A method of converting cellulosic feedstock to bio coal. The cellulosic feedstock in a carrier of process fluid is introduced within a conduit having substantially linear portions connected by curved portions creating a serpentine structure. The substantially linear portions are surrounded by tubular sleeves creating annular spaces between the tubular sleeves and substantially linear portions for carrying a high temperature fluid for transferring thermal energy to the cellulosic feedstock and process fluid. The cellulosic feedstock is maintained in an oxygen-free environment. The method is continuous as the cellulosic feedstock in process fluid is subjected to a plurality of mixing elements characterized as having no edges perpendicular to the longitudinal axes of the plurality of substantially linear segments and which are sized and positioned within the plurality of substantially linear segments such no mixing elements are in contact with one another resulting in an open region of travel for fluids passing from the conduit inlet to conduit outlet.

Patent
   RE49861
Priority
Aug 14 2020
Filed
Mar 28 2022
Issued
Mar 05 2024
Expiry
Aug 14 2040

TERM.DISCL.
Assg.orig
Entity
Small
0
14
currently ok
0. 13. A method for converting cellulosic feedstock to bio coal comprising:
providing a conduit comprising a plurality of linear segments having a linear segment diameter, longitudinal axes and circular circumference, said conduit further having an inlet and an outlet and a plurality of curved segments creating a serpentine structure;
providing a plurality of tubular sleeves around said linear segments and having longitudinal axes coincident with said longitudinal axes of said linear segments of said conduit creating a plurality of annular spaces, said plurality of tubular sleeves being in fluid communication and having a tubular sleeve inlet and tubular sleeve outlet;
providing a plurality of mixing elements within a plurality of said linear segments, said plurality of mixing elements having no edges perpendicular to said longitudinal axes of said plurality of linear segments and are sized and positioned within said plurality of linear segments such that no mixing elements are in contact with one another, and are free of nooks and crotches which would otherwise result in fluid hangup and which results in an open region of travel for fluids passing from said conduit inlet to said conduit outlet;
feeding a cellulosic feedstock carried by a process fluid to said conduit inlet;
feeding a heating fluid to said tubular sleeve inlet causing said heating fluid to pass within said annular spaces to effect heat transfer between said heating fluid and said cellulosic feedstock; and
providing mixing elements within said annular spaces for increasing turbulence of said heating fluid passing therein.
0. 1. A method of converting cellulosic feedstock to bio coal comprising:
Providing a conduit comprising a plurality of linear segments having a linear segment diameter, longitudinal axes and circular circumference, said conduit further having an inlet and an outlet and a plurality of curved segments creating a serpentine structure;
providing a plurality of tubular sleeves around said linear segments and having longitudinal axes coincident with said longitudinal axes of said linear segments of said conduit creating a plurality of annular spaces, said plurality of tubular sleeves being in fluid communication and having a tubular sleeve inlet and tubular sleeve outlet;
providing a plurality of mixing elements within a plurality of said linear segments, said plurality of mixing elements having no edges perpendicular to said longitudinal axes of said plurality of linear segments and are sized and positioned within said plurality of linear segments such that no mixing elements are in contact with one another, and are free of nooks and crotches which would otherwise result in fluid hangup and which results in an open region of travel for fluids passing from said conduit inlet to said conduit outlet;
feeding a cellulosic feedstock carried by a process fluid to said conduit inlet;
feeding a heating fluid to said tubular sleeve inlet causing said heating fluid to pass within said annular spaces;
facilitating heat transfer between said heating fluid and said cellulosic feedstock; and
maintaining said cellulosic feedstock and process fluid as a substantially oxygen-free fluid stream for a sufficient time to convert said cellulosic feedstock to said bio coal.
0. 2. The method of claim 1 wherein said mixing elements are provided in said linear segments in complementary pairs, wherein adjacent mixing elements cause said cellulosic feedstock and process fluid passing therein to rotate in opposite directions.
3. The method of claim 1 14 wherein each mixing element located within each of said linear segments is seated at an angle between approximately 25° to 45° to said longitudinal axes.
4. The method of claim 1 14 wherein said mixing elements within said linear segments are in the form of primarily circular segments wherein each mixing element within said linear segments is characterized as being widest in profile at its midpoint and narrowest at its longitudinal endpoints.
5. The method of claim 4 wherein each mixing element within said linear segments is of a height equal to approximately D/10 where D is the diameter of said linear segments.
6. The method of claim 1 14 wherein said heating fluid is any a fluid capable of flowing at temperatures over 1000° F. and having a boiling points in excess of 1000° F.
0. 7. The method of claim 6 wherein said heating fluid comprises molten salt.
8. The method of claim 1 14 wherein said cellulosic feedstock comprises a member material selected from the group consisting of wood chips and nut shells.
0. 9. The method of claim 1 wherein said feedstock in said process fluid moves counter currently within said conduit to said heating fluid traveling within said annular spaces.
0. 10. The method of claim 1 further comprising mixing elements within said annular space for increasing turbulence and for improving uniform temperatures of said heating fluid passing therein.
11. The method of claim 10 14 wherein said mixing elements within said annular space are provided in complementary pairs, wherein adjacent mixing elements cause said heating fluid passing therein to rotate in opposite directions.
12. The method of claim 1 14 wherein said mixing elements positioned within said linear segments are sized such that cellulosic feedstock carried by process fluid having a size of at least 40% of the linear segment diameter passes there through.
0. 14. The method of claim 13 wherein said heating fluid is a fluid with a specific heat of approximately 0.26 to 0.40 BTU/(lb*° F.) and capable of exhibiting a temperature of approximately 900° F. to 1500° F.
0. 15. The method of claim 13 wherein said mixing elements are provided in said linear segments in complementary pairs, wherein adjacent mixing elements cause said cellulosic feedstock and process fluid passing therein to rotate in opposite directions.
0. 16. The method of claim 13 wherein said heating fluid comprises molten salt.
0. 17. The method of claim 13 wherein said feedstock in said process fluid moves counter currently within said conduit to said heating fluid traveling within said annular spaces.

30 60 being joined by curved segments 61 creating a substantially serpentine structure. The segments are joined with others creating an array as depicted in FIG. 2. Such arrays can be contained within housing 40 as standalone modular units which can be joined to similar modular units for increasing the overall length of the device as needed. Typically, torrefaction can be completed in practicing the present method by pipe lengths of approximately ⅓ to 2 miles with pipes having a thermal conductivity of 10-55 W/(m*C).

In that the device depicted herein acts, in effect, as a countercurrent heat exchanger, linear segments 60 are surrounded by sleeves 50 creating annular spaces 56 (FIG. 5). The ratio of pipe diameter to sleeve diameter is typically approximately 0.522 to 0.875. The cellulosic feedstock carried by process fluid is introduced to the device at inlet 11 and heating fluid introduced to sleeves 50 at inlet 13 and having outlet 14 thus filling annular spaces 56. As shown, longitudinal axes of tubular sleeves 50 coincide with longitudinal axes 62 of pipe 30. When stacked as shown in FIG. 2, outlet 12 of pipe 30 is in fluid communication with inlet 11 of the next downstream pipe and outlet 14 of sleeve 50 is in fluid communication with inlet 13 of a downstream annular space 56.

To facilitate the uniform mixing of the cellulosic material, such as wood chips or nut shells within the process fluid, mixing elements 33, 34, 35 and 36 are provided. These mixing elements are capable of mixing the cellulosic material and process fluid while not creating nooks or dead spaces which would act to inhibit fluid flow within conduit 30.

In turning to FIGS. 3-5, mixing elements 33, 34, 35 and 36 are characterized as having no edges or surfaces perpendicular to longitudinal axes 62 and are sized so that no such elements are in contact with one another resulting in an open region of travel 96 for fluids passing through conduit 30 along its longitudinal axis. Ideally, each mixing element is seated within conduit 30 at an angle between approximately 25° to 45° to said longitudinal axis. Most importantly, however, the mixing elements are positioned within conduit or pure pipe 30 as to not inhibit flow or clog as these are provided with no points of contact and no nooks or crotches which would otherwise result in fluid hangup. Ideally these mixing elements enable cellulosic material carried within heat transfer fluid having effective diameters of 40% or more of the conduit diameter to pass through the conduit without entrainment. Such a geometry is disclosed and claimed in U.S. Pat. No. 5,758,967, the disclosure of which is incorporated by reference.

As a preferred embodiment, the mixing elements are provided as pairs such as 33/34 and 35/36. Each complementary pair causes flowing material to rotate about axis 62 of conduit 30 in opposite directions. As is further noted, the four mixing elements are each shown primarily as a circular segments each of a height of approximately D/10 wherein D is the diameter of conduit 30. Various mixing elements are set in a non-opposing fashion at the pipe wall so as to present to the fluid in any plane normal to axes 62 of conduit 30 a non-symmetrical cross-section. This serves to break up the normal circular symmetry of flow and to substantially reduce the length of conduit 30 necessary to achieve torrefaction.

Ideally, the heating or high temperature fluid has a specific heat of approximately 0.26 to 0.40 BTU/(lb*° F.) and capable of exhibiting an inlet temperature of approximately 900 to 1500° F. An excellent example would be a molten salt. The process fluid is introduced at typical inlet temperatures between approximately 100 to 400° F. and can be any liquid having a high boiling point and which is devoid of oxygen. An example of a suitable process fluid with a relatively high boiling point as to not boil off while the cellulosic feedstock is being processed is an oil available by Permanente Corporation sold under the brand name GRC88. As noted, the heating fluid passes within annulus 56 which can also be configured with mixing elements 53, 54, 55 and 56 57 which are used in pairs causing fluid to rotate in opposite directions. These mixing elements are employed in order to ensure even temperature of the heating fluid as uneven temperature gradients could lead to the heating fluid parially solidifying within the annular space. These elements are used as a low pressure drop solution in order to increase turbulence in the annulus, thus ensuring uniform temperature gradient across the cross-section.

The above disclosure is sufficient to enable one of ordinary skill in the art to practice the invention, and provides the best mode of practicing the invention presently contemplated by the inventor. While there is provided herein a full and complete disclosure of the preferred embodiments of the invention, it is not desired to limit the invention to the exact construction, dimensions, relationships, or operations as described. Various modifications, alternative constructions, changes and equivalents will readily occur to those skilled in the art and may be employed as suitable without departing from the true spirit and scope of the invention. Such changes might involve alternative materials, components, structural arrangements, sizes, shapes, forms, functions, operational features or the like. Therefore, the above description and illustration should not be considered as limiting the scope of the invention, which is defined by the appended claims.

Smith, Nolan, Smith, Hayden, Lee, Seungsuk

Patent Priority Assignee Title
Patent Priority Assignee Title
5758967, Apr 19 1993 Komax Systems, Inc. Non-clogging motionless mixing apparatus
9758738, Nov 14 2014 Permanente Corporation Green renewable liquid fuel
20070266623,
20080206129,
20120117815,
20140287488,
20200056098,
CN103933924,
CN108728144,
CN110527535,
EP2166061,
WO2008095589,
WO2014167141,
WO2020041144,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 28 2022Komax Systems, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Mar 28 2022BIG: Entity status set to Undiscounted (note the period is included in the code).
Mar 29 2022SMAL: Entity status set to Small.
Apr 09 2024M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.


Date Maintenance Schedule
Mar 05 20274 years fee payment window open
Sep 05 20276 months grace period start (w surcharge)
Mar 05 2028patent expiry (for year 4)
Mar 05 20302 years to revive unintentionally abandoned end. (for year 4)
Mar 05 20318 years fee payment window open
Sep 05 20316 months grace period start (w surcharge)
Mar 05 2032patent expiry (for year 8)
Mar 05 20342 years to revive unintentionally abandoned end. (for year 8)
Mar 05 203512 years fee payment window open
Sep 05 20356 months grace period start (w surcharge)
Mar 05 2036patent expiry (for year 12)
Mar 05 20382 years to revive unintentionally abandoned end. (for year 12)