The present invention relates to pyridinylaminopyrimidine derivatives represented by the following formula (I), and pharmaceutically acceptable salts, preparation process and use thereof, wherein R1, R2, R3, R4, R5, m and A are defined as in the description. Pyridinylaminopyrimidine derivatives of the present invention can selectively inhibit the activity of mutant-type epidermal growth factor receptor (egfr), have a good inhibition for the cancer cell proliferation, and therefore can be used as a therapeutic agent for treating tumors and relevant diseases.

##STR00001##

Patent
   RE49851
Priority
Jul 29 2014
Filed
Jul 15 2021
Issued
Feb 27 2024
Expiry
Jul 29 2035

TERM.DISCL.
Assg.orig
Entity
Large
0
13
currently ok
0. 22. A pharmaceutical composition comprising a compound having the structure:
##STR00118##
and a pharmaceutically acceptable carrier, excipient or diluent.
0. 23. A pharmaceutical composition comprising a compound having the structure:
##STR00119##
or a pharmaceutical salt thereof and a pharmaceutically acceptable carrier, excipient or diluent.
0. 24. A method for treating an egfr activating or resistant mutation-mediated lung cancer in a mammal, said method comprises administering to the mammal a compound having the structure:
##STR00120##
0. 25. A method for treating an egfr activating or resistant mutation-mediated lung cancer in a mammal, said method comprises administering to the mammal a compound having the structure:
##STR00121##
or a pharmaceutical salt thereof.
0. 1. A compound represented by the following general formula (I), or a pharmaceutically acceptable salt thereof,
##STR00111##
wherein,
Ring A is aryl or heteroaryl;
R1 is selected from a group consisting of hydrogen, halogen, C1-C4alkyl, haloC1-C4alkyl, C2-5alkenyl, C2-C6alkynyl or —CN;
R2 is selected from a group consisting of C1-C4alkyl, haloC1-C4alkyl, C2-C6alkenyl, —(CH2)cOR7, —(CH2)qNR7R7′ or —(CH2) C(O)R7;
R4 is
##STR00112##
Each R5 is dependently halogen, C1-C4alkyl, haloC1-C4alkyl, C2-C6alkenyl, C2-C6alkynyl, —OR6, —C(O)R7, —C(O)NR7R7′, —OR7, —NR7R7′, —CN or —NO2;
R3 is selected from a group consisting of
halogen, —CN, —NO2, C1-C4alkyl, haloC1-C4alkyl, —C(O)R6, —C(O)R7, —C(O)NR7R7′, —OR7, —OR6, —NHR7, —NR7—(C1-C4alkyl), —NR7-(haloC1-C4alkyl), —NR7(CH2)nC(O)R6, —NR6R7, —NR7-heterocycloalkyl, wherein said heterocycloalkyl is unsubstituted or substituted with 1-2 substituents selected from R7,
or —NR7SO2R7,
or heterocycloalkyl that is unsubstituted or substituted with 1-3 substituents selected from halogen, C1-C4alkyl, haloC1-C4alkyl, —(CH2)nOH, —NR7R7′, —OR7 or —C(O)R7;
wherein, R6 is —(CH2)OR7, —(CH2)q(NR7R7′, —(CH2)qNR7C(O)R7, —(CH2)qC(O)R7 or —(CH2)qC(O)NR7R7′;
R7 and R7′ are each independently hydrogen, C1-C4alkyl, C2-C6alkenyl, C2-C6alkynyl or haloC1-C4alkyl, or R7, R7′ and the nitrogen atom attached thereto are cyclized together together to form a heterocycloalkyl that is unsubstituted or substituted with 1-3 substituents selected from halogen, C1-C4alkyl, haloC1-C4alkyl, —(CH2)nOH, —NR7R7′, —OR7 or —C(O)R7;
m is 1, 2 or 3;
n is 0, 1, 2, 3 or 4;
q is 0, 1, 2, 3 or 4.
0. 2. The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein Ring A is heteroaryl.
0. 3. The compound according to claim 2 or a pharmaceutically acceptable salt thereof, wherein Ring A is indolyl, indazolyl, pyrro[2,3-c]pyridinyl, pyrro[3,2-c]pyridinyl, pyrro[2,3-b]pyridinyl, pyrro[3,2-b]pyridinyl, pyrro[2,3-b]pyrazinyl, indolin-2-onyl, pyridinyl, pyrazolyl or pyrimidinyl.
0. 4. The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein R1 is hydrogen, halogen or haloC1-C4alkyl.
0. 5. The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein R2 is C1-C4alkyl or haloC1-C4alkyl.
0. 6. The compound according to claim 5 or a pharmaceutically acceptable salt thereof, wherein R2 is C2-C4alkyl or haloC2-C4alkyl.
0. 7. The compound according to claim 6 or a pharmaceutically acceptable salt thereof, wherein R2 is isopropyl or trifluoroethyl.
0. 8. The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein R4 is
##STR00113##
R7 and R7′ are each independently hydrogen or C1-C4alkyl.
0. 9. The compound according to claim 8 or a pharmaceutically acceptable salt thereof, wherein R4 is
##STR00114##
R7 is hydrogen.
0. 10. The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein R3 is selected from a group consisting of
halogen, —CN, —NO2, C1-C4alkyl, haloC1-C4alkyl, —C(O)R7, —C(O)NR7R7′, —OR7, —NHR7, —NR7—(C1-C4alkyl), —NR7(CH2)nC(O)R6, or —NR6R7,
or heterocycloalkyl that is unsubstituted or substituted with 1-3 substituents selected from halogen, C1-C4alkyl, haloC1-C4alkyl, —(CH2)nOH, —NR7R7′, —OR7 or —C(O)R7;
wherein, R6 is —(CH2)OR7, —(CH2)qNR7R7′, —(CH2)qC(O)R7 or —(CH2)qC(O)NR7R7′;
R7 and R7′ are each independently hydrogen, C1-C4alkyl or haloC1-C4alkyl, or R7, R7′ and the nitrogen atom attached thereto are cyclized together together to form a heterocycloalkyl;
n is 0, 1, 2, 3 or 4;
q is 0, 1, 2, 3 or 4.
0. 11. The compound according to claim 10 or a pharmaceutically acceptable salt thereof, wherein R3 is —NR6R7, in which R6 is —(CH2)qNR7R7′, R7 and R7′ are each independently hydrogen or C1-C4alkyl, q is 2.
0. 12. The compound according to claim 10 or a pharmaceutically acceptable salt thereof, wherein R3 is a heterocycloalkyl substituted by one substituent selected from halogen, C1-C4alkyl, haloC1C4alkyl or —NR7R7′, R7 and R7′ are each independently hydrogen or C1-C4alkyl.
0. 13. The compound according to claim 12 or a pharmaceutically acceptable salt thereof, wherein said heterocycloalkyl is pyrrolidinyl.
0. 14. The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein each R5 is dependently halogen, C1-C4alkyl, haloC1-C4alkyl, —OR7, —NR7R7′, —CN or —NO2, R7 and R7′ are each independently hydrogen or C1-C4alkyl, m is 1, 2 or 3.
0. 15. The compound according to claim 14 or a pharmaceutically acceptable salt thereof, wherein each R5 is dependently halogen, C1-C4alkyl, —OR7 or NR7R7′, R7 and R7′ are each independently hydrogen or C1-C4alkyl, m is 1, 2 or 3.
0. 16. The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein said compound is selected from a group consisting of:
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-chloro-[4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-(2,2,2-trifluoroethoxyl)-5-{[4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl]amino)pyridin-3-yl}acrylamide;
N-(2-{[2-(dimethylamino)ethyl](methyl)amino}-6-(2,2,2-trifluoroethoxyl)-5-{5-chloro-[4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[4-(1-methyl-5-fluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[4-(1-methyl-5,6-difluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-chloro[4-(1-methyl-6-fluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-chloro[4-(1-methyl-5,6-difluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-chloro-[4-(1-methyl-5-fluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-fluoro-[4-(1-methyl-5-fluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-fluoro-[4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-fluoro[4-(1-methyl-5,6-difluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[4-(1-methyl-6-fluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-(2,2,2-trifluoroethoxyl)-5-{5-fluoro-[4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-(2,2,2-trifluoroethoxyl)-5-{[4-(1-methyl-5-fluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-chloro-[4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide methanesulfonate;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{5-chloro-[4-(1-methyl-5,6-difluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide methanesulfonate;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[4-(1-methyl-5,6-difluoro-1H-indol-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide methanesulfonate;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[5-chloro-4-(1-methyl-1H-pyrro[2,3-b]pyridin-3-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[5-chloro-4-(1-methyl-1H-pyrro[2,3-b]pyridin-5-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[5-chloro-4-(1-methyl-1H-pyrazol-4-yl)pyrimidin-2-yl]amino}pyridin-3-yl}acrylamide;
N-{2-{[2-(dimethylamino)ethyl](methy)amino}-6-isopropyloxy-5-{[5-choro-2′-methoxy-(4,5′-bipyrimidine)-2-yl]amino}pyridin-3-yl}acrylamide; and
N-{2-{[2-(dimethylamino)ethyl](methyl)amino}-6-isopropyloxy-5-{[5-chloro-2′amino-(4,5′-bipyrimidine)-2-yl]amino}pyridin-3-yl}acrylamide.
0. 17. A process for preparing the compound represented by the general formula (I) of claim 1, comprising the steps of:
##STR00115## ##STR00116##
wherein ring A, R1, R2, R3, R4, R5 and m are defined as in claim 1; L represents a leaving group, including hydrogen, halogen or
##STR00117##
compounds (a) and (b) are used as starting material, and subjected to substitution under the catalysts to produce an Intermediate 2; the Intermediate 2 and an Intermediate 1 are subjected to substitution or coupling reaction to produce a compound (c), the nitro group of the compound (c) is reduced to produce a compound (d), the compound (d) is acylated to produce a compound (I); or the Intermediate 2 and an Intermediate 1′ are subjected to substitution or coupling reaction to directly produce a compound (I).
0. 18. A pharmaceutical composition, comprising the compound represented by formula (I) of claim 1 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier, excipient or diluent.
0. 19. A method for treating an egfr activating or resistant mutation mediated lung cancer in a mammal, said method comprises administering to a mammal the compound represented by formula (I) of claim 1 or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound represented by formula (I) of claim 1 and a pharmaor ceutically acceptable carrier, excipient or diluent.
0. 20. A method for selectively inhibiting an egfr activating or resistant mutation over a egfr, said method comprises contacting a biological sample with or administering to a lung cancer patient the compound represented by formula (I) of claim 1 or a pharmaceutically acceptable salt thereof or a pharmaceutical composition containing the same.
0. 21. The method of claim 19, wherein the mammal is a human.

This application is a

Blank control OD: the OD value of the well of normally growed cells without the action of a drug.

Inhibitor OD: the OD value of the well of cells with the action of the added compounds to be screened.

The median inhibitory concentration (IC50) value is obtained by the software GraphPad Prism 5.0 by the 4-parameter logistic curve fit calculation. Each experiment is repeated three times, and the average IC50 value for three experiments is used as the final index for the inhibitory ability.

The pharmacodynamic action of the compound of the present invention in terms of inhibiting the growth of transplanted tumors in animal may be assayed by conventional methods. One preferable evaluation method of which is the inhibitory effect on the growth of subcutaneously transplanted tumors of human lung cancer H1975-bearing nude mice. The experimental method is as follows: human lung cancer H1975 cell strain (5×106/each mouse) is inoculated to nude mice subcutaneously at the right side of the back thereof. After the tumors grow to 100-150 mm3 on average, the animals are divided into groups randomly according to the tumor size and the animal weight. The test compounds are administered by intragastric administration in a certain dosages, and solvent control groups are administered with equal amount of solvent by intragastric administration, wherein the administration is performed once per day for a continuous period of 12 days. During the entire experimental process, the animal weight and the tumor size are measured twice per week, so as to observe whether or not the toxic reaction occurs. The tumor volume is calculated as follows:
Tumor volume (mm3)=0.5×(Tumor major diameterx Tumor minor diameter2)

FIG. 1 is the tumor volume curve for subcutaneously transplanted tumors of human lung cancer H1975-bearing nude mice at the administration dosage of 25 mg/kg of the compound of Example 3 and AZD9291.

FIG. 2 is the body weight curve for human lung cancer H1975-bearing nude mice at the administration dosage of 25 mg/kg of the compound of Example 3 and AZD9291.

The present invention will be further illustrated hereinafter in connection with specific Examples. It should be understood that these Examples are only used to illustrate the present invention by the way of examples without limiting the scope thereof. In the following Examples, the experimental methods without specifying conditions are generally performed according to conventional conditions or based on the conditions recommended by the manufacturer. The parts and percentages are the parts and percentages by weight respectively, unless otherwise specified.

##STR00017##

##STR00018##

To a 250 mL three-necked flask were added 2,6-dichloro-3-nitropyridine (11.58 g, 60 mmol), 150 ml tetrahydrofuranand methanol (1.92 g, 60 mmol). The mixture was cooled to 0° C. To the mixture was added in batch 60% sodium hydride (2.4 g, 60 mmol). The resulting mixture was stirred at 0° C. for 1 hour, warmed up slowly to room temperature, and continued to stir for 1 hour. To the reaction mixture was added 100 ml ethyl acetate. The reaction mixture was washed successively with water (50 ml×2) and saturated brine (50 ml). The organic phase was dried with anhydrous sodium sulfate, filtered, evaporated under a reduced pressure to remove the solvent, purified by silica gel column chromatography (petroleum ether:ethyl acetate=30:1) to produce 7.3 g of a product with a yield of 64%.

1H NMR (400 MHz, CDCl3) δ 8.29 (d, J=8.3 Hz, 1H), 7.07 (d, J=8.3 Hz, 1H), 4.15 (s, 3H).

##STR00019##

To a 100 mL single-necked flask were added 6-chloro-2-methoxy-3-nitropyridine (2.0 g, 10.6 mmol), ammonia chloride (2.8 g, 53.0 mmol) and 80 ml of a mixed solvent of ethanol and water (volume ratio=3:1). To the mixture was added in batch a reduced iron powders (3.0 g, 53.0 mmol). The mixture was stirred at 80° C. for 1.5 hours. The reaction mixture was cooled to room temperature, and filtered through diatomite. 150 ml ethyl acetate and 120 ml saturated sodium chloride were added to the filtrate. An organic layer was separated and dried with anhydrous sodium sulfate, and filtered. The filtrate was evaporated to dryness under a reduced pressure to produce a brown solid (1.6 g) with a yield of 95%. MS m/z: 159 [M+1].

##STR00020##

To a 250 mL single-necked flask were added 6-chloro-2-methoxypyridin-3-amine (1.6 g, 10.1 mmol), diisopropylethylamine (2.6 ml, 15.1 mmol) and 100 ml dichloromethane. The mixture was cooled to 5° C. in an ice bath. Acetyl chloride (0.86 ml, 12.1 mmol) was added. The reaction continued for 1.25 hours. The reaction mixture was washed successively with 80 ml water, 80 ml 1N hydrochloric acid and 80 ml saturated sodium chloride solution, dried with anhydrous sodium sulfate, filtered, and evaporated to dryness under a reduced pressure to produce 1.9 g of a brown solid with a yield of 94%. MS m/z: 201 [M+1].

##STR00021##

To a 100 mL single-necked flask were added N-(6-chloro-2-methoxypyridin-3-yl)acetamide (1.9 g, 9.47 mmol) and 20 ml trifluoroacetic anhydride. The mixture was cooled in an ice-salt bath to −10° C. Fuming nitric acid (0.4 ml, 9.47 mmol) was dropwisely added while the temperature was controlled to below −5° C. After the completion of dropwise addition, the reaction continued in an ice-salt bath for 1.25 hours. The reaction mixture was slowly added to crushed ice. A solid precipitated and was filtered. The resulting crude product was dried at 60° C., and added to ethyl acetate to form a slurry. 1.5 g of an beige solid was obtained with a yield of 65%. MS m/z: 244 [M−1].

1H NMR (400 MHz, DMSO-d6) δ 9.90 (s, 1H), 9.17 (s, 1H), 4.06 (s, 3H), 2.17 (s, 3H).

##STR00022##

To a 100 mL single-necked flask were added N-(6-chloro-2-methoxy-5-nitropyridin-3-yl)acetamide (1.0 g, 4.1 mmol), 30 ml acetonitrile and N,N,N′-trimethylethylenediamine (0.6 g, 6.1 mmol). The mixture was reacted at 80° C. for 3 hours. The reaction mixture was concentrated under a reduced pressure to about ⅓ of the original volume. 50 ml ethyl acetate was added. The mixture was stirred for several minutes, a solid precipitated and was filtered to produce 1.1 g of an beige solid with a yield of 87%.

1H NMR (400 MHz, DMSO-d6) δ 11.13 (s, 1H), 9.53 (s, 1H), 8.73 (s, 1H), 4.05 (s, 5H), 3.41 3.36 (m, 2H), 2.83 (s, 3H), 2.80 (s, 6H), 2.07 (s, 3H).

##STR00023##

To a 50 mL single-necked flask were added N-{6-{[2-(dimethylamino)ethyl](methyl)amino}-2-methoxy-5-nitropyridin-3-yl}acetamide (600 mg, 1.93 mmol), 15 ml methanol and 0.3 ml concentrated hydrochloric acid. The mixture was reacted at 60° C. overnight. The reaction mixture was evaporated to dryness under a reduced pressure. 100 ml dichloromethane and 80 ml saturated sodium bicarbonate were added. The resulting mixture was stirred until no bubble produced. An organic layer was separated and dried with anhydrous sodium sulfate, filtered, and concentrated under a reduced pressure. The residue was purified by silica gel column chromatography (dichloromelhanemethanol=10:1) to produce 400 mg of a brown solid. MS m/z: 270 [M+1].

1H NMR (400 MHz, DMSO-d6) δ 11.20 (s, 1H), 8.16 (s, 1H), 4.06-4.02 (m, 5H), 3.38 (br s, 2H), 2.83 (s, 3H), 2.80 (s, 3H), 2.79 (s, 3H).

##STR00024##

##STR00025##

The compound was synthesized in the same manner as those in Step 1 of Intermediate 1a.

1H NMR (400 MHz, CDCl3) δ 8.22 (d, J=8.3 Hz, 1H), 6.98 (d, J=8.3 Hz, 1H), 5.50 (kept, J=6.2 Hz, 1H), 1.43 (d, J=6.2 Hz, 6H).

##STR00026##

The compound was synthesized in the same manner as those in Step 2 of Intermediate 1a with a yield of 74%. MS m/z: 187 [M+1], 189.

##STR00027##

The compound was synthesized in the same manner as those in Step 3 of Intermediate 1a with a yield of 83%. MS m/z: 229 [M+1], 231.

##STR00028##

The compound was synthesized in the same manner as those in Step 4 of Intermediate 1a with a yield of 33%. MS m/z: 272 [M−1].

##STR00029##

To a 500 mL single-necked flask were added N-(6-chloro-2-isopropyloxy-5-nitropyridin-3-yl)acetamide (15 g, 54.8 mmol), 150 ml acetonitrile, N,N,N′-trimethylethylenediamine (7.28 g, 71.3 mmol) and potassium carbonate (15.15 g, 110 mmol). The mixture was reacted at 80° C. overnight. The reaction mixture was cooled to room temperature, and filtered. The filtrate was evaporated to dryness under a reduced pressure to produce 18.6 g of a product with a yield of 100%.

MS m/z: 340 [M+1].

##STR00030##

The compound was synthesized in the same manner as those in Step 6 of Intermediate 1a with a yield of 38%. MS m/z: 298 [M+1].

##STR00031##

##STR00032##

The compound was synthesized in the same manner as those in Step 1 of Intermediate 1a with a yield of 80%.

##STR00033##

The compound was synthesized in the same manner as those in Step 2 of Intermediate 1a with a yield of 83%.

##STR00034##

The compound was synthesized in the same manner as those in Step 3 of Intermediate 1a with a yield of 71%. MS m/z: 269 [M+1], 271.

##STR00035##

The compound was synthesized in the same manner as those in Step 4 of Intermediate 1a with a yield of 53%. MS m/z: 314 [M+1], 316.

1H NMR (400 MHz, CDCl3) δ 9.37 (s, 1H), 7.63 (s, 1H), 4.93 (q, J=8.2 Hz, 2H), 2.30 (s, 3H).

##STR00036##

To a 25 mL single-necked flask were added N-[6-chloro-2-(2,2,2-trifluoroethoxyl)]-5-nitropyridin-3-ypacetamide (626 mg, 2 mmol), 10 ml acetonitrile, N,N,N′-trimethylethylenediamine (224 mg, 2.2 mmol) and potassium carbonate (138 mg, 4 mmol). The mixture was stirred at room temperature overnight. To the reaction mixture was added 100 ml ethyl acetate. The resulting mixture was washed with 20 ml water, dried with anhydrous sodium sulfate, and evaporated under a reduced pressure to remove the solvent to produce 710 mg of a product with a yield of 94%. MS m/z: 380 [M+1].

##STR00037##

The compound was synthesized in the same manner as those in Step 6 of Intermediate 1a with a yield of 100%. MS m/z: 338 [M+1].

##STR00038##

##STR00039##

To a 500 mL single-necked flask were added N-{6-{[2-(dimethylamino)ethyl](methyl)amino}-2-isopropyloxy-5-nitropyridin-3-yl}acetamide (18.6 g, 54.8 mmol), 4-dimethylaminopyridine (0.67 g, 5.48 mmol), 150 ml acetonitrile and di-tert-butyl dicarbonate (59.8 g, 274 mmol). The mixture was reacted at 80° C. for 2.5 hours. The reaction mixture was cooled to room temperature, was evaporated to dryness under a reduced pressure, and purified by silica gel column chromatography (dichloromethane methanol=10:1) to produce 24 g of a product with a yield of 100%.

##STR00040##

To a 500 mL single-necked flask were added N-tertbutoxycarbonyl-N-{6-{[2-(dimethylamino)ethyl](methyl)amino}-2-isopropyloxy-5-nitropyridin-3-yl}acetamide (24 g, 54.6 mmol) and 240 ml methanol. The mixture was cooled to 0° C. Sodium methoxide (2.95 g, 54.6 nunol) was added. The mixture was slowly warmed up to room temperature and reacted overnight. The reaction mixture was concentrated under a reduced pressure. The residue was dissolved in 300 ml ethyl acetate, and washed with 100 ml water. The organic phase was dried with anhydrous sodium sulfate, filtered, and evaporated to dryness under a reduced pressure to produce 18 g of a product with a yield of 83%.

##STR00041##

The compound was synthesized in the same manner as those in Step 2 of Intermediate 1a with a yield of 97%.

MS m/z: 368 [M+1].

1H NMR (400 MHz, DMSO-d6) δ 7.61 (s, 1H), 7.44 (s, 1H), 6.74 (br s, 2H), 5.09-4.96 (m, 1H), 3.29 (t, J=5.8 Hz, 2H), 3.19 (t, J=5.7 Hz, 2H), 2.70 (s, 6H), 2.56 (s, 3H), 1.45 (s, 9H), 1.26 (d, J=6.2 Hz, 6H).

##STR00042##

To a 500 ml three-necked flask were added tert-butyl {5-amino-6-{[2-(dimethylamino)ethyl](methyl)amino}-2-isopropyloxypyridin-3-yl}carbamate (9 g, 24.49 mmol), trimethylamine (6.83 ml, 49.0 mmol) and 250 ml dichloromethane. The reaction mixture was cooled in an ice-water bath to below 5° C. Acryloyl chloride (2.1 ml, 25.7 mmol) was dropwisely added. The resulting mixture was continued to react for 1 hour. The reaction mixture was washed successively with 150 ml saturated sodium bicarbonate solution and 150 ml saturated brine, dried with anhydrous sodium sulfate, and filtered. The filtrate was evaporated to dryness under a reduced pressure to produce 5 g of a product with a yield of 48%. MS m/z: 422 [M+1].

1H NMR (400 MHz, DMSO-d6) δ 9.76 (s, 1H), 8.16 (s, 1H), 7.88 (s, 1H), 6.44 (dd, J=17.0, 10.1 Hz, 1H), 6.22 (dd, J=17.0, 1.9 Hz, IH), 5.74 (dd, J=10.1, 1.9 Hz, 1H), 5.22-5.13 (m, 1H), 3.09 (t, J=6.5 Hz, 2H), 2.77 (s, 3H), 2.41 (t, J=6.5 Hz, 2H), 2.18 (s, 6H), 1.45 (s, 9H), 1.31 (d, J=6.2 Hz, 6H).

##STR00043##

The compound was synthesized in the same manner as those in Step 1 of Intermediate 1d with a yield of 99%. MS m/z: 480 [M+1].

##STR00044##

The compound was synthesized in the same manner as those in Step 2 of Intermediate 1d with a yield of 88%. MS m/z: 438 [M+1].

##STR00045##

The compound was synthesized in the same manner as those in Step 2 of Intermediate 1a with a yield of 76%. MS m/z: 408 [M+1].

##STR00046##

The compound was synthesized in the same manner as those in Step 4 of Intermediate 1d with a yield of 62%. MS m/z: 462 [M+1].

1H NMR (400 MHz, CDCl3) δ 10.11 (s, 1H), 9.35 (s, 1H), 6.61 (s, 1H), 6.46 (dd, J=16.9, 1.7 Hz, 1H), 6.39-6.25 (m, 1H), 5.70 (dd, J=10.0, 1.8 Hz, 1H), 4.76 (q, J=8.5 Hz, 2H), 2.96 (s, 2H), 2.71 (s, 3H), 2.42 (s, 2H), 2.34 (s, 6H), 1.53 (s, 9H).

##STR00047##

To a 500 mL single-necked flask were added 2,4-dichloropyrimidine (14.9 g, 100 mmol), 1-methyl-1H-indole (13 g, 100 mmol), 200 ml 1,2-diclaloroethane and aluminium chloride (13.9 g, 120 mmol). The mixture was stirred at 80° C. for 1.5 hours. The reaction mixture was cooled to room temperature in an ice bath. 120 ml methanol and 400 ml water were added to quench the reaction. A solid precipitated and was filtered. The filter cake was washed with methanol, and dried in vacuum to produce 17.2 g of a product with a yield of 71%. MS m/z: 244 [M+1], 246.

1H NMR (400 MHz, DMSO-d6) δ 8.53 (d, J=5.5 Hz, 1H), 8.49 (s, 1H), 8.42 (dd, J=7.0, 1.5 Hz, 1H), 7.81 (d, J=5.5 Hz, 1H), 7.56 (dd, J=7.0, 1.2 Hz, 1H), 7.33-7.26 (m, 2H), 3.90 (d, J=5.2 Hz, 3-H).

##STR00048##

The compound was synthesized in the same manner as those in Intermediate 2a with a yield of 87%. MS m/z: 278[M+1], 279, 280.

1H NMR (400 MHz, DMSO-d6) δ 8.79 (s, 1H), 8.74 (s, 1H), 8.56 (dd, J=7.3, 1.2 Hz, 1H), 7.62 (d, J=7.6 Hz, 1H), 7.39-7.34 (m, 1H), 7.34-7.29 (m, 1H), 3.97 (s, 3H).

##STR00049##

The compound was synthesized in the same manner as those in Intermediate 2a with a yield of 29%. MS m/z: 262 [M+1], 264.

1H NMR (400 MHz, DMSO-d6) δ 8.55 (s, 1H), 8.53 (d, J=5.5 Hz, 1H), 8.10 (dd, J=10.3, 2.5 Hz, 1H), 7.80 (d, J=5.5 Hz, 1H), 7.60 (dd, J=8.9, 4.6 Hz, 1H), 7.17 (td, J=9.1, 2.6 Hz, 1H), 3.90 (s, 3H).

##STR00050##

The compound was synthesized in the same manner as those in Intermediate 2a. MS m/z: 262 [M+1], 264.

1H NMR (400 MHz, DMSO-d6) δ 8.54 (d, J=5.5 Hz, 1H), 8.49 (s, 1H), 8.39 (dd, J=8.8, 5.6 Hz, 1H), 7.81 (d, J=5.5 Hz, 1H), 7.47 (dd, J=9.9, 2.3 Hz, 1H), 7.14 (td, J=9.6, 2.4 Hz, 1H), 3.86 (s, 3H).

##STR00051##

The compound was synthesized in the same manner as those in Intermediate 2a. MS m/z: 280 [M+1], 282.

1H NMR (400 MHz, DMSO-d6) δ 8.54 (d, J=5.5 Hz, 1H), 8.52 (s, 1H), 8.22 (dd, J=11.7, 8.2 Hz, 1H), 7.79 (d, J=5.5 Hz, 1H), 7.73 (dd, J=11.2, 7.0 Hz, 1H), 3.86 (s, 3H).

##STR00052##

The compound was synthesized in the same manner as those in Intermediate 2a. MS m/z: 296 [M+1], 297, 298.

1H NMR (400 MHz, CDCl3) δ 8.69 (dd, J=8.9, 5.5 Hz, 1H), 8.50 (s, 1H), 8.41 (s, 1H), 7.17 7.07 (m, 2H), 3.90 (s, 3H).

##STR00053##

The compound was synthesized in the same manner as those in Intermediate 2a. MS m/z: 314 [M+1], 315, 316.

1H NMR (400 MHz, DMSO-d6) δ 8.85 (s, 1H), 8.77 (s, 1H), 8.39 (dd, J=12.1, 8.3 Hz, 1H), 7.83 (dd, J=11.0, 7.1 Hz, 1H), 3.94 (s, 3H).

##STR00054##

The compound was synthesized in the same manner as those in Intermediate 2a. MS m/z: 296 [M+1], 297, 298.

1H NMR (400 MHz, CDCl3) δ 8.49 (s, 1H), 8.46 (s, 1H), 8.46-8.42 (m, 1H), 7.34 (dd, J=8.9, 4.4 Hz, 1H), 7.14 (td, J=8.9, 2.6 Hz, 1H), 3.94 (s, 3H).

##STR00055##

The compound was synthesized in the same manner as those in Intermediate 2a with a yield of 73%. MS m/z: 262 [M+1], 264.

1H NMR (400 MHz, DMSO-d6) δ 8.69 (d, J=3.7 Hz, 1H), 8.54 (dd, J=7.2, 1.2 Hz, 1H), 8.39 (d, J=3.0 Hz, 1H), 7.62 (d, J=7.5 Hz, 1H), 7.41-7.30 (m, 2H), 3.96 (s, 3H).

##STR00056##

The compound was synthesized in the same manner as those in Intermediate 2a with a yield of 77%. MS m/z: 280 [M+1], 282.

1H NMR (400 MHz, DMSO-d6) δ 8.71 (d, J=3.5 Hz, 1H), 8.45 (d, J=2.8 Hz, 1H), 8.20 (dd, J=10.3, 2.5 Hz, 1H), 7.66 (dd, J=8.9, 4.5 Hz, 1H), 7.30-7.16 (m, 1H), 3.96 (s, 3H).

##STR00057##

The compound was synthesized in the same manner as those in Intermediate 2a. MS m/z: 298 [M+1], 300.

1H NMR (400 MHz, CDCl3) δ 8.56 (dd, J=11.4, 8.1 Hz, 1H), 8.36 (d, J=3.3 Hz, 1H), 8.01 (d, J=2.6 Hz, 1H), 7.19 (dd, J=10.1, 6.6 Hz, 1H), 3.90 (s, 3H).

Intermediate 2l: 3-(2,5-dichloropyrimidin-4-yl)-1-methyl-1H-

The tumor growth curves of three experimental groups are shown in FIG. 1, and the mice's weight growth curves are shown in FIG. 2. The results show that the compounds of the present invention have a good inhibition effect on the growth of subcutaneously transplanted tumors of human lung cancer H1975-bearing nude mice, while having little effect on the weights of nude mice, and showing a good safety.

All of the literatures mentioned herein are incorporated into the present application by reference. It should be also noted that, upon reading the above mentioned contents of the present application, a person skilled in the art can modify, change or amend the present invention without departing from the spirits of the present invention, and these equivalents are also within the scope as defined by the claims appended in the present application.

Wu, Yong, Wang, Shuhui, Luo, Huibing, Zhou, Huayong

Patent Priority Assignee Title
Patent Priority Assignee Title
10472349, Mar 07 2016 SHANGHAI ALLIST PHARMACEUTICALS CO , LTD Salt of pyridinyl amino pyrimidine derivative, preparation method therefor, and application thereof
10550101, Mar 07 2016 SHANGHAI ALLIST PHARMACEUTICALS CO , LTD Crystalline forms of mesylate salt of pyridinyl amino pyrimidine derivative, preparation methods therefor, and applications thereof
8946235, Jul 27 2011 AstraZeneca UK Limited; AstraZeneca AB 2-(2,4,5-substituted-anilino) pyrimidine compounds
20130053409,
CN102482277,
CN103702990,
CN104761544,
RE48687, Jul 29 2014 SHANGHAI ALLIST PHARMACEUTICALS CO , LTD Pyridinylaminopyrimidine derivatives, preparation process and use thereof
WO2012061299,
WO2013014448,
WO2015188777,
WO2012061299,
WO2013014448,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 15 2021Shanghai Allist Pharmaceuticals Co., Ltd.(assignment on the face of the patent)
May 16 2023SHANGHAI ALLIST PHARMACEUTICALS CO , LTD SHANGHAI ALLIST PHARMACEUTICALS CO , LTD CHANGE OF ADDRESS0636630430 pdf
Date Maintenance Fee Events
Jul 15 2021BIG: Entity status set to Undiscounted (note the period is included in the code).
Jul 16 2021SMAL: Entity status set to Small.
Jan 03 2022BIG: Entity status set to Undiscounted (note the period is included in the code).
Jun 07 2022PTGR: Petition Related to Maintenance Fees Granted.


Date Maintenance Schedule
Feb 27 20274 years fee payment window open
Aug 27 20276 months grace period start (w surcharge)
Feb 27 2028patent expiry (for year 4)
Feb 27 20302 years to revive unintentionally abandoned end. (for year 4)
Feb 27 20318 years fee payment window open
Aug 27 20316 months grace period start (w surcharge)
Feb 27 2032patent expiry (for year 8)
Feb 27 20342 years to revive unintentionally abandoned end. (for year 8)
Feb 27 203512 years fee payment window open
Aug 27 20356 months grace period start (w surcharge)
Feb 27 2036patent expiry (for year 12)
Feb 27 20382 years to revive unintentionally abandoned end. (for year 12)