Methods and apparatus are disclosed for distracting tissue. The devices and methods may include insertion of first and second elongated members into the space between two tissue layers, with an augmenting elongated member inserted therebetween to form a distraction device between the tissues to be distracted. The distraction device defines a generally annular configuration, with a locking member secured to one of the elongated members at a plurality of locations to maintain the distraction device in the generally annular configuration. The augmenting elongated member may be shorter than the first and second elongated members such that a window is defined between the proximal and distal ends of the augmenting elongated member when the distraction device and the first and second elongated members are in the generally annular configuration. Bone graft material or bone filler may be introduced into the interior of the distraction device through the window.
|
1. A tissue distraction device comprising:
first and second elongated members, each elongated member defining a closed loop in a separate plane in a deployed configuration, wherein the first elongated member comprises a first elongated member proximal end and a first elongated member distal end; and
an augmenting elongated member fully comprising an augmenting elongated member proximal end and an augmenting elongated member distal end, wherein the augmenting elongated member is configured to be moved toward the first elongated member distal end to be fully received between the first and second elongated members in the deployed configuration and having a length that is less than the length of each of the first and second elongated members wherein the augmenting elongated ember distal end stops short of the first elongated member distal end in the deployed configuration.
0. 21. A tissue distraction device comprising:
first and second elongated members insertable between tissue layers and adapted to define a structure in situ having a dimension in a direction extending between the tissue layers, wherein the first elongated member comprises a first elongated member proximal end and a first elongated member distal end; and
an augmenting elongated member comprising an augmenting elongated member proximal end and an augmenting elongated member distal end, wherein the augmenting elongated member is insertable between and in contact with said first and second elongated members to spread the first and second elongated members apart to increase the dimension of at least a portion of the structure in situ in a deployed configuration, wherein the augmenting elongated member is configured to be moved toward the first elongated member distal end to be received between the first and second elongated members in the deployed configuration and the augmenting elongated member distal end stops short of the first elongated member distal end in the deployed configuration.
10. A tissue distraction device comprising:
first and second elongated members insertable between tissue layers and adapted to define a structure in situ having a dimensional aspect dimension in a direction extending between the tissue layers; and
an augmenting elongated member insertable between and in contact with said first and second elongated members to spread the first and second elongated members apart to increase the dimension of at least a portion of the structure in situ, wherein
each elongated member is generally rectangular in cross-sectional shape and defined by elongated upper and lower surfaces, proximal and distal ends, and elongated lateral side surfaces,
each elongated member is the first and second elongated members are sufficiently flexible to change between a generally linear first configuration and a second configuration that is less linear than the first configuration, wherein the first elongated member comprises a first elongated member proximal end and a first elongated member distal end, and wherein
the augmenting elongated member has a length that is less than the length of each of the first and second elongated members comprises an augmenting elongated member proximal end and an augmenting elongated member distal end, wherein the augmenting elongated member is configured to be moved toward the first elongated member distal end to be received between the first and second elongated members in the deployed configuration and the augmenting elongated member distal end stops short of the first elongated member distal end in the deployed configuration.
2. The tissue distraction device of
3. The tissue distraction device of
0. 4. The tissue distraction device of
0. 5. The tissue distraction device of
the locking member extends between a fixed end and a free end,
the fixed end of the locking member is secured at or adjacent to a proximal end of the augmenting elongated member, and
the fastener secures the free end of the locking member to the augmenting elongated member at or adjacent to the proximal end of the augmenting elongated member.
6. The tissue distraction device of
7. The tissue distraction device of
each of the first and second elongated members extends between proximal and distal ends and includes a lateral side, and
one of the ends end of the first elongated member contacts the approaches a lateral side of the first elongated member adjacent to the other end of the first elongated member, and
one of the ends end of the second elongated member contacts the approaches a lateral side of the second elongated member adjacent to the other end of the second elongated member.
8. The tissue distraction device of
9. The tissue distraction device of claim 8 1, wherein each of the elongated members includes
a longitudinally extending wall,
a plurality of similarly shaped first teeth extending laterally from the longitudinally extending wall in one direction, and
a plurality of similarly shaped second teeth extending laterally from the longitudinally extending wall in an opposite direction and differently configured from said first teeth.
11. The tissue distraction device of
a longitudinally extending wall,
a plurality of similarly shaped first teeth extending laterally from the longitudinally extending wall in one direction, and
a plurality of similarly shaped second teeth extending laterally from the longitudinally extending wall in an opposite direction and differently configured from said first teeth.
12. The tissue distraction device of
the proximal end of each of the first and second elongated members is ramped, and
the distal end of the augmenting elongated member augmenting elongated member distal end is tapered to engage and separate the first and second elongated members when the augmenting elongated member is inserted therebetween.
13. The tissue distraction device of
0. 14. The tissue distraction device of
0. 15. The tissue distraction device of
the locking member extends between a fixed end and a free end,
the fixed end of the locking member is secured at or adjacent to a proximal end of the augmenting elongated member, and
the fastener is configured to secure the free end of the locking member to the augmenting elongated member at or adjacent to the proximal end of the augmenting elongated member when the augmenting elongated member is in the second configuration.
16. The tissue distraction device of
17. The tissue distraction device of
one of the ends end of the first elongated member is configured to contact one of the lateral sides approach a lateral side of the first elongated member adjacent to the other end of the first elongated member when the first elongated member is in the second configuration, and
one of the ends end of the second elongated member is configured to contact one of the lateral sides approach a lateral side of the second elongated member adjacent to the other end of the second elongated member when the second elongated member is in the second configuration.
18. The tissue distraction device of
19. The tissue distraction device of
20. The tissue distraction device of
each of the first and second elongated members is configured to define a closed loop an annular shape in the second configuration,
the augmenting elongated member is configured to cooperate with said first and second elongated members to define a window into an interior of the tissue distraction device in the second configuration, and
the window is configured to allow for the introduction of a bone filler material into the interior of the tissue distraction device in the second configuration through the window.
0. 22. The tissue distraction device of claim 21, wherein the augmenting, first, and second elongated members cooperate to define a window.
0. 23. The tissue distraction device of claim 22, wherein the window is configured to allow for the introduction of a bone filler material through the window.
0. 24. The tissue distraction device of claim 21, wherein the first, second, and augmenting elongated members combine to define a structure having a non-uniform thickness configured to adjust the lordotic angle of a spine.
0. 25. The tissue distraction device of claim 21, wherein
one end of the first elongated member approaches a lateral side of the first elongated member adjacent to the other end of the first elongated member, and
one end of the second elongated member approaches a lateral side of the second elongated member adjacent to the other end of the second elongated member.
0. 26. The tissue distraction device of claim 21, wherein each elongated member is generally rectangular in cross-sectional shape.
0. 27. The tissue distraction device of claim 21, wherein each of the elongated members includes
a longitudinally extending wall,
a plurality of first teeth extending laterally from the longitudinally extending wall in one direction, and
a plurality of second teeth extending laterally from the longitudinally extending wall in an opposite direction.
0. 28. The tissue distraction device of claim 1, wherein the augmenting, first, and second elongated members cooperate to define a window which is adjacent to the augmenting elongated member distal end.
0. 29. The tissue distraction device of claim 10, wherein the augmenting, first, and second elongated members cooperate to define a window which is adjacent to the augmenting elongated member distal end.
0. 30. The tissue distraction device of claim 21, wherein the augmenting, first, and second elongated members cooperate to define a window which is adjacent to the augmenting elongated member distal end.
0. 31. The tissue distraction device of claim 1, wherein the augmenting, first, and second elongated members cooperate to define a window, wherein the augmenting elongated member distal end defines a lateral side of the window.
0. 32. The tissue distraction device of claim 10, wherein the augmenting, first, and second elongated members cooperate to define a window, wherein the augmenting elongated member distal end defines a lateral side of the window.
0. 33. The tissue distraction device of claim 21, wherein the augmenting, first, and second elongated members cooperate to define a window, wherein the augmenting elongated member distal end defines a lateral side of the window.
0. 34. The tissue distraction device of claim 1, wherein the augmenting, first, and second elongated members cooperate to define a window, wherein the first and second elongated members define lower and upper sides of the window.
0. 35. The tissue distraction device of claim 10, wherein the augmenting, first, and second elongated members cooperate to define a window, wherein the first and second elongated members define lower and upper sides of the window.
0. 36. The tissue distraction device of claim 21, wherein the augmenting, first, and second elongated members cooperate to define a window, wherein the first and second elongated members define lower and upper sides of the window.
0. 37. The tissue distraction device of claim 1, wherein a window is defined between the augmenting elongated member proximal end and the augmenting elongated member distal end, which define lateral sides of the window, and the first elongated member distal end and the second elongated member distal end, which define lower and upper sides of the window.
0. 38. The tissue distraction device of claim 10, wherein a window is defined between the augmenting elongated member proximal end and the augmenting elongated member distal end, which define lateral sides of the window, and the first elongated member distal end and the second elongated member distal end, which define lower and upper sides of the window.
0. 39. The tissue distraction device of claim 21, wherein a window is defined between the augmenting elongated member proximal end and the augmenting elongated member distal end, which define lateral sides of the window, and the first elongated member distal end and the second elongated member distal end, which define lower and upper sides of the window.
|
The present application is a reissue of U.S. Pat. No. 10,231,843 which issued Mar. 19, 2019, from U.S. patent application Ser. No. 15/276,147, filed Sep. 26, 2016, which is a continuation of U.S. patent application Ser. No. 13/803,322, filed Mar. 14, 2013, now U.S. Pat. No. 9,480,574, the contents of which are incorporated herein by reference.
The present invention generally relates to apparatus and methods employed in minimally invasive surgical procedures and more particularly to various aspects of apparatus and methods for separating and/or supporting tissue layers, especially in the disc space of the spine.
A variety of physical conditions involve two tissue surfaces that, for diagnosis or treatment of the condition, need to be separated or distracted or maintained in a separated condition from one another and then supported in a spaced-apart relationship. Such separation or distraction may be to gain exposure to selected tissue structures, to apply a therapeutic pressure to selected tissues, to return or reposition tissue structures to a more normal or original anatomic position and form, to deliver a drug or growth factor, to alter, influence or deter further growth of select tissues or to carry out other diagnostic or therapeutic procedures. Depending on the condition being treated, the tissue surfaces may be opposed or contiguous and may be bone, skin, soft tissue, or a combination thereof.
One location of the body where tissue separation is useful as a corrective treatment is in the spinal column. Developmental irregularities, trauma, tumors, stress and degenerative wear can cause defects in the spinal column for which surgical intervention is necessary. Some of the more common defects of the spinal column include vertebral compression fractures, degeneration or disruption of an intervertebral disc and intervertebral disc herniation. These and other pathologies of the spine are often treated with implants that can restore vertebral column height, immobilize or fuse adjacent vertebral bones, or function to provide flexibility and restore natural movement of the spinal column. Accordingly, different defects in the spinal column require different types of treatment, and the location and anatomy of the spine that requires corrective surgical procedures determines whether an immobilizing implantable device or a flexible implantable device is used for such treatment.
In a typical spinal corrective procedure involving distraction of tissue layers, damaged spinal tissue is removed or relocated prior to distraction. After the damaged tissue has been removed or relocated, adjacent spinal tissue layers, such as adjacent bone structures, are then distracted to separate and restore the proper distance between the adjacent tissue layers. Once the tissue layers have been separated by the proper distance, an immobilizing or flexible device, depending on the desired treatment, is implanted between the tissue layers. In the past, the implantable treatment devices have been relatively large cage-like devices that require invasive surgical techniques which require relative large incisions into the human spine. Such invasive surgical techniques often disrupt and disturb tissue surrounding the surgical site to the detriment of the patient.
Therefore, there remains a need for implantable treatment devices and methods that utilize minimally invasive procedures.
Such methods and devices may be particularly needed in the area of intervertebral or disc treatment. The intervertebral disc is divided into two distinct regions: the nucleus pulposus and the annulus fibrosus. The nucleus lies at the center of the disc and is surrounded and contained by the annulus. The annulus contains collagen fibers that form concentric lamellae that surround the nucleus and insert into the endplates of the adjacent vertebral bodies to form a reinforced structure. Cartilaginous endplates are located at the interface between the disc and the adjacent vertebral bodies.
The intervertebral disc is the largest avascular structure in the body. The cells of the disc receive nutrients and expel waste by diffusion through the adjacent vascularized endplates. The hygroscopic nature of the proteoglycan matrix secreted by cells of the nucleus operates to generate high intra-nuclear pressure. As the water content in the disc increases, the intra-nuclear pressure increases and the nucleus swells to increase the height of the disc. This swelling places the fibers of the annulus in tension. A normal disc has a height of about 10-15 mm.
There are many causes of disruption or degeneration of the intervertebral disc that can be generally categorized as mechanical, genetic and biochemical. Mechanical damage includes herniation in which a portion of the nucleus pulposus projects through a fissure or tear in the annulus fibrosus. Genetic and biochemical causes can result in changes in the extracellular matrix pattern of the disc and a decrease in biosynthesis of extracellular matrix components by the cells of the disc. Degeneration is a progressive process that usually begins with a decrease in the ability of the extracellular matrix in the central nucleus pulposus to bind water due to reduced proteoglycan content. With a loss of water content, the nucleus becomes desiccated resulting in a decrease in internal disc hydraulic pressure, and ultimately to a loss of disc height. This loss of disc height can cause the annulus to buckle with non-tensile loading and the annular lamellae to delaminate, resulting in annular fissures. Herniation may then occur as rupture leads to protrusion of the nucleus.
Proper disc height is necessary to ensure proper functionality of the intervertebral disc and spinal column. The disc serves several functions, although its primary function is to facilitate mobility of the spine. In addition, the disc provides for load bearing, load transfer and shock absorption between vertebral levels. The weight of the person generates a compressive load on the discs, but this load is not uniform during typical bending movements. During forward flexion, the posterior annular fibers are stretched while the anterior fibers are compressed. In addition, a translocation of the nucleus occurs as the center of gravity of the nucleus shifts away from the center and towards the extended side.
Changes in disc height can have both local and global effects. Decreased disc height results in increased pressure in the nucleus, which can lead to a decrease in cell matrix synthesis and an increase in cell necrosis and apoptosis. In addition, increases in intra-discal pressure create an unfavorable environment for fluid transfer into the disc, which can cause a further decrease in disc height.
Decreased disc height also results in significant changes in the global mechanical stability of the spine. With decreasing height of the disc, the facet joints bear increasing loads and may undergo hypertrophy and degeneration, and may even act as a source of pain over time. Decreased stiffness of the spinal column and increased range of motion resulting from loss of disc height can lead to further instability of the spine, as well as back pain.
Radicular pain may result from a decrease in foraminal volume caused by decreased disc height. Specifically, as disc height decreases, the volume of the foraminal canal, through which the spinal nerve roots pass, decreases. This decrease may lead to spinal nerve impingement, with associated radiating pain and dysfunction.
Finally, adjacent segment loading increases as the disc height decreases at a given level. The discs that must bear additional loading are now susceptible to accelerated degeneration and compromise, which may eventually propagate along the destabilized spinal column.
In spite of all of these detriments that accompany decreases in disc height, where the change in disc height is gradual many of the ill effects may be “tolerable” to the spine and patient and may allow time for the spinal system to adapt to the gradual changes. However, the sudden decrease in disc volume caused by the surgical removal of the disc or disc nucleus may increase the local and global problems noted above.
Many disc defects are treated through a surgical procedure, such as a discectomy in which the nucleus pulposus material is removed. During a total discectomy, a substantial amount (and usually all) of the volume of the nucleus pulposus is removed and immediate loss of disc height and volume can result. Even with a partial discectomy, loss of disc height can ensue. Discectomy alone is the most common spinal surgical treatment, frequently used to treat radicular pain resulting from nerve impingement by disc bulge or disc fragments contacting the spinal neural structures.
The discectomy may be followed by an implant procedure in which a prosthesis is introduced into the cavity left in the disc space when the nucleus material is removed. Thus far, the most common prosthesis is a mechanical device or a “cage” that is sized to restore the proper disc height and is configured for fixation between adjacent vertebrae. These mechanical solutions take on a variety of forms, including solid kidney-shaped implants, hollow blocks filled with bone growth material, push-in implants and threaded cylindrical cages.
A challenge in the use of a posterior procedure to install spinal prosthesis devices is that a device large enough to contact the end plates and expand the space between the end plates of the same or adjacent vertebra must be inserted through a limited space. In the case of procedures to increasing intervertebral spacing, the difficulties are further increased by the presence of posterior osteophytes, which may cause “fish mouthing” or concavity of the posterior end plates and result in very limited access to the disc. A further challenge in degenerative disc spaces is the tendency of the disc space to assume a lenticular shape, which requires a relatively larger implant than often is easily introduced without causing trauma to the nerve roots. The size of rigid devices that may safely be introduced into the disc space is thereby limited.
While cages of the prior art have been generally successful in promoting fusion and approximating proper disc height, typically these cages have been inserted from the posterior approach, and are therefore limited in size by the interval between the nerve roots. Further, it is generally difficult to implant from the posterior approach a cage that accounts for the natural lordotic curve of the lumber spine.
It is desirable to reduce potential trauma to the nerve roots and yet still allow restoration or maintenance of disc space height in procedures involving vertebrae fusion devices and disc replacement, containment of the nucleus of the disc or prevention of herniation of the nucleus of the disc. In general minimally invasive surgical techniques reduce surgical trauma, blood loss and pain. However, despite the use of minimally invasive techniques, the implantation of cage devices for treating the spine typically involves nerve root retraction, an inherently high risk procedure. It is therefore desirable to reduce the degree of invasiveness of the surgical procedures required to implant the device, which may also serve to permit reduction in the pain, trauma, and blood loss as well as the avoidance and/or reduction of the nerve root retraction.
In minimally invasive procedures, to monitor placement, it is useful that implant devices inserted into spinal tissue be detectable using fluoroscopic imaging systems. However if a device is visible using X-ray technology, then the device can interfere with the detection and monitoring of spinal tissues, such as bone growing into the disc space after a vertebral fusion procedure. Additional advances would also be useful in this area.
There are several aspects of the present subject matter which may be embodied separately or together in the devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto.
In one aspect, a tissue distraction device includes first and second elongated members. The first and second elongated members are insertable between tissue layers and adapted to define a structure in situ having a dimensional aspect in a direction extending between the tissue layers. The tissue distraction device also includes an augmenting elongated member insertable between and in contact with the first and second elongated members to spread the first and second elongated members apart to increase the dimensional aspect of at least a portion of the structure in situ. The augmenting, first, and second elongated members are sufficiently flexible to change between a generally linear configuration and a generally less linear configuration. A locking member is configured to be secured to one of the elongated members at a plurality of locations to lock the augmenting, first, and second elongated members in the generally less linear configuration.
In another aspect, a tissue distraction device includes first and second elongated members defining a generally annular configuration. An augmenting member is fully received between the first and second elongated members and having a linear extent less than the linear extents of the first and second elongated members.
In yet another aspect, a method is provided for assembling a structure in vivo between two body tissue layers comprising first and second elongated members, an augmenting elongated member, and a locking member secured to one of the elongated members at a first location. The method includes delivering the first and second elongated members toward a location between two body tissue layers in a generally linear configuration to define at least a portion of a structure having a dimensional aspect in a direction extending generally from one of the body tissue layers to the other body tissue layer. The configurations of the first and second elongated members is changed to a generally less linear configuration. The augmenting elongated member is inserted between and in contact with the first and second elongated members to spread the first and second elongated members apart to increase the dimensional aspect of at least a portion of the structure. The locking member is secured to one of the elongated members at a second location to lock the first and second elongated members in the generally less linear configuration.
The embodiments disclosed herein are for the purpose of providing a description of the present subject matter, and it is understood that the subject matter may be embodied in various other forms and combinations not shown in detail. Therefore, specific embodiments and features disclosed herein are not to be interpreted as limiting the subject matter as defined in the accompanying claims.
The devices and methods of the present invention provide multiple features of distraction devices, distraction device support structures and deployment systems that can be used to actively separate tissue layers by engaging them and forcing them apart, or to support the separation of tissue layers separated by the distraction device itself or by other devices or processes or a combination of these.
As used herein, the terms “distraction device” and “support structure” are intended to have a general meaning and is not limited to devices that only actively separate tissue layers, only support tissue layers or only both actively separate and support tissue layers. For example, the distraction device and support structure in general can be used to actively separate layers of tissue and then be removed after such separation, or the distraction device and the support structure could be used to support layers of tissue that have been previously separated by a different device. Alternatively, the distraction device and support structure can be used to actively separate the layers of tissue and remain in place to support the layers of tissue in order to maintain such separation. Unless more specifically set forth in the claims, as used herein, “distraction device” and “support structure” encompass any and all of these. In addition, it should be noted that the references to “first” and “second” members or devices are for convenience in the written description. They may be combined to provide a single distraction assembly or structure of selected distraction height, and the assembly is not limited to any particular number of “devices” or “members.” In keeping with the broader aspects of the present invention the specific number of “devices” or “members” can be varied according to the intended usage or design considerations.
It should also be understood that various embodiments of the device, system and method of the present invention are illustrated for purposes of explanation in vertebral fusion procedures and/or replacement of removed discs. However, in its broader aspects, the various features of the present invention are not limited to these particular applications and may be used in connection with other tissue layers, such as soft tissue layers, although it has particular utility and benefit in treatment of vertebral conditions within intervertebral discs or disc spaces.
One embodiment of a distraction device or support structure or implant 10 is shown in
Elongated members according to the present disclosure may be manufactured using a number of techniques, including machining or milling techniques. Milling can include cutting elongated members from solid blocks or rods of PEEK or other suitable material. Elongated members may also be manufactured using molding techniques. Molding techniques include co-molding various materials together to form an elongated member, as well as molding a second material over a first material. Elongated members may also be manufactured by injection molding or extrusion processes. In addition, the elongated members of the present invention may be manufactured with electrical discharge machining processes and by rapid prototyping methods including fused deposition modeling (FDM) and stereo lithography (SLA) techniques.
Preferably, the elongated members which form the distraction device 10 have a generally linear configuration for insertion into tissue or between tissue layers.
When deployed into or between tissue, the elongated members change configuration, preferably by flexing or bending, to a generally less linear configuration to define the distraction device or support structure 10. In a preferred embodiment, which is shown in
In some embodiments, the elongated members may also be designed with additional features that limit or control the nature of the bending or shape change that the elongated members may experience. For example,
Additional features may be added to enhance or limit the flexibility of the elongated members of the distraction devices, including grooves, slots, channels, and pockets and teeth or other extensions or members of various shapes. The slots, grooves, channels, and pockets may be placed, for example, in a linear pattern or spirally around the body of the elongated member. Through holes or apertures may also assist in providing flexibility as well as serve as lumens for various wires or filaments, as will be discussed in greater detail. The placement of a greater number of these features in one region of an elongated member can make that region more or less flexible than other regions of the device with fewer or different flexibility enhancing or limiting features. In this manner, selected regions of the elongated member will be easier or more difficult to bend or deflect to assist the shaping of the distraction device 10 in a desired configuration, such as a circular, rectangular, or oval shape. Alternatively, the flexibility features can be located uniformly along a segment or the whole of the elongated member to provide regions of uniform flexibility.
Flexibility of the elongated members may also be achieved or varied by fabricating the device from a combination of materials with different degrees of flexibility. For instance, by located more rigid material on one side of an elongated member, the elongated member may be easier to bend or deflect toward that side. Particularly, if the elongated member is preformed into a desired in situ configuration (e.g., a curved configuration) and temporarily straightened for insertion, the more rigid material may tend to retain the desired configuration to a greater degree than the other material and form the desired configuration when the elongated member is introduced into the work space. Also, the elongated member can have alternating or different sections along its length that are made of different materials having different rigidity.
In another aspect of the present disclosure, the elongated members preferably have the ability to recover from temporary deformation. As noted previously, the elongated member(s) may be pre-set or pre-formed into a desired in situ shape and then temporarily reshaped, such as by straightening, for insertion. In this aspect, for instance, a pre-shaped elongated member may tend to recover its shape more quickly or completely in body-temperature spinal tissue after being in a less-curved condition during shipping and storage inside of a deployment cannula. In other embodiments, due to plastic creep or other material characteristics, the elongated members may not recover their original shape after extended deformation in the cannula, and an external force may be used to shape the elongated member after it is at least partially inserted into the work space.
In a specific example, elongated members manufactured from polymeric materials such as PEEK may be pre-shaped by placing the elongated member in a metal fixture or jig having a desired shape, such as an annular or arcuate shape, and then heating the elongated member to relieve the bending stress. For instance, the elongated member can be treated for about 5 minutes at about 160° C. For many polymeric materials, such as PEEK, the pre-shaping process biases the elongated member toward a desired shape yet still allows the elongated member to be deformed either in the cannula or in situ after the elongated member is inserted into a work space. In some embodiments, such as where the elongated members are comprised at least in part of PEEK, the elongated members do not have shape memory material properties. Consequently, in some embodiments, particularly when PEEK is used, the elongated member does not return to its original shape without the additional application of an external force to shape the member. Such external force may be applied, for example, by a pull wire, as will be described in more detail.
In some embodiments, the deformation of the elongated members is constrained in a first axis and allowed in a plane at an angle to the first axis to allow deflection in a different plane. For instance, in
Looking more particularly at the augmenting elongated member 16, it is configured to be inserted and slid between the first and second elongated members 12 and 14 to increase the height of or otherwise augment the distraction device 10. The degree of height increase of the distraction device 10 is dependent upon the height of the augmenting elongated member 16. For instance, a thicker augmenting elongated member (i.e., an augmenting elongated member having a relatively great height) will cause a greater increase in the height of the distraction device than a thinner augmenting elongated member (i.e., an augmenting elongated member having a relatively small height). In embodiments inserted into the disc space to distract adjacent vertebral bodies, the height of the distraction device 10 (which is generally equal to the combined heights of the bodies of the constituent elongated members) is preferably sufficient to restore the disc to its normal height or thereabout, which will depend on the size of the patient and the disc's location in the spinal column. The height of the distraction device 10 can be, for example, from about 5 mm to about 15 mm. More particularly, the height can be from about 7.5 mm to about 13.5 mm, or about 9 mm to about 12 mm and ranges therein. For relatively short individuals or children, the disc size and, consequently, the height of the support structure can be, for example, from about 5 mm to about 7 mm. For relatively tall individuals, the disc height and, consequently, the height of the support structure can be, for example, from about 9 mm to about 15 mm or greater potentially. In other applications, the dimensions (including the heights) of the individual elongated members and the resulting distraction device may vary without departing from the scope of the present disclosure.
In one embodiment, the thickness of the augmenting elongated member can be different along its length to cause different amounts of additional distraction along the length of the distraction device. For instance, the proximal portion of the augmenting member may be thicker (taller) than the distal portion of the augmenting member, in which case the increase in the height of the proximal portion of the distraction device will be greater than the augmentation in the height of the distal portion of the device. The ability to create a greater increase in height in one region of a distraction device allows for adjustments in the curvature of the spine of a patient. For instance, a collapsed disc in the lumbar region of the spine can result in the loss of the normal lordosis in the lumbar region of the spine. The insertion of an augmenting elongated member of variable thickness/height between upper and lower elongated members deployed in a collapsed lumbar disc can restore the lumbar disc to the more normal morphology of a greater height on its anterior region as compared to its posterior region. In such a situation, the augmenting member may have a greater height at its central region between the distal and proximal ends than at either the proximal end or distal end.
Preferably, once augmented, the height of the distraction device 10 is fixed and is not adjustable or variable, while the augmenting member 16 is preferably fixed in position between the first and second elongated members 12 and 14 and not removable. The first and second elongated members 12 and 14 may have corresponding contoured surfaces or features that mechanically or frictionally cooperate or mate to assist in maintaining the positions of the first and second elongated members 12 and 14 relative to each other and within a work space to increase the stability of the distraction device 10. For example, in one embodiment, the upper surface 22 of the second elongated element 14 (as shown in greater detail in
The top side or surface 40 of the first elongated member 12 may contain a contoured portion 42 (
As shown in
In a preferred embodiment, the raised ribs 48 and 50 and grooves 42 and 46 are configured to prevent vertical separation of the elongated members. For example, the illustrated raised ribs 48 and 50 are generally T-shaped, while the grooves 42 and 46 have relatively narrow necked-down portions 58. As the augmenting elongated member 16 is inserted between the first and second elongated members 12 and 14, the relatively wide heads 60 of the raised ribs 48 and 50 are received by the grooves 42 and 46, with the necked-down portions 58 positioned between the wide heads 60 and the body of the augmenting elongated member 16. By such a configuration, the rib heads 60 and the necked-down portions 58 of the grooves 42 and 46 prevent the elongated members from being vertically separated after at least partial insertion of the augmenting elongated member 16 between the first and second elongated members 12 and 14. This locking mechanism may assist in preventing the elongated members from slipping relative to one another in response to the stresses a patient's normal movements place on the implant 10.
The guiding of the locking protrusions 64 into the recesses 62 may be assisted by locating them along the contoured surfaces of the associated elongated member. As seen in
As illustrated, the locking protrusions 64 may be cylindrically shaped, but it may be otherwise shaped without departing from the scope of the present disclosure. If provided as a cylinder, the diameter of the locking protrusion 64 may be greater than the width of the associated raised rib 48, 50 (
The locking protrusions 64 may be any suitable size or material, such as cylinders or pins made of a radiopaque material (e.g., tantalum or gold or platinum) with a diameter ranging from about 0.25 mm to about 2 mm. By providing the locking protrusions 64 as radiopaque members, they assist the surgeon in positioning the elongated members in situ. For a similar effect, the interlocking recesses 62 may be lined with tantalum or another radiopaque material. In other embodiments, other portions of the elongated members may be radiopaque to further assist in determining the locations of the elongated members in situ. In one exemplary embodiment, the elongated members are manufactured from radiolucent materials, such as PEEK (which may be a preferred material), polyetherketoneketone (PEKK), nylon and ultrahigh molecular weight polyethylenes (UMPE). By providing discrete radiopaque regions or markers in known locations within the elongated members, the surgeon may determine the locations and relative orientations of the elongated members in situ.
In addition to the foregoing features, the elongated members may further include internal cavities or passages or lumen for receiving various wires or filaments. For example, as described above, the shape of the distraction device 10 may be assisted, controlled, and/or adjusted as the elongated members are being deployed between the tissues to be distracted. The forces required to control the shape of the elongated members are preferably compatible with typical hand-held delivery systems and tools. For instance, the shape of an elongated member may be controlled with pull wire systems deployed either inside the elongated member and/or outside the elongated member. In the illustrated embodiment, the shape of the first and second elongated members 12 and 14 is controlled during insertion by applying a greater force to one side of the elongated members than is applied to the other side using a pull wire 74 (
In the embodiment of
In systems such as the one illustrated in
In other embodiments, including the illustrated embodiment, a separate mechanism may be provided to maintain the position of the first and second elongated members 12 and 14 with respect to the deployment cannula 82 while the augmenting elongated member 16 is inserted therebetween. As shown in
The anchor wires 84 may provide little resistance to the deployment of the first and second elongated members 12 and 14, permitting the first and second elongated members 12 and 14 to exit the distal end 80 of the deployment cannula 82. The length and tension of the anchor wires 84 are adjustable to provide increased tension after the first and second elongated members 12 and 14 have exited the cannula 82. The anchor wires 84 keep the first and second elongated members 12 and 14 in close proximity to the distal end 80 of the cannula 82, thereby allowing the insertion of the augmenting elongated member 16 between the first and second elongated members 12 and 14 without having to increase the tension on the pull wire 74. This may be advantageous, as applying excessive tension to the pull wire 74 may move the first and second elongated members 12 and 14 to an undesirable curved configuration during insertion of the augmenting elongated member 16 therebetween.
After the implant 10 has been deployed and properly positioned, the anchor wires 84 may be detached from the first and second elongated members 12 and 14. In one embodiment, after the pull wire 84 has been removed from the implant 10 (e.g., by cutting it and applying a proximally directed force to both of its ends), a distally directed force may be applied to the implant 10 (e.g., pushing the implant 10 approximately 2 mm further from its deployed position) while the tension in the anchor wires 84 is maintained. Doing so effectively increases the tension on the anchor wires 84, which increased tension will cause the enlarged ends 88 of the anchor wires 84 to enter (
As shown in
As noted above, the augmenting elongated member 16 may include a locking feature or mechanism or member in the form of a locking wire or cable or tether or filament 18, which is illustrated in
An interior passage or lumen or cavity 104 communicates with the interior cavity 100, with the locking member 18 extending distally from the fixed end 94 through the interior passage 104. The interior passage 104 leads to the distal end 56 of the augmenting elongated member 16, where the locking member 18 exits the augmenting elongated member 16 and loops back toward the proximal end 98 of the augmenting elongated member 16, as shown in
At or adjacent to the proximal end 98 of the augmenting elongated member 16, the locking member 18 reenters the interior of the augmenting elongated member 16 from the lateral groove 106 via a bore 110 extending from one lateral side of the augmenting elongated member 16 toward the other lateral side, as shown in
In the illustrated embodiment, the bore 110 causes the locking member 18 to reenter the interior cavity 100 of the augmenting elongated member 16 in a region directly adjacent to the spacer 102, but separated from the fixed end 94 of the locking member 18 by the spacer 102. This portion of the locking member 18 extends along the width of the spacer 102 until it reaches a longitudinally extending bore 112 that communicates with the laterally extending bore 110, as best shown in
The proximal end 98 of the illustrated augmenting elongated member 16 also includes a fastener 114 (e.g., a set screw) positioned within a longitudinal fastener bore 116 in communication with the spacer 102, with a portion of the free end 96 of the locking member 18 positioned between the fastener 114 and the spacer 102. The fastener 114 extends between an outer end 118 and an inner end 120 (
The inner end 120 of the fastener 114 is configured to have a cutting or shearing surface that severs the locking member 18 when brought into contact therewith with sufficient force. In the illustrated embodiment, the spacer 102 includes a retaining surface 122 and a cutting surface 124 facing the fastener 114 and separated by a step, with the cutting surface 124 positioned adjacent to and proximal of the retaining surface 122 (i.e., closer to the fastener 114), as shown in
By so securing the locking member 18 to the augmenting elongated member 16 at two locations (both of which are at or adjacent to the proximal end 98 of the augmenting elongated member 16 in the illustrated embodiment), the locking member 18 prevents the configuration of the augmenting elongated member 16 from changing. Locking the augmenting elongated member 16 into a particular configuration also effectively locks the first and second elongated members 12 and 14 (as well as the distraction device 10) into their current configuration, due to the locking relationship between the various elongated members, as described above. Preferably, the distraction device 10 is shaped into its final configuration prior to the fastener 114 locking the locking member 18 in place, thereby locking the distraction device 10 in its final configuration for long-term residence within the work space, as will be described in greater detail herein.
While the locking member 18 is described and illustrated as being associated with and secured to the augmenting elongated member 16, it should be understood that the locking member 18 may be associated with one of the other elongated members 12 and 14 and secured to multiple locations of either to lock the distraction device 10 in a particular configuration. Furthermore, it is also within the scope of the present disclosure for a plurality of similarly or differently configured locking members to be provided and associated with one or more of the elongated members. Additionally, rather than the locking member 18 being secured at multiple locations to an individual elongated member, it is also within the scope of the present disclosure for the locking member 18 to be secured at one location of one of the elongated members and at a second location of one of the other elongated members. For example, the locking member 18 may be secured to the augmenting elongated member 16 at a fixed end 94 and extend from the proximal end 98 of the augmenting elongated member 16 to exit the distal end 56 of the augmenting elongated member 16, as described above. After exiting the distal end 56 of the augmenting elongated member 16, the free end 96 of the locking member 18 may be secured to one of the other elongated members by any suitable means, rather than being secured at a second location of the augmenting elongated member 16. It should be understood that so securing the locking member 18 at separate locations of different elongated members will have a similar effect to securing the locking member 18 to separate locations of the same elongated member, in that the resulting distraction device 10 will be locked into a particular configuration.
The wires or cables or filaments or tethers described herein may consist of materials suitable for sterilization and compatible for temporary contact with animal, including human tissue. Metal wires may be made from stainless steel, Nitinol, or other suitable metal wires, for example. Non-metal wires may be made from natural fibers and polymeric fibers including polyethylene, UHPE, Victrex, PET, or similar medical-grade polymers.
Tensile forces may be applied to the wires or cables or filaments or lines described herein by any suitable source. In a preferred embodiment, the tensile forces are applied via a delivery device 126 (
In the illustrated embodiment, the free ends of the various lines pass through the deployment cannula 82 to be attached to various attachment points located within the delivery device 126. The lines may be attached to the delivery device 126 by any of a number of suitable means, including releasable mechanical features such as screws, clamps, crimps, and ferrules and other like means. The lines may also be attached by knotting, gluing or pinching them to the delivery device 126.
In the illustrated embodiment, the pull wire 74 is associated with a slider 128 that is received within a central opening or cavity 130 of the delivery device 126 that is substantially coaxial with the deployment cannula 82. The slider 128 is movable along the longitudinal axis of the delivery device 126 within the central cavity 130 to adjust the tension in the pull wire 74, thereby adjusting the curvature of the first and second elongated members 12 and 14, as described above. In the illustrated embodiment, the outer surface of the slider 128 is threaded to engage threads of the central cavity 130, such that rotation of the slider 128 about its central axis will advance it proximally and distally through the central cavity 130. It is also within the scope of the present disclosure for the slider 128 to move with respect to the remainder of the delivery device 126 without rotating (e.g., by translational movement). If the slider 128 is configured to rotate while moving through the central cavity 130, an insertion knob 132 may be associated with the slider 128 and extend outside of the central cavity 130 to be rotated in order to rotate and move the slider 128 through the central cavity 130.
In the illustrated embodiment, the anchor wires 84 are associated with a capstan or spool or spindle 134, with the capstan 134 controlling the tension on the anchor wires 84. The capstan 134 may also limit the total amount of line released to hold the deployed first and second elongated members 12 and 14 at the desired location in close proximity to the distal end 80 of the cannula 82. The tension in the anchor wires 84 may also be controlled by other means such as springs, resilient means, sliding mechanisms, rotating mechanisms, moving mechanisms, pulleys, stretchable lines and the like.
The free end 96 of the locking member 18 may also be adjustably secured to a rotary mechanism (similar to the pull wire 74 and the anchor wires 84) or to a non-rotational component of the delivery device 126 or may extend through the delivery device 126 without being secured thereto.
As described above, after the distraction device 10 has been deployed, the pull wire 74 may be severed and removed. In the illustrated embodiment, the delivery device 126 includes a shearing assembly 136 (
A tool kit may include a number of related components and tools (illustrated in
Optionally, all or a portion of the nucleus pulposus is removed and the endplates of the adjacent vertebrae are scraped to cause bleeding and promote the fusion of bone graft material to the vertebral endplates. Sizing paddles 148, 150 (
When the appropriate deployment cannula 82 and distraction device 10 have been selected, a distal end 80 of the deployment cannula 82 is advanced through the access port and into the disc space (
Because the first and second elongated members 12 and 14 together clear the minimum disc height, they can be pushed out of the deployment cannula 82 and into the disc space easily using the delivery device 126 or the like. For delivery, the physician begins to push in the first and second elongated members 12 and 14 simultaneously out of the cannula 82 little by little, for example by using a pusher or plunger or other suitable actuating means, such as a rotary actuator. Between pushes, the physician may check the curvature of the partially inserted first and second elongated members 12 and 14 (
By the time the first and second elongated members 12 and 14 are entirely out of the cannula 82 and within the disc space, the distal or leading ends 28 and 24 of the first and second elongated members 12 and 14 may be adjacent to and/or in contact with the proximal ends 52 and 54 of the first and second elongated members 12 and 14. If not, additional tension may be applied to the pull wire 74 until the distal or leading end 28 and 24 of the first and second elongated members 12 and 14 are adjacent to and/or in contact with the proximal ends 52 and 54 of the first and second elongated member 12 and 14. As shown in
With the first and second elongated members 12 and 14 fully deployed from the cannula 82 and in the generally annular configuration of
When first advanced out of the cannula 82, the augmenting elongated member 16 begins to wedge itself in between the first and second elongated members 12 and 14. Depending on the thickness (height) of the augmenting elongated member 16, some slack may need to be given at this point to the pull wire 74 and/or the anchor wires 84 to allow them to separate in a vertical direction (i.e., in a direction between the surfaces to be distracted or along the axis of the spine or the direction of distraction) to allow further advancement of the augmenting elongated member 16.
Once the physician confirms that the tip of the augmenting elongated member 16 is wedged securely and the raised ribs 48 and 50 and associated grooves 42 and 46 (if provided) of the three elongated members are engaged, the augmenting elongated member 16 is advanced slowly while checking for changes in the curvature of the distraction device 10. As before, the curvature can be adjusted in real time using the pull wire 74. In a preferred embodiment, the curvature may be adjusted automatically by developing tension in the pull wire 74 via a screw or rotational mechanism incorporated into or associated with the slider 128. The augmenting elongated member 16 is preferably pushed in all the way until its back face is flush with the back faces of the first and second elongated members 12 and 14 (
The physician then makes a final check of the implant placement and desired distraction. If satisfied, the physician detaches the pull wire 74 and anchor wires 84 from the implant 10 (as described above) and may remove the cannula 82 and associated delivery device 126. Even with the pull wire 74 detached from the implant 10, the reaction force applied to the implant 10 by the tissues being distracted should be sufficient to maintain the implant 10 in the illustrated generally annular configuration.
As shown in
The locking member 18, as described above, may separate from the lateral groove 106 in which it sits during (or after) insertion of the augmenting elongated member 16 to extend through the open interior or resident volume 108 defined by the implant 10. At this point, it may be advantageous for the locking member 18 to not be fully tensioned, otherwise it may obstruct the window 158, as shown in
As shown in
When the desired amount of bone graft material or bone filler material 156 has been introduced into the resident volume 108, the physician withdraws the funnel 152 and then applies a proximally directed force to the free end 96 of the locking member 18 (
The free end 96 of the locking member 18 being secured and severed, the severed portion may be removed from the disc space, along with the driver device 160, leaving only the fully deployed implant 10 in the disc space, as shown in
It should be understood that the above-described elongated members, distraction device, deployment tools, and methods are merely exemplary. For example,
In other embodiments, a separate fastener or fixture is not required to maintain the elongated member or distraction device in a generally annular configuration. For example,
It will be understood that the embodiments described above are illustrative of some of the applications of the principles of the present subject matter. Numerous modifications may be made by those skilled in the art without departing from the spirit and scope of the claimed subject matter, including those combinations of features that are individually disclosed or claimed herein. For these reasons, the scope hereof is not limited to the above description but is as set forth in the following claims, and it is understood that claims may be directed to the features hereof, including as combinations of features that are individually disclosed or claimed herein.
Lee, James, Emery, Jeffrey L., McGrath, Timothy, Schaller, Laurent, Huffmaster, Andrew, Quddus, Ebrahim Mohammad
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10022243, | Feb 06 2015 | SPINAL ELEMENTS, INC | Graft material injector system and method |
10231843, | Mar 14 2013 | SPINAL ELEMENTS, INC | Spinal fusion implants and devices and methods for deploying such implants |
10258228, | Aug 08 2014 | K2M, INC | Retraction devices, systems, and methods for minimally invasive spinal surgery |
10285821, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
10314605, | Jul 08 2014 | SPINAL ELEMENTS, INC | Apparatus and methods for disrupting intervertebral disc tissue |
10426629, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
10575963, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
10709577, | Feb 06 2015 | SPINAL ELEMENTS, INC | Graft material injector system and method |
10758286, | Mar 22 2017 | SPINAL ELEMENTS, INC | Minimal impact access system to disc space |
11224453, | Jul 08 2014 | SPINAL ELEMENTS, INC | Apparatus and methods for disrupting intervertebral disc tissue |
11298043, | Aug 30 2016 | The Regents of the University of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
11471145, | Mar 16 2018 | SPINAL ELEMENTS, INC | Articulated instrumentation and methods of using the same |
11564811, | Feb 06 2015 | SPINAL ELEMENTS, INC | Graft material injector system and method |
11583327, | Jan 29 2018 | SPINAL ELEMENTS, INC | Minimally invasive interbody fusion |
2002021, | |||
3807390, | |||
4846175, | Dec 18 1986 | ERINTRUD FRIMBERGER, A CORP OF WEST GERMANY | Probe for introduction into the human or animal body, in particular a papillotome |
4862891, | Mar 14 1988 | FARRELL, EDWARD M | Device for sequential percutaneous dilation |
4863476, | Aug 29 1986 | ZIMMER TECHNOLOGY, INC | Spinal implant |
4898161, | Dec 12 1986 | Eska Medical GmbH & Co | Forceps for pushing apart vertebrae |
5059193, | Nov 20 1989 | ZIMMER SPINE, INC | Expandable spinal implant and surgical method |
5129889, | Nov 03 1987 | Synthetic absorbable epidural catheter | |
5192327, | Mar 22 1991 | DEPUY ACROMED, INC | Surgical prosthetic implant for vertebrae |
5201742, | Apr 16 1991 | Support jig for a surgical instrument | |
5219358, | Aug 29 1991 | Ethicon, Inc. | Shape memory effect surgical needles |
5267994, | Feb 10 1992 | Conmed Corporation | Electrosurgical probe |
5306310, | Aug 27 1991 | SDGI Holdings, Inc | Vertebral prosthesis |
5342394, | May 16 1990 | Olympus Optical Co., Ltd. | Apparatus for blocking a vein branch and method of blocking a vein branch |
5345945, | Aug 29 1990 | Advanced Cardiovascular Systems, INC | Dual coil guidewire with radiopaque distal tip |
5366490, | Aug 12 1992 | VIDAMED, INC , A DELAWARE CORPORATION | Medical probe device and method |
5374267, | Feb 17 1992 | ACROMED B V | Device for fixing at least a part of the human cervical and/or thoracic vertebral column |
5383884, | Dec 04 1992 | AHN, SAMUEL S | Spinal disc surgical instrument |
5397304, | Apr 10 1992 | Medtronic CardioRhythm | Shapable handle for steerable electrode catheter |
5397364, | Oct 12 1993 | SDGI Holdings, Inc | Anterior interbody fusion device |
5423806, | Oct 01 1993 | Medtronic, Inc.; Medtronic, Inc | Laser extractor for an implanted object |
5433739, | Nov 02 1993 | Covidien AG; TYCO HEALTHCARE GROUP AG | Method and apparatus for heating an intervertebral disc for relief of back pain |
5445639, | May 10 1989 | ZIMMER SPINE, INC | Intervertebral reamer construction |
5470043, | May 26 1994 | LOCKHEED IDAHO TECHNOLOGIES CO | Magnetic latching solenoid |
5487757, | Jul 20 1993 | Medtronic CardioRhythm | Multicurve deflectable catheter |
5500012, | Jul 15 1992 | LIGHTWAVE ABLATIOIN SYSTEMS | Ablation catheter system |
5540696, | Jan 06 1995 | ZIMMER, INC | Instrumentation for use in orthopaedic surgery |
5549679, | May 20 1994 | SPINEOLOGY, INC | Expandable fabric implant for stabilizing the spinal motion segment |
5554163, | Apr 27 1995 | CARDIOVASCULAR SYSTEMS, INC | Atherectomy device |
5571147, | Nov 02 1993 | Covidien AG; TYCO HEALTHCARE GROUP AG | Thermal denervation of an intervertebral disc for relief of back pain |
5571189, | May 20 1994 | SPINEOLOGY, INC | Expandable fabric implant for stabilizing the spinal motion segment |
5599346, | Nov 08 1993 | AngioDynamics, Inc | RF treatment system |
5697909, | May 10 1994 | Arthrocare Corporation | Methods and apparatus for surgical cutting |
5716416, | Sep 10 1996 | Artificial intervertebral disk and method for implanting the same | |
5718707, | Jan 22 1997 | Method and apparatus for positioning and compacting bone graft | |
5755661, | Jun 17 1993 | Planar abdominal wall retractor for laparoscopic surgery | |
5755732, | Mar 16 1994 | United States Surgical Corporation | Surgical instruments useful for endoscopic spinal procedures |
5755797, | Apr 21 1993 | Sulzer Medizinaltechnik AG | Intervertebral prosthesis and a process for implanting such a prosthesis |
5782832, | Oct 01 1996 | HOWMEDICA OSTEONICS CORP | Spinal fusion implant and method of insertion thereof |
5788713, | Jul 22 1994 | University of Washington | Method and apparatus for stereotactic implantation |
5851214, | Oct 07 1994 | United States Surgical Corporation | Surgical instrument useful for endoscopic procedures |
5865809, | Apr 29 1997 | RXTROCAR, LTD | Apparatus and method for securing a cannula of a trocar assembly to a body of a patient |
5871501, | Jun 07 1995 | ST JUDE MEDICAL, INC | Guide wire with releasable barb anchor |
5885217, | Jan 20 1995 | Mozarc Medical US LLC | Catheter introducer |
5916166, | Nov 19 1996 | SciMed Life Systems, INC | Medical guidewire with fully hardened core |
5919235, | Sep 30 1996 | Sulzer Orthopaedie AG | Intervertebral prosthesis |
5980471, | Oct 10 1997 | Advanced Cardiovascular Systems, INC | Guidewire with tubular connector |
5980504, | Oct 23 1996 | NEUROTHERM, INC | Method for manipulating tissue of an intervertebral disc |
6007570, | Oct 23 1996 | NEUROTHERM, INC | Apparatus with functional element for performing function upon intervertebral discs |
6019765, | May 06 1998 | DePuy Orthopaedics, Inc | Morsellized bone allograft applicator device |
6039761, | Feb 12 1997 | LI MEDICAL TECHNOLOGIES, INC | Intervertebral spacer and tool and method for emplacement thereof |
6059829, | Mar 08 1995 | Synthes USA, LLC | Intervertebral implant |
6099514, | Oct 23 1996 | NEUROTHERM, INC | Method and apparatus for delivering or removing material from the interior of an intervertebral disc |
6126660, | Jul 29 1998 | SOFAMOR DANEK HOLDINGS, INC | Spinal compression and distraction devices and surgical methods |
6126682, | Oct 23 1996 | NEUROTHERM, INC | Method for treating annular fissures in intervertebral discs |
6183517, | Dec 16 1998 | ZIMMER SPINE, INC | Expandable intervertebral fusion implant and applicator |
6224630, | May 29 1998 | DISC DYNAMICS, INC | Implantable tissue repair device |
6228022, | Oct 28 1998 | Warsaw Orthopedic, Inc | Methods and instruments for spinal surgery |
6231609, | Jul 09 1998 | Disc replacement prosthesis | |
6245072, | Mar 27 1995 | Warsaw Orthopedic, Inc | Methods and instruments for interbody fusion |
6245107, | May 28 1999 | Anova Corporation | Methods and apparatus for treating disc herniation |
6277112, | Jul 18 1996 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
6332895, | Mar 08 2000 | ZIMMER SPINE, INC | Expandable intervertebral fusion implant having improved stability |
6375635, | May 18 1999 | HYDROCISION, INC | Fluid jet surgical instruments |
6375682, | Aug 06 2001 | X-Pantu-Flex DRD Limited Liability Company | Collapsible, rotatable and expandable spinal hydraulic prosthetic device |
6387130, | Apr 16 1999 | NuVasive, Inc | Segmented linked intervertebral implant systems |
6409766, | Jul 30 1998 | Trinity Orthopedics, LLC | Collapsible and expandable interbody fusion device |
6419704, | Oct 08 1999 | ANOVA CORP | Artificial intervertebral disc replacement methods and apparatus |
6436142, | Dec 14 1998 | Phoenix Biomedical Corp. | System for stabilizing the vertebral column including deployment instruments and variable expansion inserts therefor |
6454806, | Jul 26 1999 | EAST COAST MEDICAL & DENTAL DEVICES, INC | Spinal surgical prosthesis |
6468270, | Jun 07 1995 | ArthoCare Corporation | System and method for electrosurgical treatment of intervertebral discs |
6488710, | Jul 02 1999 | Reinforced expandable cage and method of deploying | |
6491690, | Jul 18 1997 | Cinetic Landis Grinding Limited | Electrosurgical instrument |
6500205, | Apr 19 2000 | Warsaw Orthopedic, Inc | Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion |
6530926, | Aug 01 2000 | ZIMMER SPINE, INC | Method of securing vertebrae |
6551319, | Nov 08 2000 | CLEVELAND CLINIC FOUNDATION, THE | Apparatus for implantation into bone |
6554833, | Oct 26 1998 | EXPANDING ORTHOPEDICS INC | Expandable orthopedic device |
6558383, | Feb 16 2000 | Covidien AG; TYCO HEALTHCARE GROUP AG | Inert gas inhanced electrosurgical apparatus |
6558386, | Feb 16 2000 | MIS IP HOLDINGS LLC | Axial spinal implant and method and apparatus for implanting an axial spinal implant within the vertebrae of the spine |
6558390, | Feb 16 2000 | MIS IP HOLDINGS LLC | Methods and apparatus for performing therapeutic procedures in the spine |
6562033, | Apr 09 2001 | CITIBANK, N A | Intradiscal lesioning apparatus |
6582431, | Feb 06 1997 | HOWMEDICA OSTEONICS CORP | Expandable non-threaded spinal fusion device |
6592625, | Oct 20 1999 | KRT INVESTORS, INC | Spinal disc annulus reconstruction method and spinal disc annulus stent |
6595998, | Jun 01 2001 | SPINE WAVE INC ; SPINE WAVE, INC | Tissue distraction device |
6602248, | Jun 07 1995 | Arthro Care Corp. | Methods for repairing damaged intervertebral discs |
6607505, | Dec 19 1996 | EP Technologies, Inc. | Catheter distal assembly with pull wires |
6607530, | May 10 1999 | K2M, INC | Systems and methods for spinal fixation |
6620196, | Aug 30 2000 | Warsaw Orthopedic, Inc | Intervertebral disc nucleus implants and methods |
6656178, | Jul 28 1999 | Urquhart-Dykes & Lord | Vertebral-column fusion devices and surgical methods |
6670505, | Mar 07 2000 | Eastman Chemical Company | Process for the recovery of organic acids from aqueous solutions |
6676665, | Aug 11 2000 | ORTHOPHOENIX, LLC | Surgical instrumentation and method for treatment of the spine |
6714822, | Apr 30 1998 | Medtronic, Inc. | Apparatus and method for expanding a stimulation lead body in situ |
6726684, | Jul 16 1996 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
6733496, | Jun 06 2001 | NEUROTHERM, INC | Intervertebral disc device employing flexible probe |
6749605, | Oct 23 1996 | NEUROTHERM, INC | Catheter for delivery of energy to a surgical site |
6764491, | Oct 21 1999 | Warsaw Orthopedic, Inc | Devices and techniques for a posterior lateral disc space approach |
6767347, | Oct 23 1996 | NEUROTHERM, INC | Catheter for delivery of energy to a surgical site |
6773432, | Oct 14 1999 | Applied Medical Resources Corporation | Electrosurgical snare |
6821276, | Aug 18 2000 | INTRINSIC THERAPEUTICS, INC | Intervertebral diagnostic and manipulation device |
6830570, | Oct 21 1999 | Warsaw Orthopedic, Inc | Devices and techniques for a posterior lateral disc space approach |
6878155, | Feb 25 2000 | NEUROTHERM, INC | Method of treating intervertebral disc tissue employing attachment mechanism |
6923811, | May 10 1999 | K2M, INC | Systems and methods for spinal fixation |
6939351, | Jan 17 2002 | SPINAL ELEMENTS, INC | Diskectomy instrument and method |
6953458, | Dec 20 2002 | TRIMEDYNE, INC | Device and method for delivery of long wavelength laser energy to a tissue site |
6964667, | Jun 23 2000 | Warsaw Orthopedic, Inc | Formed in place fixation system with thermal acceleration |
6976949, | Oct 11 2002 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Treatment of spinal metastases |
7004970, | Oct 20 1999 | KRT INVESTORS, INC | Methods and devices for spinal disc annulus reconstruction and repair |
7008432, | Dec 10 1999 | Synthes USA, LLC | Device for distracting or compressing bones on bone fragments |
7025765, | Mar 31 2000 | AngioDynamics, Inc | Tissue biopsy and treatment apparatus and method |
7052516, | Oct 20 1999 | KRT INVESTORS, INC | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
7056321, | Aug 01 2000 | ZIMMER SPINE, INC | Method of securing vertebrae |
7069087, | Feb 25 2000 | NEUROTHERM, INC | Apparatus and method for accessing and performing a function within an intervertebral disc |
7087055, | Jun 25 2002 | Warsaw Orthopedic, Inc | Minimally invasive expanding spacer and method |
7087058, | Feb 16 2000 | MIS IP HOLDINGS LLC | Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae |
7114501, | Aug 14 2000 | SPINE WAVE, INC | Transverse cavity device and method |
7124761, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Deployment devices and methods for vertebral disc augmentation |
7144397, | Aug 18 2000 | Intrinsic Therapeutics, Inc. | Minimally invasive system for manipulating intervertebral disc tissue |
7179225, | Aug 26 2003 | ZIMMER BIOMET SPINE, INC | Access systems and methods for minimally invasive surgery |
7204853, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Artificial functional spinal unit assemblies |
7211055, | Jan 15 2002 | REGENTS OF THE UNIVERSITY OF CALIFORNIA,THE | System and method providing directional ultrasound therapy to skeletal joints |
7241297, | Nov 08 2002 | Warsaw Orthopedic, Inc | Transpedicular intervertebral disk access methods and devices |
7252686, | Aug 13 2003 | Boston Scientific Scimed, Inc | Methods for reducing bone compression fractures using wedges |
7267687, | Oct 02 2001 | Rex Medical, L.P | Spinal implant and method of use |
7282020, | Apr 24 2001 | Microspherix LLC | Deflectable implantation device and method of use |
7309336, | Oct 23 1996 | NEUROTHERM, INC | Catheter for delivery of energy to a surgical site |
7318823, | Jun 07 1995 | Arthrocare Corporation | Methods for repairing damaged intervertebral discs |
7318826, | Nov 08 2002 | Warsaw Orthopedic, Inc | Transpedicular intervertebral disk access methods and devices |
7322962, | Apr 23 2004 | Device and method for treatment of intervertebral disc disruption | |
7331956, | Sep 28 2000 | Arthrocare Corporation | Methods and apparatus for treating back pain |
7331963, | Oct 06 1997 | Warsaw Orthopedic, Inc | Drill head for use in placing an intervertebral disc device |
7618458, | Dec 09 2003 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Height-adjustable intervertebrae implant |
7682378, | Nov 10 2004 | DFINE, INC | Bone treatment systems and methods for introducing an abrading structure to abrade bone |
7753912, | Mar 31 2003 | SPINE WAVE, INC | Tissue distraction device |
7758647, | Jul 25 2003 | PREMIA SPINE LTD | Elastomeric spinal disc nucleus replacement |
7771432, | Oct 08 2002 | Warsaw Orthopedic, Inc | Insertion device and techniques for orthopaedic implants |
7776051, | May 03 2004 | Theken Spine, LLC | System and method for displacement of bony structures |
7824445, | Jul 26 1999 | EAST COAST MEDICAL & DENTAL DEVICES, INC | Corpectomy vertebral body replacement implant system |
7887568, | Jul 17 2000 | NuVasive, Inc. | Stackable spinal support system and related methods |
7901460, | Jun 02 2003 | Warsaw Orthopedic, Inc | Intervertebral disc implants and methods for manufacturing and using the same |
7922767, | Jul 07 2007 | JMEA Corporation | Disk fusion implant |
7947078, | Jan 09 2007 | SEASPINE, INC | Devices for forming curved or closed-loop structures |
7963915, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue access |
8021429, | Mar 08 2007 | Zimmer Spine, Inc. | Deployable segmented TLIF device |
8025697, | Sep 21 2006 | CUSTOM SPINE ACQUISITION, INC | Articulating interbody spacer, vertebral body replacement |
8083796, | Feb 29 2008 | NuVasive, Inc | Implants and methods for spinal fusion |
8123750, | Aug 17 2005 | Corespine Technologies, LLC | Apparatus and methods for removal of intervertebral disc tissues |
8128662, | Oct 20 2004 | Boston Scientific Neuromodulation Corporation | Minimally invasive tooling for delivery of interspinous spacer |
8137401, | Mar 30 2007 | Depuy Synthes Products, LLC | Intervertebral device having expandable endplates |
8142507, | Nov 16 2006 | REX MEDICAL, L P | Spinal implant and method of use |
8246622, | Jul 27 2008 | NLT SPINE LTD | Tool and corresponding method for removal of material from within a body |
8252001, | Aug 28 2008 | Q-Spine LLC | Apparatus and methods for inter-operative verification of appropriate spinal prosthesis size and placement |
8252054, | Jan 14 2009 | STOUT MEDICAL GROUP, L P | Expandable support device and method of use |
8377070, | May 17 2007 | Compressor distractor tool | |
8394102, | Jun 25 2009 | SPINAL ELEMENTS, INC | Surgical tools for treatment of spinal stenosis |
8454617, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
8454622, | Apr 25 2007 | SPINAL ELEMENTS, INC ; Amendia, Inc | Spinal implant distractor/inserter |
8470043, | Dec 23 2008 | SPINAL ELEMENTS, INC | Tissue removal tools and methods of use |
8579980, | Sep 13 2006 | Depuy Synthes Products, LLC | Allograft intervertebral implant and method of manufacturing the same |
8591583, | Aug 16 2005 | IZI Medical Products, LLC | Devices for treating the spine |
8628577, | Mar 19 2009 | Ex Technology, LLC | Stable device for intervertebral distraction and fusion |
8632591, | Jun 15 2007 | LDR Medical | Nucleus prostheses |
8663332, | Dec 13 2012 | INTEGRITY IMPLANTS INC | Bone graft distribution system |
8685031, | Sep 18 2009 | SPINAL SURGICAL STRATEGIES, INC , A NEVADA CORPORATION D B A KLEINER DEVICE LABS | Bone graft delivery system |
8764806, | Dec 07 2009 | Devices and methods for minimally invasive spinal stabilization and instrumentation | |
8906028, | Sep 18 2009 | SPINAL SURGICAL STRATEGIES, INC , A NEVADA CORPORATION D B A KLEINER DEVICE LABS | Bone graft delivery device and method of using the same |
8968408, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
8974464, | Mar 08 2001 | Spine Wave, Inc. | Expansion member for insertion into a body tissue space |
8979860, | Jun 24 2010 | DEPUY SYNTHES PRODUCTS, INC | Enhanced cage insertion device |
8986385, | Mar 14 2008 | DEPUY SYNTHES PRODUCTS, INC | Nested expandable sleeve implant |
9034041, | Mar 31 2005 | ST CLOUD CAPITAL PARTNERS III SBIC, LP | Expandable spinal interbody and intravertebral body devices |
9039771, | Oct 15 2009 | Globus Medical, Inc | Expandable fusion device and method of installation thereof |
9161773, | Dec 23 2008 | SPINAL ELEMENTS, INC | Tissue removal tools and methods of use |
9308022, | Dec 10 2012 | CRG SERVICING LLC, | Lead insertion devices and associated systems and methods |
9351851, | Nov 09 2012 | SPINAL ELEMENTS, INC | Disc space sizing devices and methods for using the same |
9480574, | Mar 14 2013 | SPINAL ELEMENTS, INC | Spinal fusion implants and devices and methods for deploying such implants |
9566170, | Mar 22 2010 | SPINAL ELEMENTS, INC | Percutaneous arthrodesis method and system |
9642712, | Jun 22 2007 | SPINAL ELEMENTS, INC | Methods for treating the spine |
9827031, | May 28 2010 | SPINAL ELEMENTS, INC | Disc space sizing devices |
9955961, | Nov 09 2012 | SPINAL ELEMENTS, INC | Disc space sizing devices |
20010023348, | |||
20010029377, | |||
20010031981, | |||
20020019637, | |||
20020026197, | |||
20020128716, | |||
20020147444, | |||
20020156530, | |||
20020173813, | |||
20030009223, | |||
20030014047, | |||
20030040796, | |||
20030065358, | |||
20030083747, | |||
20030158545, | |||
20030158553, | |||
20030187453, | |||
20030204189, | |||
20030220650, | |||
20040002762, | |||
20040010315, | |||
20040015218, | |||
20040024463, | |||
20040049180, | |||
20040059333, | |||
20040064144, | |||
20040073216, | |||
20040087994, | |||
20040092988, | |||
20040102774, | |||
20040106940, | |||
20040116922, | |||
20040127893, | |||
20040133280, | |||
20040148028, | |||
20040153064, | |||
20040167625, | |||
20040193158, | |||
20040230198, | |||
20040230309, | |||
20040249464, | |||
20040260305, | |||
20050021030, | |||
20050021041, | |||
20050033292, | |||
20050038517, | |||
20050049623, | |||
20050065610, | |||
20050070911, | |||
20050080425, | |||
20050090833, | |||
20050090899, | |||
20050107878, | |||
20050113832, | |||
20050119750, | |||
20050131540, | |||
20050131541, | |||
20050137601, | |||
20050137605, | |||
20050149049, | |||
20050165420, | |||
20050182414, | |||
20050182416, | |||
20050187537, | |||
20050203527, | |||
20050222683, | |||
20050228391, | |||
20050234493, | |||
20050240171, | |||
20050251134, | |||
20050251177, | |||
20050256525, | |||
20050261683, | |||
20050261684, | |||
20050261692, | |||
20050273173, | |||
20050278027, | |||
20050278036, | |||
20060015131, | |||
20060025797, | |||
20060030933, | |||
20060036241, | |||
20060041258, | |||
20060041295, | |||
20060047178, | |||
20060052793, | |||
20060058826, | |||
20060058876, | |||
20060074425, | |||
20060085070, | |||
20060089646, | |||
20060116689, | |||
20060129244, | |||
20060136064, | |||
20060149268, | |||
20060161162, | |||
20060178666, | |||
20060189999, | |||
20060195091, | |||
20060195094, | |||
20060206116, | |||
20060217811, | |||
20060224154, | |||
20060224241, | |||
20060229625, | |||
20060235418, | |||
20060241577, | |||
20060247600, | |||
20060247784, | |||
20060265076, | |||
20060265077, | |||
20060287726, | |||
20060287727, | |||
20060287729, | |||
20060287730, | |||
20070010848, | |||
20070016273, | |||
20070027545, | |||
20070032791, | |||
20070050030, | |||
20070050032, | |||
20070055259, | |||
20070055262, | |||
20070055275, | |||
20070060935, | |||
20070067035, | |||
20070093822, | |||
20070093899, | |||
20070118219, | |||
20070123888, | |||
20070123903, | |||
20070123986, | |||
20070149978, | |||
20070149990, | |||
20070162032, | |||
20070162062, | |||
20070162127, | |||
20070162135, | |||
20070168041, | |||
20070168043, | |||
20070173939, | |||
20070175959, | |||
20070191837, | |||
20070198021, | |||
20070198025, | |||
20070208426, | |||
20070213704, | |||
20070213733, | |||
20070213734, | |||
20070213735, | |||
20070225703, | |||
20070233143, | |||
20070255286, | |||
20070255406, | |||
20070255703, | |||
20070260252, | |||
20070260270, | |||
20070260315, | |||
20070265652, | |||
20070265691, | |||
20070276406, | |||
20070299521, | |||
20080009826, | |||
20080009828, | |||
20080009847, | |||
20080009875, | |||
20080009876, | |||
20080009877, | |||
20080015639, | |||
20080021435, | |||
20080027407, | |||
20080033465, | |||
20080058707, | |||
20080065080, | |||
20080065092, | |||
20080065093, | |||
20080065094, | |||
20080071356, | |||
20080086157, | |||
20080114367, | |||
20080147113, | |||
20080161809, | |||
20080177259, | |||
20080183204, | |||
20080221687, | |||
20080228135, | |||
20080234687, | |||
20080249628, | |||
20080287995, | |||
20080294171, | |||
20080300636, | |||
20090012612, | |||
20090024217, | |||
20090105711, | |||
20090143716, | |||
20090157187, | |||
20090171390, | |||
20090198241, | |||
20090198245, | |||
20090234454, | |||
20100030216, | |||
20100114179, | |||
20100131005, | |||
20100179578, | |||
20100185291, | |||
20100198263, | |||
20100228091, | |||
20100249798, | |||
20100262147, | |||
20100262242, | |||
20100268234, | |||
20100286782, | |||
20100298864, | |||
20110015638, | |||
20110015747, | |||
20110112455, | |||
20110125266, | |||
20110144440, | |||
20110172722, | |||
20110208306, | |||
20110230965, | |||
20110245926, | |||
20110307063, | |||
20120022651, | |||
20120071977, | |||
20120071980, | |||
20120089231, | |||
20120123426, | |||
20120136442, | |||
20120136448, | |||
20120150241, | |||
20120232552, | |||
20120232664, | |||
20120277861, | |||
20120283748, | |||
20120296171, | |||
20130053863, | |||
20130110239, | |||
20130116791, | |||
20130144391, | |||
20130158667, | |||
20130204374, | |||
20130238098, | |||
20130282143, | |||
20130304070, | |||
20140058513, | |||
20140067073, | |||
20140163326, | |||
20140163560, | |||
20140235949, | |||
20140236296, | |||
20140249629, | |||
20140257297, | |||
20140257484, | |||
20140277481, | |||
20140316427, | |||
20150012000, | |||
20150051701, | |||
20150100124, | |||
20150112437, | |||
20150112438, | |||
20150148908, | |||
20150367487, | |||
20160007979, | |||
20160206442, | |||
20160287409, | |||
20160367332, | |||
20170007349, | |||
20170135704, | |||
20170303938, | |||
20190167440, | |||
20190216482, | |||
20190216612, | |||
20200345401, | |||
20210113252, | |||
20210154024, | |||
20210169459, | |||
20220031471, | |||
20220110650, | |||
20230051745, | |||
20230124332, | |||
DE19710392, | |||
DE4222121, | |||
EP682910, | |||
EP1157676, | |||
FR2900814, | |||
JP2002028171, | |||
JP200228171, | |||
RE40156, | Jun 07 1995 | Arthrocare Corporation | Methods for repairing damaged intervertebral discs |
WO74605, | |||
WO74605, | |||
WO1001895, | |||
WO3024344, | |||
WO2005048856, | |||
WO2006042334, | |||
WO2006047587, | |||
WO2006072941, | |||
WO2007009107, | |||
WO2007079237, | |||
WO2007100914, | |||
WO2008021972, | |||
WO2008036505, | |||
WO2008063435, | |||
WO2008084479, | |||
WO2008103832, | |||
WO2008112308, | |||
WO2010008353, | |||
WO2011150350, | |||
WO2012048187, | |||
WO2012178018, | |||
WO2013043850, | |||
WO2014158680, | |||
WO2019148083, | |||
WO2019178575, | |||
WO95025485, | |||
WO98017190, | |||
WO98034552, | |||
WO9834552, | |||
WO99021500, | |||
WO99047058, | |||
WO9921500, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 24 2013 | QUDDUS, EBRAHIM M | BENVENUE MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061157 | /0183 | |
Apr 24 2013 | LEE, JAMES | BENVENUE MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061157 | /0183 | |
Apr 24 2013 | EMERY, JEFFREY L | BENVENUE MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061157 | /0183 | |
Apr 24 2013 | MCGRATH, TIMOTHY | BENVENUE MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061157 | /0183 | |
Apr 24 2013 | SCHALLER, LAURENT | BENVENUE MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061157 | /0183 | |
Apr 24 2013 | HUFFMASTER, ANDREW | BENVENUE MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061157 | /0183 | |
Aug 03 2020 | BENVENUE MEDICAL, INC | BENVENUE ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061230 | /0610 | |
Dec 14 2020 | BENVENUE ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC | SPINAL ELEMENTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061258 | /0809 | |
Mar 19 2021 | Spinal Elements, Inc. | (assignment on the face of the patent) | / | |||
May 31 2024 | SPINAL ELEMENTS, INC | PERCEPTIVE CREDIT HOLDINGS IV, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 067596 | /0295 | |
May 31 2024 | CUSTOM SPINE ACQUISITION, INC | PERCEPTIVE CREDIT HOLDINGS IV, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 067596 | /0295 | |
May 31 2024 | OMNI ACQUISITION INC | PERCEPTIVE CREDIT HOLDINGS IV, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 067596 | /0295 |
Date | Maintenance Fee Events |
Mar 19 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Aug 26 2021 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Jun 04 2027 | 4 years fee payment window open |
Dec 04 2027 | 6 months grace period start (w surcharge) |
Jun 04 2028 | patent expiry (for year 4) |
Jun 04 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 04 2031 | 8 years fee payment window open |
Dec 04 2031 | 6 months grace period start (w surcharge) |
Jun 04 2032 | patent expiry (for year 8) |
Jun 04 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 04 2035 | 12 years fee payment window open |
Dec 04 2035 | 6 months grace period start (w surcharge) |
Jun 04 2036 | patent expiry (for year 12) |
Jun 04 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |