A driver assistance system for a vehicle includes an imager disposed at the vehicle and viewing exterior the vehicle. A control includes an image processor and is operable to process captured image data for at least a first application and a second application and to adjust the image sensor to at least two settings and to process captured image data via at least two processing techniques. The control is operable to synchronize the at least two settings of the image sensor and the at least two processing techniques to extract respective information from the captured image data for the first and second applications. The control adjusts a setting of the image sensor to capture image data suitable for the first application or the second application. The image processor processes captured image data via a processing technique suitable for the first application or the second application.

Patent
   10623704
Priority
Sep 30 2004
Filed
Mar 09 2015
Issued
Apr 14 2020
Expiry
Aug 15 2027

TERM.DISCL.
Extension
684 days
Assg.orig
Entity
Large
0
876
currently ok
1. A driver assistance system for a vehicle, said driver assistance system comprising:
an imager disposed at a vehicle equipped with said driver assistance system and viewing one of (i) forward of the equipped vehicle and (ii) rearward of the equipped vehicle;
said imager having a field of view exterior the equipped vehicle and operable to capture image data;
said imager comprising (i) a lens, (ii) a spectral filter and (iii) an image sensor comprising a CMOS photosensor array of photosensor elements;
a control comprising an image processor;
wherein said control is operable to process captured image data for at least a first application and a second application, and wherein said first application comprises lane departure warning and said second application comprises headlamp control;
wherein said control is operable to adjust said image sensor to at least two settings including at least a first setting and a second setting;
wherein said control is operable to process captured image data via at least two processing techniques;
wherein said control is operable to synchronize said at least two settings of said image sensor and said at least two processing techniques to extract information from said captured image data for said first and second applications;
wherein said control adjusts a setting of said image sensor to said first setting to capture image data suitable for said first application;
wherein said control adjusts a setting of said image sensor to said second setting to capture image data suitable for said second application;
wherein said image processor processes captured image data captured by said image sensor at said first setting via a processing technique suitable for said first application;
wherein said image processor processes captured image data captured by said image sensor at said second setting via a processing technique suitable for said second application;
wherein said driver assistance system comprises an auxiliary sensor;
wherein said auxiliary sensor is selected from the group consisting of (i) an ultrasonic sensor, (ii) a radar sensor and (iii) a lidar sensor;
wherein said auxiliary sensor is operable to detect an object exterior the equipped vehicle; and
wherein, responsive at least in part to detection of the object by said auxiliary sensor, at least one of (i) a setting of said image sensor is adjusted and (ii) processing of image data that corresponds to a region at which the object is detected is enhanced.
13. A driver assistance system for a vehicle, said driver assistance system comprising:
an imager disposed at a vehicle equipped with said driver assistance system and viewing one of (i) forward of the equipped vehicle through a windshield of the equipped vehicle and (ii) rearward of the equipped vehicle;
said imager having a field of view exterior the equipped vehicle and operable to capture image data;
said imager comprising (i) a lens, (ii) a spectral filter and (iii) an image sensor comprising a CMOS photosensor array of photosensor elements;
a control comprising an image processor;
wherein said control is operable to process captured image data for at least a first application and a second application, and wherein said first application comprises lane departure warning and said second application comprises headlamp control;
wherein said control is operable to adjust said image sensor to at least two settings including at least a first setting and a second setting;
wherein said control is operable to process captured image data via at least two processing techniques;
wherein said control is operable to synchronize said at least two settings of said image sensor and said at least two processing techniques to extract information from said captured image data for said first and second applications;
wherein said control adjusts a setting of said image sensor to said first setting to capture image data suitable for said first application;
wherein said control adjusts a setting of said image sensor to said second setting to capture image data suitable for said second application;
wherein said image processor processes captured image data captured by said image sensor at said first setting via a processing technique suitable for said first application;
wherein said image processor processes captured image data captured by said image sensor at said second setting via a processing technique suitable for said second application;
wherein said control is operable to process captured image data for a third application;
wherein said driver assistance system comprises an auxiliary sensor;
wherein said auxiliary sensor is selected from the group consisting of (i) an ultrasonic sensor, (ii) a radar sensor and (iii) a lidar sensor;
wherein said auxiliary sensor is operable to detect an object exterior the equipped vehicle; and
wherein, responsive at least in part to detection of the object by said auxiliary sensor, at least one of (i) a setting of said image sensor is adjusted and (ii) processing of image data that corresponds to a region at which the object is detected is enhanced.
16. A driver assistance system for a vehicle, said driver assistance system comprising:
an imager disposed at a vehicle equipped with said driver assistance system and viewing forward of the equipped vehicle through a windshield of the equipped vehicle;
said imager having a field of view exterior the equipped vehicle and operable to capture image data;
said imager comprising (i) a lens, (ii) a spectral filter and (iii) an image sensor comprising a CMOS photosensor array of photosensor elements;
a control comprising an image processor;
wherein said control is operable to process captured image data for at least a first application and a second application, and wherein said first application comprises lane departure warning and said second application comprises headlamp control;
wherein said control is operable to adjust said image sensor to at least two settings including at least a first setting and a second setting;
wherein said control is operable to process captured image data via at least two processing techniques;
wherein said control is operable to synchronize said at least two settings of said image sensor and said at least two processing techniques to extract information from said captured image data for said first and second applications;
wherein said control adjusts a setting of said image sensor to said first setting to capture image data suitable for said first application;
wherein said control adjusts a setting of said image sensor to said second setting to capture image data suitable for said second application;
wherein said image processor processes captured image data captured by said image sensor at said first setting via a processing technique suitable for said first application;
wherein said image processor processes captured image data captured by said image sensor at said second setting via a processing technique suitable for said second application;
wherein said control is operable to process captured image data for a third application;
wherein said imager and at least a part of said control are disposed in an accessory module of the equipped vehicle and wherein said accessory module is mounted at the inner-cabin surface of the windshield of the equipped vehicle;
wherein said driver assistance system comprises an auxiliary sensor;
wherein said auxiliary sensor is selected from the group consisting of (i) an ultrasonic sensor, (ii) a radar sensor and (iii) a lidar sensor;
wherein said auxiliary sensor is operable to detect an object exterior the equipped vehicle; and
wherein, responsive at least in part to detection of the object by said auxiliary sensor, at least one of (i) a setting of said image sensor is adjusted and (ii) processing of image data that corresponds to a region at which the object is detected is enhanced.
2. The driver assistance system of claim 1, and wherein said first application also includes an application selected from the group consisting of (i) vehicle detection and (ii) object detection.
3. The driver assistance system of claim 2, wherein said second application also includes an application selected from the group consisting of (i) driving separation indication, (ii) backup assist and (iii) object detection.
4. The driver assistance system of claim 1, wherein said control is operable to process captured image data for said first application from a first set of captured image data in a first image processing to generate a first output in response to the first image processing, and wherein said control is operable to process captured image data for said second application from a second set of captured image data in a second image processing to generate a second output in response to the second image processing.
5. The driver assistance system of claim 1, wherein, responsive to processing by said control of captured image data, said control determines an ambient light level exterior the equipped vehicle.
6. The driver assistance system of claim 1, wherein said control is operable to process captured image data for a third application.
7. The driver assistance system of claim 1, wherein said imager and at least a part of said control are disposed in an accessory module of the equipped vehicle and wherein said imager views forward of the equipped vehicle through a windshield of the equipped vehicle.
8. The driver assistance system of claim 1, wherein image data captured by said imager are output via LVDS.
9. The driver assistance system of claim 1, wherein the frame rate used to capture image data for said first application differs from the frame rate used to capture image data for said second application.
10. The driver assistance system of claim 1, wherein said control is operable to at least one of (a) provide enhanced imaging of an object viewed by said imager and (b) provide enhanced processing of at least a portion of an image captured by said imager that corresponds to a region exterior the equipped vehicle at which an object is viewed by said imager.
11. The driver assistance system of claim 1, wherein said control is operable to selectively or intermittently or occasionally adjust a setting of said image sensor to extract information from said captured image data for headlamp control and for lane departure warning.
12. The driver assistance system of claim 11, wherein said control is operable to selectively or intermittently or occasionally adjust a processing technique to extract information from said captured image data for headlamp control and for lane departure warning.
14. The driver assistance system of claim 13, wherein said control is operable to at least one of (a) provide enhanced imaging of an object viewed by said imager and (b) provide enhanced processing of at least a portion of an image captured by said imager that corresponds to a region exterior the equipped vehicle at which an object is viewed by said imager.
15. The driver assistance system of claim 13, wherein at least one of (a) said control is operable to selectively or intermittently or occasionally adjust a setting of said image sensor to extract information from said captured image data for headlamp control and for lane departure warning and (b) wherein said control is operable to selectively or intermittently or occasionally adjust a processing technique to extract information from said captured image data for headlamp control and for lane departure warning.
17. The driver assistance system of claim 16, wherein said control is operable to at least one of (a) provide enhanced imaging of an object viewed by said imager and (b) provide enhanced processing of at least a portion of an image captured by said imager that corresponds to a region exterior the equipped vehicle at which an object is viewed by said imager.
18. The driver assistance system of claim 16, wherein at least one of (a) said control is operable to selectively or intermittently or occasionally adjust a setting of said image sensor to extract information from said captured image data for headlamp control and for lane departure warning and (b) wherein said control is operable to selectively or intermittently or occasionally adjust a processing technique to extract information from said captured image data for headlamp control and for lane departure warning.

The present application is a continuation of U.S. patent application Ser. No. 13/936,701, filed Jul. 8, 2013, now U.S. Pat. No. 8,977,008, which is a continuation of U.S. patent application Ser. No. 13/481,100, filed May 25, 2012, now U.S. Pat. No. 8,483,439, which is a continuation of U.S. patent application Ser. No. 13/017,353, filed Jan. 31, 2011, now U.S. Pat. No. 8,189,871, which is a continuation of U.S. patent application Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496, which claims the benefit of U.S. provisional application, Ser. No. 60/628,709, filed Nov. 17, 2004; and Ser. No. 60/614,644, filed Sep. 30, 2004, which are all hereby incorporated herein by reference in their entireties.

The present invention relates to imaging systems for vehicles and, more particularly, to reverse aid imaging systems with a rearward facing imaging device or camera and a display. However, aspects of the present invention are equally suitable for other vehicle imaging systems, such as side object detection systems, and forward facing imaging systems and the like.

The advent of low cost, reliable imaging devices, based on a variety of silicon technologies, and in particular CMOS technology, combined with an improved cost/performance ratio for displays capable of meeting automotive specifications, and an increasing application rate of video monitor displays for automotive navigation systems or as part of the driver interface to a wide variety of vehicle systems, has lead to an increasing use of cameras or imaging sensors designed to give the driver a view of those areas around the vehicle which are not in the normal direct field of view of the driver, typically referred to as “blind spots”. These areas include the region close to the front of the vehicle, typically obscured by the forward structure of the vehicle, the region along the passenger side of the vehicle, the region along the driver side of the vehicle rearward of the driver, and the area immediately rearward of the vehicle which cannot be seen directly or indirectly through the rear view mirror system. The camera or imaging sensor may capture an image of the rearward (or sideward or other blind spot area) field of view, and the image may be displayed to the driver of the vehicle to assist the driver in backing up or reversing or otherwise driving or maneuvering the vehicle. The use of electronic cameras in these applications significantly increases the driver's knowledge of the space immediately surrounding the vehicle, which may be of importance prior to and during low speed maneuvers, and thus contributes to the safe completion of such maneuvers. However, in order to provide user controls or user inputs to allow the driver or user to control various functions of the camera at the rear or side or front of the vehicle, additional wiring or connections or communication links may be needed between a control and user input in the vehicle and the camera or imaging device at the rear or side or front of the vehicle.

It is known to provide a headlamp control system having an imaging sensor positioned on a vehicle and having a forward field of view. The system may detect headlamps and taillights in the images captured by the imaging sensor. It is also known to provide a lane departure warning system that includes an imaging sensor positioned on a vehicle and having a forward field of view. The lane departure warning system detects lane markers and the like along the road surface in front of the vehicle and determines when the vehicle is drifting out of the lane, and may provide an alert to the driver of the vehicle when such drifting is detected. Such systems typically are separate systems with different, independently operable controls and image processors and imaging sensors.

The present invention provides an imaging and display system or vision system for a vehicle that captures images of a scene occurring exteriorly of the vehicle, such as rearward of the vehicle, and displays the captured images at a display device in the vehicle. The imaging and display or vision system includes an imaging device or camera that is positioned at the vehicle with an exterior field of view (such as a rearward field of view) for capturing images of the exterior scene. The display device is positioned within the vehicle and remote from the camera and is operable to display the captured images in the vehicle where they are readily viewable by the driver or occupant of the vehicle. The vision system includes one or more user inputs at the display device and is operable to adjust or control at least one function or mode or feature of the camera in response to actuation of the user input or inputs. The vision system is operable to communicate imaging signals from the imaging device to the display device and to communicate camera control signals from the display device to the imaging device along common connections or wiring or communication links between the imaging device and the display device.

According to an aspect of the present invention, a vision system for a vehicle includes an imaging device having an imaging sensor, a camera microcontroller, a display device having a display element, a display microcontroller, and at least one user input selectively actuatable by a user. The user input is selectively actuatable by a user. The imaging device communicates an image signal to the display device via a communication link. The display microcontroller affects the image signal in response to the at least one user input. The camera microcontroller monitors the image signal on the communication link and adjusts a function of the imaging device in response to a detection of the affected image signal.

The imaging sensor may have a field of view exteriorly of the vehicle, such as rearwardly of the vehicle, for capturing an image of the scene occurring exteriorly of the vehicle. The vision system may include control circuitry at or near or associated with an interior rearview mirror assembly of the vehicle or a windshield electronics module or accessory module of the vehicle.

The display microcontroller may affect the image signal by disabling a video termination at the display device, and the imaging device may stop communicating the image signal when the video termination is disabled. The display microcontroller may selectively apply at least two voltage levels across the communication link in response to at least two user inputs, and the camera microcontroller may adjust a function of the imaging device in response to a respective one of the voltage levels.

The imaging device may include a video encoder that communicates the image signal to the display device via the communication link. The communication link may comprise a video plus and a video return wire.

According to another aspect of the present invention, a vision system for a vehicle includes an imaging device having an imaging sensor, a camera microcontroller, a display device having a display element, a display microcontroller, and at least one user input selectively actuatable by a user. The imaging device communicates an image signal to the display device via a communication link, and the display microcontroller communicates a control signal to the imaging device via the communication link in response to the user input. The camera microcontroller receives the control signal and adjusts a function of the imaging device in response to the control signal. The image signal and the control signal utilize a common link between the imaging device and the display device.

According to another aspect of the present invention, an imaging and display system or vision system may be operable in combination with or in conjunction with an auxiliary or triggering or initial sensing device or system or distance sensing/measuring/determining system. The auxiliary sensing device or system may provide additional sensing areas to cover blind spots that may not be encompassed by the imaging sensor or camera. Optionally, the auxiliary sensing system, such as ultrasonic sensors, radar, lidar, and the like, may detect an object exteriorly of the vehicle, and may determine or measure or detect the distance to the object, whereby the imaging and display system may be adjusted or controlled to provide enhanced imaging of the exterior scene or enhanced processing of the captured images or enhanced displaying of the images of the exterior scene and the detected object, in response to such an object detection by the auxiliary sensing system. For example, the imaging and display system may adjust a camera setting to provide enhanced imaging of the detected object, or may adjust the processor or control to provide enhanced processing of a portion of the image data that corresponds to the region of the scene at which the object was detected, or may adjust the display to highlight or enhance the displayed images of the detected object or of the region of the display that corresponds to the region of the exterior scene at which the object was detected.

Therefore, the present invention provides an imaging and display system or vision system that includes an imaging device and a display device connected via video connections or communication links. The imaging device includes user inputs and the imaging and display system is operable to selectively control or adjust the imaging device in response to the user inputs. The imaging and display system or vision system is operable to communicate imaging signals from the imaging device to the display device and to communicate camera control signals from the display device to the imaging device along common connections or wiring or communication links between the imaging device and the display device. The imaging and display system or vision system thus may provide various optional features or functions or modes without having to change or add wiring or connections between the imaging device and the display device.

The present invention also provides an imaging system or vision system for a vehicle that is operable to capture images of a scene occurring exteriorly of the vehicle, such as forward of the vehicle, and that captures and/or processes selective image data differently than other image data to extract and analyze the desired data for different applications or systems or accessories. The imaging system includes an imaging device or camera that is positioned at the vehicle with an exterior field of view (such as a forward field of view) for capturing images of the exterior scene. The imaging system may be operable to selectively or intermittently capture and/or process some image data in a manner suitable for a lane detection and/or to capture and/or process other image data in a manner suitable for headlamp detection and/or to capture and/or process other image data in a manner suitable for ambient light detection and/or other functions, systems or features or the like.

According to another aspect of the present invention, an imaging system for a vehicle includes an image sensor and a control. The image sensor is positioned at a vehicle and has an exterior field of view. The image sensor is operable to capture images of the exterior field of view and to generate image data. The control is operable to adjust the image sensor to at least two settings, and to process the image data via at least two processing techniques. The control is operable to synchronize the image sensor settings and the processing techniques to extract respective or appropriate information from the captured images for at least two applications of the imaging system.

The image sensor may have a field of view forwardly of the vehicle for capturing an image of the scene occurring forwardly of the vehicle.

The control may adjust the image sensor setting to capture image data suitable for a particular application, and may process those captured images via a processing technique suitable for the particular application. The control may adjust the image sensor to other settings and may correspondingly process those captured images via other processing techniques depending on the desired or appropriate or particular or respective application or function of the imaging system. For example, the control may selectively or intermittently or occasionally adjust the image sensor setting and processing technique to extract information from the captured image data for a headlamp control and/or a lane departure warning system and/or a rain sensor and/or a navigational system and/or an ambient light sensor and/or a collision avoidance system and/or a driving separation indicator and/or a backup aid and/or an object detection system and/or the like.

Therefore, the present invention also provides an imaging system or vision system that includes an imaging sensor and a control that are operable to provide multiple functions or control of multiple accessories or the like via selective capturing of image data and processing of the captured image data. The control is thus operable to selectively capture images and process image data to provide multiple functions or applications with a common image sensor and image processor. The imaging system may synchronize the settings of the image sensor with the processing techniques applied to the image data by the image processor, in order to perform and/or optimize two or more functions of the imaging system. The present invention thus provides a multi-tasking capability to an image sensor and image processor while providing enhanced capturing of the images and processing of the image data for the desired functions or applications.

These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.

FIG. 1 is a rear perspective view of a vehicle having an imaging and display system thereon in accordance with the present invention;

FIG. 2 is a plan view of the vehicle of FIG. 1;

FIG. 3 is a block diagram of a camera and display device, showing the connections or wiring typically used to connect the camera to the display device;

FIG. 4 is a block diagram of an imaging and display system in accordance with the present invention;

FIG. 5 is a plan view of a vehicle incorporating an imaging system in accordance with the present invention;

FIG. 6 is a side elevation of a portion of a vehicle embodying an imaging system in accordance with the present invention;

FIG. 7 is a block diagram of an imaging system having an imager and a control;

FIG. 8 is a block diagram of an imaging system in accordance with the present invention, showing different exemplary applications of the control; and

FIG. 9 is another block diagram of the imaging system of the present invention.

Referring now to the drawings and the illustrative embodiments depicted therein, an image capture system or vision system or imaging and display system 10 is positioned at an exterior portion 12a of a vehicle 12, such as at a rearward portion 12a of the vehicle 12, and is operable to capture an image of a scene occurring exteriorly of the vehicle, such as rearwardly of the vehicle, and to display the image at a display device or display system 14 of the vehicle which is viewable by a driver of the vehicle (FIGS. 1 and 2). Vision system 10 includes display device or system 14 and an imaging system or imaging device 16, which includes an imager or image capture device or camera 22 that is directed exteriorly of the vehicle and has an exterior field of view 17 which preferably at least partially encompasses a “blind spot” area exteriorly of the vehicle. The images or frames captured by imaging system 16 are displayed at a display element 28 of display system 14 to assist the driver in viewing the blind spot areas. The display system 14 includes one or more user inputs 18 (FIG. 4) that are actuatable by a user of the system to control or adjust a function of the imaging system 16, which is remote from the display system 14. The vision system 10 is operable to communicate imaging signals from the imaging device or system to the display device or system and control signals from the display device or system to the imaging device or system along common connections or wiring.

Imaging system or imaging device 16 may be positioned at the exterior portion of the vehicle and directed generally exteriorly of the vehicle for capturing images of the exterior scene to assist the driver in maneuvering or driving the vehicle. Vision system 10 and/or imaging system 16 may utilize principles of other vehicle vision or imaging systems, such as a vision or imaging system of the types disclosed in U.S. Pat. Nos. 6,757,109; 6,717,610; 6,396,397; 6,201,642; 5,550,677; 5,670,935; 5,877,897; 5,796,094; 6,097,023; and 6,498,620, and U.S. patent application Ser. No. 09/441,341, filed Nov. 16, 1999, now U.S. Pat. No. 7,339,149; and/or U.S. provisional application, Ser. No. 60/614,644, filed Sep. 30, 2004; and Ser. No. 60/618,686, filed Oct. 14, 2004, which are hereby incorporated herein by reference. In the illustrated embodiment, the vision system is operable to capture and display images of the rearward area immediately behind the vehicle, so as to assist the driver in backing up or otherwise driving or maneuvering the vehicle rearwardly. However, the vision system may be operable to capture and display images of other areas exteriorly of the vehicle to provide images of other blind spot areas around or near the vehicle, without affecting the scope of the present invention. The vision system thus may be operable to captures images of the scene immediately rearward of the vehicle to assist the driver of the vehicle in backing up or maneuvering the vehicle in reverse. The backup assist system may be operable in response to the reverse gear of the vehicle being selected.

Preferably, the display element or display device may be located at an upper windshield area of the vehicle so as to be readily viewable by the driver of the vehicle. The display element may be located at or near the interior rearview mirror assembly of the vehicle or may be associated with the interior rearview mirror assembly of the vehicle. Optionally, the display element may be located at or near an accessory module or pod or windshield electronics module of the vehicle or may be associated with the accessory module or pod or windshield electronics module of the vehicle.

The imaging system may process the captured image data to detect objects or the like in the exterior scene. Such data processing may utilize aspects of the image processing techniques described in U.S. Pat. Nos. 6,353,392 and 6,313,454; and/or U.S. patent application Ser. No. 10/427,051, filed Apr. 30, 2003, now U.S. Pat. No. 7,038,577; and/or U.S. provisional application Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference. The display device or element may display the image of the scene or may display the detected objects and/or may display graphic overlays or the like (such as distance measurements, icons, text or the like) to enhance the display for viewing by the driver or occupant of the vehicle. The vision system may be selectively operable to provide different functions or modes or features as selected by the user via one or more user inputs, as discussed below.

The imaging system 16 of vision system 10 thus may be operable in two or more modes and/or may provide various functions or features that are selectable by a user of the system (such as the driver of the vehicle) via one or more user inputs at or near or associated with the display system. For example, the imaging system may be selectively operable in a color mode or a black and white mode or a daytime or nighttime mode, or may be selectively operable to zoom in on a detected object or to pan across a scene or to adjust the gain, exposure and/or white balance in the captured images, in response to actuation of a respective user input by a user within the vehicle. Optionally, the imaging system may be selectively operable to process the images and display the images of the exterior scene in an outline form, where only the outlines of detected objects are shown at the display element, such as in a black and white line format. The image thus may be manipulated to provide an outline form and thus may be suitable for display on a low cost display element, such as a dot matrix display or the like, such as the type described in U.S. patent application Ser. No. 10/418,486, filed Apr. 18, 2003, now U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference. Also, or otherwise, the vision system may provide user inputs that enable a user to selectively actuate an overlay image to overlay images, such as distance measurements, text, icons, an image representation of the back of the vehicle, or other overlay images or icons, onto or over the image of the exterior scene, in order to enhance the display of the exterior scene for the user.

As shown in FIG. 3, and as is typical for various known imaging devices and vision systems, there are five connections or wires or leads or communication links 20 between the display system 14 and the imaging system 16. The connections or links include a camera power connection 20a, a ground connection 20b, a video + connection 20c, a video return connection 20d and a shield 20e. In known reverse aid systems, providing a control of the camera, such as to activate a digital zoom or pan mode for the camera (or to otherwise control or adjust a camera setting or mode), from the display area (and a user input at or near or associated with the display device) requires additional wiring for the secondary communication or communications between the user input of the display device and the camera and, thus, is a costly option for the automotive market and makes retrofitting a reverse aid system on a vehicle very difficult and costly. Controlling or adjusting or actuating these camera functions or modes or settings from the display area within the vehicle increases the overall system level performance and adds additional functionality to the system.

As shown in FIGS. 3 and 4, vision system 10 includes the communication links 20 (only the video + connection 20c and the video return connection 20d are separately shown in FIG. 4 for purposes of clarity) between the imaging system 16 and display system 14. As shown in FIG. 4, the imaging system 16 of vision system 10 includes an imaging sensor or imager 22, a camera microcontroller 24 and a video encoder 26. The imager or imaging array sensor 22 captures image data indicative of the exterior scene and generates a data signal 22a and outputs the data signal to the video encoder 26, which encodes the data and communicates an encoded video signal 26a to the display system 14 via the video + and video return connections 20c, 20d. Under normal operation, the camera typically outputs an NTSC video signal on the video + and video − or return connections 20c, 20d to the display system 14. This is typically done at about a 30 hertz frame rate. The camera microcontroller 24 controls the imager 22 and the video encoder 26, and monitors (as shown via monitoring link 24a in FIG. 4) the encoded video signal 26a from the encoder 26 to the display system 14. When a change in the signal 26a is detected by the camera microcontroller, the camera microcontroller 24 may adjust or control the imager 22 and/or video encoder 26 to set the imaging device or system to a different mode or function, as discussed below.

Display system or display device 14 includes a display element 28 and a display microcontroller 34. The display system 14 receives the encoded video signal 26a from the imaging system 16 via the video + and video return connections 20c, 20d, and displays the captured image on the display element 28, such as an LCD panel or the like (or other types of displays or display elements as discussed below). As shown in FIG. 4, display system 14 includes a video buffer and termination 30, a video decoder 32 and the display element 28. The video buffer and termination 30 receives the video signal 26a and passes the signal to the video decoder 32, which decodes the encoded video signal and communicates an image signal or RGB signal 32a to the display element 28. The display element 28 displays the captured image within the vehicle where it is readily viewable by a driver or occupant of the vehicle.

Display system 14 also includes display microcontroller 34 that is operable to receive a user input signal 18a from one or more user inputs 18 and to adjust or control the display element 28 and/or to enable or disable the video termination 30 in response to the user input signal 18a. When the video termination is disabled, the camera microcontroller 24 detects the change in the signal along the video + and video return connections 20c, 20d, and may adjust or control the imager 22 and/or video encoder 26 in response to such detection.

During normal operation of the imaging system, the imaging system 16 may output the NTSC video signal (or any other video signal protocol whether analog or digital) on the video + and video − or return connections to the display system 14. The camera microcontroller 24 may continuously or substantially continuously monitor the NTSC video output signal 26a for a normal output that is about one volt peak into a 75 ohm load (provided at the video buffer and termination 30). When an appropriate user input [such as a button or switch or the like at or near or associated with the display element or a voice command or a consequent of a user action (such as selection of a reverse gear of the vehicle or the like) or a vehicle action or condition or characteristic or status (such as in response to the vehicle reaching a particular or threshold forward or reverse vehicle speed or the vehicle encountering a braking condition or the like) or other input or condition or characteristic or status or the like] is activated by a user action (such as a user input for selectively adjusting a camera function or mode, such as a digital zoom function or pan function or and adjustment of a gain or exposure or white balance function or a selection of a color mode or a black and white mode or a night vision mode or the like), the display microcontroller 34 disables the video termination 30 at the display system 14 via a signal 34a. The disabling of the video termination 30 at the display system 14 causes the video encoder 26 of the imaging system 16 to stop outputting the NTSC video signal 26a. The camera microcontroller 24 senses the change in the output signal or voltage along the connections 20c, 20d, and may control or adjust the imager to a different or new camera setting in response to such a detected change in signal output/voltage, or may control or adjust the video encoder if appropriate in response to such a detected change in the video signal along the connections 20c, 20d.

Optionally, when multiple functions or modes are desired, the display microcontroller 34 may disable the video termination and apply a particular voltage across the connections 20c, 20d (via signal 34a) that corresponds to the particular function or adjustment selected by the user at the user inputs, and the camera microcontroller 24 may be operable to determine the voltage applied on the connections and to adjust or control the imager and/or encoder accordingly. The camera microcontroller 24 may be preset or programmed to recognize the particular voltage across the connections and to control or adjust or activate the respective function or feature or mode in response to such detection and recognition. The camera adjustments or settings (such as activation of a digital zoom feature, a panning feature, a gain or exposure or white balance function or a black and white mode or night vision mode or the like) thus may be predetermined and based on the DC voltage level applied across the connections 20c, 20d by the display microcontroller 34 and sensed across the connections 20c, 20d by the camera microcontroller 24.

After the camera adjustment is made by the camera microcontroller, the display microcontroller may enable the video termination and remove the applied DC voltage if applicable, so that the encoder 26 will again communicate the video signal 26a to the display system 14. Optionally, the display microcontroller 34 may wait a predetermined amount of time before enabling the video termination again and removing the DC voltage level. This delay allows the camera microcontroller enough time to sense that the termination has been removed, that the new programmed settings have been uploaded to the imager, and that the settings have taken affect. Once the delay is completed, the video termination is enabled at the display, and the camera microcontroller and video encoder resume the NTSC signal to the display system to communicate the capture image data to the display system.

This process may be repeated for invoking and removal of special camera modes or functions. For example, for different user inputs and associated functions, the display microcontroller may disable the video termination and may apply a different voltage to the connections 20c, 20d. The camera microcontroller may then determine the voltage in the connections 20c, 20d and may adjust the imager and/or video encoder appropriately and in response to the detected voltage. The number of special modes of operation or functions that are desired to control or activate/deactivate at the display will dictate the number of voltages that are to be resolved by the camera microcontroller at the camera in order to activate or control or adjust the multiple camera settings from the display inputs. For example, if four different functions or modes and associated user inputs were desired, the display microcontroller may apply different voltages, such as at ¼ volt increments or the like, for the different inputs and functions, and the camera microcontroller may be operable to discern or resolve the different voltages and control or adjust the imager and/or video decoder according to the detected voltage.

The vision system of the present invention thus provides user selectable control or adjustment of an exterior facing camera via user inputs at an interior display of the vehicle, without requiring additional wiring for the connection between the inputs and the camera. The present invention thus is highly suitable for retrofitting imaging and display systems or vision systems and/or selecting an appropriate or desired camera and/or display device or system that provides the desired features without concerns as to the wiring or connections between the camera and imaging system and the display element and display system. A user may select an optional camera that has desired features and may install the camera at the vehicle and connect to the existing wiring, which may be the base wiring for a base camera that may not have the features of the new camera. The present invention thus provides for upgrading of a camera and/or display and/or vision system either as an option installed at the vehicle assembly plant, or as an aftermarket device, without the cost and difficulties associated with rewiring or wiring new connectors or links between a user input or inputs and the camera. Different optional cameras and display systems and imaging systems thus be selected by an owner of a vehicle and may be readily installed in the vehicle without having to re-wire the vehicle or provide complicated communication links between the camera and the display device or system. The present invention thus allows for selection of a camera and display device or system having the desired features or content, without the costs and difficulties of implementing the high content cameras, since any selected camera and display device or system may utilize the same connections or communication links.

Optionally, the vision system may include or may be associated with an ultrasonic or radar device that determines the distance from the rear of the vehicle to a detected object. Optionally, other means for determining the distance to a detected object may be implemented, such as the means described in U.S. patent application Ser. No. 10/427,051, filed Apr. 30, 2003, now U.S. Pat. No. 7,038,577; and/or Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and/or U.S. provisional application Ser. No. 60/607,963, filed Sep. 8, 2004, which are hereby incorporated herein by reference. The vision system may detect the distance to objects in various zones or regions behind the vehicle and may provide a graphic or video overlay of the displayed image to indicate to the driver the distance to one or more detected objects. The overlay may be enhanced, such as by flashing or the like, to enhance the viewability of the overlay, such as when a hazardous condition is encountered, such as when the vehicle is within a threshold distance to a detected object rearward of the vehicle and in the vehicle's path of travel. The graphic overlay may be initiated or activated in response to the vehicle being shifted into the reverse gear or may be selectively activated via a user input or the like, without affecting the scope of the present invention.

Optionally, the imaging system and/or camera and/or display system may be operable in conjunction with or in combination with a distance sensing/measuring/determining system, such as an ultrasonic sensing system or the like. For example, and with reference to FIG. 5, an imaging and display system or vision system 10′ may include an imaging sensor or camera or imaging system 16′, which may be generally centrally positioned at the rear portion of the vehicle 12′, and one or more secondary or auxiliary sensing devices, such as ultrasonic sensors 36, which may be also positioned at the rear portion of the vehicle. In the illustrated embodiment, an ultrasonic sensor 36 may be positioned at or near each rear corner region 12b′ of the vehicle 12′. Typically, an imaging sensor or camera may provide a wide angle field of view (shown generally at 38 in FIG. 5) rearward of the vehicle that is approximately a 120 degree field of view. Such a field of view may not fully encompass the regions immediately rearward of the vehicle and at or toward the side corners of the vehicle, whereby blind spots may still exist in those regions. In order to provide enhanced object detection of objects that may be positioned at those regions, such as when the vehicle is backing up, the ultrasonic sensors 36 may be operable to sense or detect objects in those regions. The imaging and display system may then display an indication at the display device or display system 14′ of a detected object in response to such detection by the ultrasonic sensors. For example, the display may provide an iconistic display of the object superimposed upon the video image of the rearward scene as captured by the rearward facing camera, or may provide a flashing of the display at the image on the screen and in the region or regions of the detected object, and/or may provide a graphical overlay at the regions of the display that represent the detected object to indicate that an object has been detected in one of the rear corner regions or elsewhere rearward of the vehicle.

Optionally, an ultrasonic sensing system may include a plurality of sensors, such as three or more ultrasonic sensors, positioned and spaced across a rear portion of the vehicle, such as along a rear fender of the vehicle, or along a rear lift gate of the vehicle, or along a rear spoiler of the vehicle, or along a light bar associated with the license plate of the vehicle or the like. For example, and as shown in FIG. 5, the sensors may include two side or corner sensors 36 and one or more sensors 40 (such as two sensors 40 in FIG. 5) interspaced across the rear portion of the vehicle and between the corner sensors 36. Preferably, a light bar is provided at the license plate of the vehicle and includes the imaging sensor or camera, the ultrasonic sensors, and preferably a light for illuminating the license plate of the vehicle, such that the imaging sensor and ultrasonic sensors may be provided as a module at the rear of the vehicle.

The ultrasonic sensors 36, 40 may provide adjacent and overlapping sensing regions to provide a sensing range that encompasses substantially the entire region behind the vehicle and about eight feet or thereabouts rearward of the vehicle. The imaging sensor or camera 16′ may capture images of the rearward exterior scene that is encompassed by the field of view of the camera, and the display may display images of the scene for viewing by the driver of the vehicle when the vehicle is backing up. The display may be adjusted or modified or enhanced in one or more of the regions associated with one or more of the ultrasonic sensors in response to a detection of an object by one or more of the ultrasonic sensors.

For example, the display may be divided into four zones, each zone of the display corresponding to a zone or region covered by a respective ultrasonic sensor. If that ultrasonic sensor detects an object, then the corresponding zone of the display may be adjusted or enhanced to indicate to the driver of the vehicle that an object is detected in a particular zone or region rearward of the vehicle. For example, one or more of the zones in the display may flash or modulate or may change intensity to indicate that an object has been detected in the region or zone rearward of the vehicle that corresponds to the enhanced or flashing or modulating display zone. Optionally, the display may provide a graphic overlay, such as a measurement bar or the like, to show a distance to a detected object.

Optionally, the ultrasonic sensor or auxiliary sensing device may provide a triggering or initial sensing function, and the imaging system may adjust a camera setting or characteristic in response to a detection of an object by one or more of the ultrasonic sensors. For example, the camera may be controlled or adjusted to electronically zoom to the appropriate zone or region of the captured image in response to a detection of an object by a respective ultrasonic sensor. Because the captured image may have distortion due to the wide angle lens or optic of the imaging system and camera, it may be desirable to adjust the imaging sensor or camera to provide enhanced imaging of an object detected in the field of view. The camera thus may be zoomed in on the appropriate zone or region to provide enhanced imaging of that zone or region and to provide reduced distortion of that zone or region and, thus, enhanced imaging and reduced distortion of the detected object when it is displayed on the display. The imaging and display system may optionally provide a dynamic overlay at the display to highlight the detected object in the display, and may display the distance (which may be detected or determined in response to the ultrasonic sensing devices) to the object.

Optionally, the imaging system may process particular zones or regions of the image data corresponding to the exterior scene more than other zones or regions, such as by utilizing aspects of the object detection system described in U.S. patent application Ser. No. 10/427,051, filed Apr. 30, 2003, now U.S. Pat. No. 7,038,577; and/or Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and/or U.S. provisional application Ser. No. 60/607,963, filed Sep. 8, 2004, which are hereby incorporated herein by reference. Optionally, the imaging system may process particular zones or regions in response to a detection of an object by one or more of the ultrasonic sensors. For example, if one of the ultrasonic sensors initially detects an object at the left rear corner of the vehicle, the control may process the image data that corresponds to that area or region, or may enhance the processing of the image data that corresponds to that area or region, in order to identify or classify or detect the detected object in that area or region. The imaging and display system may then highlight or enhance the display at the detected object, such as by a graphic overlay at the display or an adjustment or modulation of the display in the region of the detected object. The ultrasonic sensors thus may function to detect an object and to direct the image processor to process the image data that corresponds to the area in which the object was detected. The image processor thus may process the image data for the regions that may have an object therein, and may provide reduced processing of other regions, and thus may provide efficient and enhanced processing of the captured images.

Optionally, the display may be actuated in response to a detection of an object behind the vehicle when the vehicle is backing up or in reverse. For example, when a driver shifts the vehicle into reverse, the ultrasonic sensors at the rear portion of the vehicle may be activated to sense the area rearward of the vehicle. The imaging and display system may monitor the ultrasonic sensors or may receive an input from the ultrasonic sensors or system, and may initially be in a non-active or non-display mode, where the display is deactivated. When an object rearward of the vehicle is detected by the ultrasonic sensors, the detection by the ultrasonic sensor or sensors may trigger the imaging and display system to be activated or set to an active mode, whereby the imaging sensor may begin capturing images of the rearward scene and the display may begin displaying images of the rearward scene (which may include enhanced imaging or processing or display or highlighting of the detected object such as discussed above). The activation of the display may provide an alert function to the driver of the vehicle that an object is detected behind the vehicle and/or in the path of the vehicle, so as to draw the driver's attention to the activated display and to the object being displayed in the display.

Optionally, the imaging and display system and ultrasonic sensing system may be implemented in conjunction with a movable video display, such as a slide out or extendable/retractable display screen that extends and retracts from the interior rearview mirror assembly or from an accessory module or overhead console or the like within the vehicle cabin and in the field of view of the driver of the vehicle. For example, the video display may comprise a slide out video display such as described in PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published on Jul. 15, 2004 as International Publication No. WO 2004/058540; and/or U.S. provisional application, Ser. No. 60/630,061, filed Nov. 22, 2004; Ser. No. 60/667,048, filed Mar. 31, 2005, which are hereby incorporated herein by reference. The display screen thus may be automatically extended and activated in response to a detection of an object rearward of the vehicle by the ultrasonic sensors, whereby the extension of the display screen provides an alert to the driver so that the driver's attention is readily drawn to the now extended and activated display screen. The imaging and display system and ultrasonic sensing system of the present invention thus may provide a display only when there is an object detected and may provide an alert function to the driver to view the display when an object is detected. In such an application, the video display may not be extended and be activated in response to the shifting into reverse, but would extend and activate after detection of an object exteriorly or rearward of the vehicle by the auxiliary sensor or sensors.

Although described above as ultrasonic sensors or sensing devices, it is envisioned that the imaging and display system of the present invention may be combined with other types of sensing systems or auxiliary or secondary or triggering or initial sensing devices or sensing techniques. For example, the imaging and display system may be operable in conjunction with or in combination with radar devices, sonar devices, laser sensing or lidar devices or laser scanning devices or the like, without affecting the scope of the present invention. The initial or triggering or auxiliary sensing device or devices may initiate or trigger enhanced imaging or zooming or other characteristics of the camera, or may initiate or trigger enhanced processing of the captured images, or may initiate or trigger enhanced display features or the like, in response to a detection of an object rearward of the vehicle by one of the initial or triggering or auxiliary sensing devices. Although shown and described as being combined with or operating in conjunction with a rearward facing camera and associated display, it is envisioned that aspects of the auxiliary sensing devices or system of the present invention may be equally suitable for use in conjunction with sideward facing imaging systems, such as side object detection systems or lane change assist systems or the like, or forward facing imaging systems, such as lane departure warning systems, adaptive speed control, headlamp controls, rain sensors or the like.

Optionally, and desirably, the image capture device or imaging device may be at least partially contained within an imaging module or camera module, which includes imaging sensor or imager and a lens positioned within a housing which defines a transparent window (which may comprise an at least substantially transparent glass or polycarbonate or acrylic (or other suitable material) window or panel) at the end of lens (such as described in PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 and published Jun. 3, 2004 as International Publication No. WO 2004/047421, which is hereby incorporated herein by reference). The imaging module may include the circuitry and controls or camera microcontroller and video encoder for the imaging sensor, such as on one or more printed circuit boards contained within the housing.

Optionally, the camera module may comprise a fully sealed module, which protects the imaging device and microcontroller and circuitry from exposure to the elements at the exterior of the vehicle, such as dust, dirt, mud, water, ice, salt and the like. The lens may provide part of the sealing of the module. For example, the camera module may include a lens that may be purchased or obtained as a subassembly that is separate from the imaging sensor and mounted to the module. The lens may loaded into the module, such as via insertion of the lens or threading of the lens into an aperture or opening in the module wall or adjacent to a transparent cap or cover of the module wall. The lens assembly (which is typically a five element lens set, but may include more or less optic elements without affecting the scope of the present invention) may be positioned at the opening or aperture or cover such that the lens is positioned at the appropriate or precise location relative to the imaging sensor or chip to properly focus the image onto the imaging sensor.

Optionally, the lens may be adjustably positioned, such as via threading into a threaded opening, to precisely position the lens to focus the image onto the imaging sensor. Once positioned at the precise or appropriate location, the lens may be retained or secured in the precise position, and the module may then be sealed with a back plate and gasket to seal the lens and imaging sensor and associated microprocessor and circuitry within the module. The module thus provides enhanced positioning of the lens relative to the imaging sensor, since the lens may be readily adjusted to provide proper focusing relative to a fixed imaging sensor.

The module may include a transparent cap or cover through which the field of view of the imaging sensor and lens is directed. The transparent cap may comprise a molded polycarbonate material or the like and may provide a substantially transparent and durable cover at the lens. Optionally, the transparent cap may include an anti-reflective coating or a hydrophobic or hydrophilic coating or the like, such as the coatings described in PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 and published Jun. 3, 2004 as International Publication No. WO 2004/047421, which is hereby incorporated herein by reference. The transparent cap thus may provide functionality and sealing to the camera module.

Because the lens assembly may be selected and positioned at the imaging sensor as a separate sub-assembly or as an aftermarket sub-assembly, the lens assembly may be selected to provide the desired effect depending on the particular application of the camera module. The lens may then be assembled to the module and the appropriate module, with the desired lens and features or content, may be mounted to the vehicle and connected to the existing connector (such as a five wire connector as described above). The display system may further process the image data or encoded signal to digitally correct for distortion in the image due to lens distortion and the like.

The present invention thus provides a customized imaging system that provides various features or functions or modes or content to the imaging device or system without requiring costly communication or data wires connecting between the imaging device and the user inputs within the vehicle. The present invention thus provides a vision system that is suitable for economically configuring the system to the desired content for a particular application of the imaging system. A user thus may select a vision system with a particular camera and/or display, with little or no affect on the wiring or connections between the camera and the display.

Optionally, the imaging system may be operable to function as a lane departure warning (LDW) system utilizing image processing of the images captured by the rearward facing imaging sensor or camera. The imaging system may include controls and/or circuitry for operating as such a lane departure warning system and thus may process the images to detect the lane markers and the like along the road surface, or the imaging system may provide image data to a separate image processor or microcontroller for processing the image data to detect the lane markers and the like along the road surface. The imaging system may utilize image processing techniques such as those described in U.S. patent application Ser. No. 10/427,051, filed Apr. 30, 2003, now U.S. Pat. No. 7,038,577; and/or Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and/or U.S. provisional application, Ser. No. 60/607,963, filed Sep. 8, 2004; and/or Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference.

The imager or imaging sensor 22 of the imaging system 16 of the imaging system 10 may comprise an imaging array sensor or a pixelated imaging array, such as a multi-pixel array such as a CMOS sensor or a CCD sensor or the like, such as the types disclosed in commonly assigned U.S. Pat. Nos. 5,550,677; 5,670,935; 5,796,094; 5,877,897; 6,097,023; 6,498,620; and 6,690,268, and U.S. patent application Ser. No. 09/441,341, filed Nov. 16, 1999, now U.S. Pat. No. 7,339,149, which are hereby incorporated herein by reference, or such as an extended dynamic range camera, such as the types disclosed in PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 and published Jun. 3, 2004 as International Publication No. WO 2004/047421, which is hereby incorporated herein by reference. For example, the imaging sensor may comprise a CMOS camera, such as the OV7930 single chip CMOS color NTSC camera available from OmniVision Technologies Inc. of Sunnyvale, Calif. Such color cameras may have the performance characteristics identified above and may additionally provide RGB and/or YCrCb video signals. Preferably, the color video camera operates at a minimum illumination (3000 K) of less than about 5 lux at f1.2, more preferably of less than about 3 lux at f1.2, and most preferably less than about of less than about 2 lux at f1.2. Such CMOS imaging sensors typically may have a peak sensitivity in the near infrared range, such as at approximately 850 nm to 900 nm.

Such pixelated imaging sensors may include a plurality of pixels, with at least some of the pixels masked or covered with a particular color filter, such that the individual pixels function to capture a particular color, such as red, green and blue colors or the like, such as disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,796,094; 6,097,023; and/or 6,498,620, referenced above. For example, the imaging sensor may comprise an individual blue or a green or a red color filter over each pixel element of the CMOS multi-pixel element array. The imaging sensor is thus operable to provide color images to the display. Such RGB filters enable the capture of a color image by the CMOS detector, but necessarily result in a reduced or decreased low light level sensitivity for a color camera compared to a monochromatic or black and white camera. Optionally, and preferably, the imaging sensor may be capable of selectively operating in either a color mode, in which a color image may be displayed at display element 28 of display system 14, or a monochromatic or black and white mode, in which a monochromatic or black and white image may be displayed at display element 28 of display system 14, such as by utilizing aspects of the imaging sensor disclosed in U.S. Pat. No. 6,498,620; and/or PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 and published Jun. 3, 2004 as International Publication No. WO 2004/047421, which are hereby incorporated herein by reference.

Although described as a CMOS type camera, clearly other types of imaging arrays or imaging sensors or cameras may be implemented with the imaging system of the present invention. For example, the imaging sensor may comprise a CCD or other type of sensor, without affecting the scope of the present invention. Preferably, the selected imaging sensor has a low dark current and thus provides enhanced ruggedness and enhanced performance at higher temperatures. Optionally, the dark current (the current through the pixels when they are not sensing light) may be used to detect the temperature at the imaging sensor, such as described in U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and U.S. provisional application Ser. No. 60/607,963, filed Sep. 8, 2004, which is hereby incorporated herein by reference.

Optionally, the imaging device or system may communicate the video signals to the display device or system via other types of signal communicating means. For example, the imaging device or system may communicate the video signals to the display device or system via an LVDS output of the imaging device or system. Optionally, the imaging system and the display system may share common components or circuitry or a common microprocessor to reduce components and cost of the vision system.

Referring now to FIG. 6, an image capture system or imaging system 110 is positioned at a vehicle, such as at or in an interior portion of the vehicle, such as at or in an accessory module or pod or attachment 112 of the vehicle, and is operable to capture an image of a scene occurring exteriorly of the vehicle, such as forwardly of the vehicle. Imaging system 110 includes an image capture device or imaging device or imaging system or camera or sensor 114 that is directed exteriorly of the vehicle and has an exterior field of view 116. The images or frames captured by image sensor 114 are processed by a control 118 to detect objects or items of interest in the captured images. The control may process the captured image data to determine if headlamps or taillights of other vehicles are present in the images, such as for a headlamp control system, and/or the control may process the captured images to detect lane markers along the road surface, such as for a lane departure warning system, and/or may process the image data to detect other characteristics or objects, as discussed below (such as by utilizing aspects of the imaging system described in U.S. provisional application Ser. No. 60/618,686, filed Oct. 14, 2004, which is hereby incorporated herein by reference in its entirety). The control may synchronize the processing techniques and the camera or image sensor settings to enhance and/or optimize processing of images for the particular system or function, as also discussed below.

Imaging sensor 112 may be positioned at the vehicle and directed or oriented with a field of view generally exteriorly of the vehicle for capturing images of the exterior scene for processing by the control, as discussed below. Imaging system 110 may utilize principles of other vehicle vision or imaging systems, such as a vision or imaging system or control of the types disclosed in U.S. Pat. Nos. 6,757,109; 6,717,610; 6,396,397; 6,201,642; 6,353,392; 6,313,454; 6,396,397; 5,550,677; 5,670,935; 5,796,094; 5,877,897; 6,097,023; and 6,498,620, and U.S. patent application Ser. No. 09/441,341, filed Nov. 16, 1999, now U.S. Pat. No. 7,339,149, and Ser. No. 10/427,051, filed Apr. 30, 2003, now U.S. Pat. No. 7,038,577, which are all hereby incorporated herein by reference. In a preferred embodiment, the imaging system 112 may include a lens element or optic between the imaging device 114 and the exterior scene. The optic may comprise an asymmetric optic, which focuses a generally central portion of the scene onto the imaging device, while providing classical distortion on the periphery of the scene or field of view.

In the illustrated embodiment, the image sensor 112 is mounted at or in an accessory module or windshield electronics module or mirror attachment or pod 120 and is arranged to have a field of view 116 forward of the vehicle, such as through the windshield of the vehicle and preferably through a portion of the windshield that is wiped by a windshield wiper of the vehicle. The image sensor 112 thus may capture images of a forward scene as the vehicle is traveling forwardly along a road or street or highway or the like. Optionally, the imaging device or sensor may be positioned elsewhere, such as at or in the interior rearview mirror assembly 122, or at or in an accessory module or windshield electronics module or the like (as discussed below), without affecting the scope of the present invention. Optionally, the image sensor and imaging system may be operable to capture images of other areas exteriorly of the vehicle to provide image data of other areas around or near the vehicle, without affecting the scope of the present invention. The imaging system thus may be operable to capture images of the scene sidewardly of the vehicle for a blind spot or side object detection or lane change assist systems or immediately rearward of the vehicle to detect objects rearward of the vehicle, such as for assisting the driver of the vehicle in backing up or maneuvering the vehicle in reverse.

As shown in FIG. 7, control 118 may control the imager or image sensor 114 via a control signal 118a, while the control may receive image data from the image sensor via an image data signal 114a. The control or microprocessor 118 is operable to process the image data generated by the image sensor 114 to analyze the image data and detect objects or light sources of interest in the captured image. The control or imaging system may selectively process the captured image data to detect objects or light sources or lane markers or the like in the exterior scene, and may process particular portions or regions of the captured image in accordance with the respective function of the control, as discussed below.

The control may be operable to control various accessories (or to generate an output to a control or circuitry of one or more accessories) in response to the image processing. For example, the control may control or adjust a headlamp high-low beam setting in response to a detection of headlamps or taillights in the captured images, and/or may actuate an alert device, such as a visible display or audible alert or the like, in response to a detection of the vehicle drifting out of its lane along the road, and/or may adjust an interior lighting or display intensity of a light or display within the vehicle in response to an ambient light detection, and/or may generate other outputs or actuate/control other accessories in response to detections of other objects or light sources of interest via such image processing.

The imaging system thus may be operable to function as or in conjunction with a lane departure warning system, and may generate an alert to the driver of the vehicle in response to a detection that the vehicle is drifting or moving out of a detected lane along the road. Such an application may utilize principles of systems of the types described in U.S. Pat. Nos. 6,353,392 and 6,313,454; and/or U.S. patent application Ser. No. 10/427,051, filed Apr. 30, 2003, now U.S. Pat. No. 7,038,577; Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and/or Ser. No. 10/209,173, filed Jul. 31, 2002, now U.S. Pat. No. 6,882,287, and/or U.S. provisional application, Ser. No. 60/607,963, filed Sep. 8, 2004; and/or Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference. Optionally, the imaging system may capture and process images for a headlamp control application, and may utilize principles of systems of the types described in U.S. Pat. Nos. 6,824,281; 5,796,094; 6,097,023; 5,320,176; and 6,559,435, which are hereby incorporated herein by reference, and/or may capture and process images for a rain sensing function or rain sensor application, and may utilize principles of the systems of the types described in U.S. Pat. Nos. 6,824,281; 6,320,176; 6,353,392; 6,313,454; 6,516,664; 6,341,523; and 6,250,148; and/or in U.S. patent application Ser. No. 10/348,514, filed Jan. 21, 2003, now U.S. Pat. No. 6,968,736, which are all hereby incorporated herein by reference, and/or may capture and process images for an ambient light detection or the like, and may utilize principles of systems of the types described in U.S. Pat. No. 5,550,677 and/or 5,670,935, which are hereby incorporated herein by reference, and/or may capture and process images for a collision avoidance system or vehicle separation system, and may utilize principles of systems of the types described in U.S. Pat. Nos. 6,411,204; 6,396,397; 6,124,647; 6,291,906; and 6,534,884, and/or U.S. patent application Ser. No. 10/422,512, filed Apr. 24, 2003, now U.S. Pat. No. 7,123,168, which are all hereby incorporated herein by reference, and/or may capture and process images for a navigational system, and may utilize principles of systems of the types described in U.S. Pat. Nos. 6,477,464; 5,924,212; 4,862,594; 4,937,945; 5,131,154; 5,255,442; 6,678,614; and/or 5,632,092, and/or U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003, now U.S. Pat. No. 7,004,593; Ser. No. 10/645,762, filed Aug. 20, 2003, now U.S. Pat. No. 7,167,796; Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and Ser. No. 10/422,378, filed Apr. 24, 2003, now U.S. Pat. No. 6,946,978, now U.S. Pat. No. 6,946,978; and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540; and/or PCT Application No. PCT/US04/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, and/or U.S. provisional application Ser. No. 60/607,963, filed Sep. 8, 2004, which are all hereby incorporated herein by reference. Other accessories or functions or applications may also or otherwise be provided or controlled or adjusted by the imaging system, without affecting the scope of the present invention.

The control may adjust one or more characteristics or settings of the image sensor or camera and/or may operate an iris and/or an optical zoom and/or a digital zoom or the like so that the image sensor is adapted or set to enhance image capturing for a particular function of the imaging system or control. Optionally, the control may adjust a focus of the image sensor (such as via adjustment of the lens or optic) to provide a clear captured image focused on the desired or appropriate objects for the particular application of the imaging system.

The imager or imaging sensor 114 of the imaging system 110 may comprise an imaging array sensor or a pixelated imaging array, such as a multi-pixel array such as a CMOS sensor or a CCD sensor or the like, such as the types disclosed in commonly assigned U.S. Pat. Nos. 5,550,677; 5,670,935; 5,796,094; 5,877,897; 6,097,023; 6,498,620; and 6,690,268, and U.S. patent application Ser. No. 09/441,341, filed Nov. 16, 1999, now U.S. Pat. No. 7,339,149, which are hereby incorporated herein by reference. For example, the multi-pixel array may comprise a multi-pixel array having a 640×480 pixel array or the like. In order to reduce the computational load on the processor, only a desired subset or zone of the multi-pixel array frame may be chosen to be processed, such as for a particular application of the imaging system. For different applications, the objects or light sources of interest may be different objects or categories or classifications of objects and/or may be typically located at different regions of the captured image. For example, for a headlamp control application or function, the objects of interest are light sources, particularly headlamps and taillights, that are typically located at a generally central band or region of interest across the captured images, while for a lane departure warning application or function, the objects of interest are lane markers or road edges or the like that are typically located along a lower region of interest of the captured images (such as along the lower about 30 percent of the captured image or thereabouts). For ambient light detection, the light or region of interest would typically be along the upper region of the captured images (such as about the upper 20 percent of the captured image or thereabouts). The desired or appropriate or chosen subset or zone or target area of the multi-pixel array frame may be processed for the particular application to reduce processing or computational load when additional processing of other subsets or zones may not enhance the performance of the imaging system for that particular application.

Also, for different applications, it may be desirable to capture the respective images with the image sensor being at a different sensitivity or setting. For example, a camera setting or characteristic, such as an exposure time, an amplification, a gain, a white balance and/or the like, of the image sensor may be adjusted for capturing images to optimize the captured image and image data for a particular application or function. Amongst other things, the sensitivity of the image sensor can be adjusted by adjusting the integration time of the pixels and the amplification stage in reading out pixels. This allows the image sensor to be adapted to various lighting conditions at the observed exterior scene. In a closed loop camera control scheme, the image sensor sensitivity can be adjusted as determined by an application module so that the image brightness meets the application specific requirements. For example, the control may adjust the image sensor to be at an increased sensitivity for detecting headlamps and taillights during nighttime conditions, yet may decrease the sensitivity for detecting lane markers along the road surface, particularly during nighttime conditions when the headlamps are activated and the road is thus well illuminated. Other adjustments or settings or characteristics, such as a desired or selected zone of interest in a frame or an optical zoom or digital zoom or panning of or through a frame or the like, may be made or set or adjusted to optimize the image sensor for capturing one or more images for a particular function or accessory control.

The control thus may adjust a characteristic or setting of the imaging sensor for particular captured images and may process the image data of those particular captured images in a manner or processing technique suited for a particular application or function of the control, such as for headlamp control, lane departure warning, rain sensing, vehicle detection, vehicle lighting and/or display control, and/or the like. The control may synchronize the camera settings for particular captured images with the processing technique applied to the image data associated with those captured images, and may switch or alternate between different settings and processing techniques to provide the desired processing and analysis and output for the desired applications.

For example, and with reference to FIGS. 8 and 9, the control may selectively or occasionally or intermittently process images for first and second applications, such as a lane departure warning system and a headlamp control or the like. The control thus may adjust a camera setting or settings or sensitivity or other characteristic or parameter of the image sensor for capturing a first set of images and may process the image data from the first set of captured images in a first manner, and may generate a first output in response to the first image processing. The control may also adjust a camera setting or settings or sensitivity or other characteristic or parameter of the image sensor for capturing a second set of images and may process the image data from the second set of captured images in a second manner, and may generate a second output in response to the first image processing. The first and second camera settings/characteristics and/or the first and second processing manners or techniques may be different from one another to optimize the capturing and processing of the image data for the particular first or second application or function. The control may further adjust the camera settings and image processing techniques for a third application or more applications as desired, without affecting the scope of the present invention. The first and second (and third and more if applicable) settings and processing techniques are synchronized such that each image captured by the image sensor at one of the settings is processed by the control or processor at the appropriate or corresponding processing technique for the associated application or function or accessory control.

Multiple applications thus can be operated and controlled using the same imager and processing resources of the imaging system. In a case where only two applications share the system resources and where frames of image data are thus processed alternately by the two application modules using the same processor, the control may alternate every other image for the two applications. For example (and as shown in FIG. 9), images 1, 3, 5, etc. may be captured with the image sensor settings at a particular setting and may be processed according to a particular processing technique, while images 2, 4, 6, etc. may be captured with the image sensor settings at a different setting and/or may be processed according to a different processing technique. Clearly, however, other iterations and alternate capturing and/or processing of images may be implemented without affecting the scope of the present invention. Although shown as separate applications in FIG. 9, the same image processor may process the different sets of images for the respective first and second applications of the imaging system.

Optionally, such as for cases where the two applications do not have to process images at the same frame rate, the frame rate ratio can be adjusted accordingly. For example, if the imager is operable to provide up to 15 frames per second (fps), and the first application needs the control to process five frames per second while the second or other application only needs the control to process one frame per second, then the control may process five frames in a row for the first application, and may then process only one frame for the second application. This processing scheme may be adjusted for any desired frames per second and may be extended to allow more than two applications to execute on the system, without affecting the scope of the present invention.

As shown in FIG. 8, the control or image processor 118 may selectively process the image data to detect a desired object or light source of interest. For example, the control 118 may process image data to detect headlamps (as shown at 126 in FIG. 8), and may generate an output to a headlamp control 128 to adjust or control the headlamps of the vehicle (or the control 118 may adjust or control the headlamps of the vehicle in response to the image processing). Optionally, the control 118 may also or otherwise selectively process the image data to detect lane markers (as shown at 130 in FIG. 8), and may generate an output to a lane departure warning system or to an alert device 132 to alert the driver of a lane drift or the like as the vehicle travels along the road. Optionally, the control 118 may also or otherwise selectively process the image data to determine an ambient light level (as shown at 134 in FIG. 8), and may generate an output to a display 136 or to an interior light control 138 or the like to adjust an intensity of the display or lights in response to such image processing. Other captured images and/or other objects or light sources or light levels of interest may also or otherwise be analyzed to provide other outputs to or control of other functions or accessories of the vehicle, without affecting the scope of the present invention. Each of the image processing techniques applied to the image data may be synchronized with the settings or sensitivity of the image sensor to optimize the performance and detection capabilities of the imaging system for the particular applications associated with or conducted by the imaging system.

The present invention thus provides an imaging system that may selectively capture images via an image sensor and may selectively process the captured images to determine or detect a desired or appropriate characteristic of the captured images. The imaging system may synchronize a setting or sensitivity or focus of the image sensor with an image processing technique so that the captured image data are selectively captured and/or processed in a particular manner for a particular application of the imaging system. The imaging system thus may provide multiple functions or applications by utilizing a common imaging sensor and common image processor, and thus may provide a multi-tasking imaging system at a reduced cost and with reduced components. The imaging system may capture multiple frames sequentially, and may elect (such as in a predetermined manner) the processing or treatment of the respective frames or sets of frames. The imaging system thus may focus or harness the processing power to a restricted set of criteria for one subset of frames, and to another restricted set of criteria for another subset of frames. The imaging system of the present invention thus may selectively focus or harness the image sensor capturing capabilities and the image processing power to enhance the image capturing and processing of different frames or sets of frames for different applications.

Although shown and described as a forward facing imaging sensor, it is envisioned that aspects of the present invention may be suitable for selectively capturing and/or processing image data with a rearward facing imaging sensor and control or image processor. For example, the rearward facing imaging system may be operable to function as a lane departure warning (LDW) system utilizing image processing of the images captured by a rearward facing imaging sensor or camera. The imaging system may include controls and/or circuitry for operating as such a lane departure warning system and thus may process the images to detect the lane markers and the like along the road surface, or the imaging system may provide image data to a separate image processor or microcontroller for processing the image data to detect the lane markers and the like along the road surface. The imaging system may utilize image processing techniques such as those described in U.S. patent application Ser. No. 10/427,051, filed Apr. 30, 2003, now U.S. Pat. No. 7,038,577; and/or Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and/or U.S. provisional application, Ser. No. 60/607,963, filed Sep. 8, 2004; and/or Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference. Optionally, the imaging system may selectively capture and process image data of the rearward facing image sensor to provide a backup aid function, such as by utilizing principles described in U.S. Pat. Nos. 5,550,677; 5,760,962; 5,670,935; 6,201,642; 6,717,610 and/or 6,757,109, and/or in U.S. patent application Ser. No. 10/418,486, filed Apr. 18, 2003, now U.S. Pat. No. 7,005,974, and/or in PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 and published Jun. 3, 2004 as International Publication No. WO 2004/047421, which are all hereby incorporated herein by reference.

The imager or imaging sensor 114 of the imaging system 110 may comprise an imaging array sensor or a pixelated imaging array, such as a multi-pixel array such as a CMOS sensor or a CCD sensor or the like, such as the types disclosed in commonly assigned U.S. Pat. Nos. 5,550,677; 5,670,935; 5,796,094; 5,877,897; 6,097,023; 6,498,620; and 6,690,268, and U.S. patent application Ser. No. 09/441,341, filed Nov. 16, 1999, now U.S. Pat. No. 7,339,149, which are hereby incorporated herein by reference, or such as an extended dynamic range camera, such as the types disclosed in PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 and published Jun. 3, 2004 as International Publication No. WO 2004/047421, which is hereby incorporated herein by reference. For example, the imaging sensor may comprise a CMOS camera, such as the OV7930 single chip CMOS color NTSC camera available from OmniVision Technologies Inc. of Sunnyvale, Calif. Such color cameras may have the performance characteristics identified above and may additionally provide RGB and/or YCrCb video signals. Preferably, the color video camera operates at a minimum illumination (3000 K) of less than about 5 lux at f1.2, more preferably of less than about 3 lux at f1.2, and most preferably less than about of less than about 2 lux at f1.2. Such CMOS imaging sensors typically may have a peak sensitivity in the near infrared range, such as at approximately 850 nm to 900 nm or thereabouts.

Such pixelated imaging sensors may include a plurality of pixels, with at least some of the pixels masked or covered with a particular color filter, such that the individual pixels function to capture a particular color, such as red, green and blue colors or the like, such as disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,796,094; 6,097,023; and 6,498,620, referenced above. For example, the imaging sensor may comprise an individual blue or a green or a red color filter over each pixel element of the CMOS multi-pixel element array. The imaging sensor is thus operable to detect colors, which is useful in determining whether a detected object or item is a headlamp or a taillight, such as described in U.S. Pat. No. 5,796,094, referenced above.

Although described as a CMOS type camera, clearly other types of imaging arrays or imaging sensors or cameras may be implemented with the imaging system of the present invention. For example, the imaging sensor may comprise a CCD or other type of sensor, without affecting the scope of the present invention. Preferably, the selected imaging sensor has a low dark current and thus provides enhanced ruggedness and enhanced performance at higher temperatures. Optionally, the dark current (the current through the pixels when they are not sensing light) may be used to detect the temperature at the imaging sensor, such as described in U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and/or U.S. provisional application Ser. No. 60/607,963, filed Sep. 8, 2004, which is hereby incorporated herein by reference.

Optionally, a method or system may be implemented to transform a CMOS color imager from its individual color space into a standardized color protocol, such as the CIE color space, in order to enhance the identification of a detected object or light source. The Centre Internationale dEclairage (CIE) is an international organization that establishes methods for measuring color and that recommends standards and procedures for light and lighting, including colorimetry. The color standards for colormetric measurements are internationally accepted specifications that define color values mathematically. CIE defines color as a combination of three axes: x, y, and z. CIE color models are considered device independent because the colors should not differ, theoretically, from one output device to another if properly calibrated.

The CIE color spaces thus provide the foundation upon which device-independent color and color management are built. Device profiles, device calibration, and gamut mapping may also be needed for color management. A device profile describes a device's color capabilities including color gamut, color production method, and device operation modes. Device profiles are typically created by color imaging scientists using spectrophotometers, which are instruments that measure the relative intensities of light in different parts of the visible spectrum. The measurements are then used to produce the device profile, such as via various algorithms and the like. Device profiles are used by the color management software to translate color data from one device to another based upon an independent color space or system for ordering colors that respects the relationships or similarity among them.

The CMOS color imager of the imaging system of the present invention is used in an automotive environment where all the road scene objects of interest that may be typically encountered may be classified within the CIE Color System. Digital imaging systems represent color in any given number of ways. The transformation provides an easy method for the identification of CIE color. Classification of the various objects within the road scene can be enhanced using CIE color as well as other image processing methods to provide high confidence that any particular detected object or light source is correctly identified.

The transformation requires an initial characterization of the pixel output of the CMOS imager using four primary calibration targets and a spectroradiometer. The CMOS imager is used to measure the “color” of the calibrated targets. The calibrated targets are also measured using the spectroradiometer. The transformation yields a three by three matrix that is applied to the x, y, z values of the camera's output to provide CIE color. The CIE color of the detected object or light source may then be compared to the classifications or index of the various objects or light sources of interest to identify the detected object or light source.

Therefore, the present invention provides an imaging system that includes an imaging device and a control that is operable to selectively capture images and process image data to provide multiple functions or applications of a common image sensor and image processor. The imaging system may synchronize the settings of the image sensor with the processing techniques applied to the captured image data to optimize two or more functions of the imaging system. The present invention thus provides a multi-tasking capability to a common image sensor and image processor while providing enhanced capturing of the images and processing of the image data for the desired functions or applications.

Optionally, an imaging sensor or system of the present invention may be associated with an imaging and display system for displaying the captured images to the driver of the vehicle. In such display applications, a variety of display means or display devices may be utilized to visually convey information to the driver of the vehicle, without affecting the scope of the present invention. For example, and such as described in U.S. Pat. No. 6,477,464, which is hereby incorporated herein by reference, a text display may be provided and/or an iconistic display may be provided, such as a display readable through the interior rearview mirror reflective element itself. In this regard, use of a transflective or display on demand (DOD) type display (such as disclosed in commonly assigned, U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381, and in U.S. Pat. Nos. 6,690,268; 5,668,663 and 5,724,187, the entire disclosures of which are hereby incorporated by reference herein), may be preferred. For example, a video display element or a video display screen or an information display element can be used (such as an elongated alphanumeric/multi-pixel/multi-icon display element and/or such as an LCD display or an emitting display element, such as a multi-pixel electroluminescent display or field emission display or light emitting diode display (organic or inorganic) or the like) which is disposed within the mirror housing of the interior mirror assembly of the vehicle, and located behind the mirror reflective element in the mirror housing, and configured so that the information displayed by the display element (that is positioned to the rear of the reflector of the mirror reflective element) is viewable by the driver through the mirror reflective element. Such a display can be accomplished by partially or wholly removing the reflector in the area of the display or, more preferably, by providing a display on demand type display, whereby the reflective element comprises a transflective element, as discussed below.

Note that other display locations are possible for display of the video image or information display, such as a text message or the like, to the driver or occupant of the vehicle. For example, a video image may be displayed on an LCD video screen of flip-down display (such as is disclosed in U.S. Pat. No. 6,690,268, incorporated above), or on a video screen incorporated into the rearview mirror assembly (such as the types described in U.S. patent application Ser. No. 10/964,512, filed October 13, now U.S. Pat. No. 7,308,341, and/or in PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540, which is hereby incorporated herein by reference). Optionally, for example, a video display located in the front instrument panel can be used, or a video display located in an overhead console (such as an overhead accessory module or system as described in PCT Application No. PCT/US03/40611, and published Jul. 15, 2004 as International Publication No. WO 2004/058540, which is hereby incorporated herein by reference) can be used, without affecting the scope of the present invention. Alternately, a low cost, multi-pixel display (such as the type disclosed in U.S. patent application Ser. No. 10/418,486, filed Apr. 18, 2003, now U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference), such as a low cost multi-pixel vacuum fluorescent display, a low cost multi-pixel organic light emitting diode (OLED), a low cost multi-pixel field emission display, or any other or similar multi-pixel light emitting display or the like may be utilized, without affecting the scope of the present invention.

Optionally, the imaging sensor and control, and optionally a display device and/or an audible alert device or speaker or the like, may include a display element positioned at a rear portion of the vehicle, such as at the rear window of the vehicle or the like, on which the captured image is projected, such as via a projector within the vehicle. The displayed or projected image may be viewed at the rear portion of the vehicle by the driver of the vehicle, such as by viewing the image in the rearview mirror or by turning to view the rearward image. The image thus may be projected as a reverse image or mirror image display depending on the particular application or desired viewing of the displayed/projected image.

Optionally, the display device and/or an audible alert device or speaker may be positioned at or in or near the interior rearview mirror assembly of the vehicle. The mirror assembly may comprise a prismatic mirror assembly, such as a prismatic mirror assembly utilizing aspects described in U.S. Pat. Nos. 6,318,870; 5,327,288; 4,948,242; 4,826,289; 4,436,371; and 4,435,042; and PCT Application No. PCT/US04/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772; and U.S. patent application Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860, which are hereby incorporated herein by reference. Optionally, the prismatic reflective element may comprise a conventional prismatic reflective element or prism or may comprise a prismatic reflective element of the types described in PCT Application No. PCT/US03/29776, filed Sep. 19, 2003 and published Apr. 1, 2004 as International Publication No. WO 2004/026633; U.S. patent application Ser. No. 10/709,434, filed May 5, 2004, now U.S. Pat. No. 7,420,756; and Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177; and U.S. provisional application Ser. No. 60/525,952, filed Nov. 26, 2003, which are all hereby incorporated herein by reference, without affecting the scope of the present invention. A variety of mirror accessories and constructions are known in the art, such as those disclosed in U.S. Pat. Nos. 5,555,136; 5,582,383; 5,680,263; 6,227,675; 6,229,319; and 6,315,421 (the entire disclosures of which are hereby incorporated by reference herein), that can benefit from or be implemented with the present invention.

Optionally, the interior rearview mirror assembly may comprise an electro-optic or electrochromic reflective element or cell, such as an electrochromic mirror assembly and electrochromic reflective element utilizing principles disclosed in commonly assigned U.S. Pat. Nos. 6,690,268; 5,140,455; 5,151,816; 6,178,034; 6,154,306; 6,002,544; 5,567,360; 5,525,264; 5,610,756; 5,406,414; 5,253,109; 5,076,673; 5,073,012; 5,117,346; 5,724,187; 5,668,663; 5,910,854; 5,142,407; and/or 4,712,879, which are hereby incorporated herein by reference, and/or as disclosed in the following publications: N. R. Lynam, “Electrochromic Automotive Day/Night Mirrors”, SAE Technical Paper Series 870636 (1987); N. R. Lynam, “Smart Windows for Automobiles”, SAE Technical Paper Series 900419 (1990); N. R. Lynam and A. Agrawal, “Automotive Applications of Chromogenic Materials”, Large Area Chromogenics: Materials and Devices for Transmittance Control, C. M. Lampert and C. G. Granquist, EDS., Optical Engineering Press, Wash. (1990), which are hereby incorporated by reference herein. The mirror assembly may include one or more displays, such as the types disclosed in U.S. Pat. No. 5,530,240 and/or 6,329,925, which are hereby incorporated herein by reference, and/or display-on-demand or transflective type displays, such as the types disclosed in U.S. Pat. Nos. 6,690,268; 5,668,663 and/or 5,724,187, and/or in U.S. patent application Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501; and/or Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177; Ser. No. 10/533,762, filed May 4, 2005, now U.S. Pat. No. 7,184,190; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; PCT Application No. PCT/US03/29776, filed Sep. 9, 2003 and published Apr. 1, 2004 as International Publication No. WO 2004/026633 A2; and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540 A3, and/or U.S. provisional application, Ser. No. 60/681,250, filed May 16, 2005; Ser. No. 60/690,400, filed Jun. 14, 2005; Ser. No. 60/695,149, filed Jun. 29, 2005, which are all hereby incorporated herein by reference.

Optionally, the image sensor and control, and optionally a display device and/or alert device, may be positioned at or in an accessory module or windshield electronic module of the vehicle, without affecting the scope of the present invention. The accessory module may comprise any type of accessory module or windshield electronics module or console, such as the types described in U.S. patent application Ser. No. 10/355,454, filed Jan. 31, 2003, now U.S. Pat. No. 6,824,281; and Ser. No. 10/456,599, filed Jun. 6, 2003, now U.S. Pat. Nos. 7,004,593, and/or 6,690,268; 6,250,148; 6,341,523; 6,593,565; and 6,326,613, and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540 A3, which are all hereby incorporated herein by reference.

Optionally, the imaging system may be selectively operable and switchable to provide the desired function and/or display to the driver of the vehicle. Such switching may occur in response to one or more user inputs in the vehicle, such as at the interior rearview mirror system of the vehicle or the like. The user inputs may be positioned at or near a display, such as along a perimeter region of a flip out or slide out video display of a mirror assembly or along a chin or bezel region of the mirror assembly, and may comprise buttons, switches, proximity sensors, touch sensors, or the like, without affecting the scope of the present invention. For example, the user inputs may comprise buttons or switches, such as user inputs of the types described in PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 and published Jun. 3, 2004 as International Publication No. WO 2004/047421, and/or PCT Application No. PCT/US04/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, which are hereby incorporated herein by reference, touch sensors or proximity sensing inputs or the like, such as sensors of the types described in U.S. Pat. Nos. 6,001,486; 6,310,611; 6,320,282; 6,627,918; and 5,594,222; and/or U.S. Pat. Publication No. 2002/0044065, published Apr. 18, 2002 by Quist et al., now U.S. Pat. No. 7,224,324; and/or U.S. patent application Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860; and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540 A3, which are hereby incorporated herein by reference, or may comprise inputs molded within the bezel of the mirror assembly, such as described in U.S. patent application Ser. No. 11/029,695, filed Jan. 5, 2005, now U.S. Pat. No. 7,253,723, and/or U.S. provisional application, Ser. No. 60/535,559, filed Jan. 9, 2004; Ser. No. 60/553,517, filed Mar. 16, 2004; Ser. No. 60/556,259, filed Mar. 25, 2004, which are hereby incorporated herein by reference, and/or other types of buttons or inputs at a bezel region, such as the types described in U.S. provisional application, Ser. No. 60/690,401, filed Jun. 14, 2005, and/or Ser. No. 60/719,482, filed Sep. 22, 2005, which are hereby incorporated herein by reference, or may comprise membrane type switches, such as described in U.S. patent application Ser. No. 11/140,396, filed May 27, 2005, now U.S. Pat. No. 7,360,932, and/or U.S. provisional application Ser. No. 60/575,904, filed Jun. 1, 2004; and Ser. No. 60/624,320, filed Nov. 2, 2004, which are hereby incorporated herein by reference; and/or the like, without affecting the scope of the present invention. The switching or inputs may control or adjust the control and/or imaging sensor, such as by utilizing the principles described above and in U.S. provisional application Ser. No. 60/614,644, filed Sep. 30, 2004, which is hereby incorporated herein by reference.

Therefore, the present invention provides an imaging and display system that includes an imaging device and a display device connected via video connections or communication links. The imaging device includes user inputs and the imaging and display system is operable to selectively control or adjust the imaging device in response to the user inputs. The imaging and display system is operable to communicate imaging signals from the imaging device to the display device and to communicate camera control signals from the display device to the imaging device along common connections or wiring or communication links between the imaging device and the display device. The imaging and display system thus may provide various optional features or functions or modes without having to change or add wiring or connections between the imaging device and the display device.

Changes and modifications to the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law.

Schofield, Kenneth, Gibson, Joel S., Camilleri, Joseph

Patent Priority Assignee Title
Patent Priority Assignee Title
2598420,
2632040,
2827594,
2855523,
2959709,
3249761,
3271577,
3325680,
3349394,
3486066,
3601614,
3612666,
3623671,
3665224,
3680951,
3689695,
3708231,
3746430,
3751711,
3807832,
3811046,
3813540,
3862798,
3947095, Mar 18 1974 Marie, Saratore Rear view vision device
3962600, Feb 14 1975 Arvin Hong Kong Ltd. Ambient light responsive illumination brightness control circuit
3985424, Jun 18 1975 Lawrence Peska Associates, Inc. Panoramic rear viewing system
3986022, Jun 04 1973 Illumination control system
4037134, Dec 20 1974 Daimler-Benz Aktiengesellschaft Installation for automatic control of the light distance with motor vehicle headlights
4052712, May 13 1975 KABUSHIKI KAISHA PASCO Apparatus for photographing road ruts
4093364, Feb 04 1977 Dual path photographic camera for use in motor vehicles
4111720, Mar 31 1977 International Business Machines Corporation Method for forming a non-epitaxial bipolar integrated circuit
4127778, Jan 17 1976 Ernst Leitz Wetzlar GmbH Optical correlator
4161653, Feb 25 1977 Fiat Societa per Azioni Control circuit for rear view mirrors provided with a liquid crystal cell
4200361, Jan 25 1977 Fiat Societa per Azioni Liquid crystal mirror for use as a rear-view mirror for vehicles
4209853, Jul 22 1974 Holographic system for object location and identification
4214266, Jun 19 1978 Rear viewing system for vehicles
4218698, Mar 13 1978 RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP OF DE TV Graphics and mixing control
4225886, Nov 16 1977 Lectrolarm Custom Systems, Inc. Video camera control system
4236099, Mar 05 1979 Automatic headlight system
4247870, Jun 01 1977 Her Majesty the Queen in right of Canada, as represented by the Minister Highway premarking guidance system
4249160, Nov 21 1975 G R K PRODUCTS LIMITED, 49 PALACE AVENUE PAIGNTON, COUNTY OF DEVON Vehicle mounted light activated control system
4254931, Jun 25 1979 Standard Mirror Company, Inc. Rear view mirror mount for interior of automobile
4257703, Mar 15 1979 The Bendix Corporation Collision avoidance using optical pattern growth rate
4266856, Jul 20 1978 DEWHURST U K LIMITED GWYNFA Rear view mirror
4277804, Nov 01 1978 System for viewing the area rearwardly of a vehicle
4278142, May 08 1978 Agency of Industrial Science and Technology; Ministry of International Trade & Industry Automatic guidance system for vehicles
4281898, Feb 07 1979 Murakami Kaimeido Co., Ltd. Automatic antiglare rearview mirror
4288814, Feb 04 1980 Talley & Sons, Inc. Closed circuit video guidance system for farming vehicles and method
4355271, Sep 25 1978 Control apparatus
4357558, Nov 07 1979 Automatic control device for lighting and extinction of headlamps in a vehicle
4381888, Jun 11 1980 Canon Kabushiki Kaisha Retrofocus type large aperture wide angle objective
4420238, Apr 19 1982 Apparatus for enabling concealing surveillance by use of a camera in a vehicle
4431896, Apr 26 1979 A.G. fur industrielle Elektronik AGIE Method and apparatus for orienting the wire guidance heads on spark erosion cutting equipment for eroding with a great wire slope
4441125, Nov 03 1981 Micron Technology, Inc. Image sensor using dynamic random access memory
4443057, Jun 01 1981 GENTEX CORPORATION, A CORP OF MI Automatic rearview mirror for automotive vehicles
4460831, Nov 30 1981 Thermo Electron Corporation Laser stimulated high current density photoelectron generator and method of manufacture
4464789, May 19 1980 ERIM INTERNATIONAL, INC Image analyzer for processing multiple frames of image data
4481450, Apr 02 1982 Nippondenso Co., Ltd. System for controlling a vehicle window and the like
4485402, Oct 16 1981 QUANTEL LIMITED, 37 VICTORIA AVENUE, SOUTHEND ON SEA, ESSEX Video image processing system
4491390, May 06 1982 Automatic liquid-crystal light shutter
4495589, Sep 20 1982 Crane Co. Aircraft ground velocity determination system
4512637, Oct 29 1981 CARL-ZEISS-STIFTUNG, HEIDENHEIM BRENZ, DBA CARL ZEISS Method and means for stepwise charge control of electrochromic layers
4521804, Feb 25 1983 RCA Corporation Solid-state color TV camera image size control
4529275, Oct 29 1981 CARL-ZEISS-STIFTUNG, HEIDENHEIM BRENZ, DBA CARL ZEISS Continuous charge control for electrochromic layers
4529873, Oct 29 1981 CARL-ZEISS-STIFTUNG, HEIDENHEIM BRENZ, DBA CARL ZEISS Optical control circuit for electrochromic layers
4532550, Jan 31 1984 RCA Corporation Exposure time control for a solid-state color camera
4538181, Feb 28 1983 Westinghouse Electric Corporation Optical scanner
4546551, Mar 24 1983 Johnson Controls Technology Company Electrical control system
4549208, Dec 22 1982 Hitachi, LTD Picture processing apparatus
4566032, Dec 20 1982 Nippon Yusoki Co., Ltd.; Dac Engineering Co., Ltd. Visually guided vehicle
4571082, May 18 1982 British Technology Group Limited Apparatus and method for measuring refractive index
4572619, Jan 27 1983 DAIMLER-BENZ AKTIENGESELLSCHAFT STUTTGART, GERMANY Electrically dimmable rear-view mirror for motor vehicles
4580875, Mar 30 1984 Gentex Corporation Electronic control system for automatic rearview mirrors for automotive vehicles
4599544, May 24 1984 General Motors Corporation Vehicle headlamp beam control
4600913, Dec 24 1984 Collision avoidance device
4603946, Sep 29 1982 Kabushiki Kaisha Tokai Rika Denki Seisakusho Reflection controllable view mirror device for motor vehicle or the like
4614415, Jun 04 1973 Illumination signal processing system
4620141, Jul 03 1985 LIBBEY-OWENS-FORD CO , A CORP OF DELAWARE Rain-controlled windshield wipers
4623222, Nov 14 1983 Nippondenso Co., Ltd. Liquid crystal type dazzle-free transmissive-reflective mirror
4625329, Jan 20 1984 Nippondenso Co., Ltd. Position analyzer for vehicle drivers
4626850, May 16 1983 David, Chey Vehicle detection and collision avoidance apparatus
4629941, Jan 07 1985 Differential illumination sensitive switching circuit
4630109, Feb 28 1985 Standard Telephones & Cables Public Limited Company Vehicle tracking system
4632509, Nov 29 1983 Nippondenso Co., Ltd. Glare-shielding type reflector
4638287, Mar 01 1983 Aisin Seiki Kabushikikaisha Vehicle-loaded display device
4645975, Sep 04 1984 Ford Motor Company Composite light pickup device
4647161, May 19 1982 Fish eye lens system
4653316, Mar 14 1986 Kabushiki Kaisha Komatsu Seisakusho Apparatus mounted on vehicles for detecting road surface conditions
4665321, Aug 14 1985 Automatic control system for automobile lights
4669825, Dec 27 1983 Nippondenso Co., Ltd. Control apparatus with delay circuit for antiglare mirror
4669826, Feb 16 1984 Nippondenso Co., Ltd. Apparatus for detecting the direction of light for dazzle-free mirrors
4671615, Jan 12 1984 Nippondenso Co., Ltd. Control apparatus for a dazzle-free reflection mirror of a vehicle
4672457, Apr 19 1971 Scanner system
4676601, Nov 14 1983 Nippondenso Co., Ltd. Drive apparatus for a liquid crystal dazzle-free mirror arrangement
4679077, Nov 10 1984 Matsushita Electric Works, Ltd. Visual Image sensor system
4681431, Feb 27 1985 MUNDO, CHARLES, J Optical ranging anti-collision technique and system
4690508, Dec 15 1982 Gentex Corporation Liquid crystal closed-loop controlled mirror systems
4692798, Jan 09 1984 Nissan Motor Company, Limited Apparatus and process for improving visibility of object within visual field
4697883, Aug 30 1984 Nippondenso Co., Ltd. Control apparatus for two section, glare shield mirror
4701022, Nov 28 1984 Gentex Corporation Day/night mirror
4713685, Oct 05 1984 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD , 1006, OAZA-KADOMA, KADOMA-SHI, OSAKA-FU, 571 JAPAN Video monitoring apparatus
4717830, Jul 18 1986 Raytheon Company Correlated sampling amplifier
4727290, May 29 1987 General Motors Corporation Automatic vehicle headlamp dimming control
4728804, Dec 30 1986 The Boeing Company Scanning system with low sampling rate
4731669, Jun 18 1985 Matsushita Electric Industrial Co., Ltd. Camera apparatus with movably supported lens barrel
4741603, May 08 1985 Nissan Motor Co., Ltd. Electrochromic nonglaring mirror
4758883, Oct 13 1982 Nippon Kogaku K.K. Electronic picture camera with reduced memory capacity
4768135, Jan 18 1986 Robert Bosch GmbH Headlight arrangement for vehicles
4772942, Jan 11 1986 Pilkington P.E. Limited Display system having wide field of view
4779095, Oct 28 1986 GUERRERI, BART G Image change detection system
4789904, Feb 13 1987 P A T CO ACQUISITION, INC ; P A T C O PROPERTIES INC Vehicle mounted surveillance and videotaping system
4793690, Jul 18 1986 DONNELLY CORPORATION, A CORP OF MI Rearview mirror control circuit
4799267, Oct 22 1982 Hitachi, Ltd. Image processing apparatus and processing method
4817948, Sep 06 1983 Reduced-scale racing system
4820933, Dec 31 1986 SAMSUNG ELECTRONICS CO , LTD Control circuit for liquid crystal rear-vision mirror
4825232, Mar 25 1988 Enserch Corporation; ENSERCH CORPORATION, A CORP OF TX Apparatus for mounting aerial survey camera under aircraft wings
4833469, Aug 03 1987 Obstacle proximity detector for moving vehicles and method for use thereof
4838650, Jun 21 1985 Anthony, Stewart Rear view mirror
4843463, May 23 1988 DOCUDRIVE, INC Land vehicle mounted audio-visual trip recorder
4847489, Apr 01 1987 Messerschmitt-Bolkow-Blohm GmbH Light sensitive superlattice detector arrangement with spectral sensitivity
4847772, Feb 17 1987 Regents of the University of Minnesota; REGENTS OF THE UNIVERSITY OF MINNESOTA, A CORP OF MINNESOTA Vehicle detection through image processing for traffic surveillance and control
4849731, Jul 14 1988 Caterpillar Industrial Inc. Scanning obstacle detection apparatus
4855822, Jan 26 1988 Honeywell, Inc. Human engineered remote driving system
4859031, Aug 03 1987 Kaiser Electronics Optical collimating apparatus
4862037, Dec 24 1987 Ford Motor Company Automatic headlamp dimming system
4863130, Jan 13 1989 Adjustable device for mounting an electronic imaging camera to a surface by vacuum
4867561, Aug 22 1986 Nippondenso Co., Ltd. Apparatus for optically detecting an extraneous matter on a translucent shield
4871917, Apr 19 1988 Donnelly Corporation Vehicular moisture sensor and mounting apparatus therefor
4872051, Oct 01 1987 WACHOVIA BANK, NATIONAL Collision avoidance alarm system
4881019, Apr 30 1986 Nissan Motor Company, Limited; Jidosha Denki Kogyo Kabushiki Kaisha Wiper control system for automotive vehicle facilitated front and rear wipers
4882466, May 03 1988 Tyco Electronics Corporation Electrical devices comprising conductive polymers
4882565, Mar 02 1988 Donnelly Corporation Information display for rearview mirrors
4886960, Apr 08 1987 DONNELLY MIRRORS LIMITED, NAAS, COUNTY KILDARE, REP OF IRELAND, A CORP OF IRELAND Control circuit for an automatic rearview mirror
4891559, Jun 13 1985 Nippondenso Soken, Inc.; Nippondenso Co., Ltd. Apparatus for controlling a headlight of a vehicle
4892345, Sep 23 1988 Armored vehicle
4895790, Sep 21 1987 Massachusetts Institute of Technology High-efficiency, multilevel, diffractive optical elements
4896030, Feb 27 1987 Ichikoh Industries Limited Light-reflectivity controller for use with automotive rearview mirror using electrochromic element
4900133, Oct 27 1988 Kaiser Electronics Heads-up display combiner utilizing a cholesteric liquid crystal element
4905151, Mar 07 1988 Transitions Research Corporation One dimensional image visual system for a moving vehicle
4906940, Aug 24 1987 Science Applications International Corporation Process and apparatus for the automatic detection and extraction of features in images and displays
4907870, Apr 10 1987 Device to manipulate side view mirrors for motor vehicles
4910591, Aug 08 1988 Side and rear viewing apparatus for motor vehicles
4916374, Feb 28 1989 Donnelly Corporation Continuously adaptive moisture sensor system for wiper control
4917477, Apr 06 1987 Gentex Corporation Automatic rearview mirror system for automotive vehicles
4926346, Dec 27 1985 AISIN-WARNER KABUSHIKI KAISHA, A CORP OF JAPAN; KABUSHIKI KAISHA SHINSANGYOKAIHATSU, A CORP OF JAPAN Road image input system for vehicle control
4930742, Mar 25 1988 Donnelly Corporation Rearview mirror and accessory mount for vehicles
4931937, Sep 01 1987 Aisin Seiki Kabushiki Kaisha Distance detector mounted on vehicle
4937796, Jan 10 1989 Vehicle backing aid
4949186, Feb 13 1987 P A T CO ACQUISITION, INC Vehicle mounted surveillance system
4953305, May 27 1987 Johnson Controls Technology Company Vehicle compass with automatic continuous calibration
4954962, Sep 06 1988 Pyxis Corporation Visual navigation and obstacle avoidance structured light system
4956591, Feb 28 1989 Donnelly Corporation Control for a moisture sensor
4961625, Sep 18 1987 Flight Dynamics Automobile head-up display system with reflective aspheric surface
4967319, May 02 1988 NISSAN MOTOR CO , LTD Headlight apparatus for automotive vehicle
4970653, Apr 06 1989 Delphi Technologies, Inc Vision method of detecting lane boundaries and obstacles
4971405, Jan 23 1987 Photoelectrically controlled corner light system for a vehicle
4971430, Jul 19 1989 VISION GROUP, INC Rearview mirror targeting and repositioning system
4974078, Nov 13 1989 Eastman Kodak Company Digital compression method and system with improved coding efficiency
4975703, Feb 25 1988 LAB-VOLT QUEBEC LTEE LTD High resolution short range radar
4985847, Jan 14 1987 Hitachi, Ltd. Visual sensor system
4987357, Dec 18 1989 General Motors Corporation Adaptive motor vehicle cruise control
4987410, Jan 25 1988 Kaiser Aerospace & Electronics Corporation Multiple image forming apparatus
4991054, May 13 1988 Pacific Scientific Company Time-delay outdoor lighting control systems
5001558, Jun 11 1985 General Motors Corporation Night vision system with color video camera
5003288, Oct 25 1988 Nartron Corporation Ambient light sensing method and apparatus
5003339, May 11 1988 Sanyo Electric Co., Ltd. Image sensing apparatus having automatic focusing function for automatically matching focus in response to video signal
5008946, Sep 09 1987 Aisin Seiki Kabushiki Kaisha; Kabushiki Kaisha Shinsangyokaihatsu System for recognizing image
5012082, Mar 01 1989 HAMAMATSU PHOTONICS K K , 1126-1, ICHINO-CHO, HAMAMATSU-SHI, SHIZUOKA 435, JAPAN Two-dimensional incident position detector device for light or radiation
5016977, Feb 06 1989 ESSILOR INTERNATIONAL - COMPAGNIE GENERALE Optical lens for correcting astigmatism
5020114, Aug 17 1987 Kabushiki Kaisha Toshiba Object discriminating apparatus and method therefor
5027001, Aug 29 1989 Moisture sensitive automatic windshield wiper and headlight control device
5027104, Feb 21 1990 Vehicle security device
5027200, Jul 10 1990 Enhanced viewing at side and rear of motor vehicles
5036437, Sep 04 1990 Delphi Technologies, Inc Vehicle lamp control sensor
5044706, Feb 06 1990 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Optical element employing aspherical and binary grating optical surfaces
5050966, Jul 06 1988 Kaiser Aerospace & Electronics Corporation Optical combiner collimating apparatus
5051906, Jun 07 1989 CAREFUSION 303, INC Mobile robot navigation employing retroreflective ceiling features
5055668, May 24 1989 Nissan Motor Co., Ltd. Photo-sensor cell suitable for IC chip
5059877, Dec 22 1989 Libbey-Owens-Ford Co. Rain responsive windshield wiper control
5063603, Nov 06 1989 Sarnoff Corporation Dynamic method for recognizing objects and image processing system therefor
5064274, Aug 26 1987 Siegel-Robert, Inc.; SIEGEL-ROBERT, INC , 8645 SOUTH BROADWAY, ST LOUIS, MO 63111, A CORP OF MO Automatic automobile rear view mirror assembly
5072154, Mar 13 1990 Automatic luminosity control device for car and motor bicycle headlamps
5075768, Sep 02 1988 Itek Colour Graphics Limited Method and apparatus for color separation scanning
5086253, Oct 15 1990 Automatic headlight dimmer apparatus
5086510, Dec 16 1988 ROBERT BOSCH GMBH, A LIMITED LIABILITY COMPANY OF FED REP OF GERMANY Multi-choice information system for a motor vehicle
5096287, Mar 15 1990 Aisin Seiki Kabushiki Kaisha Video camera for an automobile
5097362, Jul 19 1989 Rearview mirror targeting and repositioning system
5100093, Feb 19 1991 Rear view mirror mounting arrangement for boats
5101351, Apr 12 1989 Nissan Motor Company, Limited Autonomous vehicle using fuzzy control
5111289, Apr 27 1990 DESIGN SYSTEMS, INC , Vehicular mounted surveillance and recording system
5121200, Jul 06 1990 Travelling monitoring system for motor vehicles
5124549, Oct 15 1990 Delphi Technologies, Inc Automatic headlamp dimmer with optical baffle
5130709, Dec 28 1987 Aisin AW Co., Ltd.; Kabushiki Kaisha Shinsangyokaihatsu Navigation apparatus for vehicle
5133605, Dec 11 1989 Fujitsu Limited Monitoring system employing infrared image
5139327, Sep 10 1990 Mitsubishi Denki Kabushiki Kasiha Vehicle following apparatus with a distance measuring function
5144685, Mar 31 1989 HONEYWELL INC , A CORP OF DE Landmark recognition for autonomous mobile robots
5148014, Aug 10 1990 Donnelly Corporation; DONNELLY CORPORATION, A CORP OF MICHIGAN Mirror system with remotely actuated continuously variable reflectant mirrors
5159557, Jun 13 1990 Mitsubishi Denki Kabushiki Kaisha Distance detecting apparatus and method for a vehicle
5160971, Sep 28 1990 Isuzu Motors Limited Distance measuring equipment for a car
5161632, Jun 01 1990 Mitsubishi Denki K.K. Tracking control device for a vehicle
5165108, Mar 20 1990 Mitsubishi Denki K.K. Vehicle-to-vehicle distance detecting apparatus
5166681, Jul 30 1990 BOTTESCH, WERNER H ; BOTTESCH, H WERNER Passive vehicle presence detection system
5168355, Sep 04 1990 Mitsubishi Denki K.K. Apparatus for detecting distance between cars
5168378, Feb 10 1992 RELIANT TECHNOLOGIES, INC Mirror with dazzle light attenuation zone
5170374, May 13 1981 Renesas Technology Corporation Semiconductor memory
5172235, Apr 23 1990 VOLKSWAGEN AG A CORP OF THE FEDERAL REPUBLIC OF GERMANY Imaging system for simultaneous viewing of two images
5172317, Aug 10 1988 Honda Giken Kogyo Kabushiki Kaisha Automatic travelling apparatus
5177462, Mar 28 1990 Mitsubishi Denki K.K. Car interval control apparatus
5177606, Sep 28 1990 Isuzu Motors Limited Image detection system for a car with adjustment for wiper image
5177685, Aug 09 1990 MASSACHUSETTS INSTITUTE OF TECHNOLOGY, A CORP OF MA Automobile navigation system using real time spoken driving instructions
5182502, May 06 1991 Delphi Technologies, Inc Automatic headlamp dimmer
5184956, Feb 20 1990 FAROS Method and device for training in the driving of vehicles
5185812, Feb 14 1990 NUFLARE TECHNOLOGY, INC Optical pattern inspection system
5187383, Nov 06 1990 BUYGROUP, LTD, Headlight actuator associated with windsheild wiper actuation having delay circuits and daylight detection
5189561, Mar 28 1991 Automatic oscillating vehicle mirror
5193000, Aug 28 1991 RealD Inc Multiplexing technique for stereoscopic video system
5193029, Nov 19 1991 DONNELLY CORPORATION, A CORP OF MI Single sensor adaptive drive circuit for rearview mirror system
5193894, Jul 08 1991 Robert Bosch GmbH Apparatus and method for controlling the light-range of motor vehicle headlights
5204536, Jun 14 1991 Electro-optical monitoring system utilizing optical signal transmitters in predetermined geometrical patterns
5204778, Apr 06 1992 Gentex Corporation Control system for automatic rearview mirrors
5208701, Dec 24 1991 Xerox Corporation Wobble correction lens with binary diffractive optic surface and refractive cylindrical surface
5208750, Jun 17 1987 NISSAN MOTOR CO , LTD Control System for unmanned automotive vehicle
5212468, May 26 1992 TRINGALE, JOAN ADELL, GUARDIAN OF ERICA ADELL DAVIS, RYAN ADELL DAVIS AND SETH ADELL GOLD Vehicle signalling system
5214408, Oct 25 1990 Mitsubishi Denki Kabushiki Kaisha Distance detecting apparatus for a vehicle
5218414, May 14 1991 Mitsubishi Denki K.K. Distance measuring apparatus utilizing two-dimensional image
5223814, Aug 14 1990 Gentex Corporation Sensor for vehicle accessories
5223907, Feb 18 1991 Mitsubishi Denki K.K. Guard rail detecting device
5225827, Oct 24 1988 Warning device in a motor vehicle for detection of unintentional change of course
5230400, Nov 30 1990 Aisin Seiki Kabushiki Kaisha Vehicle cruise control system
5235178, Oct 30 1991 Light sensor with diffuser and eye-like response
5243524, Mar 15 1990 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for controlling a vehicle and accounting for side-slip angle
5245422, Jun 28 1991 ZEXEL CORPORATION A JPANAESE CORPORATION System and method for automatically steering a vehicle within a lane in a road
5246193, Dec 23 1992 Mobile camera mount
5249126, Sep 27 1989 Nissan Motor Company, Limited System and method for controlling steering response according to vehicle speed applicable to autonomous vehicle
5249128, Nov 16 1990 Texas Instruments Incorporated System and method for determining the distance to an energy emitting object
5249157, Aug 22 1990 KOLLMORGEN CORPORATION Collision avoidance system
5251680, Aug 08 1990 Aisin AW Co., Ltd.; AISIN AW CO , LTD Collision-preventing apparatus for electric motor vehicle
5253050, Mar 20 1991 Mitsubishi Denki Kabushiki Kaisha Distance measuring device for measuring the distance between vehicles
5253109, Apr 27 1992 Donnelly Corporation Electro-optic device with constant light transmitting area
5265172, Oct 13 1989 Texas Instruments Incorporated Method and apparatus for producing optical flow using multi-spectral images
5276389, Dec 14 1991 LEOPOLD KOSTAL GMBH & CO KG Method of controlling a windshield wiper system
5285060, Dec 15 1992 Donnelly Corporation Display for automatic rearview mirror
5289182, Oct 16 1991 II BC-SYS Electronic anti-collison device carried on board a vehicle
5289321, Feb 12 1993 SECOR VIEW TECHNOLOGIES LLC Consolidated rear view camera and display system for motor vehicle
5291424, Sep 04 1990 Mitsubishi Denki Kabushiki Kaisha Distance detecting apparatus
5298732, Feb 18 1993 Emee, Inc.; EMEE, INC Automatic visor for continuously repositioning a shading object to shade a designated location from a direct radiation source
5301115, Jun 01 1990 NISSAN MOTOR CO , LTD Apparatus for detecting the travel path of a vehicle using image analysis
5304980, Jan 24 1991 Mitsubishi Denki Kabushiki Kaisha Distance detecting apparatus for a vehicle
5305012, Apr 15 1992 Reveo, Inc Intelligent electro-optical system and method for automatic glare reduction
5307136, Oct 22 1991 Fuji Jukogyo Kabushiki Kaisha Distance detection system for vehicles
5307419, Nov 30 1990 Honda Giken Kogyo Kabushiki Kaisha Control device of an autonomously moving body and evaluation method for data thereof
5309137, Feb 26 1991 Mitsubishi Denki Kabushiki Kaisha Motor car traveling control device
5313072, Feb 16 1993 Rockwell International Corporation Optical detector for windshield wiper control
5325096, Aug 14 1992 BENDIX COMMERCIA VEHICLE SYSTEMS, LLC Smart blind spot sensor
5325386, Apr 21 1992 ALPERT, HERB; MOSS, JEROME S Vertical-cavity surface emitting laser assay display system
5329206, May 06 1991 Delphi Technologies, Inc Automatic headlamp dimmer having improved signal discrimination and signal processing
5331312, Aug 23 1991 Matsushita Electric Industrial Co., Ltd. Obstacle-detecting apparatus
5336980, Dec 10 1992 LEOPOLD KOSTAL GMBH & CO KG Apparatus and method for controlling a windshield wiping system
5341437, Dec 22 1989 Honda Giken Kogyo Kabushiki Kaisha Method of determining the configuration of a path for motor vehicle
5343206, Jul 05 1990 Fiat Auto S.p.A. Method and means for avoiding collision between a motor vehicle and obstacles
5351044, Aug 12 1992 Bendix Commercial Vehicle Systems LLC Vehicle lane position detection system
5355118, Jul 11 1991 Nissan Motor Co., Ltd. Vehicle collision alert system
5359666, Sep 28 1988 Honda Giken Kogyo Kabushiki Kaisha Driving way judging device and method
5367457, Mar 15 1990 Honda Giken Kogyo Kabushiki Kaisha Apparatus and method for improving accuracy of an automatic travelling apparatus
5369590, Apr 20 1992 Mitsubishi Denki Kabushiki Kaisha Inter-vehicle distance detecting device
5371535, Jan 30 1992 Hitachi, Ltd. Multiplexing transmission apparatus for image signal and multiplexing system
5374852, Sep 17 1993 Motor vehicle headlight activation apparatus for inclement weather conditions
5379196, Jun 05 1992 KOITO MANUFACTURING CO , LTD Projection headlamp for vehicles
5386285, Feb 28 1992 Mitsubishi Denki Kabushiki Kaisha Obstacle detecting device for a vehicle
5388048, Feb 16 1993 Silicon Heights Limited Vehicle anti-collison device
5394333, Dec 23 1991 TomTom International BV Correcting GPS position in a hybrid naviation system
5398041, Dec 28 1970 Colored liquid crystal display having cooling
5406395, Nov 01 1993 Hughes Electronics Corporation Holographic parking assistance device
5408346, Oct 20 1993 Kaiser Electro-Optics, Inc. Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector
5410346, Mar 23 1992 Fuji Jukogyo Kabushiki Kaisha System for monitoring condition outside vehicle using imaged picture by a plurality of television cameras
5414257, Apr 23 1991 Introlab Pty Limited Moisture sensor for detecting moisture on a windshield
5414439, Jun 09 1994 Delphi Technologies, Inc Head up display with night vision enhancement
5414461, Nov 15 1991 Nissan Motor Co., Ltd. Vehicle navigation apparatus providing simultaneous forward and rearward views
5416313, Dec 15 1992 Donnelly Corporation Display for automatic rearview mirror
5416318, Oct 30 1991 Combined headlamp and climate control sensor having a light diffuser and a light modulator
5416478, Mar 12 1992 Funai Electric Co., Ltd. Car navigation system
5416711, Oct 18 1993 Grumman Aerospace Corporation Infra-red sensor system for intelligent vehicle highway systems
5424952, Mar 26 1993 Mitsubishi Denki Kabushiki Kaisha Vehicle-surroundings monitoring apparatus
5426294, May 27 1992 KOITO MANUFACTURING CO , LTD Glare sensor for a vehicle
5430431, Jan 19 1994 Vehicle protection system and method
5430450, Feb 10 1993 Visteon Global Technologies, Inc Method and apparatus for automatically dimming motor vehicle headlights using radar signal
5434407, Aug 23 1993 Gentex Corporation Automatic rearview mirror incorporating light pipe
5434927, Dec 08 1993 Minnesota Mining and Manufacturing Company Method and apparatus for machine vision classification and tracking
5440428, Sep 30 1993 Delphi Technologies Inc Automotive instrument 3-D virtual image display
5444478, Dec 29 1992 U S PHILIPS CORPORATION Image processing method and device for constructing an image from adjacent images
5451822, Mar 15 1991 Gentex Corporation Electronic control system
5457493, Sep 15 1993 Texas Instruments Incorporated Digital micro-mirror based image simulation system
5461357, Jan 29 1992 Mazda Motor Corporation Obstacle detection device for vehicle
5461361, Mar 11 1994 NEW CARCO ACQUISITION LLC; Chrysler Group LLC Automotive instrument panel apparatus
5467284, May 24 1993 Mazda Motor Corporation Obstacle detection system for motor vehicle
5469298, Aug 14 1991 Prince Corporation Reflective display at infinity
5471515, Jan 28 1994 California Institute of Technology Active pixel sensor with intra-pixel charge transfer
5473515, Dec 08 1994 Young Deer Enterprise Co. Ltd. Photo-coupled control apparatus for vehicle auxiliary lighting
5475494, Dec 22 1992 Mitsubishi Denki Kabushiki Kaisha Driving environment surveillance apparatus
5483060, Aug 19 1992 NIPPONDENSO CO , LTD Optical position sensor and isolation sensor using this position sensor
5483168, Mar 01 1993 The United States of America as represented by the Administrator of the Optical potential field mapping system
5487116, May 25 1993 Matsushita Electric Industrial Co., Ltd. Vehicle recognition apparatus
5488496, Mar 07 1994 Partitionable display system
5493392, Dec 15 1992 McDonnell Douglas Corporation Digital image system for determining relative position and motion of in-flight vehicles
5498866, Dec 07 1993 LEOPOLD KOSTAL GMBH & CO KG Optoelectronic sensor for detecting moisture on a windshield with means to compensate for a metallic layer in the windshield
5500766, May 04 1995 Blind spot side mirror
5508592, Dec 21 1994 OSRAM SYLVANIA Inc Method for deflecting the arc of an electrodeless hid lamp
5510983, Nov 13 1992 Yazaki Corporation On-vehicle display
5515448, Jul 28 1992 Yazaki Corporation Distance measuring apparatus of a target tracking type
5521633, Sep 25 1992 Yazaki Corporation Motor vehicle obstacle monitoring system using optical flow processing
5528698, Mar 27 1995 Bendix Commercial Vehicle Systems LLC Automotive occupant sensing device
5529138, Jan 22 1993 Vehicle collision avoidance system
5530240, Dec 15 1992 Donnelly Corporation Display for automatic rearview mirror
5530420, Dec 27 1993 Fuji Jukogyo Kabushiki Kaisha Running guide apparatus for vehicle capable of keeping safety at passing through narrow path and the method thereof
5530771, Sep 16 1992 Mitsubishi Denki Kabushiki Kaisha Image tracking device and image tracking method
5535144, Mar 24 1993 Fuji Jukogyo Kabushiki Kaisha Distance detection method and system using a stereoscopical imaging apparatus
5535314, Nov 04 1991 Raytheon Company Video image processor and method for detecting vehicles
5537003, Apr 08 1994 Gentex Corporation Control system for automotive vehicle headlamps and other vehicle equipment
5539397, Mar 26 1993 Honda Giken Kogyo Kabushiki Kaisha Driving control system for vehicle
5541590, Aug 04 1992 Takata Corporation Vehicle crash predictive and evasive operation system by neural networks
5550677, Feb 26 1993 Donnelly Corporation Automatic rearview mirror system using a photosensor array
5555136, Jun 28 1994 Reitter & Schefenacker GmbH & Co. KG Interior rearview mirror for motorized vehicles
5555312, Jun 25 1993 Fujitsu Limited Automobile apparatus for road lane and vehicle ahead detection and ranging
5555555, Jan 19 1993 Aisin Seiki Kabushiki Kaisha Apparatus which detects lines approximating an image by repeatedly narrowing an area of the image to be analyzed and increasing the resolution in the analyzed area
5559695, Dec 27 1994 Hughes Electronics Corporation Apparatus and method for self-calibrating visual time-to-contact sensor
5568027, May 19 1995 Libbey-Owens-Ford Co. Smooth rain-responsive wiper control
5568316, Oct 29 1992 3M Innovative Properties Company Formable reflective multilayer body
5574443, Jun 22 1994 PHOTIC ELECTRONICS CO , LTD Vehicle monitoring apparatus with broadly and reliably rearward viewing
5581464, Aug 14 1992 Vorad Safety Systems, Inc. Recording of operational events in an automotive vehicle
5582383, May 26 1994 Reitter & Schefenacker GmbH & Co. KG Interior rearview mirror for vehicles
5594222, Oct 25 1994 TOUCHSENSOR TECHNOLOGIES, L L C Touch sensor and control circuit therefor
5612686, Sep 28 1993 Hitachi, LTD Method and an apparatus for monitoring the environment around a vehicle and an operation support system using the same
5612883, Feb 05 1990 Caterpillar Inc. System and method for detecting obstacles in the path of a vehicle
5614788, Jan 31 1995 BENEDICT, CHARLES E Automated ambient condition responsive daytime running light system
5619370, Mar 28 1994 Optical system for viewing a remote location
5627586, Apr 09 1992 Olympus Optical Co., Ltd. Moving body detection device of camera
5633944, Apr 19 1994 Automobiles Peugeot; Automobiles Citroen Method and apparatus for automatic optical recognition of road signs
5634709, Dec 27 1994 Murakami Corporation Inner mirror of a vehicle having a display device
5638116, Sep 08 1993 Toyota Jidosha Kabushiki Kaisha Object recognition apparatus and method
5642299, Sep 01 1993 HARDIN, LARRY C Electro-optical range finding and speed detection system
5646612, Feb 09 1995 Daewoo Electronics Co., Ltd. Method for avoiding collision of vehicle and apparatus for performing the same
5648835, Sep 22 1992 Olympus Optical Co., Ltd. Optical system for monitor cameras to be mounted on vehicles
5650944, Mar 24 1993 Fuji Jukogyo Kabushiki Kaisha Shutter speed control method and system
5660454, Aug 28 1992 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling light distribution of headlamp
5661303, May 24 1996 Libbey-Owens-Ford Co. Compact moisture sensor with collimator lenses and prismatic coupler
5666028, Apr 06 1994 Gentex Corporation Automobile headlamp and running light control system
5668663, May 05 1994 Donnelly Corporation Electrochromic mirrors and devices
5670935, Feb 26 1993 MAGNA ELECTRONICS INC Rearview vision system for vehicle including panoramic view
5673019, May 14 1996 Automatic turn signal and safety device
5675489, Jul 06 1995 ASSISTWARE TECHNOLOGY, INC System and method for estimating lateral position
5676484, May 22 1995 AVM Industries, LLC Connector with insert molded captive ball
5677851, Dec 15 1994 EMC Corporaton Method and apparatus to secure digital directory object changes
5680263, Jul 01 1994 Reitter & Schefenacker GmbH & Co. KG Interior rearview mirror for motor vehicles
5699044, Dec 05 1988 Gentex Corporation Electrical control system for vehicle options
5699057, Jun 16 1995 Fuji Jukogyo Kabushiki Kaisha Warning system for vehicle
5699149, Jun 09 1994 Hitachi, Ltd. Distance measurement apparatus for vehicle
5706355, Dec 14 1993 Thomson-CSF Method of analyzing sequences of road images, device for implementing it and its application to detecting obstacles
5707129, Oct 13 1993 Koito Manufacturing Co., Ltd. Vehicular headlamp producing low beam having cut line controlled in accordance with condition of curved road
5715093, Jul 19 1994 Donnelly Corporation Automatic rearview mirror system with automatic headlight activation
5724187, May 05 1994 Donnelly Corporation Electrochromic mirrors and devices
5724316, Sep 26 1995 VALUE STREET CONSULTING GROUP LLC GPS based time determining system and method
5737226, Jun 05 1995 Johnson Controls Technology Company Vehicle compass system with automatic calibration
5757949, Jan 27 1995 Fuji Jukogyo Kabushiki Kaisha Warning system for vehicle
5760826, May 10 1996 TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE Omnidirectional imaging apparatus
5760828, Jun 03 1994 Idesa Accesorios, S.A. Back-vision system for vehicles
5760931, Dec 14 1992 Nippondenso Co., Ltd. Image display unit
5760962, Feb 26 1993 Donnelly Corporation Automatic rearview mirror system using a photosensor array
5761094, Jan 18 1996 Visteon Global Technologies, Inc Vehicle compass system
5764139, Nov 06 1995 Toyota Jidosha Kabushiki Kaisha Information display apparatus for vehicles
5765116, Aug 28 1993 Lucas Industries public limited company Driver assistance system for a vehicle
5765940, Oct 21 1996 Dialight Corporation LED-illuminated stop/tail lamp assembly
5781437, Apr 21 1992 IBP Pietzsch GmbH Control system for controlling vehicles
5786772, Feb 12 1997 Donnelly Corporation Vehicle blind spot detection display system
5790403, Jul 12 1994 Honda Giken Kogyo Kabushiki Kaisha Lane image processing system for vehicle
5790973, Dec 19 1995 Prince Corporation Last exit warning system
5793308, Jul 02 1992 SENSOR VISION TECHNOLOGIES, INC Vehicular position monitoring system with integral mirror video display
5793420, Oct 28 1994 Video recording system for vehicle
5796094, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle headlight control using imaging sensor
5798575, Jul 11 1996 Donnelly Corporation Vehicle mirror digital network and dynamically interactive mirror system
5808589, Aug 24 1994 Fergason Patent Properties LLC Optical system for a head mounted display combining high and low resolution images
5811888, Nov 12 1996 Automatic vehicle power and headlight controlling device with detecting function of a generator and delayed effect
5835255, Apr 23 1986 SNAPTRACK, INC Visible spectrum modulator arrays
5835613, May 05 1992 AMERICAN VEHICULAR SCIENCES LLC Optical identification and monitoring system using pattern recognition for use with vehicles
5837994, Apr 02 1997 Gentex Corporation Control system to automatically dim vehicle head lamps
5841126, Nov 16 1995 California Institute of Technology CMOS active pixel sensor type imaging system on a chip
5844505, Apr 01 1997 Sony Corporation; Sony Electronics, INC Automobile navigation system
5844682, Mar 25 1994 Omron Corporation Optical sensor device
5845000, May 05 1992 AMERICAN VEHICULAR SCIENCES LLC Optical identification and monitoring system using pattern recognition for use with vehicles
5848802, May 05 1992 Automotive Technologies International, Inc Vehicle occupant position and velocity sensor
5850176, Jul 10 1996 Subaru Corporation Drive assist system for vehicle
5850254, Jul 05 1994 Hitachi, Ltd. Imaging system for a vehicle which compares a reference image which includes a mark which is fixed to said vehicle to subsequent images
5867591, Apr 21 1995 Matsushita Electric Industrial Co., Ltd. Method of matching stereo images and method of measuring disparity between these image
5877707, Jan 17 1997 KOWALICK, THOMAS MICHAEL, MR GPS based seat belt monitoring system & method for using same
5877897, Feb 26 1993 Donnelly Corporation Automatic rearview mirror, vehicle lighting control and vehicle interior monitoring system using a photosensor array
5878370, Dec 01 1995 Visteon Global Technologies, Inc Vehicle compass system with variable resolution
5883739, Oct 04 1993 Honda Giken Kogyo Kabushiki Kaisha Information display device for vehicle
5884212, Apr 15 1994 Thomson-CSF Process for monitoring traffic for automatic vehicle incident detection
5890021, Dec 05 1996 Canon Kabushiki Kaisha Distance detecting device, focus state detecting device and camera having same
5890083, Mar 07 1995 DaimlerChrysler AG Apparatus for determining the distance of a vehicle from a roadway side marking
5896085, Sep 07 1995 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling light distributions of head lamps
5899956, Mar 31 1998 Advanced Future Technologies, Inc.; ADVANCED FUTURE TECHNOLOGIES, INC Vehicle mounted navigation device
5904725, Apr 25 1995 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Local positioning apparatus
5912534, Mar 18 1996 BENEDICT, CHARLES E Double relay light switching system for providing daytime running lights for vehicles
5914815, Aug 29 1997 Donnelly Corporation Optical rearview system for vehicle
5922036, May 28 1996 Matsushita Electric Industrial Co., Ltd. Lane detection sensor and navigation system employing the same
5923027, Sep 16 1997 Gentex Corporation Moisture sensor and windshield fog detector using an image sensor
5929784, Feb 17 1994 Fuji Electric Co., Ltd. Device for determining distance between vehicles
5929786, Mar 22 1996 Donnelly Corporation Vehicle blind spot detection display system
5938320, Mar 19 1997 Harman Automotive, Inc. Enhanced illuminated polymeric indicator employed in a mirror housing of an automotive vehicle
5940120, Oct 20 1995 Prince Corporation Vanity console
5942853, Feb 01 1996 Robert Bosch GmbH Automatic high beam headlight device responsive to vehicle operating conditions
5949331, Feb 26 1993 MAGNA ELECTRONICS INC Display enhancements for vehicle vision system
5956181, Jul 18 1997 MOBILETRON ELECTRONICS NINGBO CO , LTD Two way mirror with dual functions of rear view mirror and video displayer
5959367, Jul 11 1996 Donnelly Corporation Vehicle mirror digital network and dynamically interactive mirror system
5959555, Aug 20 1997 Apparatus for checking blind spots of vehicle
5963247, May 31 1995 Visual display systems and a system for producing recordings for visualization thereon and methods therefor
5964822, Aug 27 1997 Delphi Technologies Inc Automatic sensor azimuth alignment
5971552, Dec 08 1995 Donnelly Corporation Vehicle global positioning system
5986796, Mar 17 1993 SNAPTRACK, INC Visible spectrum modulator arrays
5990469, Apr 02 1997 Gentex Corporation Control circuit for image array sensors
5990649, Jul 01 1997 Murakami Corporation Control device for quick angle adjustment of rearview mirror
5991427, Jul 31 1996 Aisin Seiki Kabushiki Kaisha Method and apparatus for detecting a lane on a road
6001486, Jul 29 1994 TPK Touch Solutions Inc Transparent substrate with diffuser surface
6009336, Jul 10 1996 Google Technology Holdings LLC Hand-held radiotelephone having a detachable display
6020704, Dec 02 1997 VALEO ELECTRICAL SYSTEMS, INC Windscreen sensing and wiper control system
6031484, Nov 19 1996 Daimler AG Release device for passenger restraint systems in a motor vehicle
6037860, Sep 20 1997 Volkswagen AG Method and arrangement for avoiding and/or minimizing vehicle collisions in road traffic
6037975, Aug 30 1996 Honda Giken Kogyo Kabushiki Kaisha Image sensor for monitoring vehicle's forward view and method for setting aspect ratio for photosensitive portion of such image sensor
6049171, Sep 18 1998 Gentex Corporation Continuously variable headlamp control
6052124, Feb 03 1997 YISSUM RESEARCH DEVELOPMENT COMPANY System and method for directly estimating three-dimensional structure of objects in a scene and camera motion from three two-dimensional views of the scene
6057754, Aug 11 1997 Subaru Corporation Drive assist system for motor vehicle
6066933, Oct 02 1998 Rain sensing system and method having automatically registered and oriented rain sensor
6084519, May 07 1993 CONTROL DEVICES, INC Multi-function light sensor for vehicle
6087953, Feb 18 1998 Donnelly Corporation Rearview mirror support incorporating vehicle information display
6091833, Aug 28 1996 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Local positioning apparatus, and a method therefor
6097023, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle headlight control using imaging sensor
6097024, Sep 16 1997 Gentex Corporation Moisture sensor and windshield fog detector
6107939, Nov 05 1998 Trimble Navigation Limited Lane change alarm for use in a highway vehicle
6116743, Sep 20 1999 Donnelly Corporation Extendable exterior rearview mirror assembly for vehicles
6124647, Dec 16 1998 Donnelly Corporation Information display in a rearview mirror
6124886, Aug 25 1997 Donnelly Corporation Modular rearview mirror assembly
6139172, Dec 30 1994 Donnelly Corporation Interior mirror assembly for a vehicle incorporating a solid-state light source
6144022, Mar 15 1999 Valeo Electrical Systems, Inc.; VALEO ELECTRICAL SYSTEMS, INC Rain sensor using statistical analysis
6144158, Nov 07 1996 Sensci Corporation Adaptive/anti-blinding headlights
6150014, Jul 15 1996 Donnelly Corporation Coated exterior mirror housing for vehicles
6150930, Aug 14 1992 Texas Instruments Incorporated Video equipment and method to assist motor vehicle operators
6166628, Nov 20 1996 Volkswagen AG Arrangement and method for detecting objects from a motor vehicle
6172613, Feb 18 1998 Donnelly Corporation Rearview mirror assembly incorporating vehicle information display
6175164, Jul 11 1996 Donnelly Corporation Vehicle mirror digital network and dynamically interactive mirror system
6175300, Sep 03 1998 Blind spot viewing system
6198409, Mar 22 1996 Donnelly Corporation Vehicle rearview mirror display system
6201642, Jul 27 1999 Donnelly Corporation Vehicular vision system with a wide angle lens including a diffractive element
6222447, Feb 26 1993 MAGNA ELECTRONICS INC Rearview vision system with indicia of backup travel
6222460, Feb 18 1998 Donnelly Corporation Interior rearview mirror system incorporating a supplemental inflatable restraint system status information display
6229319, Mar 22 1996 Sun Microsystems, Inc. Chip carrier to allow electron beam probing and fib modifications
6243003, Aug 25 1999 Donnelly Corporation Accessory module for vehicle
6250148, Jan 07 1998 MAGNA ELECTRONICS, INC Rain sensor mount for use in a vehicle
6259412, Sep 23 1998 BRITAX GECO SA Vehicle exterior mirror with antenna
6266082, Dec 19 1995 Canon Kabushiki Kaisha Communication apparatus image processing apparatus communication method and image processing method
6266442, Oct 23 1998 GOOGLE LLC Method and apparatus for identifying objects depicted in a videostream
6285393, Sep 08 1993 Toyota Jidosha Kabushiki Kaisha Object recognition apparatus and method
6285778, Sep 19 1991 Yazaki Corporation Vehicle surroundings monitor with obstacle avoidance lighting
6291906, Dec 16 1998 Donnelly Corporation Information display for vehicles
6292752, Nov 06 1997 21ST CENTURY GARAGE LLC Device for acquiring lane path indicative data
6294989, Dec 16 1998 Donnelly Corporation Tire inflation assistance monitoring system
6297781, Feb 16 1999 Gentex Corporation Rearview mirror with integrated microwave receiver
6302545, Feb 26 1993 Donnelly Corporation Vehicle control system and method
6310611, Dec 10 1996 TouchSensor Technologies LLC Differential touch sensor and control circuit therefor
6311119, Jul 07 1997 Honda Giken Kogyo Kabushiki Kaisha Vehicle control system
6313454, Jul 02 1999 Donnelly Corporation Rain sensor
6315421, Oct 07 1999 REITTER & SCHEFENACKER GMBH & CO KG Interior rearview mirror for vehicles
6317057, Apr 03 2000 Hyundai Motor Company Method for detecting lane deviation of vehicle
6318870, Mar 23 2000 Donnelly Corporation Toggle assembly for rearview mirror
6320176, Feb 26 1993 Donnelly Corporation Vehicle rain sensor using imaging sensor
6320282, Jan 19 1999 TouchSensor Technologies LLC Touch switch with integral control circuit
6324450, Oct 08 1999 CLARION CO , LTD Mobile object information recording apparatus
6326613, Jan 07 1998 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
6329925, Nov 24 1999 Donnelly Corporation Rearview mirror assembly with added feature modular display
6333759, Mar 16 1999 360 ° automobile video camera system
6341523, Jan 07 1998 MAGNA ELECTRONICS, INC Rain sensor mount for use in a vehicle
6353392, Oct 30 1997 Donnelly Corporation Rain sensor with fog discrimination
6362729, Dec 16 1998 Robert Bosch GmbH Apparatus for kinesthetic signaling to the driver of a motor vehicle
6366213, Feb 18 1998 Donnelly Corporation Rearview mirror assembly incorporating electrical accessories
6366236, Aug 12 1999 Automotive Systems Laboratory, Inc.; Automotive Systems Laboratory, Inc Neural network radar processor
6370329, Jan 20 1999 Zeiss Optronik GmbH Stabilized camera
6388565, May 08 1999 Daimler AG Guidance system for assisting lane change of a motor vehicle
6388580, Jul 23 1998 Automobile unsafe following distance warning system
6396397, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle imaging system with stereo imaging
6411204, Nov 15 1999 Donnelly Corporation Deceleration based anti-collision safety light control for vehicle
6411328, Dec 01 1995 Southwest Research Institute Method and apparatus for traffic incident detection
6420975, Aug 25 1999 DONNELLY CORPORATION, A CORP OF MICHIGAN Interior rearview mirror sound processing system
6424273, Mar 30 2001 Koninklijke Philips Electronics N V System to aid a driver to determine whether to change lanes
6428172, Nov 24 1999 Donnelly Corporation Rearview mirror assembly with utility functions
6429594, Sep 18 1998 Gentex Corporation Continuously variable headlamp control
6430303, Mar 31 1993 Fujitsu Limited Image processing apparatus
6433676, Aug 25 1999 Donnelly Corporation Mirror-based audio system for a vehicle
6433817, Mar 02 2000 Apparatus and method for determining the winner of a race
6441748, Apr 02 2001 Yokogawa Electric Corporation; Massachusetts Institute of Technology Road surface condition monitoring system using sensors disposed under the road
6442465, May 05 1992 AMERICAN VEHICULAR SCIENCES LLC Vehicular component control systems and methods
6469739, Apr 02 1997 Gentex Corporation Control circuit for image array sensors
6472979, Dec 16 1998 Donnelly Corporation Tire inflation assistance monitoring system
6477464, Mar 09 2000 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
6485155, Jul 06 2001 SCHEFENACKER VISION SYSTEMS FRANCE S A Multiplexing mirror
6497503, Jun 21 2001 Ford Global Technologies, Inc. Headlamp system with selectable beam pattern
6498620, Feb 26 1993 Donnelly Corporation Vision system for a vehicle including an image capture device and a display system having a long focal length
6513252, Apr 08 1999 Donnelly Corporation Vehicle compass compensation
6516272, Dec 23 2000 American GNC Corporation Positioning and data integrating method and system thereof
6516664, Jan 07 1998 MAGNA ELECTRONICS, INC Rain sensor mount for use in a vehicle
6523964, Feb 26 1993 Donnelly Corporation Vehicle control system and method
6534884, Dec 16 1998 Donnelly Corporation Proximity sensing system for vehicles
6539306, Jun 15 2001 Gentex Corporation Automotive mirror with integrated Loran components
6540193, Dec 23 1999 Donnelly Corporation Rearview mirror mounting assembly
6547133, Apr 08 1998 Donnelly Corporation Vehicle mounted remote transaction interface system
6553130, Aug 11 1993 Motor vehicle warning and control system and method
6559435, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle headlight control using imaging sensor identifying objects by geometric configuration
6574033, Feb 27 2002 SNAPTRACK, INC Microelectromechanical systems device and method for fabricating same
6578017, Feb 26 1999 Information Decision Technologies, LLC Method to aid object detection in images by incorporating contextual information
6587573, Mar 20 2000 Gentex Corporation System for controlling exterior vehicle lights
6589625, Aug 01 2001 SNAPTRACK, INC Hermetic seal and method to create the same
6593565, Jan 07 1998 MAGNA ELECTRONICS, INC Vehicle interior rearview mirror assembly including an accessory-containing housing
6593698, Sep 18 1998 Gentex Corporation Continuously variable headlamp control
6594583, Jan 31 2000 Yazaki Corporation Side-monitoring apparatus for motor vehicle
6611202, Feb 26 1993 Donnelly Corporation Vehicle camera display system
6611610, Apr 02 1997 Gentex Corporation Vehicle lamp control
6627918, Sep 22 2000 TPK Touch Solutions Inc Spacer elements for interactive information devices and method for making same
6631316, Mar 05 2001 Gentex Corporation Image processing system to control vehicle headlamps or other vehicle equipment
6631994, May 10 2000 Mitsubishi Denki Kabushiki Kaisha Image display device and adjustment for alignment
6636258, Oct 19 2001 Ford Global Technologies, LLC 360°C vision system for a vehicle
6648477, Jul 06 2000 Donnelly Corporation Rearview mirror assembly with information display
6650233, Aug 25 1999 Donnelly Corporation Mirror-based audio system for vehicle
6650455, May 05 1994 SNAPTRACK, INC Photonic mems and structures
6672731, Nov 20 2000 Donnelly Corporation Vehicular rearview mirror with blind spot viewing system
6674562, May 05 1994 SNAPTRACK, INC Interferometric modulation of radiation
6678056, Jul 27 2000 QIOPTIQ PHOTONICS LIMITED Jamin-type interferometers and components therefor
6678614, Nov 24 1999 Donnelly Corporation Navigation system for a vehicle
6680792, May 05 1994 SNAPTRACK, INC Interferometric modulation of radiation
6690268, Mar 02 2000 Donnelly Corporation Video mirror systems incorporating an accessory module
6700605, May 15 1998 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Apparatus for monitoring
6703925, Jan 28 2000 SMR PATENTS S A R L Monitoring device for vehicles, in particular, motor vehicles
6704621, Nov 26 1999 MOBILEYE VISION TECHNOLOGIES LTD System and method for estimating ego-motion of a moving vehicle using successive images recorded along the vehicle's path of motion
6710908, May 05 1994 SNAPTRACK, INC Controlling micro-electro-mechanical cavities
6711474, Jan 24 2000 21ST CENTURY GARAGE LLC Automobile personal computer systems
6714331, Apr 20 2001 Microvision, Inc. Scanned imaging apparatus with switched feeds
6717610, Nov 25 1998 Donnelly Corporation Wide angle image capture system for vehicle
6728393, Apr 02 1997 Gentex Corporation Vehicle lamp control
6728623, Feb 23 2000 Hitachi, Ltd. Running control device for a vehicle
6735506, May 05 1992 AMERICAN VEHICULAR SCIENCES LLC Telematics system
6741377, Jul 02 2002 SNAPTRACK, INC Device having a light-absorbing mask and a method for fabricating same
6744353, Dec 15 1999 Blind spot detector
6757109, Jul 27 1999 Donnelly Corporation Plastic lens system for vehicle imaging system
6762867, Aug 05 1999 Microvision, Inc. Scanned display with plurality of scanning assemblies
6764210, Jul 19 2001 ICHIKOH INDUSTRIES, LTD Stop lamp for vehicles
6765480, Jul 12 2001 Monocular computer vision aided road vehicle driving for safety
6784828, Aug 16 2000 VALEO RADAR SYSTEMS, INC Near object detection system
6794119, Feb 12 2002 SNAPTRACK, INC Method for fabricating a structure for a microelectromechanical systems (MEMS) device
6795221, Aug 05 1999 Microvision, Inc.; Microvision, Inc Scanned display with switched feeds and distortion correction
6801127, Aug 09 2001 Matsushita Electric Industrial Co., Ltd. Driving assistance display apparatus
6801244, Feb 29 2000 Kabushiki Kaisha Toshiba Obstacle detection apparatus and method
6802617, Feb 26 1993 Donnelly Corporation Vehicle image capture system
6806452, Sep 22 1997 Donnelly Corporation Interior rearview mirror system including a forward facing video device
6807287, Feb 27 1998 TRW AUTOMOTIVE U S LLC Road profile prediction
6812463, Dec 14 2001 Autonetworks Technologies, Ltd.; Sumitomo Wiring Systems, Ltd.; Sumitomo Electric Industries, Ltd. Vehicle vicinity-monitoring apparatus
6819231, Feb 05 2002 Donnelly Hohe GmbH & Co. KG Parking and/or maneuvering assistance device
6822563, Sep 22 1997 MAGNA ELECTRONICS INC Vehicle imaging system with accessory control
6823241, Oct 02 2000 Nissan Motor Co., Ltd. Lane recognition apparatus for vehicle
6823261, Nov 02 2001 Subaru Corporation Monitor system of vehicle outside and the method thereof
6824281, Jan 31 2002 MAGNA ELECTRONICS INC Vehicle accessory module
6831261, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle headlight control using imaging sensor
6838980, May 24 2000 Daimler AG Camera-based precrash detection system
6842189, May 25 2001 Hyundai Motor Company Road monitoring method for a vehicle and a system thereof
6847487, Aug 23 2001 Donnelly Corporation Vehicle information display
6859148, Oct 30 2002 Ford Global Technologies, LLC Blind spot warning system for an automotive vehicle
6861809, Sep 18 1998 Gentex Corporation Headlamp control to prevent glare
6873253, Apr 14 2000 Device for warning drivers of automobiles of excessive speed of turning around a curve
6882287, Jul 31 2001 MAGNA ELECTRONICS INC Automotive lane change aid
6888447, Feb 26 2002 Toyota Jidosha Kabushiki Kaisha Obstacle detection device for vehicle and method thereof
6889161, Apr 12 2001 Robert Bosch GmbH Method for recognizing a change in lane of a vehicle
6891563, May 22 1996 Donnelly Corporation Vehicular vision system
6898518, Mar 14 2002 Microsoft Technology Licensing, LLC Landmark-based location of users
6906620, Aug 28 2002 Kabushiki Kaisha Toshiba Obstacle detection device and method therefor
6906639, Aug 11 1993 Motor vehicle warning and control system and method
6909753, Dec 05 2001 Koninklijke Philips Electronics, N.V. Combined MPEG-4 FGS and modulation algorithm for wireless video transmission
6914521, Apr 12 2002 Lear Corporation Visual display for vehicle
6932669, Sep 19 2000 C.J. Associates, Ltd. Jointed linkage system
6933837, Jan 25 2002 COLLISION AVOIDANCE TECHNOLOGIES INC Trailer based collision warning system and method
6940423, Oct 31 2001 Toyota Jidosha Kabushiki Kaisha; Aisin Seiki Kabushiki Kaisha Device for monitoring area around vehicle
6946978, Apr 25 2002 Donnelly Corporation Imaging system for vehicle
6950035, Apr 08 2002 Aisin Seiki Kabushiki Kaisha Parking assist system with image obtaining means and displaying means
6953253, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle photosensing control system
6959994, May 14 2002 Murakami Corporation Camera built-in type rearview mirror device
6961178, Apr 04 2002 Nitto Denko Corporation Polarizing film, optical film and liquid crystal display using polarizing film
6961661, Sep 18 2002 Subaru Corporation Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
6967569, Oct 27 2003 Ford Global Technologies, LLC Active night vision with adaptive imaging
6968736, Jan 07 1998 Donnelly Corporation Rain sensor mounting system
6975775, Mar 06 2002 Radiant ZEMAX, LLC Stray light correction method for imaging light and color measurement system
6989736, Sep 25 2002 Donnelly Hohe GmbH & Co. KG Monitoring device for a motor vehicle
6995687, Jun 22 2001 Lang-Mekra North America, LLC Parking aid for use in a motor vehicle
7004593, Jun 06 2002 Donnelly Corporation Interior rearview mirror system with compass
7004606, Apr 23 2002 Donnelly Corporation Automatic headlamp control
7005974, Apr 19 2002 MAGNA ELECTRONICS INC Vehicle imaging system
7012727, Nov 24 1999 Donnelly Corporation Rearview mirror assembly with utility functions
7023331, Oct 02 2002 Mitsubishi Denki Kabushiki Kaisha Peripheral monitor for monitoring periphery of vehicle
7030738, Oct 22 2002 Omron Corporation Car-mounted imaging apparatus and driving assistance apparatus for car using the imaging apparatus
7030775, Sep 24 2002 Fuji Jukogyo Kabushiki Kaisha Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
7038577, May 03 2002 MAGNA ELECTRONICS INC Object detection system for vehicle
7046448, Aug 23 2001 Donnelly Corporation Vehicle information display
7057505, Aug 27 2002 Suzuki Motor Corporation Alarm information providing apparatus for vehicle
7057681, Jun 24 2002 BOE TECHNOLOGY GROUP CO , LTD Liquid crystal display with mirror mode having top reflective polarizer
7062300, Nov 09 2000 Cellular phone holder with charger mounted to vehicle dashboard
7065432, Oct 02 2003 LONGHORN AUTOMOTIVE GROUP LLC Device for improving the visibility conditions in a motor vehicle
7068289, Sep 14 2001 Honda Giken Kogyo Kabushiki Kaisha Rearview monitoring apparatus for vehicle
7085633, Nov 21 2002 Nissan Motor Co., Ltd. System and method for improving vehicle operator driving assistance of automotive vehicle
7085637, Oct 22 1997 AMERICAN VEHICULAR SCIENCES LLC Method and system for controlling a vehicle
7092548, Oct 23 1998 GOOGLE LLC Method and apparatus for identifying objects depicted in a videostream
7095432, Jul 18 2001 Kabushiki Kaisha Toshiba Image processing apparatus and method
7106213, Oct 28 2002 GM Global Technology Operations LLC Distance detection and display system for use in a vehicle
7110021, May 31 2002 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Vehicle surroundings monitoring device, and image production method/program
7110156, Apr 26 2002 Magna Donnelly Engineering GmbH Rearview mirror assemblies
7113867, Nov 26 2000 MOBILEYE VISION TECHNOLOGIES LTD System and method for detecting obstacles to vehicle motion and determining time to contact therewith using sequences of images
7116246, Oct 03 2001 Apparatus and method for sensing the occupancy status of parking spaces in a parking lot
7121028, Dec 09 2002 U-HAUL INTERNATIONAL, INC Method and apparatus for converting a rearview mirror into a dedicated information display
7123168, Apr 25 2002 Donnelly Corporation Driving separation distance indicator
7133661, Feb 19 2001 HITACHI KOKUSAI ELECTRIC INC. Emergency information notifying system, and apparatus, method and moving object utilizing the emergency information notifying system
7149613, Mar 05 2001 Gentex Corporation Image processing system to control vehicle headlamps or other vehicle equipment
7151996, Apr 14 2001 MOBILEYE VISION TECHNOLOGIES LTD System and method for generating a model of the path of a roadway from an image recorded by a camera
7167796, Mar 09 2000 Donnelly Corporation Vehicle navigation system for use with a telematics system
7187498, Nov 21 2001 THALES AVIONICS, INC Surveillance window
7195381, Jan 23 2001 Donnelly Corporation Vehicle interior LED lighting system
7202776, Oct 22 1997 AMERICAN VEHICULAR SCIENCES LLC Method and system for detecting objects external to a vehicle
7202987, Mar 26 1997 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
7205904, Jul 31 2001 MAGNA ELECTRONICS INC Automotive lane change aid
7221363, Feb 12 2003 Gentex Corporation Vehicle information displays
7224324, Mar 27 2000 Donnelly Corporation Interactive automotive rearvision system
7227459, Sep 22 1997 MAGNA ELECTRONICS INC Vehicle imaging system
7227611, Aug 23 2004 The Boeing Company Adaptive and interactive scene illumination
7235918, Jun 11 2003 TICONA POLYMERS, INC Thermally-conductive plastic articles having light reflecting surfaces
7248283, Nov 12 2001 Toyota Jidosha Kabushiki Kaisha; Aisin Seiki Kabushiki Kaisha Vehicle periphery monitor
7249860, Sep 05 2003 Donnelly Corporation Interior rearview mirror assembly
7253723, May 19 2003 Donnelly Corporation Mirror assembly
7255451, Sep 20 2002 Donnelly Corporation Electro-optic mirror cell
7271951, May 22 2004 3M Innovative Properties Company Cards and laminates incorporating multilayer optical films
7304661, Dec 11 2002 Autonetworks Technologies, Ltd.; Sumitomo Wiring Systems; Sumitomo Electric Industries, Ltd. Vehicle periphery monitoring apparatus
7311406, Feb 26 1993 Donnelly Corporation Image sensing system for a vehicle
7325934, Feb 26 1993 Donnelly Corporation Image sensing system for a vehicle
7325935, Feb 26 1993 Donnelly Corporation Image sensing system for a vehicle
7337055, Apr 23 2004 NISSAN MOTOR CO , LTD Adaptive cruise control system for automotive vehicle
7338177, Nov 26 2003 Donnelly Corporation Mirror reflective element for a vehicle
7339149, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle headlight control using imaging sensor
7344261, Feb 26 1993 MAGNA ELECTRONICS INC Vehicular vision system
7355524, Jul 31 2001 MAGNA ELECTRONICS INC Automotive lane change aid
7360932, Jun 01 2004 Donnelly Corporation Mirror assembly for vehicle
7370983, Mar 02 2000 Donnelly Corporation Interior mirror assembly with display
7375803, May 18 2006 Microsoft Technology Licensing, LLC RGBZ (red, green, blue, z-depth) filter system usable with sensor systems, including sensor systems with synthetic mirror enhanced three-dimensional imaging
7380948, Feb 26 1993 Donnelly Corporation Image sensing system for a vehicle
7388182, Feb 26 1993 MAGNA ELECTRONICS INC Image sensing system for controlling an accessory or headlight of a vehicle
7402786, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle headlight control using imaging sensor with spectral filtering
7420756, May 20 2003 Donnelly Corporation Mirror reflective element
7423248, Feb 26 1993 MAGNA ELECTRONICS INC Automatic exterior light control for a vehicle
7423821, Mar 24 2006 HL KLEMOVE CORPORATION Vision system
7425076, Feb 26 1993 Donnelly Corporation Vision system for a vehicle
7429998, Sep 26 2001 Clarion Co., Ltd. Method and apparatus for monitoring vehicle rear, and signal processor
7432967, Apr 02 1997 Gentex Corporation Control circuit for image array sensors
7446924, Oct 02 2003 Donnelly Corporation Mirror reflective element assembly including electronic component
7459664, Feb 26 1993 MAGNA ELECTRONICS INC Image sensing system for a vehicle
7460007, Feb 28 2000 Donnelly Corporation Console system suitable for use in an interior cabin of a vehicle
7474963, Mar 02 2000 Donnelly Corporation Navigational mirror system for a vehicle
7489374, Dec 26 2003 Panasonic Intellectual Property Corporation of America Liquid crystal display
7495719, Feb 28 2001 PANASONIC LIQUID CRYSTAL DISPLAY CO , LTD Device capable of switching between an image display status and a mirror status, and an instrument disposed therewith
7525604, Mar 15 2005 SERIOUS ENERGY, INC Windows with electrically controllable transmission and reflection
7526103, Apr 15 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
7541743, Dec 13 2002 Ford Global Technologies, LLC Adaptive vehicle communication controlled lighting system
7543946, Jan 10 2002 Gentex Corporation Dimmable rearview assembly having a glare sensor
7545429, Nov 30 2000 Microsoft Technology Licensing, LLC Flat-panel camera
7548291, Nov 12 2003 E Ink Corporation Reflective type liquid crystal display device and fabrication method thereof
7551103, Jul 31 2001 MAGNA ELECTRONICS INC Alert system for a vehicle
7561181, May 22 1996 Donnelly Corporation Vehicular vision system
7565006, Aug 21 2002 Gentex Corporation Image acquisition and processing methods for automatic vehicular exterior lighting control
7566851, Mar 24 2006 MOBILEYE VISION TECHNOLOGIES LTD Headlight, taillight and streetlight detection
7567291, Dec 31 1997 Aptina Imaging Corporation Vehicle vision system
7613327, Apr 02 1997 Gentex Corporation Vehicle automatic exterior light control
7616781, Apr 15 2004 MAGNA ELECTRONICS INC Driver assistance system for vehicle
7619508, Jan 23 2001 Donnelly Corporation Video mirror system for a vehicle
7629996, Mar 15 2000 Still GmbH Industrial truck with a camera device
7633383, Aug 16 2006 KYNDRYL, INC Systems and arrangements for providing situational awareness to an operator of a vehicle
7639149, May 09 2006 Denso Corporation Automatic lighting device and method for controlling light
7653215, Apr 02 1997 Gentex Corporation System for controlling exterior vehicle lights
7655894, Mar 25 1996 MAGNA ELECTRONICS INC Vehicular image sensing system
7663798, May 14 1999 Gentex Corporation Electrochromic rearview mirror incorporating a third surface reflector
7676087, Sep 20 2006 Aptiv Technologies AG Method for identifying vehicles in electronic images
7720580, Dec 23 2004 MAGNA ELECTRONICS INC Object detection system for vehicle
7724434, Jun 03 2005 3M Innovative Properties Company Reflective polarizer and display device having the same
7731403, Jan 23 2001 Donnelly Corpoation Lighting system for a vehicle, with high-intensity power LED
7742864, Sep 04 2002 Subaru Corporation Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus
7786898, May 31 2006 MOBILEYE VISION TECHNOLOGIES LTD Fusion of far infrared and visible images in enhanced obstacle detection in automotive applications
7791694, Sep 22 1998 Sharp Kabushiki Kaisha Transflective liquid crystal displays with sequentially flashing light sources
7792329, Apr 15 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
7842154, May 20 2003 Donnelly Corporation Mirror reflective element and method of forming same
7843451, May 25 2007 GOOGLE LLC Efficient rendering of panoramic images, and applications thereof
7854514, May 19 2005 3M Innovative Properties Company Polarized, led-based illumination source
7855755, Jan 23 2001 Donnelly Corporation Interior rearview mirror assembly with display
7855778, Apr 27 2007 Robert Bosch Company Limited Method and apparatus for locating and measuring the distance to a target
7859565, May 22 1995 MAGNA ELECTRONICS, INC Vision system for a vehicle including image processor
7877175, Dec 23 2004 MAGNA ELECTRONICS, INC Imaging system for vehicle
7881496, Sep 30 2004 Donnelly Corporation Vision system for vehicle
7903324, Nov 29 2002 FUJIFILM Business Innovation Corp Optical switching element and photoaddressable display medium using the same
7903335, Nov 11 2003 KONINKLIJKE PHILIPS ELECTRONICS, N V Mirror with built-in display
7914187, Jul 12 2007 MAGNA ELECTRONICS INC Automatic lighting system with adaptive alignment function
7930160, Dec 29 2006 The MathWorks, Inc Electronic markup of executable models
7949152, Apr 15 2004 MAGNA ELECTRONICS INC Driver assistance system for vehicle
7965357, Apr 15 2004 Innolux Corporation Transflective LCD display device comprising a patterned polarizer, display having the same, and method having the same
7991522, Dec 23 2004 MAGNA ELECTRONICS, INC Imaging system for vehicle
7994462, Mar 25 1996 MAGNA ELECTRONICS INC Vehicular image sensing system
8017898, Aug 17 2007 MAGNA ELECTRONICS INC. Vehicular imaging system in an automatic headlamp control system
8027691, Feb 08 2001 Nokia Technologies Oy Method and apparatus for providing position profiles in mobile value-added services
8064643, Dec 06 2006 MOBILEYE VISION TECHNOLOGIES LTD Detecting and recognizing traffic signs
8082101, Apr 08 2004 MOBILEYE VISION TECHNOLOGIES LTD Collision warning system
8090153, Apr 15 2004 MAGNA ELECTRONICS INC Imaging system for vehicle
8095310, Mar 02 2000 Donnelly Corporation Video mirror system for a vehicle
8098142, Feb 26 1993 Magna Mirrors of America, Inc Vehicle monitoring system
8120652, Apr 02 1997 Gentex Corporation System for controlling vehicle equipment
8164628, Jan 04 2006 MOBILEYE VISION TECHNOLOGIES LTD Estimating distance to an object using a sequence of images recorded by a monocular camera
8184159, Mar 26 2007 TRW AUTOMOTIVE U S LLC Forward looking sensor system
8189871, Sep 30 2004 Donnelly Corporation Vision system for vehicle
8203440, Jun 07 1995 MAGNA ELECTRONICS INC Vehicular vision system
8222588, Mar 25 1996 MAGNA ELECTRONICS INC Vehicular image sensing system
8224031, Apr 26 2005 Subaru Corporation Road line recognition apparatus
8233045, Jul 16 2007 TRW AUTOMOTIVE U S LLC Method and apparatus for distortion correction and image enhancing of a vehicle rear viewing system
8254635, Dec 06 2007 MOBILEYE VISION TECHNOLOGIES LTD Bundling of driver assistance systems
8289430, Feb 09 2007 HL KLEMOVE CORPORATION High dynamic range imaging device
8305471, Feb 09 2007 HL KLEMOVE CORPORATION High dynamic range imaging device
8308325, Aug 07 2007 Murakami Corporation Image pickup device-equipped rear-view mirror
8314689, Jun 09 1995 MAGNA ELECTRONICS, INC Vehicular vision system
8324552, Mar 25 1996 MAGNA ELECTRONICS, INC Vehicular image sensing system
8339526, Mar 09 2006 Gentex Corporation Vehicle rearview mirror assembly including a high intensity display
8378851, May 31 2006 MOBILEYE VISION TECHNOLOGIES LTD Fusion of images in enhanced obstacle detection
8386114, Dec 23 2004 MAGNA ELECTRONICS, INC Imaging system for vehicle
8405726, Jan 31 2002 MAGNA ELECTRONICS, INC Vehicle accessory system
8452055, Apr 08 2004 MOBILEYE VISION TECHNOLOGIES LTD Collision warning system
8483439, Sep 30 2004 Donnelly Corporation Vision system for vehicle
8553088, Nov 23 2005 MOBILEYE VISION TECHNOLOGIES LTD Systems and methods for detecting obstructions in a camera field of view
8977008, Sep 30 2004 Donnelly Corporation Driver assistance system for vehicle
20010003168,
20020003571,
20020005778,
20020015153,
20020029103,
20020044065,
20020113873,
20020116106,
20020156559,
20020159270,
20020180936,
20030069674,
20030103142,
20030122930,
20030125855,
20030137586,
20030209893,
20030222982,
20030227777,
20040008410,
20040012488,
20040016870,
20040032321,
20040051634,
20040128065,
20040164228,
20040183663,
20040200948,
20050036660,
20050073853,
20050078389,
20050131607,
20050134966,
20050134983,
20050146792,
20050169003,
20050195488,
20050200700,
20050219852,
20050232469,
20050237385,
20050264891,
20060018511,
20060018512,
20060028731,
20060050018,
20060091813,
20060103727,
20060106518,
20060164230,
20060250501,
20070023613,
20070024724,
20070104476,
20070109406,
20070109651,
20070109652,
20070109653,
20070109654,
20070120657,
20070154063,
20070176080,
20070193811,
20070242339,
20080043099,
20080147321,
20080180529,
20080192132,
20080234899,
20080266396,
20090052003,
20090066065,
20090113509,
20090160987,
20090190015,
20090201137,
20090243824,
20090256938,
20100045797,
20120045112,
20120069185,
20120200707,
20120314071,
20130141580,
20130147957,
D351370, Mar 18 1993 Donnelly Mirrors Limited Rearview mirror
EP353200,
EP426503,
EP492591,
EP640903,
EP788947,
EP1074430,
FR2641237,
JP1141137,
JP200274339,
JP2003083742,
JP20041658,
JP2630604,
JP3099952,
JP4114587,
JP4127280,
JP5050883,
JP5213113,
JP577657,
JP59114139,
JP6079889,
JP6080953,
JP62131837,
JP6227318,
JP6267304,
JP6272245,
JP6276524,
JP6295601,
JP6414700,
JP7004170,
JP7052706,
JP7105496,
JP732936,
JP747878,
JP769125,
JP9205414,
RE30835, Oct 27 1976 American Cyanamid Company Self-supporting pigment layers for electrochromic display
WO198605147,
WO1994019212,
WO1996038319,
WO1997035743,
WO1998014974,
WO1999014088,
WO1999023828,
WO2004047421,
WO2004103772,
WO2005019873,
WO2007081407,
WO2007111984,
WO2009073054,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 09 2015Donnelly Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 27 2023M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Apr 14 20234 years fee payment window open
Oct 14 20236 months grace period start (w surcharge)
Apr 14 2024patent expiry (for year 4)
Apr 14 20262 years to revive unintentionally abandoned end. (for year 4)
Apr 14 20278 years fee payment window open
Oct 14 20276 months grace period start (w surcharge)
Apr 14 2028patent expiry (for year 8)
Apr 14 20302 years to revive unintentionally abandoned end. (for year 8)
Apr 14 203112 years fee payment window open
Oct 14 20316 months grace period start (w surcharge)
Apr 14 2032patent expiry (for year 12)
Apr 14 20342 years to revive unintentionally abandoned end. (for year 12)