A method for transmitting data in a wireless communication system, the method includes transmitting, by a first station, a plurality of request to send (RTS) frames to a second station through a plurality of subchannels, each of the plurality of RTS frames being transmitted through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth; receiving, by the first station, at least one clear to send (CTS) frame in response to at least one of the plurality of RTS frames from the second station through at least one idle subchannel of the plurality of subchannels; and transmitting, by the first station, a data frame to the second station after receiving the at least one CTS frame, wherein each of the plurality of RTS frames includes first channel information related to the plurality of subchannels.
|
1. A method for performed by a destination station operating in a wireless communication system, the method comprising:
receiving, by a first the destination station, a plurality of request to send (RTS) frames from a second source station through a plurality of subchannels, each of the plurality of RTS frames being received through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth;
determining a plurality of idle subchannels based on the plurality of subchannels;
transmitting, by the first destination station to the source station, at least one a plurality of clear to send (CTS) frame frames in response to at least one of the plurality of RTS frames to the second station, through at least one idle subchannel of the plurality of subchannels, each of the at least one CTS frame being transmitted through a corresponding one of the at least one plurality of idle subchannel subchannels; and
receiving, by the first destination station, a data frame from the second source station after based on transmitting the at least one plurality of CTS frame frames,
wherein each of the at least one plurality of CTS frame includes frames comprises channel information related to indicative of the at least one plurality of idle subchannel through which the at least one CTS frame is transmitted by subchannels as being available for the first source station, and to transmit the data frame is received through the at least one idle subchannel indicated by the channel information, and
wherein a number of the at least one plurality of idle subchannel subchannels through which the at least one plurality of CTS frame is frames are transmitted is equal to or less than a number of the plurality of subchannels through which the plurality of RTS frames are received.
0. 22. A device comprising:
a transceiver; and
a processor operatively connected to the transceiver and configured to perform operations comprising:
receiving, by the device, a plurality of request to send (RTS) frames from a source station through a plurality of subchannels, each of the plurality of RTS frames being received through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth;
transmitting, by the device, a plurality of clear to send (CTS) frames in response to at least one of the plurality of RTS frames to the source station through a plurality of idle subchannels of the plurality of subchannels, each of the plurality of CTS frames being transmitted through a corresponding one of the plurality of idle subchannels; and
receiving, by the device, a data frame from the source station after transmitting the plurality of CTS frames,
wherein each of the plurality of CTS frames includes channel information related to the plurality of idle subchannels through which the plurality of CTS frames are transmitted by the device, and the data frame is received through the plurality of idle subchannels indicated by the channel information, and
wherein a number of the plurality of idle subchannels through which the plurality of CTS frames are transmitted is equal to or less than a number of the plurality of subchannels through which the plurality of RTS frames are received.
0. 21. A method performed by a destination station operating in a wireless communication system, the method comprising:
receiving, by the destination station, a plurality of request to send (RTS) frames from a source station through a plurality of subchannels, each of the plurality of RTS frames being received through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth;
transmitting, by the destination station, a plurality of clear to send (CTS) frames in response to at least one of the plurality of RTS frames to the source station through a plurality of idle subchannels of the plurality of subchannels, each of the plurality of CTS frames being transmitted through a corresponding one of the plurality of idle subchannels; and
receiving, by the destination station, a data frame from the source station after transmitting the plurality of CTS frames,
wherein each of the plurality of CTS frames includes channel information related to the plurality of idle subchannels through which the plurality of CTS frames are transmitted by the destination station, and the data frame is received through the plurality of idle subchannels indicated by the channel information, and
wherein a number of the plurality of idle subchannels through which the plurality of CTS frames are transmitted is equal to or less than a number of the plurality of subchannels through which the plurality of RTS frames are received.
4. A device destination station configured to operate in a wireless communication system, the destination station comprising:
a transceiver; and
a at least one processor; and
at least one computer memory operatively connected to the transceiver and configured to at least one processor and storing instructions that, based on being executed by the at least one processor, perform operations comprising:
instruct receiving, by the destination station via the transceiver to receive, a plurality of request to send (RTS) frames from a source station through a plurality of subchannels, each of the plurality of RTS frames being received through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth,
determining a plurality of idle subchannels based on the plurality of subchannels;
instruct transmitting, by the destination station to the source station via the transceiver to transmit at least one, a plurality of clear to send (CTS) frame frames in response to at least one of the plurality of RTS frames to the station, through at least one idle subchannel of the plurality of subchannels, each of the at least one CTS frame being transmitted through a corresponding one of the at least one plurality of idle subchannel subchannels, and
instruct receiving, by the destination station via the transceiver to receive, a data frame from the source station after based on transmitting the at least one plurality of CTS frame frames,
wherein each of the at least one plurality of CTS frame includes frames comprises channel information related to indicative of the at least one plurality of idle subchannel subchannels through which the at least one plurality of CTS frame is frames are transmitted by the device, and as being available for the source station to transmit the data frameis received through the at least one idle subchannel indicated by the channel information, and
wherein a number of the at least one plurality of idle subchannel subchannels through which the at least one plurality of CTS frame is frames are transmitted is equal to or less than a number of the plurality of subchannels through which the plurality of RTS frames are received.
2. The method of
3. The method of
5. The device destination station of
6. The device destination station of
0. 7. A method for a wireless communication system, the method comprising:
receiving, by a first station, a plurality of request to send (RTS) frames from a second station through a plurality of subchannels, each of the plurality of RTS frames being received through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth;
transmitting, by the first station, at least one clear to send (CTS) frame in response to at least one of the plurality of RTS frames to the second station through at least one idle subchannel of the plurality of subchannels, each of the at least one CTS frame being transmitted through a corresponding one of the at least one idle subchannel; and
receiving, by the first station, a data frame from the second station after transmitting the at least one CTS frame,
wherein each of the at least one CTS frame includes channel information related to all of the at least one idle subchannel through which the at least one CTS frame is transmitted by the first station, and the data frame is received through the at least one idle subchannel indicated by the channel information, and
wherein a number of the at least one idle subchannel through which the at least one CTS frame is transmitted is equal to or less than a number of the plurality of subchannels through which the plurality of RTS frames are received.
0. 8. The method of
0. 9. The method of
0. 10. A device comprising:
a transceiver; and
a processor operatively connected to the transceiver and configured to:
instruct the transceiver to receive a plurality of request to send (RTS) frames from a station through a plurality of subchannels, each of the plurality of RTS frames being received through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth,
instruct the transceiver to transmit at least one clear to send (CTS) frame in response to at least one of the plurality of RTS frames to the station through at least one idle subchannel of the plurality of subchannels, each of the at least one CTS frame being transmitted through a corresponding one of the at least one idle subchannel, and
instruct the transceiver to receive a data frame from the station after transmitting the at least one CTS frame,
wherein each of the at least one CTS frame includes channel information related to all of the at least one idle subchannel through which the at least one CTS frame is transmitted by the device, and the data frame is received through the at least one idle subchannel indicated by the channel information, and
wherein a number of the at least one idle subchannel through which the at least one CTS frame is transmitted is equal to or less than a number of the plurality of subchannels through which the plurality of RTS frames are received.
0. 11. The device of
0. 12. The device of
0. 13. A method for a wireless communication system, the method comprising:
receiving, by a first station, a plurality of request to send (RTS) frames from a second station through a plurality of subchannels, each of the plurality of RTS frames being received through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth;
transmitting, by the first station, a plurality of clear to send (CTS) frames in response to at least one of the plurality of RTS frames to the second station through a plurality of idle subchannels of the plurality of subchannels, each of the plurality of CTS frames being transmitted through a corresponding one of the plurality of idle subchannels; and
receiving, by the first station, a data frame from the second station after transmitting the plurality of CTS frames,
wherein each of the plurality of CTS frames includes channel information related to the plurality of idle subchannels through which the plurality of CTS frames are transmitted by the first station, and the data frame is received through the plurality of idle subchannels indicated by the channel information, and
wherein a number of the plurality of idle subchannels through which the plurality of CTS frames are transmitted is equal to or less than a number of the plurality of subchannels through which the plurality of RTS frames are received.
0. 14. The method of
0. 15. A device comprising:
a transceiver; and
a processor operatively connected to the transceiver and configured to:
instruct the transceiver to receive a plurality of request to send (RTS) frames from a second station through a plurality of subchannels, each of the plurality of RTS frames being received through a corresponding one of the plurality of subchannels, each of the plurality of subchannels having a 20 megahertz (MHz) bandwidth;
instruct the transceiver to transmit a plurality of clear to send (CTS) frames in response to at least one of the plurality of RTS frames to the second station through a plurality of idle subchannels of the plurality of subchannels, each of the plurality of CTS frames being transmitted through a corresponding one of the plurality of idle subchannels; and
instruct the transceiver to receive a data frame from the second station after transmitting the plurality of CTS frames,
wherein each of the plurality of CTS frames includes channel information related to the plurality of idle subchannels through which the plurality of CTS frames are transmitted by the device, and the data frame is received through the plurality of idle subchannels indicated by the channel information, and
wherein a number of the plurality of idle subchannels through which the plurality of CTS frames are transmitted is equal to or less than a number of the plurality of subchannels through which the plurality of RTS frames are received.
0. 16. The device of
0. 17. The method of claim 1, wherein the destination station is a non-Access Point (non-AP) station and the source station is an AP station.
0. 18. The method of claim 1, wherein the destination station is an AP station and the source station is a non-AP station.
0. 19. The destination station of claim 4, wherein the destination station is a non-Access Point (non-AP) station and the source station is an AP station.
0. 20. The destination station of claim 4, wherein the destination station is an AP station and the source station is a non-AP station.
|
This The Application is a reissue of U.S. application Ser. No. 15/708,503, filed on Sep. 19, 2017, now U.S. Pat. No. 10,499,431, issued on Dec. 3, 2019, which is a Continuation of U.S. patent application Ser. No. 15/357,438 filed on Nov. 21, 2016 (now U.S. Pat. No. 9,788,346 issued Oct. 10, 2017), which is a Continuation of U.S. patent application Ser. No. 14/800,425 filed on Jul. 15, 2015 (now U.S. Pat. No. 9,526,114 issued on Dec. 20, 2016), which is a Continuation of U.S. patent application Ser. No. 14/579,286 filed on Dec. 22, 2014 (now U.S. Pat. No. 9,107,222 issued on Aug. 11, 2015), which is a Continuation of U.S. patent application Ser. No. 12/999,836 filed on Dec. 17, 2010 (now U.S. Pat. No. 8,989,158 issued on Mar. 24, 2015), which is the National Phase of PCT International Application No. PCT/KR2009/003264 filed on Jun. 18, 2009, which claims the benefit under 35 U.S.C. § 119(a) to Korean Patent Application No. 10-2008-0057246 filed on Jun. 18, 2008, all of which are hereby expressly incorporated by reference into the present application.
Field of the Invention
The present invention relates to a wireless local access network (WLAN), and more particularly, to a channel access mechanism in a very high throughput (VHT) WLAN system and a station supporting the channel access mechanism.
Discussion of the Related Art
With the advancement of information communication technologies, various wireless communication technologies have recently been developed. Among the wireless communication technologies, a wireless local access network (WLAN) is a technology whereby super high-speed Internet access is possible in a wireless fashion in homes or businesses or in a region providing a specific service by using a portable terminal such as a personal digital assistant (PDA), a laptop computer, a portable multimedia player (PMP), etc.
Ever since the institute of electrical and electronics engineers (IEEE) 802, i.e., a standardization organization for WLAN technologies, was established in February 1980, many standardization works have been conducted. In the initial WLAN technology, a frequency of 2.4 GHz was used according to the IEEE 802.11 to support a data rate of 1 to 2 Mbps by using frequency hopping, spread spectrum, infrared ray communication, etc. Recently, the WLAN technology can support a data rate of up to 54 Mbps by using orthogonal frequency division multiplex (OFDM). In addition, the IEEE 802.11 is developing or commercializing standards of various technologies such as quality of service (QoS) improvement, access point (AP) protocol compatibility, security enhancement, radio resource measurement, wireless access in vehicular environments, fast roaming, mesh networks, inter-working with external networks, wireless network management, etc.
In the IEEE 802.11, the IEEE 802.11b supports a data rate of up to 11 Mbps by using a frequency band of 2.4 GHz. The IEEE 802.11a commercialized after the IEEE 802.11b uses a frequency band of 5 GHz instead of the frequency band of 2.4 GHz and thus significantly reduces influence of interference in comparison with the very congested frequency band of 2.4 GHz. In addition, the IEEE 802.11a has improved the data rate to up to 54 Mbps by using the OFDM technology. Disadvantageously, however, the IEEE 802.11a has a shorter communication distance than the IEEE 802.11b. Similarly to the IEEE 802.11b, the IEEE 802.11g realizes the data rate of up to 54 Mbps by using the frequency band of 2.4 GHz. Due to its backward compatibility, the IEEE 802.11g is drawing attention, and is advantageous over the IEEE 802.11a in terms of the communication distance.
The IEEE 802.11n is a technical standard relatively recently introduced to overcome a limited data rate which has been considered as a drawback in the WLAN. The IEEE 802.11n is devised to increase network speed and reliability and to extend an operational distance of a wireless network. More specifically, the IEEE 802.11n supports a high throughput (HT), i.e., a data processing speed of up to 540 Mbps at a frequency band of 5 GHz, and is based on a multiple input and multiple output (MIMO) technique which uses multiple antennas in both a transmitter and a receiver to minimize a transmission error and to optimize a data rate. In addition, this standard may use a coding scheme which transmits several duplicated copies to increase data reliability and also may use the OFDM to support a higher data rate.
Meanwhile, a basic access mechanism of an IEEE 802.11 medium access mechanism (MAC) is a carrier sense multiple access with collision avoidance (CSMA/CA) combined with binary exponential backoff. The CSMA/CA mechanism is also referred to as a distributed coordinate function (DCF) of the IEEE 802.11 MAC, and basically employs a “listen before talk” access mechanism. In this type of access mechanism, a station (STA) listens a wireless channel or medium before starting transmission. As a result of listening, if it is sensed that the medium is not in use, a listening STA starts its transmission. Otherwise, if it is sensed that the medium is in use, the STA does not start its transmission but enters a delay duration determined by the binary exponential backoff algorithm.
The CSMA/CA mechanism also includes virtual carrier sensing in addition to physical carrier sensing in which the STA directly listens the medium. The virtual carrier sensing is designed to compensate for a limitation in the physical carrier sensing such as a hidden node problem. For the virtual carrier sending, the IEEE 802.11 MAC uses a network allocation vector (NAV). The NAV is a value transmitted by an STA, currently using the medium or having a right to use the medium, to anther STA to indicate a remaining time before the medium returns to an available state. Therefore, a value set to the NAV corresponds to a duration reserved for the use of the medium by an STA transmitting a corresponding frame.
One of procedures for setting the NAV is a exchange procedure of a request to send (RTS) frame and a clear to send (CTS) frame. The RTS frame and the CTS frame include information capable of delaying transmission of frames from receiving STAs by reporting upcoming frame transmission to the receiving STAs. The information may be included in a duration filed of the RTS frame and the CTS frame. After performing the exchange of the RTS frame and the CTS frame, a source STA transmits a to-be-transmitted frame to a destination STA.
With the widespread use of WLAN and the diversification of applications using the WLAN, there is a recent demand for a new WLAN system to support a higher throughput than a data processing speed supported by the IEEE 802.11n. However, an IEEE 802.11n medium access control (MAC)/physical layer (PHY) protocol is not effective to provide a throughput of 1 Gbps or more. This is because the IEEE 802.11n MAC/PHY protocol is designed for an operation of a single STA, that is, an STA having one network interface card (NIC), and thus when a frame throughput is increased while maintaining the conventional IEEE 802.11n MAC/PHY protocol, a resultant additional overhead is also increased. Consequently, there is a limitation in increasing a throughput of a wireless communication network while maintaining the conventional IEEE 802.11n MAC/PHY protocol, that is, a single STA architecture.
Therefore, to achieve a data processing speed of 1 Gbps or more in the wireless communication system, a new system different from the conventional IEEE 802.11n MAC/PHY protocol (i.e., single STA architecture) is required. A very high throughput (VHT) system is a next version of the IEEE 802.11n WLAN system, and is one of IEEE 802.11 WLAN systems which have recently been proposed to support a data processing speed of 1 Gbps or more in a MAC service access point (SAP). The VHT system is named arbitrarily. To provide a throughput of 1 Gbps or more, a feasibility test is currently being conducted for the VHT system using 4×4 MIMO and a channel bandwidth of 80 MHz.
Meanwhile, a data processing speed of 1 Gbps or more, which is set as a target throughput in a VHT system, denotes an aggregate throughput. On the other hand, a target throughput in one-to-one communication between STAs is at least 500 Mbps in the VHT system. This implies that performance or an offered load of an STA supporting VHT (hereinafter, simply referred to as a ‘VHT STA’) may not exceed 500 Mbps. In a case where the offered load of the VHT STA is less than 1 Gbps (e.g., 500 Mbps), the target throughput of the VHT system cannot be achieved when one VHT STA is allowed to use an entire channel similarly to the conventional channel access method.
In addition, there is a problem in that efficiency is not high in the aforementioned CSMA/CA channel access method used in the IEEE 802.11 WLAN. For example, a data processing speed in a MAC SAP is only 50 to 60% of a data processing speed in a PHY SAP. Therefore, in order to achieve a data processing speed of 1 Gbps or more in the MAC SAP of the VHT system, the data processing speed of the PHY SAP needs to be about 1.5 to 2 times higher than 1 Gbps. However, the conventional IEEE 802.11n PHY technique has difficulty in providing such a processing speed.
The present invention provides a new channel access method for achieving an aggregate throughput of 1 Gbps or more in a very high throughput (VHT) system.
The present invention also provides a channel access method for allowing simultaneous channel access of a plurality of VHT stations (STAs) in a VHT system.
The present invention also provides a new channel access method for achieving an aggregate throughput of 1 Gbps or more in a medium access control (MAC) service access point (SAP) in a VHT system.
According to an aspect of the present invention, there is provided a channel access method in a very high throughput (VHT) system using a bonding channel consisting of a plurality of subchannels, comprising: transmitting a request to send (RTS) frame by one source station or each of a plurality of source stations to a destination station through any subchannel selected from the plurality of subchannels; and in response to the received RTS frame, transmitting a clear to send (CTS) frame by the destination station to one source station selected from the plurality of source stations through the bonding channel.
According to another aspect of the present invention, there is provided a channel access method in a very high throughput (VHT) system using a bonding channel consisting of a plurality of subchannels, comprising: transmitting a request to send (RTS) frame by a source station to a destination station for each of the plurality of subchannels; and transmitting a clear to send (CTS) frame by the destination station to the source station through a subchannel in which the RTS frame is successfully received.
According to still another aspect of the present invention, there is provided a channel access method in a very high throughput (VHT) system using a bonding channel consisting of a plurality of subchannels, comprising: transmitting a request to send (RTS) frame by one source station or each of a plurality of source stations to a destination station through any subchannel selected from the plurality of subchannels; and in response to the received RTS frame, transmitting a clear to send (CTS) frame by the destination station to one source station selected from the plurality of source stations through the bonding channel, wherein the CTS frame comprises a list of subchannels to be used by the source station that receives the CTS frame to transmit a subsequent frame.
According to still another aspect of the present invention, there is provided a channel access method in a very high throughput (VHT) system using a bonding channel consisting of a plurality of subchannels, wherein a source station transmits a request to send (RTS) frame to a destination station by using any subchannel among the plurality of subchannels or by using each of the plurality of subchannels.
According to still another aspect of the present invention, there is provided a channel access method in a very high throughput (VHT) system using a bonding channel consisting of a plurality of subchannels, wherein a request to send (RTS) frame transmitted by a source station to a destination station comprises a list of subchannels which are desired to be used by the source station among the plurality of subchannels to transmit a subsequent frame.
According to still another aspect of the present invention, there is provided a channel access method in a very high throughput (VHT) system using a bonding channel consisting of a plurality of subchannels, wherein a clear to send (CTS) frame transmitted by a destination station to a receiving station in response to a received request to send (RTS) frame comprises a list of subchannels which are allowed to be used by the source station among the plurality of subchannels to transmit a subsequent frame.
An effective channel access mechanism is provided to improve usage efficiency of a bonding channel consisting of a plurality of subchannels in a very high throughput (VHT) system using the bonding channel. In particular, according to an embodiment of the present invention, access to another subchannel is allowed not only in a case where one or more VHT stations simultaneously request channel access but also in a case where some of subchannels are used by a legacy station, thereby enabling effective channel access.
Referring to
A VHT system including one or more VHT BSSs can use a channel bandwidth of 80 MHz, which is for exemplary purposes only. For example, the VHT system may use a channel bandwidth of 60 MHz or 100 MHz or more. As such, the VHT system operates in a multi-channel environment where a plurality of subchannels having a specific size, e.g., a channel bandwidth of 20 MHz, are included.
The BSS can be classified into an infrastructure BSS and an independent BSS (IBSS). The infrastructure BSS is shown in
The STA is an arbitrary functional medium including a medium access control (MAC) and wireless-medium physical layer (PHY) interface conforming to the institute of electrical and electronics engineers (IEEE) 802.11 standard, and includes both an AP and a non-AP STA in a broad sense. A VHT STA is defined as an STA that supports the super high-speed data processing speed of 1 GHz or more in the multi-channel environment to be described below.
The STA for wireless communication includes a processor and a transceiver, and also includes a user interface, a display element, etc. The processor is a functional unit devised to generate a frame to be transmitted through a wireless network or to process a frame received through the wireless network, and performs various functions to control STAs. The transceiver is functionally connected to the processor and is a functional unit devised to transmit and receive a frame for the STAs through the wireless network.
Among the STAs, non-AP STAs (i.e., STA1, STA3, STA4, STA6, STA7, and STA8) are portable terminals operated by users. A non-AP STA may be simply referred to as an STA. The non-AP STA may also be referred to as a wireless transmit/receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile terminal, a mobile subscriber unit, etc. A non-AP VHT-STA is defined as a non-AP STA that supports the super high-speed data processing speed of 1 GHz or more in the multi-channel environment to be described below.
The AP (i.e., AP1 and AP2) is a functional entity for providing connection to the DS through a wireless medium for an associated STA. Although communication between non-AP STAs in an infrastructure BSS including the AP is performed via the AP in principle, the non-AP STAs can perform direct communication when a direct link is set up. In addition to the terminology of an access point, the AP may also be referred to as a centralized controller, a base station (BS), a node-B, a base transceiver system (BTS), a site controller, etc. A VHT AP is defined as an AP that supports the super high-speed data processing speed of 1 GHz or more in the multi-channel environment to be described below.
A plurality of infrastructure BSSs can be interconnected by the use of the DS. An extended service set (ESS) is a plurality of BSSs connected by the use of the DS. STAs included in the ESS can communicate with one another. In the same ESS, a non-AP STA can move from one BSS to another BSS while performing seamless communication.
The DS is a mechanism whereby one AP communicates with another AP. By using the DS, an AP may transmit a frame for STAs associated with a BSS managed by the AP, or transmit a frame when any one of the STAs moves to another BSS, or transmit a frame to an external network such as a wired network. The DS is not necessarily a network, and has no limitation in its format as long as a specific distribution service specified in the IEEE 802.11 can be provided. For example, the DS may be a wireless network such as a mesh network, or may be a physical structure for interconnecting APs.
Referring to
According to one aspect of the present embodiment, the plurality of NICs can be classified into a primary radio interface and one or more secondary radio interfaces. If a plurality of secondary radio interfaces are present, the secondary radio interfaces can be classified into a first secondary radio interface, a second secondary radio interface, a third secondary radio interface, etc. The classification into the primary interface and the secondary interface and/or the classification of the secondary ratio interface itself may be determined by a policy or may be adoptively determined in consideration of a channel environment.
The plurality of NICs are integrally managed according to the MUP. As a result, the plurality of NICs are externally recognized as if they are one device. For this, the VHT system includes a virtual-MAC (V-MAC). Through the V-MAC, an upper layer cannot recognize that a multi-radio channel is operated by the plurality of NICs. As such, in the VHT system, the upper layer does not recognize the multi-radio channel through the V-MAC. This means that one virtual Ethernet address is provided.
Next, a channel allocation mechanism in a VHT system will be described according to embodiments of the present invention. Although the embodiments described below relate to a VHT system using a bonding channel in which contiguous 4 subchannels having a bandwidth of 20 MHz are combined (i.e., a bonding channel having a channel bandwidth of 80 MHz), this is for exemplary purposes only. The embodiments described below can equally apply to a VHT system including a plurality of subchannels (e.g., 3 or 5 or more subchannels), which is apparent to those skilled in the art. In addition, the embodiments of the present invention are not limited to the VHT system whose subchannel has a bandwidth of 20 MHz.
Referring to
Upon receiving the RTS frame, a destination VHT STA or a receiving VHT STA transmits a CTS frame also by using the entire bonding channel. In
When the RTS frame and the CTS frame are exchanged by using the entire bonding channel, subsequent data or the like is generally transmitted also by using the entire bonding channel. However, according to an aspect of the present embodiment, the RTS frame and/or the CTS frame may include a list of subchannels to be used for transmission of subsequent data or the like. As such, when the RTS frame and/or the CTS frame include the list of subchannels, a network allocation vector (NAV) is set only for a specific subchannel included in the list, and the source VHT STA transmits the data or the like to the destination VHT STA only through the specific subchannel.
Consequently, upon receiving the CTS frame, the source VHT STA starts transmission of the data or the like to the destination VHT STA according to a predetermined procedure. In
As described above, according to the first embodiment of the present invention, the RTS frame, the CTS frame, the data frame, etc., are transmitted through the entire bonding channel directly using the channel access mechanism based on the conventional EDCA. As a modification of the first embodiment, a list of subchannels to be used for transmission of the data frame or the like may be included in the RTS frame and/or the CTS frame. If the list of subchannels is included, the source VHT STA can transmit the data frame or the like to the destination VHT STA by using all or some of subchannels of the list.
In a case where the RTS frame and the CTS frame are transmitted by using the entire bonding channel, the RTS frame and the CTS frame are very small in size, and thus a transmission time corresponds to only a few orthogonal frequency division multiplex (OFDM) symbols (e.g., 8 ?s required for transmission of 6 Mbs). Optionally, the transmission time of the RTS frame and the CTS frame may be less than the PLCP preamble and the PLCP header. A network overhead for the RTS frame and the CTS frame is almost negligible.
According to the aforementioned first embodiment, an entire bonding channel cannot be used when the collision with the legacy STA occurs, which may result in significant throughput deterioration of the VHT system. If the VHT STA is in use or one or more legacy STAs operates in any subchannel among subchannels to be used, in order for the VHT STA to access to a channel including the subchannel or to access to the entire bonding channel, all subchannels constituting the channel or the bonding channel have to be unoccupied (or idle). That is, the VHT STA can successfully perform channel access only when the collision with the legacy STA does not occur with respect to all subchannels constituting the bonding channel.
According to the present embodiment, a channel access mechanism for transmitting an RTS frame for each subchannel is used to prevent a problem of throughput deterioration caused by the collision with the legacy STA. That is, a source VHT STA transmits the RTS frame for each subchannel instead of transmitting the RTS frame by using the entire bonding channel. If collision occurs with the legacy STA in any subchannel while the RTS frame for each subchannel is transmitted, a destination VHT STA transmits a CTS frame only for a subchannel in which no collision occurs, and as a result, the source VHT STA receives the CTS frame only for the subchannel in which no collision occurs. Further, the source VHT STA transmits data or the like only for a subchannel in which the CTS frame is received.
Referring to
However, according to the present embodiment, among all subchannels, a 2nd subchannel and a 4th subchannel are used by the legacy STA. The 2nd subchannel and the 4th subchannel may be in use by different legacy STAs. Although the 2nd subchannel and the 4th subchannel are used by the legacy STA herein, this is for exemplary purposes only, and thus the embodiment of the present invention is not limited thereto. If the 2nd subchannel and the 4th subchannel are already being used, RTS frames transmitted through these subchannels may be unsuccessfully transmitted due to collision, and a destination VHT STA may successfully receive RTS frames transmitted through a 1st subchannel and a 3rd subchannel.
Upon receiving the RTS frames through all or some of subchannels, the destination VHT STA or the receiving VHT STA transmits a CTS frame for each subchannel by using corresponding subchannels. In
Upon receiving the CTS frame through the 1st and 3rd subchannels, the source VHT STA transmits data or the like by using corresponding subchannels (i.e., the 1st and 3rd subchannels). In
According to the aforementioned first embodiment, if the legacy STA occupies any one subchannel at a time for transmitting an RTS frame, the VHT STA cannot immediately transmit data or the like by using an entire bonding channel even after the use of the subchannel is finished. That is, only after the legacy STA finishes the use of the subchannel, a procedure of exchanging the RTS frame and a CTS frame can begin. According to the aforementioned second embodiment, the entire bonding channel cannot be used for transmission of data or the like when collision occurs with the legacy STA, and thus there is a disadvantage in that a throughput of the VHT system deteriorates.
According to the present embodiment, a channel access mechanism in which one VHT STA transmits an RTS frame by using only one subchannel is used to prevent a problem of transmission delay on data or the like, which may be caused in the first embodiment, or a problem of deterioration in channel usage efficiency, which may be caused in the second embodiment. More specifically, each VHT STA intending to transmit data or the like transmits an RTS frame by selecting any one subchannel or by using only one subchannel according to a predetermined rule, instead of transmitting the RTS frame by using the entire bonding channel. That is, each VHT STA performs channel access by using an EDCA scheme through selected or predetermined one subchannel. As such, according to the present embodiment, RTS frames are transmitted by using only one subchannel, and thus even if a plurality of VHT STAs simultaneously transmit the RTS frames, collision between the RTS frames can be prevented or avoided.
Upon receiving the RTS frames from one or more VHT STAs, a destination VHT STA or a receiving VHT STA transmits a CTS frame as a response by selecting one of the received RTS frames, that is, by selecting one VHT STA from the VHT STAs transmitting the RTS frames. In this case, the CTS frame can be transmitted through the entire bonding channel or, as in the aforementioned second embodiment, can be transmitted for each corresponding subchannel. In the latter case, the CTS frame is transmitted for each subchannel through the entire bonding channel instead of using only a subchannel identical to the subchannel in which the selected RTS frame is transmitted. In addition, according to the present embodiment, the VHT STA which has received the CTS frame, i.e., the destination VHT STA of the CTS frame, uses the entire bonding channel when intending to transmit data or the like in a subsequent procedure.
Referring to
When the destination VHT STA or the receiving VHT STA receives separate RTS frames through 1st and 3rd subchannels among all subchannels, the destination VHT STA or the receiving VHT STA transmits a CTS frame as a response by selecting only one RTS frame. It is shown in
Upon receiving the CTS frame, the STA1 transmits data or the like by using the entire bonding channel. Therefore, according to the present embodiment, channel usage efficiency can be maximized when transmitting data of the like. In
As described in the aforementioned second embodiment and in the present embodiment, if an RTS frame and/or a CTS frame are transmitted by using only one subchannel, a transmission time of the RTS frame and the CTS frame is relatively increased. However, since the RTS frame is small in size, a transmission overhead of the RTS frame is not relatively large. On the other hand, according to the present embodiment, RTS frames are transmitted by using only one subchannel, and thus collision between the RTS frames can be prevented. As a result, according to the present embodiment, a possibility of collision between VHT STAB can be reduced, and thus channel usage efficiency can also be increased to that extent.
It is assumed in the aforementioned third embodiment that only a VHT STA performs channel access. In this case, there is no need to consider NAV setting in a legacy STA. Therefore, in the aforementioned third embodiment, a CTS frame is transmitted through an entire bonding channel when the CTS frame is transmitted. By transmitting the CTS frame in such a manner, a channel load caused by transmission of the CTS frame can be reduce. However, if the CTS frame is transmitted through the entire bonding channel, the legacy STA cannot decode the CTS frame, and thus cannot set the NAV during a time period determined by the CTS frame. Accordingly, in the present embodiment, the CTS frame is transmitted by using one subchannel.
According to another aspect of the present embodiment, as described in the third embodiment, the CTS frame may be transmitted for each subchannel constituting the bonding channel. In this case, the CTS frame may include a subchannel list for indicating a specific subchannel for which each VHT STA has a transmission opportunity. For example, if transmission is allowed for one VHT STA, a list of subchannels that can be used by the VHT STA may be included in the CTS frame. Alternatively, if no subchannel list is included, the VHT STA may have a transmission opportunity for all subchannels.
As in the third embodiment and the fourth embodiment, according to the channel access mechanism using the frequency-hopping EDCA, a destination VHT STA can simultaneously receive RTS frames from a plurality of UEs or can receive an additional RTS frame through an unused subchannel. In this case, the present embodiment allows several UEs to simultaneously transmit data or the like through different subchannels by respectively transmitting CTS frames to one or more UEs which have received the RTS frames. The CTS frame includes a list of subchannels to be used when a corresponding UE transmits data or the like.
Referring to
When the destination VHT STA or the receiving VHT STA receives separate RTS frames through 1st and 3rd subchannels among all subchannels, the destination VHT STA or the receiving VHT STA transmits a CTS frame as a response with respect to all received RTS frames. It is shown in
According to the present embodiment, a list of subchannels to be used by the STA1 to transmit subsequent data or the like is included in a CTS frame to be transmitted to the STA1. According to the present invention, 1st and 2nd subchannels are included in the list, which is for exemplary purpose only. In addition, the list of subchannels to be used by the STA2 to transmit subsequent data or the like is also included in a CTS frame to be transmitted to the STA2. According to the present embodiment, 3rd and 4th subchannels are included in the list, which is for exemplary purpose only.
Upon receiving the CTS frame, each of the STA1 and the STA2 transmits data or the like to the destination STA through a subchannel included in the subchannel list of the received CTS frame. The STA1 and the STA2 can simultaneously transmit the data or the like. In
According to the embodiment of the present invention, a plurality of VHT STAs or a VHT STA and a legacy STA can transmit data or the like by using an entire bonding channel. In addition, according to the embodiment of the present invention in which a CTS frame includes a list of subchannels to be used, a VHT STA for using each subchannel can be adaptively determined by considering all conditions at the request of a plurality of VHT STAs. Therefore, according to the present embodiment, channel usage efficiency can be improved when transmitting data or the like.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10257861, | Jan 11 2011 | Intel Corporation | Transmission rules within a TXOP for wider bandwidth operation |
5721725, | Oct 30 1995 | Xerox Corporation | Protocol for channel access in wireless or network data communication |
6393032, | Jun 23 1997 | NEC Corporation | Wireless LAN system and method of driving the same |
7324605, | Jan 12 2004 | SPREADTRUM COMMUNICATIONS SHANGHAI CO , LTD | High-throughput multicarrier communication systems and methods for exchanging channel state information |
7349436, | Sep 30 2003 | Intel Corporation | Systems and methods for high-throughput wideband wireless local area network communications |
7693175, | Apr 21 2005 | AVAYA Inc | Prioritized access in a multi-channel MAC protocol |
7843819, | Mar 29 2005 | AVAYA Inc | Protocol for wireless multi-channel access control |
8233462, | Oct 15 2003 | Qualcomm Incorporated | High speed media access control and direct link protocol |
8238316, | Dec 22 2009 | Intel Corporation | 802.11 very high throughput preamble signaling field with legacy compatibility |
8289865, | Dec 29 2003 | Intel Corporation | Method and apparatus to exchange channel information |
8305948, | Nov 15 2006 | Qualcomm Incorporated | Transmissions to multiple stations in wireless communication systems |
8406331, | Jun 24 2004 | Koninklijke Philips Electronics N V | Method for signaling the status of a subcarrier in a MC network and a method for adaptively allocating the subcarriers in a MC network |
8411698, | Oct 28 2009 | Electronics and Telecommunications Research Institute | Power saving method in wireless communication system |
8804623, | Dec 22 2009 | Intel Corporation | 802.11 very high throughput preamble signaling field with legacy compatibility |
8989158, | Jun 18 2008 | LG Electronics Inc | Channel access method for very high throughput (VHT) wireless local access network system and station supporting the channel access method |
9025544, | Feb 10 2010 | LG Electronics Inc | Channel access method and apparatus in wireless local area network system |
9107222, | Jun 18 2008 | LG Electronics Inc. | Channel access method for very high throughput (VHT) wireless local access network system and station supporting the channel access method |
9271309, | Feb 09 2010 | LG Electronics Inc. | Method and apparatus of requesting channel access in wireless local area network |
20010024427, | |||
20040071154, | |||
20040127223, | |||
20040196871, | |||
20040264504, | |||
20050135295, | |||
20050141545, | |||
20050143125, | |||
20050147075, | |||
20050152465, | |||
20050152466, | |||
20050152473, | |||
20050208956, | |||
20050285803, | |||
20060055958, | |||
20060114826, | |||
20060114867, | |||
20060221924, | |||
20060223541, | |||
20060251098, | |||
20060256737, | |||
20060280134, | |||
20060280154, | |||
20070002814, | |||
20070019592, | |||
20070076675, | |||
20070133490, | |||
20070140102, | |||
20070147322, | |||
20070153731, | |||
20070160040, | |||
20070223439, | |||
20070266157, | |||
20070297353, | |||
20080004076, | |||
20080013496, | |||
20080056298, | |||
20080062922, | |||
20080075038, | |||
20080089221, | |||
20080112351, | |||
20080144500, | |||
20080144586, | |||
20080170558, | |||
20080171552, | |||
20080192644, | |||
20080227403, | |||
20080232490, | |||
20080273549, | |||
20080285480, | |||
20090010234, | |||
20090010275, | |||
20090059891, | |||
20090086706, | |||
20090103501, | |||
20090138603, | |||
20090196180, | |||
20090232155, | |||
20090303888, | |||
20090316823, | |||
20100046482, | |||
20100150077, | |||
20100182986, | |||
20110069628, | |||
20110299516, | |||
20110305288, | |||
20110310807, | |||
20110310834, | |||
20120014336, | |||
20120093085, | |||
JP2003348641, | |||
JP2006352844, | |||
JP2007060366, | |||
JP2007532040, | |||
JP200760366, | |||
JP200767472, | |||
WO2005043832, | |||
WO2005062536, | |||
WO2006092801, | |||
WO2006120979, | |||
WO2007047757, | |||
WO2008068729, | |||
WO2009154406, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 07 2020 | LG Electronics Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 07 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
May 21 2027 | 4 years fee payment window open |
Nov 21 2027 | 6 months grace period start (w surcharge) |
May 21 2028 | patent expiry (for year 4) |
May 21 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 21 2031 | 8 years fee payment window open |
Nov 21 2031 | 6 months grace period start (w surcharge) |
May 21 2032 | patent expiry (for year 8) |
May 21 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 21 2035 | 12 years fee payment window open |
Nov 21 2035 | 6 months grace period start (w surcharge) |
May 21 2036 | patent expiry (for year 12) |
May 21 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |