assembly as a reference point applying paint, chalk, or a similar compound to the field to mark the boundaries. Thus, the inventive concept includes providing for a Line Marking Template Tool.

Yet other benefits and advantages of this invention will become apparent to those skilled in the art upon reading and understanding the following detailed specification and related drawings.

In order that these and other objects, features, and advantages of the present invention may be more fully comprehended and appreciated, the invention will now be described, by way of example, with reference to specific embodiments thereof which are illustrated in appended drawings wherein like reference characters indicate like parts throughout the several figures. It should be understood that these drawings only depict preferred embodiments of the present invention and are not therefore to be considered limiting in scope, thus, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:

FIG. 1 is an exploded view of a high-definition pylon-mounted camera.

FIG. 1a is a detailed view illustrating notches in camera housing cavity.

FIG. 1b is a reverse exploded view of a high-definition pylon-mounted camera.

FIG. 2 is an exploded view of a high-definition pylon-mounted camera, illustrating a variation in design elements.

FIG. 3 is a break-away view of the camera and fan structure parts of the pylon-mounted camera from the camera structure end.

FIG. 4 is a perspective tilted view of the camera and fan sections, from the camera structure end, illustrating how these sections are connected when positioned within the pylon.

FIG. 5 is an exploded view looking-down on the top surfaces of the base sections of the high-definition pylon-mounted camera.

FIG. 6 is an exploded view looking-up to the bottom surfaces of the base sections of the high-definition pylon-mounted camera.

FIG. 7 is a break-away view looking-down on the top surfaces of the base sections of the high-definition pylon-mounted camera with the hardware and magnets in place.

FIG. 8 is a break-away view looking-up to the bottom surfaces of the base sections of the high-definition pylon-mounted camera with the hardware and magnets in place.

FIG. 9 is a diagrammatic exemplar electric circuit used in the pylon-mounted camera assembly, as shown in FIG. 1.

FIG. 10 is a perspective view of a two-camera pylon having circularly-shaped cavity openings.

FIG. 11 is a perspective view of a two-camera pylon having angularly-shaped cavity openings.

FIG. 12 is a perspective view of a three-camera pylon having angularly-shaped cavity openings.

FIG. 13 is a perspective view of a two-camera pylon having spaces configured to hold an RFID chip.

FIG. 14 is a perspective bottom-up view of a two-camera pylon illustrating a cavity for positioning of a stabilizing weight and conduits for electrical wire.

FIG. 15 is a perspective side view of a two-camera pylon illustrating an electrical wire conduit drilled so as to line-up with notch in camera housing.

FIG. 16 is a perspective view of an assembled pylon-mounted camera system 135 and an exploded view of the components of base mounting structure 150.

FIG. 17 is a perspective bottom-up view of assembled pylon-mounted camera system 135 and an exploded view of the components of base mounting structure 150.

FIG. 18 is a perspective view of assembled base mounting structure attached to assembled pylon-mounted camera system.

FIG. 19 is a perspective tilted view of assembled base mounting structure with a cap installed.

FIG. 20 is a perspective tilted view of assembled base mounting structure with an installed pass-through cap.

FIG. 21 is a cut-away perspective view illustrating engagement of the anti-rotation pins.

FIG. 22 is a break-away top-down view illustrating torque application tool, plug sub-assembly, and externally threaded top conduit section.

FIG. 23 is a break-away bottom-up view of the structure, as illustrated in FIG. 22.

FIG. 24 is a perspective view looking down on the top of a line marking template tool.

FIG. 25 is a perspective view looking up to the bottom of a line marking template tool.

FIG. 26 is a perspective view of line marking template tools in use.

FIG. 27 is a perspective exploded view of a pylon configured with USB3 connectors.

FIG. 28 is a perspective view of an assembled pylon configured with USB3 connectors.

FIG. 29 is a perspective view showing an installed self-sealing cap.

FIG. 30 is a perspective view showing an installed self-sealing cap with USB3 connector and cable in place.