A contaminated gas stream can be passed through an in-line mixing device, positioned in a duct containing the contaminated gas stream, to form a turbulent contaminated gas stream. One or more of the following is true: (a) a width of the in-line mixing device is no more than about 75% of a width of the duct at the position of the in-line mixing device; (b) a height of the in-line mixing device is no more than about 75% of a height of the duct at the position of the in-line mixing device; and (c) a cross-sectional area of the mixing device normal to a direction of gas flow is no more than about 75% of a cross-sectional area of the duct at the position of the in-line mixing device. An additive can be introduced into the contaminated gas stream to cause the removal of the contaminant by a particulate control device.
|
23. A method, comprising:
receiving a contaminated gas stream comprising a contaminant;
introducing an additive into the contaminated gas stream, the additive at least partially removing or causing the removal of the contaminant;
determining, by a computer, a desired flow resistance and/or pressure drop across an in-line mixing device positioned in the contaminated gas stream to distribute the additive throughout the contaminated gas stream;
determining, by the computer, a desired orientation of the in-line mixing device and/or a mixing element thereof relative to a flow path of the contaminated gas stream to produce the desired flow resistance and/or pressure drop across the in-line mixing device;
determining, by the computer, a current orientation of the in-line mixing device and/or a mixing element thereof relative to a flow path of the contaminated gas stream, wherein the current and desired orientations are different;
causing, by the computer, the in-line mixing device to change from the current orientation to the desired orientation; and
removing, by a particulate control device, particulates from the contaminated gas stream, wherein the particulates comprise at least some of the contaminant and/or a derivative thereof.
1. A method, comprising:
receiving a contaminated gas stream comprising a contaminant;
passing the contaminated gas stream through an in-line mixing device, positioned in a duct containing the contaminated gas stream, to form a turbulent contaminated gas stream;
introducing an additive to the contaminated gas stream, the additive at least partially removing or causing the removal of the contaminant; and
thereafter removing, by a particulate control device, particulates from the additive-containing contaminated gas stream, wherein the particulates comprise at least some of the contaminant and/or a derivative thereof,
wherein the in-line mixing device comprises a static mixing device comprising one or more stationary mixing elements fixed in a housing of the static mixing device, wherein the static mixing device is attached to a mechanical system that rotates the static mixing device relative to a flow direction of the contaminated gas stream, wherein, when in a first position relative to the flow direction, the contaminated gas stream has a first pressure drop over the in-line mixing device, wherein, when in a different second position relative to the flow direction, the contaminated gas stream has a second pressure drop over the in-line mixing device, wherein the first and second pressure drops are different, and
wherein at least one of the following is true;
(a) a width of the in-line mixing device is no more than about 75% of a width of the duct at the first position of the in-line mixing device;
(b) a height of the in-line mixing device is no more than about 75% of a height of the duct at the first position of the in-line mixing device; and
(c) a cross-sectional area of the in-line mixing device normal to a direction of gas flow is no more than about 75% of a cross-sectional area of the duct at the first position of the in-line mixing device.
13. A method, comprising:
receiving a contaminated gas stream comprising a contaminant;
introducing an additive into the contaminated gas stream, the additive at least partially removing or causing the removal of the contaminant
passing the additive-containing contaminated gas stream through an in-line mixing device, positioned in a duct containing the additive-containing contaminated gas stream, to form a turbulent contaminated gas stream, wherein, in a first operating mode, the in-line mixing device has a first position relative to a direction of flow of the additive-containing contaminated gas stream and, in a second operating mode, the in-line mixing device has a different second position relative to the direction of flow of the additive-containing contaminated gas stream and wherein one or more of the following is true:
(a) the first operating mode provides a first pressure drop of the additive-containing contaminated gas stream passing the in-line mixing device and the second operating mode provides a second pressure drop of the additive-containing contaminated gas stream passing the in-line mixing device, the first pressure drop being greater than the second pressure drop;
(b) the first operating mode provides a first level of turbulent flow of the additive-containing contaminated gas stream passing the in-line mixing device and the second operating mode provides a second level of turbulent flow of the additive-containing contaminated gas stream passing the in-line mixing device, the first level of turbulent flow being greater than the second level of turbulent flow;
(c) in the first operating mode, a plane of a face of the in-line mixing device has a first angular orientation relative to a direction of flow of the additive-containing contaminated gas stream and in the second operating mode the plane of the face of the in-line mixing device has a second angular orientation relative to the direction of flow of the additive-containing contaminated gas stream, the first and second angular orientations being different; and
(d) in the first operating mode and during a selected time interval, a first amount of the additive-containing contaminated gas stream passes through the in-line mixing device and, in the second operating mode and during the selected time interval, a second amount of the additive-containing contaminated gas stream passes through the in-line mixing device, the first amount being greater than the second amount; and
thereafter removing, by a particulate control device, particulates from the additive-containing contaminated gas stream, wherein the particulates comprise at least some of the contaminant and/or a derivative thereof.
2. The method of
3. The method of
passing the additive-containing contaminated gas stream through an air heater to transfer thermal energy from the contaminated gas stream to air prior to introduction of the air into a thermal unit that is a source of the contaminated gas stream, wherein the contaminant comprises mercury, and wherein the additive is one or more of a halogen, halide, and powdered activated carbon.
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
receiving, by a computer, a degree of current angular rotation of the in-line mixing device and/or a mixing element thereof and a sensed parameter, the sensed parameter comprising one or more of a current pressure drop over the contaminated gas stream, a sorbent consumption level, and a contaminant concentration in the contaminated gas stream prior to or after additive injection;
based on the received degree of current angular rotation of the mixing device and/or mixing element and the sensed parameter, determining, by the computer and from a set of mapping data structures, a new degree of angular rotation of the mixing device and/or mixing element; and
causing, by the computer, the mixing device and/or mixing element to rotate from the current degree of angular rotation to the new degree of angular rotation.
14. The method of
(e) a width of the in-line mixing device is no more than about 75% of a width of a duct at the first position of the in-line mixing device;
(f) a height of the in-line mixing device is no more than about 75% of a height of the duct at the first position of the in-line mixing device; and
(g) a cross-sectional area of the in-line mixing device normal to a direction of gas flow is no more than about 75% of a cross-sectional area of the duct at the first position of the in-line mixing device.
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
receiving, by a computer, a degree of current angular rotation of the in-line mixing device and/or a mixing element thereof and a sensed parameter, the sensed parameter comprising one or more of a current pressure drop over the contaminated gas stream, an additive consumption level, and a contaminant concentration in the contaminated gas stream prior to or after sorbent injection;
based on the received degree of current angular rotation of the mixing device and/or mixing element thereof and the sensed parameter, determining, by the computer and from a set of mapping data structures, a new degree of angular rotation of the mixing device and/or mixing element thereof; and
causing, by the computer, the in-line mixing device to rotate from the current degree of angular rotation to the new degree of angular rotation.
24. The method of
25. The method of
|
The present application is a divisional of U.S. patent application Ser. No. 14/951,211, filed Nov. 24, 2015, which claims the benefit of U.S. Provisional Application Ser. No. 62/084,413, filed Nov. 25, 2014, which is incorporated herein by this reference in its entirety.
Cross reference is made to U.S. patent application Ser. No. 13/951,167, filed Jul. 25, 2013, entitled “PROCESS TO ENHANCE MIXING OF DRY SORBENTS AND FLUE GAS FOR AIR POLLUTION CONTROL” (now U.S. Pat. No. 8,974,756), which is incorporated herein by this reference in its entirety.
The disclosure relates generally to treatment of waste gas and particularly to applying additives to waste gas to remove target contaminants.
Increasingly stringent pollution control standards for acid gases and trace air toxics, including hydrochloric acid (HCl), sulfur trioxide (SO3), and mercury (Hg), pose greater challenges for industries. Current best control practices for sorbent pollution control processes, such as activated carbon injection (ACI) and dry sorbent injection (DSI), must be improved. In many cases, a further increase in sorbent injection rate is uneconomical, ineffective, and/or otherwise adversely impacts the waste gas treatment process.
External constraints can also hamper additive or sorbent performance. The effectiveness of in-duct sorbent injection can often be limited due to constraints of duct layout, non-ideal injection locations, sorbent in-flight residence time, temperature, adverse flue gas chemistry, and close proximity to particulate control device.
Devices placed in the duct to improve additive or sorbent performance, such as in-line gas mixing devices, can cause operational issues. At periods of high load, for example when a power plant is running at or near full capacity during summer extremes, the pressure drop caused by can cause a measurable impact on plant performance and efficiency.
There is therefore a need for improved methods of sorbent/gas mixing that can be implemented in limited duct space while maintaining plant operational parameters within acceptable levels.
There is a further need for methods and systems that can achieve desired sorbent/gas mixing with lower pressure drop at high or peak load conditions.
These and other needs are addressed by the various aspects, embodiments, and configurations of the present disclosure. The disclosure is directed to a method and system for enhanced removal of contaminants from coal combustion and other thermal processes, particularly the use of various mixing device configurations that can provide improved additive distribution in a contaminated gas stream and/or can reduce the pressure drop across a mixing device.
The method and system can include:
The additive-containing gas stream can include a substantially homogeneous distribution of the additive in the additive-containing gas stream.
The energy for mixing by the mixing device can be primarily from a loss in pressure as the contaminated gas stream flows through the mixing device.
The contaminant can include mercury, and the additive can be one or more of a halogen, halide, and powdered activated carbon.
The contaminant can include one or more of nitrogen oxides (NOX), sulfur oxides (SOX), hydrochloric acid (HCl), hydrogen sulfide, and hydrofluoric acid (HF), and the additive one or more of lime, an alkaline earth metal sesquicarbonate, an alkali metal sesquicarbonate, a metal oxide, an alkaline earth metal carbonate, an alkali earth metal carbonate, an alkaline earth metal bicarbonate, and an alkali earth metal bicarbonate.
In the additive-containing gas stream, the distance from an output of the mixing device to an input of a downstream particulate control device can be at least about one times the hydraulic diameter of the pipe or duct, but is commonly no more than about ten times the hydraulic diameter.
The distance from a point of introduction of the additive into the contaminated gas stream to an input to the mixing device can be at least about one times the hydraulic diameter but is commonly no more than about ten times the hydraulic diameter.
A distance from an output of the static mixing device to a location of introduction of the additive (or in some applications from a point of introduction of the additive into the contaminated gas stream to an input to the mixing device) can be no more than about one times the hydraulic diameter of a conduit positioned between the mixing device and introduction location.
The mixing device can be a static mixing device having an arrangement of mixing elements in one or more mixing sections. The mixing elements, for instance, can be one or more of static fan-type blades, baffles, and/or plates. The mixing elements can be curved and/or helically shaped. The arrangement of mixing elements commonly includes from about 1 to about 5 static, or substantially stationary and/or fixed, mixing elements but can include from about 2 to about 25 mixing elements.
The flue gas velocity of the contaminated gas stream commonly ranges from about 5 to about 50 m/s.
The additive-containing gas stream can have substantially turbulent flow, and the mixing device can simultaneously cause flow division and radial mixing in the additive-containing gas stream.
A number of differing process configurations are possible.
The additive, whether an acid gas controlling, mercury capture additive, flue gas conditioning agent, or other additive, may be added downstream of the mixing device or mixing system.
The additive, whether an acid gas controlling or mercury capture additive, can be introduced into the contaminated gas stream downstream of an air heater, and the mixing device can be positioned downstream of both the air heater and the point of introduction of the additive.
The acid gas controlling additive can be an alkaline sorbent, and the alkaline sorbent and/or a mercury capture sorbent can be introduced into the contaminated gas stream downstream of the mixing device.
The alkaline sorbent can be introduced into the contaminated gas stream downstream of a first particulate control device and upstream of a second particulate control device.
The additive can be introduced into the contaminated gas stream upstream of an air heater.
The static mixing device can be positioned upstream of the air heater.
The additive can be an alkaline sorbent, and the alkaline sorbent and/or a mercury capture sorbent can be introduced into the contaminated gas stream downstream of the mixing device and air heater.
The mixing device can be positioned downstream of the air heater.
The additive can be an alkaline sorbent, and the alkaline sorbent and/or a mercury capture sorbent can be introduced into the contaminated gas stream downstream of the mixing device and air heater.
The additive can include both an alkaline sorbent and a mercury capture sorbent, and both the alkaline and mercury capture sorbents can be introduced into the contaminated gas stream upstream of the mixing device.
A mixing system can comprise a plurality of mixing devices. The plurality of mixing devices may be organized in an array. Typically, the array contains rows and columns. Rows or columns of mixing devices in an array may be rotated about an axis. Such rotation may reduce the operational cross sectional area (or cross-sectional area of the mixing device normal to the direction of gas flow) of the mixing devices relative to the cross sectional area of the pipe or duct (normal to the direction of gas flow).
An array of mixing devices can comprise rotatable mixing elements. The mixing elements may be adjusted individually, or they may be part of a rotating axis that runs through a row or column of mixing devices.
A method and system can include:
The in-line mixing device can be a static or dynamic mixing device and can cover only part of the cross section of a duct or pipe. For example, the mixing device can cover less than 50%, or less than 25%, of the cross section of the duct.
When the additive is injected downstream of the mixing device, the mixing device can create a turbulent zone that induces mixing of the additive in the gas stream even though the mixing device covers only part of the duct.
A gas treatment system and method can include:
One or more of the following can be true:
A computer-controlled feedback system can be utilized to determine when the mixing devices, or the mixing elements, should be moved from the first to the second orientations and vice versa.
The control system can include:
The microprocessor, in response to receiving a sensed stimulus indicating an occurrence of a selected event (e.g., a selected, determined, or predetermined current power load, pressure drop, sorbent consumption, and/or sensed contaminant concentration), can change a position and/or orientation of the mixing device and/or a member thereof relative to a direction of flow of the contaminated gas stream from a first position and/or orientation to a second position and/or orientation to change one or more of the above parameters (a)-(d) of the contaminated gas stream passing the mixing device.
The computer-controlled feedback system may be connected to a mechanical actuating system that rotates the static mixing devices or mixing elements.
The present disclosure can provide a number of advantages depending on the particular configuration. The disclosed process and system can couple a primary sorbent injection process with an upstream or downstream stationary static gas mixing device having a high degree of mixing effectiveness to achieve a more uniform particle distribution, to eliminate substantially stratification, such as from a vertical temperature gradient, or cause destratification in the gas stream, and to improve contact between gas and sorbent. Typical applications are gas/gas mixing such as ammonia distribution in a Selective Catalytic Reduction or SCR unit. However, in the method and system, the same or similar mixing device geometry can achieve substantially uniform particle mixing with gas over a shorter, and often the shortest possible, path. The substantially uniform particle mixing can enhance mass transfer of trace pollutants to the sorbent with a minimal impact on system pressure drop. The disclosed process and system can provide reduced sized mixing devices to reduce pressure drop in the gas stream. The disclosed process and system can, for example, provide reduced pressure drop by alternating a position and/or orientation of the mixing device(s) relative to a direction of gas stream flow. The disclosed process and system can provide a control-feedback computational system that varies the pressure drop in response to one or more sensed stimuli.
These and other advantages will be apparent from the disclosure of the aspects, embodiments, and configurations contained herein.
“A” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.
“Absorption” is the incorporation of a substance in one state into another of a different state (e.g. liquids being absorbed by a solid or gases being absorbed by a liquid). Absorption is a physical or chemical phenomenon or a process in which atoms, molecules, or ions enter some bulk phase—gas, liquid or solid material. This is a different process from adsorption, since molecules undergoing absorption are taken up by the volume, not by the surface (as in the case for adsorption).
“Adsorption” is the adhesion of atoms, ions, biomolecules, or molecules of gas, liquid, or dissolved solids to a surface. This process creates a film of the adsorbate (the molecules or atoms being accumulated) on the surface of the adsorbent. It differs from absorption, in which a fluid permeates or is dissolved by a liquid or solid. Similar to surface tension, adsorption is generally a consequence of surface energy. The exact nature of the bonding depends on the details of the species involved, but the adsorption process is generally classified as physisorption (characteristic of weak van der Waals forces) or chemisorption (characteristic of covalent bonding). It may also occur due to electrostatic attraction.
“At least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together. When each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X1-Xn, Y1-Ym, and Z1-Zo, the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Zo).
The term “automatic” and variations thereof, as used herein, refers to any process or operation, which is typically continuous or semi-continuous, done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material”.
“Biomass” refers to biological matter from living or recently living organisms. Examples of biomass include, without limitation, wood, waste, (hydrogen) gas, seaweed, algae, and alcohol fuels. Biomass can be plant matter grown to generate electricity or heat. Biomass also includes, without limitation, plant or animal matter used for production of fibers or chemicals. Biomass further includes, without limitation, biodegradable wastes that can be burnt as fuel but generally excludes organic materials, such as fossil fuels, which have been transformed by geologic processes into substances such as coal or petroleum. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, and a variety of tree species, ranging from eucalyptus to oil palm (or palm oil).
“Coal” refers to a combustible material formed from prehistoric plant life. Coal includes, without limitation, peat, lignite, sub-bituminous coal, bituminous coal, steam coal, waste coal, anthracite, and graphite. Chemically, coal is a macromolecular network comprised of groups of polynuclear aromatic rings, to which are attached subordinate rings connected by oxygen, sulfur, and aliphatic bridges.
The term “computer-readable medium” as used herein refers to any computer-readable storage and/or transmission medium that participate in providing instructions to a processor for execution. Such a computer-readable medium can be tangible, non-transitory, and non-transient and take many forms, including but not limited to, non-volatile media, volatile media, and transmission media and includes without limitation random access memory (“RAM”), read only memory (“ROM”), and the like. Non-volatile media includes, for example, NVRAM, or magnetic or optical disks. Volatile media includes dynamic memory, such as main memory. Common forms of computer-readable media include, for example, a floppy disk (including without limitation a Bernoulli cartridge, ZIP drive, and JAZ drive), a flexible disk, hard disk, magnetic tape or cassettes, or any other magnetic medium, magneto-optical medium, a digital video disk (such as CD-ROM), any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, a solid state medium like a memory card, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read. A digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. When the computer-readable media is configured as a database, it is to be understood that the database may be any type of database, such as relational, hierarchical, object-oriented, and/or the like. Accordingly, the disclosure is considered to include a tangible storage medium or distribution medium and prior art-recognized equivalents and successor media, in which the software implementations of the present disclosure are stored. Computer-readable storage medium commonly excludes transient storage media, particularly electrical, magnetic, electromagnetic, optical, magneto-optical signals.
A “computer readable storage medium” may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. A computer readable signal medium may convey a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electromagnetic, optical, or any suitable combination thereof. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
The terms “determine”, “calculate” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.
A “dynamic mixer” or “dynamic mixing device” is a device for the continuous or substantially continuous mixing of fluid materials. Dynamic mixers can be used to mix liquid and/or gas streams, disperse gas into liquid, or blend immiscible liquids. The energy needed for mixing comes primarily from movement of mixing elements in the dynamic mixer. Typical construction materials for dynamic mixer components include stainless steel, polypropylene, Teflon™, polyvinylidene fluoride (“PVDF”), polyvinyl chloride (“PVC”), chlorinated polyvinyl chloride (“CPVC”) and polyacetal.
“High alkali coals” refer to coals having a total alkali (e.g., calcium) content of at least about 20 wt. % (dry basis of the ash), typically expressed as CaO, while “low alkali coals” refer to coals having a total alkali content of less than 20 wt. % and more typically less than about 15 wt. % alkali (dry basis of the ash), typically expressed as CaO.
“High iron coals” refer to coals having a total iron content of at least about 10 wt. % (dry basis of the ash), typically expressed as Fe2O3, while “low iron coals” refer to coals having a total iron content of less than about 10 wt. % (dry basis of the ash), typically expressed as Fe2O3. As will be appreciated, iron and sulfur are typically present in coal in the form of ferrous or ferric carbonates and/or sulfides, such as iron pyrite.
“High sulfur coals” refer to coals having a total sulfur content of at least about 3 wt. % (dry basis of the coal) while “medium sulfur coals” refer to coals having between about 1.5 and 3 wt. % (dry basis of the coal) and “low sulfur coals” refer to coals having a total sulfur content of less than about 1.5 wt. % (dry basis of the coal).
The “hydraulic diameter” is a commonly used term when handling flow in noncircular tubes and channels. The hydraulic diameter is defined as four times the cross-sectional area of the channel divided by the inside perimeter of the channel.
“Laminar flow” (or streamline flow) occurs when a fluid flows in substantially parallel layers, with little or no disruption between the layers. At low flow velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There are commonly no cross currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of fluid is very orderly with all particles moving in straight lines parallel to the pipe walls. In fluid dynamics, laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection. When a fluid is flowing through a closed channel such as a pipe or between two flat plates, either of two types of flow may occur depending on the velocity of the fluid: laminar flow or turbulent flow. Laminar flow tends to occur at lower velocities, below the onset of turbulent flow.
“Lime” refers to a caustic alkaline earth metal substance, such as calcium hydroxide (Ca(OH)2), calcium oxide, and mixtures thereof produced by heating limestone.
A “load profile” refers to a graph of the variation in the electrical load versus time. A load profile will generally vary according to customer type (typical examples include residential, commercial and industrial), temperature and holiday seasons. Power producers use this information to plan how much electricity they will need to make available at any given time. Load profiles are typically determined by direct metering and/or inferred from customer billing or other data. In a load research calculation, a utility uses a transformer's maximum demand reading and accounting for the known number of each customer type supplied by the transformers. Actual demand can be collected at strategic locations to perform more detailed load analysis, which can be beneficial to both distribution and end-user customers looking for peak consumption. Smart grid meters, utility meter load profilers, data logging sub-meters and portable data loggers accomplish this task by recording readings at a set interval.
“Particulate” refers to fine particles, such as fly ash, unburned carbon, contaminate-carrying powdered activated carbon, soot, byproducts of contaminant removal, excess solid additives, and other fine process solids, typically entrained in a mercury-containing gas stream.
“Means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the disclosure, brief description of the drawings, detailed description, abstract, and claims themselves.
The term “module” as used herein refers to any known or later developed hardware, software, firmware, artificial intelligence, fuzzy logic, or combination of hardware and software that is capable of performing the functionality associated with that element.
“Pressure drop” refers to the difference in pressure between two points of a fluid carrying network. Pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through the tube. Pressure drop is determined by measuring the absolute or gauge pressure at the two points and determining the difference. Alternatively, differential pressure can be directly measured for the two points. Devices used to measure pressure include pressure gauges and manometers. Examples of pressure gauges include hydrostatic pressure gauges, piston-type gauges, liquid columns (using the pressure head equation), McLeod gauges, aneroid gauges (e.g., Bourdon pressure gauges, diaphragm gauges, and bellows gauges), magnetic coupling gauges, spinning rotor gauges, electronic pressure sensors, thermal conductivity gauges, Pirani gauges, two-wire gauges, ionization gauges (e.g., hot cathode gauges and cold cathod gauges), and the like.
“Separating” and cognates thereof refer to setting apart, keeping apart, sorting, removing from a mixture or combination, or isolating. In the context of gas mixtures, separating can be done by many techniques, including electrostatic precipitators, baghouses, scrubbers, and heat exchange surfaces.
A “sorbent” is a material that sorbs another substance; that is, the material has the capacity or tendency to take it up by sorption.
“Sorb” and cognates thereof mean to take up a liquid or a gas by sorption.
“Sorption” and cognates thereof refer to adsorption and absorption, while desorption is the reverse of adsorption.
A “static mixer” or “static mixing device” is a device for the continuous or substantially continuous mixing of fluid materials. Static mixers can be used to mix liquid and/or gas streams, disperse gas into liquid, or blend immiscible liquids. The energy needed for mixing comes primarily from a loss in pressure as fluids flow through the static mixer. One common design of static mixer is the plate-type mixer. Another common design includes mixer elements contained in a cylindrical (tube) or squared housing. Typical construction materials for static mixer components include stainless steel, polypropylene, Teflon™, polyvinylidene fluoride (“PVDF”), polyvinyl chloride (“PVC”), chlorinated polyvinyl chloride (“CPVC”) and polyacetal.
“Turbulent flow” is a less orderly flow regime that is characterized by eddies or small packets of fluid particles which result in lateral mixing.
Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
All percentages and ratios are calculated by total composition weight, unless indicated otherwise.
It should be understood that every maximum numerical limitation given throughout this disclosure is deemed to include each and every lower numerical limitation as an alternative, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this disclosure is deemed to include each and every higher numerical limitation as an alternative, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this disclosure is deemed to include each and every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein. By way of example, the phrase from about 2 to about 4 includes the whole number and/or integer ranges from about 2 to about 3, from about 3 to about 4 and each possible range based on real (e.g., irrational and/or rational) numbers, such as from about 2.1 to about 4.9, from about 2.1 to about 3.4, and so on.
The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples. Further features and advantages will become apparent from the following, more detailed, description of the various aspects, embodiments, and configurations of the disclosure, as illustrated by the drawings referenced below.
It should be understood that the diagrams are provided for example purposes only, and should not be read as limiting the scope of the disclosure. Many other configurations, including multiple sorbent injection points and/or use of multiple static mixers, are fully contemplated and included in the scope of the disclosure.
The current disclosure is directed to an additive introduction system to introduce one or more liquid and/or solid additives to control contaminant emissions from contaminant evolving facilities, such as smelters, autoclaves, roasters, steel foundries, steel mills, cement kilns, power plants, waste incinerators, boilers, and other contaminated gas stream producing industrial facilities. Although any contaminant may be targeted by the additive introduction system, typical contaminants include one or more of acid gases (e.g., sulfur-containing compounds (such as sulfur dioxide and trioxide produced by thermal oxidation of sulfides), nitrogen oxides (such as nitrogen monoxide and dioxide), hydrogen sulfide (H2S), hydrochloric acid (HCl), and hydrofluoric acid (HF)), mercury (elemental and/or oxidized forms), carbon oxides (such as carbon monoxide and dioxide), halogens and halides, particulates (e.g., fly ash particles and other types of unburned carbon), and the like. Although the contaminant is typically evolved by combustion, it may be evolved by other oxidizing reactions, reducing reactions, and other thermal processes such as roasting, pyrolysis, and autoclaving, that expose contaminated materials to elevated temperatures.
The feed material 1408 is heated in thermal unit 1400 to produce a contaminated gas stream 1412. The thermal unit 104 can be any heating device, including, without limitation, a dry or wet bottom furnace (e.g., a blast furnace, puddling furnace, reverberatory furnace, Bessemer converter, open hearth furnace, basic oxygen furnace, cyclone furnace, stoker boiler, cupola furnace, a fluidized bed furnace, arch furnace, and other types of furnaces), boiler, incinerator (e.g., moving grate, fixed grate, rotary-kiln, or fluidized or fixed bed, incinerators), calciners including multi-hearth, suspension or fluidized bed roasters, intermittent or continuous kiln (e.g., ceramic kiln, intermittent or continuous wood-drying kiln, anagama kiln, bottle kiln, rotary kiln, catenary arch kiln, Feller kiln, noborigama kiln, or top hat kiln), or oven.
The contaminated gas stream 1412 generally includes a number of contaminants. A common contaminated gas stream 108 includes mercury, particulates (such as fly ash), sulfur oxides, nitrogen oxides, hydrochloric acid (HCl), other acid gases, carbon oxides, and unburned carbon.
The contaminated gas stream 1412 is optionally passed through the (pre)heater 200 to transfer some of the thermal energy of the contaminated gas stream 1412 to air 1416 prior to input to the thermal unit 1400. The heat transfer produces a common temperature drop in the contaminated gas stream 1420 of from about 500° C. to about 300° C. to produce a cooled contaminated gas stream 1420 temperature commonly ranging from about 100 to about 400° C.
The cooled contaminated gas stream 1420 next passes into the additive injection system 1424, which injects an additive, such as a sorbent, into the cooled contaminated gas stream 1420, to form an additive-containing gas stream 1428. The additive injection system 1424 can be any suitable liquid or solid additive injection system including that described in copending U.S. application Ser. No. 13/045,076, filed Mar. 10, 2011, and Ser. No. 13/645,138, filed Oct. 4, 2012, each of which are incorporated fully herein by this reference. Other examples include spray dry and dry injection systems optionally using one or more lances, compressors or pumps, educators, etc. Commonly, the additive is injected through an array of lances positioned upstream of a particulate control device, typically an electrostatic precipitator or fabric filter.
The additive controls emissions of the selected or targeted contaminant in a treated gas stream 1432. Typically, the additive 1436 is entrained in a carrier fluid, such as a carrier liquid or gas, when introduced by additive introduction system 1424. To entrain the additive particles effectively, the additive particles typically have a mean, median, and P90 size of no more than about 100 microns and even more typically ranging from about 2 to about 50 microns. The additive-containing fluid (which is mixture of the entrained additive particles and carrier gas) typically includes from about 0.10 to about 6.0 lbm material to lbm air (at standard temperature and pressure).
The additive 1436 employed depends on the contaminant targeted and can be in any form before and after injection, whether a liquid, a solid, or semi-solid. By way of example, an acid gas controlling sorbent can include an alkaline material, such as (hydrated) lime or an alkaline earth or alkali metal bicarbonate, to control emissions of nitrogen oxides (NOX), sulfur oxides (SOX), hydrochloric acid (HCl), and/or hydrofluoric acid (HF) and an alkaline or alkali metal (e.g., sodium) sesquicarbonate (e.g., trona) to control emissions of sulfur oxides (SOX), hydrogen sulfide (H2S), hydrochloric acid (HCl), and/or hydrofluoric acid (HF). Other acid gas controlling sorbents include metal oxides, such as magnesium oxide or magnesium hydroxide, alkaline earth and alkali metal carbonates, such as sodium carbonate (“soda ash”), and alkaline earth and alkali metal bicarbonates. The byproduct of the reaction between the acid gas controlling sorbent and acid gas is typically a particulate that is removed by a particulate control device. A mercury capture sorbent 400 can include halogens and/or halides. As will be appreciated, halogens and halides can oxidize elemental mercury and the resulting oxidized mercury can be collected on a particulate and/or powdered activated carbon (“PAC”) for subsequent removal by a particulate control device. Another mercury capture sorbent 400 is PAC, which can control not only mercury but also a variety of other contaminants, such as gaseous heavy metals dioxins, furans, and hydrocarbons, and which itself is removed as a particulate by a particulate control device. Often, the additive includes both acid gas controlling and mercury capture sorbents. The presence of acid gases can interfere with mercury sorption on carbon-based mercury sorbents. As will be appreciated, other additives may be used depending on the contaminant(s) targeted.
In other examples, the additive 1436 can be one or more flue gas conditioning agent(s), such as compounds comprising one or more nitrates and nitrites. Exemplary flue gas conditioning agents include those in U.S. Pat. Nos. 6,001,152; 5,833,736; 5,893,943; 5,855,649; 6,267,802; and 6,797,035, each of which is incorporated herein by reference in their entireties.
Although the carrier fluid for the additive can be any substantially (chemically) inert fluid (relative to the additive), a common carrier gas is water or air. Typically, the carrier fluid includes a minor amount, more typically no more than about 400 ppmv, and even more typically no more than about 390 ppmv of an additive reactive component, such as carbon dioxide, that reacts with the additive. For example, carbon dioxide reacts with lime to produce calcium carbonate.
The distribution of sorbent is typically non-ideal (non-uniform) in the additive-containing gas stream. An increase in lance coverage of the additive injection system or additional additive injection often fails to provide a more uniform distribution due to mass transfer limitations. For such situations, a fixed (static) gas mixing device installed upstream or downstream of additive injection can improve particle distribution without requiring long duct runs and higher plant capital costs. In particular, the mixing device is typically located immediately upstream of the additive injection for a liquid additive as the liquid additive can deposit on the mixing device, thereby adversely hindering its performance over time in the absence of cleaning. For a solid additive, the mixing device can be located not only immediately upstream but also downstream of the additive injection system.
In the latter plant configuration, the additive-containing gas stream 1428 passes a static mixing device 300, which causes additive mixing in the gas stream, thereby providing a mixed gas stream 1440 having, compared to the additive-containing gas stream 1428, an increased uniformity through the gas stream not only of additive distribution but also of temperature and/or velocity profile. This can be true for either single-phase or multiphase gas streams. As will be appreciated, a single-phase gas flow contains multiple gases while a multiphase flow contains at least one gas and at least one particulate solid, typically a sorbent additive. While
There are a variety of static mixing devices 300 designed to achieve better gas mixing, temperature de-stratification, and more uniform velocity profile with minimal pressure drop. The static mixing device 300, for example, can be an arrangement of stationary, fixed, and/or static fan-type blades (or mixing elements) that induce turbulence and encourage mixing in the gas stream. The static mixing device 300 can be a plurality of stationary, fixed, and/or static baffles or plates (or mixing elements) on the interior wall of a duct that extend into the duct. The baffles may be straight or curved and may be offset in the flow direction or in plane. Of course, the static mixing device also may be a combination of these embodiments or any other design that would encourage mixing in the gas stream.
An example of a static mixing device 300 is the Series IV Air Blender™ or Blender Box™ manufactured by Blender Products, Inc. This static mixing device 300 is described in U.S. Pat. No. 6,595,848, which is incorporated herein by this reference. As described in U.S. Pat. No. 6,595,848, the static mixing device has multiple radially extending vanes (or mixing elements) diverging away from a center of an enclosure and terminating at outer distal ends of the vanes positioned adjacent to the enclosure. The vanes can have an inner section traversing a first distance from the center and an outer section connected to the inner section along a leading radial edge of the vane. The outer section traverses a remaining distance from the inner section to the enclosure. The inner section curves rearwardly in a first direction away from the leading radial edge, and the outer section curves rearwardly in a second direction away from the leading radial edge.
The static mixing device 300 typically is a housed-elements design in which the static mixing device elements include a series of stationary, fixed, rigid, and/or static mixing elements made of metal, ceramic, and/or a variety of materials stable at the temperature of the contaminated gas stream. Similarly, the mixing device housing, which is commonly the duct for transporting the contaminated waste gas, can be made of the same materials. Two streams of fluids, namely the contaminated gas stream and the injected sorbent stream are introduced into the static mixing device 300. As the streams move through the mixing device, the non-moving or stationary mixing elements continuously blend the components of the streams to form a mixed gas stream having a substantially homogeneous composition. Complete mixing commonly depends on many variables including the fluids' properties, tube inner diameter, number of elements and their design.
The mixing elements, particularly when helically-shaped, can simultaneously produce patterns of flow division and radial mixing. With reference to
With reference to
In most applications, the additive-containing gas stream 1428, at the input to the mixing device, has laminar flow, and the number of mixing elements in the static mixing device 300 is typically at least one, more typically at least two, and even more typically ranges from about three to about fifty. Both flow division and radial mixing normally occur in power plant flue gas treatment applications. In such applications, the flue gas velocity typically ranges from about 5 to about 50 m/s and more typically from about 12 to about 20 m/s for a power plant. In other applications, the additive-containing gas stream 1428, at the input to the mixing device, has turbulent flow, and only radial mixing (and substantially no flow division) occurs.
The static mixing device 300 is typically positioned a distance upstream (or downstream) of the particulate removal device to allow adequate mixing and contaminant-additive particle interaction and a distance (upstream or) downstream of the point(s) of additive injection by the additive injection system 1424 to allow time for adequate dispersion of the additive particles in the gas stream. In the mixed gas stream, the distance from an output of the static mixing device to an input of a downstream particulate control device can be at least about one times the hydraulic diameter of the pipe or duct. While determined by the configuration of the power plant, the maximum distance from the output of the static mixing device to the input of the particulate control device is commonly no more than about ten times the hydraulic diameter. The distance from an upstream point of introduction of the additive into the contaminated gas stream to an input to the static mixing device (or from an output of the static mixing device to a downstream point of introduction of the additive into the contaminated gas stream) is typically no more than about one times the hydraulic diameter, more typically no more than about 0.75 times the hydraulic diameter, and more typically no more than about 0.50 times the hydraulic diameter. While determined by the configuration of the power plant, the minimum distance from the point of introduction of the additive into the contaminated gas stream to the downstream input (or upstream output) to the static mixing device is commonly at least about 0.1 times the hydraulic diameter.
Referring again to
The treated gas stream 1432 is emitted, via gas discharge 1450 (e.g., stack), into the environment.
A number of exemplary configurations of the above process will now be discussed with reference to
In some embodiments, the static mixing device 300 will be utilized in combination with Dry Sorbent Injection (“DSI”)/Activated Carbon Injection (“ACI”) dual injection. In this configuration, the static mixing device 300 is placed in the mercury and acid gas-containing gas stream 110 between the location of injection by the additive injection system (not shown) of a first injected sorbent 410 and the location of injection by the additive injection system (not shown) of a second injected sorbent 400. In this configuration, the first injected sorbent 410 is an alkaline sorbent, and the second injected sorbent 400 is activated carbon. As noted above, the sorbent 410 can be any other acid-controlling sorbent or mixture of acid gas-controlling sorbents. This embodiment will allow for maximal utilization of alkaline material and reduction of acid gases such as SO3 prior to activated carbon injection for mercury control. Ultimately, this can reduce sorbent usage for a given sorbent injection rate, thereby reducing operating costs and/or achieving maximal combined removal of acid gases and mercury. As shown by the dashed line 504, the mercury capture sorbent can also or alternatively be injected at a location downstream of the static mixing device 300.
With reference to
Other configurations are possible involving downstream sorbent injection and reduced sized mixing devices, such as mixing device 1500, substituted for the mixing devices of
Not shown, but contemplated by the disclosure, are additional configurations utilizing hot-side injection of one or more sorbents and a hot-side ESP (or other particulate removal device), with the static mixing device 300 placed in between and upstream or downstream of the additive injection location. The static mixing device 300, whether reduced or full sized relative to the duct, may be helpful with hot-side injection applications, that is, applications where a sorbent is injected upstream of the air (pre)heater 200. While such configurations generally benefit from increased residence time and the associated improvement in sorbent distribution, the static mixing device 300 can contribute an even more complete sorbent distribution.
With any hot-side sorbent injection application, the static mixing device 300 could be placed either upstream or downstream of the air (pre)heater. Typically, the plant configuration will dictate the appropriate location. Variables include length of flow path available, requirements for distribution of the sorbent or velocity and temperature profiles, and location of the particulate control device (including hot-side or cold-side ESP).
Further contemplated is the use of a static mixing device 300 with other wet or dry sorbents (e.g., wet flue gas desulfurization additives), that were not specifically named in this disclosure, including sorbents applied to the fuel and sorbents injected into the furnace in any of a gas, liquid, or solid phase. Although the disclosure specifically targets dry sorbent (including activated carbon and DSI) injection, it is contemplated that use of a static mixing device 300 would further improve uniformity of distribution for these sorbents, as a well as offering uniformity benefits to velocity and temperature profiles of the resulting contaminated gas stream.
Referring to
Referring to
Referring to
A number of other exemplary configurations of the rotatable static mixing device system will now be discussed with reference to
The number of mixing devices in an N×M array depends on the application. Each of N and M typically ranges from 1 to 25, more typically from 2 to 20, more typically from 2 to 15, and more typically from 2 to 10. In an example of a 20′×20′ duct, 4′ square mixing devices can be placed in a 5×5 array to cover substantially the cross section of the duct (see
While the various mixing systems of
The system may be controlled with a computer operated monitoring and feedback control system. A properly configured control system could measure peak load demands and open/close the mixing device array at times lower pressure drop is needed (i.e., peak load in summer time when users are running the air conditioning units). The actuator operating this configuration also may be controlled by a properly configured control system with appropriately placed sensors.
The load profile meter 2404 determines when electricity (and corresponding output at the power plant) is in high demand or peak conditions. This can be done using a load profile that plots variation in the electrical load versus time.
The other sensor(s) 2408 can be one or more sensors to determine one or more of: the pressure drop of the mixing system, sorbent consumption levels, and/or sensed contaminant concentration in the gas stream prior to, during, or after treatment. For example, in a system utilizing activated carbon for mercury control, the static mixing devices or mixing elements can be “closed” to create a higher pressure drop (and more mixing) if sorbent consumption needs to be reduced. The same action could be taken if mercury emissions were running above target for a given quantity of sorbent consumption (closing the mixing elements, increasing pressure drop, and increasing mixing), which would lower mercury emissions for the same quantity of sorbent.
The sensor to determine degree of rotation of the mixing device/mixing element relative to gas flow direction can be any suitable sensor for determining angular displacement relative to a selected reference point. Any position sensor can be used that permits angular position measurement. It can either be an absolute position sensor or a relative one (displacement sensor). An example is a rotary encoder, also called a shaft encoder, which is an electromechanical device that converts the angular position or motion of a shaft or axle to an analog or digital code.
The mapping data structures 2416 are maintained in a computer readable medium and can take many forms. In one form, the mapping data structures are a two- or more dimensional lookup table that maps one or more sensed parameters, such as current power load, pressure drop, sorbent consumption, and/or sensed contaminant concentration, against angular rotation or displacement of the mixing device and/or mixing elements relative to the direction of gas flow. A second mapping table can map the angular rotation or displacement to a command to the mixing device and/or element rotation system 2420 to cause the desired level of angular displacement. As will be appreciated, the lookup table is an array that replaces runtime computation with a simpler array indexing operation. The indexing operation can be one or more of a simple lookup in an array, an associative array, or a linked list, a binary search in an array or an associative array, a trival hash function, and the like. The savings in terms of processing time can be significant, since retrieving a value from memory is often faster than undergoing an expensive computation or input/output operation. Other forms of mapping data structures can be employed depending on the application. Alternatively, the mapping data structures 2416 can be computationally determined in substantial real time, as in runtime computation.
The mixing device and/or element rotation system can be any actuator system that effects angular displacement by one or more of mechanical, electromechanical, electromagnetic, magnetic, or hydraulically actuation.
The control system 2424 handles user input and output, supervises the operation of the other system components, applies rules or policies, and issues commands to each of the components to effect desired operations. For example, the control system 2424, in response to determining, from the load profile meter, that the power plant and electrical output are in high demand or peak conditions high demand peak load condition or state, can reduce the pressure drop.
The various components are in communication with one another via a network 2428, which can be a wired or wireless local area or wide area network depending on the application.
In step 1700, the control system 2424 detects a stimulus to change an orientation of a mixing device and/or mixing element. As noted, the stimulus can be one or more of current power load, pressure drop, sorbent consumption, and/or sensed contaminant concentration, against angular rotation or displacement of the mixing device and/or mixing elements relative to the direction of gas flow.
In optional step 1704, the control system 2424 determines a current power load if not detected as a stimulus.
In step 1708, the control system 2424, using the mapping data structures 2416, determines a desired maximum flow resistance and/or pressure drop across the mixing device and/or elements.
In step 1712, the control system 2424 determines, from the mapping data structures 2416, a degree of rotation of the mixing device and/or elements relative to a direction of gas flow to produce the desired maximum flow resistance and/or pressure drop. As noted, the pressure drop is not simply bimodal, namely a maximum and minimum value. In some applications, the mixing device and/or elements can be finely tuned to any one of various angular displacements to produce a desired pressure drop while maintaining a desired degree of turbulent flow and mixing. For example, the angular orientation of the mixing device or elements is not simply one of 0 or 90 degrees relative to a direction of gas flow but can be any angle between those endpoints.
In step 1716, the control system 2424 generates and transmits, via network 2828, a command to the rotation system 2420 to rotate the mixing device and/or elements to the desired degree of rotation or angular displacement relative to the direction of gas flow.
In optional step 1720, the control system 2424 measures the flow resistance or pressure drop by a sensor to confirm that the degree of rotation and/or desired flow resistance result is correct.
The microprocessor in the control system then returns to step 1700.
A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.
For example, while ESP and baghouse particulate control devices are discussed with reference to particulate removal, one or more other or alternative particulate and/or contaminant removal devices can be employed as particulate control devices, such as wet and/or dry scrubbers.
The present disclosure, in various aspects, embodiments, and configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the various aspects, aspects, embodiments, and configurations, after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more, aspects, embodiments, and configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and configurations of the disclosure may be combined in alternate aspects, embodiments, and configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspects, embodiments, and configurations. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description of the disclosure has included description of one or more aspects, embodiments, or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10350545, | Nov 25 2014 | ARQ SOLUTIONS ES , INC | Low pressure drop static mixing system |
1112547, | |||
1167471, | |||
1167472, | |||
1183445, | |||
174348, | |||
1788466, | |||
1955574, | |||
1984164, | |||
2016821, | |||
202092, | |||
2059388, | |||
208011, | |||
2089599, | |||
224649, | |||
229159, | |||
2511288, | |||
2844112, | |||
298727, | |||
3004836, | |||
3194629, | |||
3288576, | |||
3332755, | |||
3437476, | |||
346765, | |||
347078, | |||
3557020, | |||
3599610, | |||
3628727, | |||
3662523, | |||
367014, | |||
3725530, | |||
3764496, | |||
3803803, | |||
3823676, | |||
3838190, | |||
3849267, | |||
3849537, | |||
3896746, | |||
3907674, | |||
3932494, | Dec 21 1972 | Director-General of the Agency of Industrial Science and Technology | Thiohumic acid, a process for preparing same, and its use for absorbing heavy metal ions |
3947354, | Mar 16 1973 | The United States of America as represented by the Secretary of | Removal of heavy metal ions from wastewater |
3956458, | Nov 16 1973 | Method and apparatus for air purification | |
3961020, | Oct 09 1972 | Hitachi, Ltd. | Process for removing sulfur oxides and nitrogen oxides from flue gases using halogen-impregnated actuated carbon with simultaneous injection of ammonia |
3970434, | Oct 07 1974 | The United States of America as represented by the United States Energy | Process for reducing sulfur in coal char |
3974254, | Jan 29 1973 | Patronato de Investigacion Cientifica y Tecnica "Juan de la Cierva" del | Process for purifying metallurgical gases containing sulphurous anhydride by extracting mercury |
4040802, | Apr 22 1975 | Activation of water soluble amines by halogens for trapping methyl radioactive iodine from air streams | |
4042664, | May 26 1970 | Deepsea Ventures, Inc. | Method for separating metal constituents from ocean floor nodules |
4051316, | Oct 16 1974 | The United States of America as represented by the Secretary of | Removal of heavy metal ions from aqueous solutions with insoluble crosslinked-starch-xanthates |
4057398, | Feb 24 1976 | ECONOMICS LABORATORY, INC | Process for reducing the fusion point of coal ash |
4075282, | Feb 22 1975 | Laboratorium fur Adsorptionstechnik GmbH | Process for impregnating active carbon with iodine compounds |
4083783, | Oct 16 1974 | The United States of America as represented by the Secretary of | Removal of heavy metal ions from aqueous solutions with insoluble crosslinked-starch-xanthates |
4089507, | Mar 15 1976 | Sumitomo Heavy Industries, Ltd.; Sumitomo Metal Industries, Ltd. | Method and apparatus for maintaining uniformity of mixed dust slurry stored in a basin |
4094777, | Dec 18 1975 | Institut Francais du Petrole | Process for removing mercury from a gas or a liquid by absorption on a copper sulfide containing solid mass |
4101631, | Nov 03 1976 | UOP, DES PLAINES, IL , A NY GENERAL PARTNERSHIP; KATALISTIKS INTERNATIONAL, INC | Selective adsorption of mercury from gas streams |
4115518, | Nov 06 1974 | UNIBRA | Gas desulphurization |
4133759, | Nov 03 1975 | Takeda Chemical Industries, Ltd. | Liquid purification apparatus |
4148613, | Dec 27 1977 | Atlantic Richfield Company | Process for preparing sulfur-containing coal or lignite for combustion |
4173454, | Jul 18 1977 | Method for removal of sulfur from coal in stoker furnaces | |
4174373, | Sep 04 1974 | Hitachi, Ltd. | Process for removing sulfur oxides and nitrogen oxides from flue gases |
4196173, | Sep 29 1977 | Akzo NVV. | Process for removing mercury from a gas |
4226601, | Jan 03 1977 | Atlantic Richfield Company | Process for reducing sulfur contaminant emissions from burning coal or lignite that contains sulfur |
4230460, | Oct 31 1978 | WARNKE, WILBUR E , | Method for enhancing the utilization of powdered coal |
4233274, | Sep 16 1975 | Boliden Aktiebolag | Method of extracting and recovering mercury from gases |
4238329, | Aug 25 1975 | Industrial Filter Corporation | Process for recovering heavy metal using insoluble starch-xanthates |
4272250, | Jun 19 1979 | Atlantic Richfield Company | Process for removal of sulfur and ash from coal |
4276431, | Sep 30 1978 | Bayer Aktiengesellschaft | Process for the preparation of alkali metal salts of hydroxybenzoates, which are substantially anhydrous and free from hydroxybenzoic acid |
4280817, | Oct 10 1978 | Battelle Development Corporation | Solid fuel preparation method |
4305726, | Dec 21 1979 | Method of treating coal to remove sulfur and ash | |
4308241, | Jul 11 1980 | QUAD ENVIRONMENTAL TECHNOLOGIES CORP , HIGHLAND PARK, IL A CORP OF DE | Formation of reactive droplet dispersion |
4308242, | Jan 24 1980 | Phillips Petroleum Company | Producing sulfur-containing compositions from gaseous sulfur compounds |
4322218, | May 30 1980 | Shell Oil Company | SO2 Capture-coal combustion |
4364818, | Jul 15 1981 | CHEVRON RESEARCH COMPANY, A CORP OF DE | Control of pyrite addition in coal liquefaction process |
4372227, | Feb 10 1981 | ECONOMICS LABORATORY, INC | Method of reducing high temperature slagging in furnaces |
4377118, | Dec 21 1981 | Nalco Chemical Company | Process for reducing slag build-up |
4377599, | Jan 20 1971 | CAW Industries, Inc. | Processes for employing treated solid carbonaceous fossil fuels |
4385891, | Apr 09 1981 | Dental apparatus for preventing loss of precious metal particles | |
4387653, | Aug 04 1980 | Engelhard Corporation | Limestone-based sorbent agglomerates for removal of sulfur compounds in hot gases and method of making |
4394354, | Sep 28 1981 | Calgon Carbon Corporation | Silver removal with halogen impregnated activated carbon |
4420892, | Mar 23 1979 | Bayer Aktiengesellschaft | Thin film contact dryer |
4427630, | Dec 05 1980 | TAKEDA CHEMICAL INDUSTRIES, LTD , | Gas deodorization method |
4438709, | Sep 27 1982 | Combustion Engineering, Inc. | System and method for firing coal having a significant mineral content |
4440100, | Jul 22 1981 | L. & C. Steinmuller GmbH | Method of introducing additive into a reaction gas flow |
4472278, | Nov 18 1981 | Agency of Industrial Science & Technology; Ministry of International Trade & Industry | Separating device for an insulating gas-liquid two phase fluid |
4474896, | Mar 31 1983 | Union Carbide Corporation | Adsorbent compositions |
4498402, | Jun 13 1983 | Method of reducing high temperature slagging in furnaces and conditioner for use therein | |
4500327, | Jul 08 1982 | Takeda Chemical Industries, Ltd. | Process for removal of mercury vapor and adsorbent therefor |
4514256, | Apr 18 1983 | Method of minimizing slagging in the burning of black liquid | |
4519807, | Mar 17 1982 | Matsushita Electric Industrial Co., Ltd. | Carbonaceous solid fuel |
4519995, | Nov 19 1981 | Osterreichische Draukraftwerke Aktiengesellschaft | Method of desulfurizing flue gases of coal firings |
4527746, | Apr 07 1982 | Bayer Aktiengesellschaft | Process for preparing granules of water-insoluble solids |
4552076, | Nov 19 1984 | Combustion Engineering, Inc. | Coal fired furnace light-off and stabilization using microfine pulverized coal |
4555392, | Oct 17 1984 | The United States of America as represented by the United States | Portland cement for SO2 control in coal-fired power plants |
4564374, | Mar 25 1977 | Durr-Dental GmbH & Co. KG | Device for incorporation in dental suction apparatuses for separation of liquid and solid components |
4572085, | Feb 06 1985 | Amax Inc. | Coal combustion to produce clean low-sulfur exhaust gas |
4577566, | Apr 01 1982 | Betz Laboratories, Inc. | Method of conditioning fireside fouling deposits using large particle size amorphous silica |
4578256, | Sep 27 1983 | Takeda Chemical Industries, Ltd. | Process for removal of poisonous gases |
4582936, | Jun 08 1983 | MITSUBISHI RAYON CO , LTD | Process for producing dimethylamine in preference to mono- and trimethylamines by gas phase catalytic reaction of ammonia with methanol |
4586443, | Sep 27 1977 | Northrop Grumman Corporation | Method and apparatus for in-flight combustion of carbonaceous fuels |
4598652, | Sep 04 1985 | CITICORP NORTH AMERICA, INC | Coal combustion to produce clean low-sulfur exhaust gas |
4602918, | Oct 17 1984 | The United States of America as represented by the United States | Stabilizing coal-water mixtures with portland cement |
4629721, | Mar 13 1985 | The Hokkaido Electric Power Co., Inc. | Process for preparing desulfurizing and denitrating agents |
4668429, | Jun 27 1985 | Texaco Inc. | Partial oxidation process |
4671804, | Nov 29 1985 | Texaco Inc. | Partial oxidation process |
4693731, | Oct 27 1986 | L ENTREPRISE NATIONALE POUR LA RECHERCHE, LA PRODUCTION, LA TRANSFORMATION ET LA COMMERCIALISATION DES HYDROCARBURES, A CORPORATION OF ALGERIA | Removal of mercury from gases |
4706579, | Aug 21 1986 | Betz Laboratories, Inc.; BETZ LABORATORIES, INC , A CORP OF PA | Method of reducing fireside deposition from the combustion of solid fuels |
4708853, | Nov 03 1983 | Calgon Carbon Corporation | Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams |
4716137, | Jan 25 1982 | Texaco Inc. | Process of preparing a catalyst containing activated isomerization sites |
4729882, | Mar 28 1985 | Tokyo Metropolitan Environmental Service Corporation | Process for cleaning mercury-containing gaseous emissions |
4741278, | Mar 09 1984 | BRITISH PETROLEUM COMPANY P L C , THE | Solid fuel and a process for its combustion |
4753632, | Nov 28 1985 | Durr Dental GmbH & Co KG | Device for separating fine particles of solid matter from waste fluid |
4758418, | Jul 29 1980 | W R GRACE & CO -CONN | Process for combusting solid sulfur-containing material |
4764219, | Oct 27 1986 | MOBIL OIL CORPORATION, A CORP OF NY | Clean up and passivation of mercury in gas liquefaction plants |
4765258, | May 21 1984 | Coal Tech Corp. | Method of optimizing combustion and the capture of pollutants during coal combustion in a cyclone combustor |
4784670, | Nov 29 1985 | Texaco Inc.; Texaco Inc | Partial oxidation process |
4786483, | Sep 25 1987 | Mobil Oil Corporation | Process for removing hydrogen sulfide and mercury from gases |
4796548, | May 08 1984 | Betz Laboratories, Inc. | Method of conditioning fireside fouling deposits using super large particle size magnesium oxide |
4804521, | Nov 07 1986 | Board of Regents, University of Texas System | Process for removing sulfur from sulfur-containing gases |
4807542, | Nov 18 1987 | Transalta Resources Corporation | Coal additives |
4824441, | Nov 30 1987 | Genesis Research Corporation; GENESIS RESEARCH CORPORATION, A OKLAHOMA CORP | Method and composition for decreasing emissions of sulfur oxides and nitrogen oxides |
4830829, | Sep 04 1987 | Mobil Oil Corporation | Conversion of aluminum-mercury amalgam and incidental mercury in contact with aluminum alloy surfaces to harmless compounds |
4831942, | Aug 15 1986 | TOA NEKKEN CORP , LTD | Method of controlling deactivation of denitrating catalyst |
4843980, | Apr 26 1988 | Lucille, Markham; The University of Southern Mississippi; Frontend International Technologies, Inc.; Parsons & Crowther | Composition for use in reducing air contaminants from combustion effluents |
4873930, | Jul 30 1987 | Northrop Grumman Corporation | Sulfur removal by sorbent injection in secondary combustion zones |
4886519, | Sep 24 1984 | PETROLUEM FERMENTATIONS N V , SCHOTTEGATWEG OOST 130, WILLEMSTAD, CURACAO, NETHERLANDS ANTILLES A NETHERLANDS ANTILLES CORP | Method for reducing sox emissions during the combustion of sulfur-containing combustible compositions |
4886521, | May 05 1988 | U.S. Department of Energy | Decaking of coal or oil shale during pyrolysis in the presence of iron oxides |
4889698, | Jul 16 1986 | A S NIRO ATOMIZER | Process for removal or mercury vapor and/or vapor of noxious organic compounds and/or nitrogen oxides from flue gas from an incinerator plant |
4892567, | Aug 15 1988 | Mobil Oil Corporation | Simultaneous removal of mercury and water from fluids |
4895603, | Dec 19 1988 | PHILIP MORRIS INCORPORATED, | Apparatus and method for in-place cleaning and priming of a nozzle assembly |
4915818, | Feb 25 1988 | Mobil Oil Corporation | Use of dilute aqueous solutions of alkali polysulfides to remove trace amounts of mercury from liquid hydrocarbons |
4917862, | Apr 15 1988 | Filter and method for removing mercury, bacteria, pathogens and other vapors from gas | |
4919826, | Dec 20 1988 | Air Techniques, Incorporated | Process and apparatus for separating solids and liquids from an effluent stream |
4933158, | Oct 25 1988 | Mitsui Chemicals, Inc | Method for purifying nitrogen trifluoride gas |
4936047, | Nov 12 1980 | BATTELLE MEMORIAL INSTITUTE | Method of capturing sulfur in coal during combustion and gasification |
4940010, | Jul 22 1988 | COVANTA SYSTEMS, INC | Acid gas control process and apparatus for waste fired incinerators |
4964889, | Dec 04 1989 | UOP | Selective adsorption on magnesium-containing clinoptilolites |
5001994, | Aug 15 1986 | TOA NEKKEN CORP , LTD | Method of controlling generation of clinker ash from exhaust gas dust of coal |
5013358, | Aug 28 1989 | Cominco Ltd. | Method for the recovery of mercury from mercury-containing material |
5017135, | Oct 18 1989 | RAMVAC DENTAL PRODUCTS, INC | Trap and separator for denial vacuum systems |
5022329, | Sep 12 1989 | THE BABCOCK & WILCOX POWER GENERATION GROUP, INC | Cyclone furnace for hazardous waste incineration and ash vitrification |
5024171, | Mar 19 1990 | WEXFORD MANAGEMENT LLC | Reduction of acidic emissions from combustion of sulfur-laden fuels |
5046265, | Dec 04 1989 | Method and system for reducing the moisture content of sub-bituminous coals and the like | |
5049163, | Dec 28 1988 | Briquetting Research and Design Institute, Beijing Graduate School of | Process for reducing sulphur dioxide emission from burning coal containing sulphur |
5052312, | Sep 12 1989 | THE BABCOCK & WILCOX POWER GENERATION GROUP, INC | Cyclone furnace for hazardous waste incineration and ash vitrification |
5114578, | Feb 14 1990 | Stiftelsen Centrum for Dentalteknik och Biomaterial i Huddinge | Settling apparatus |
5116793, | Jun 14 1988 | UOP | Process for modifying clinoptilolite adsorbent |
5124135, | Jul 01 1989 | Hoechst Aktiengesellschaft | Process for the selective absorption of chlorine and/or bromine from CO -containing off-gases with the aid of steam |
5126300, | Jul 16 1990 | Board of Trustees Operating Michigan State University | Clay composites for the removal of SOx from flue gas streams |
5137854, | Mar 13 1990 | MITSUBISHI RAYON CO , LTD | Process for the production of modified H-mordenite, catalyst comprising said H-mordenite and process for the synthesis of methylamine with the use of the same |
5141724, | Oct 07 1991 | Mobil Oil Corporation | Mercury removal from gaseous hydrocarbons |
5162598, | Apr 10 1990 | Zeofuels Research (Proprietary) Limited | Conversion of propane and butane |
5179058, | May 30 1991 | Bergwerksverband GmbH | Process for manufacturing a carbonaceous catalyst for the reduction of nitrogen oxides in exhaust gases |
5190566, | Jan 08 1992 | Energy, Mines and Resources Canada | Incorporation of a coprocessing additive into coal/oil agglomerates |
5196648, | May 30 1991 | Halliburton Company | Method for deslagging a cyclone furnace |
5202301, | Nov 22 1989 | Calgon Carbon Corporation | Product/process/application for removal of mercury from liquid hydrocarbon |
5207164, | Apr 15 1992 | Gas Research Institute | Process to limit the production of flyash by dry bottom boilers |
5209062, | Jul 27 1990 | Sulzer Brothers Limited | Large diesel engine |
5238488, | Mar 26 1992 | Gas Research Institute | Process and solution for transforming insoluble mercury metal into a soluble compound |
5282430, | Jul 08 1991 | Minnesota Power and Light | Flyash injection system and method |
5288306, | Jul 22 1991 | JAPAN ENVIROCHEMICALS, LTD | Activated carbon honeycombs and applications thereof |
5307743, | May 30 1991 | Halliburton Company | Apparatus for deslagging a cyclone furnace |
5313915, | Oct 27 1992 | General Electric Company | Coal slurry fuel supply and purge system |
5320051, | Jul 08 1991 | Minnesota Power and Light | Flyash injection system and method |
5320817, | Aug 28 1992 | Applied Materials, Inc | Process for sorption of hazardous waste products from exhaust gas streams |
5324336, | Sep 19 1991 | Texaco Inc. | Partial oxidation of low rank coal |
5328673, | Nov 23 1992 | Olin Corporation | Process for removal of NOx and SOx oxides from waste gases with chloric acid |
5333558, | Dec 07 1992 | Svedala Industries, Inc. | Method of capturing and fixing volatile metal and metal oxides in an incineration process |
5336835, | Nov 22 1989 | Calgon Carbon Corporation | Product/process/application for removal of mercury from liquid hydrocarbon |
5342592, | Jul 04 1989 | FUEL TECH EUROPE LTD A CORP OF GREAT BRITAIN | Lance-type injection apparatus for introducing chemical agents into flue gases |
5346674, | Dec 21 1990 | Agglo Recovery | Process and apparatus for removal of impurities from flue gases |
5350728, | Oct 30 1990 | Institut Francais du Petrole and Europeene de Retraitment de Catalyseurs | Method of preparing a solid mass for mercury recovery |
5352647, | May 02 1990 | FTU GmbH | Composition for separating out noxious substances from gases and exhaust gases |
5354363, | Jul 22 1993 | Heavy metal/particulate trap for hot gas clean-up | |
5357002, | Dec 19 1991 | ENIRICERCHE S P A | Polymer containing chelating groups, process for preparing it and its use in water purification |
5364421, | Jul 31 1991 | ICG, LLC | Coal blends having improved ash viscosity |
5368617, | Nov 30 1987 | Genesis Research Corp.; GENESIS RESEARCH CORP AN OK CORP | Process for reducing sulfur emissions with calcium-containing sorbents |
5372619, | Oct 14 1992 | Ucar Carbon Technology Corporation | Method for storing methane using a halogenating agent treated activated carbon |
5379902, | Nov 09 1993 | The United States of America as represented by the United States | Method for simultaneous use of a single additive for coal flotation, dewatering, and reconstitution |
537998, | |||
5403548, | Feb 28 1992 | JAPAN ENVIROCHEMICALS, LTD | Activated carbon adsorbent and applications thereof |
5409522, | Apr 20 1994 | ADA Technologies, Inc | Mercury removal apparatus and method |
541025, | |||
5435980, | Nov 04 1991 | NIRO A S | Method of improving the Hg-removing capability of a flue gas cleaning process |
5447703, | Jun 30 1992 | Novacon Energy Systems, Inc. | Process for combustion of sulfur-containing carbonaceous materials |
5460643, | Jan 27 1993 | Degussa Aktiengesellschaft | Method of regenerating mercury adsorption means |
5505746, | Mar 15 1994 | Iowa State University Research Foundation, Inc. | Method of treating coal to reduce sulphur and chlorine emissions |
5505766, | Jul 12 1994 | Electric Power Research, Inc. | Method for removing pollutants from a combustor flue gas and system for same |
5569436, | Jun 10 1993 | Beco Engineering Company | Removal of mercury and cadmium and their compounds from incinerator flue gases |
5571490, | Apr 11 1991 | Ormat, Inc. | Method and means for exploiting fuel having high sulfur content |
5575982, | Dec 23 1993 | Metallgesellschaft Aktiengesellschaft | Process of purifying exhaust gases produced by combustion of waste materials |
5577910, | May 13 1994 | Vacuum pump seal-water recycling and waste disposal system for dental operatories | |
5587003, | Mar 21 1995 | The BOC Group, Inc.; BOC GROUP, INC , THE | Removal of carbon dioxide from gas streams |
5607496, | Jun 01 1994 | Brooks Rand Inc | Removal of mercury from a combustion gas stream and apparatus |
5613851, | Nov 05 1993 | Separator for a dental suction apparatus | |
5618508, | May 18 1987 | FTU GmbH Technische Entwicklung und Forschung Im Umweltschutz | Process for purifying exhaust gas using modified calcium hydroxide |
5635150, | Sep 26 1995 | Sorption of acidic gases by solid residue from sugar refining | |
5658487, | Feb 17 1995 | GE BETZ, INC | Polymeric dithiocarbamate acid salt compositions and method of use |
5659100, | Feb 05 1996 | Innovene USA LLC | Production of vinylidene olefins |
5670122, | Sep 23 1994 | Energy and Environmental Research Corporation | Methods for removing air pollutants from combustion flue gas |
5672323, | Jan 26 1995 | The Babcock & Wilcox Company | Activated carbon flue gas desulfurization systems for mercury removal |
5678959, | Sep 29 1995 | Mississippi Lime Company | Method of, and apparatus for, reducing scaling in pneumatic lime conveying systems |
5679259, | Feb 07 1994 | Great Western Chemical Company | Method for recovering metals from solutions |
5695726, | Jun 10 1993 | Beco Engineering Company | Removal of mercury and cadmium and their compounds from incinerator flue gases |
5733360, | Apr 05 1996 | MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY | Corona discharge reactor and method of chemically activating constituents thereby |
5733516, | Sep 09 1996 | URS Corporation | Process for removal of hydrogen sulfide from a gas stream |
5738834, | Sep 09 1996 | URS Corporation | System for removal of hydrogen sulfide from a gas stream |
5741397, | Jan 11 1996 | Dental waste separator | |
5785932, | Feb 22 1996 | MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY | Catalytic reactor for oxidizing mercury vapor |
5787823, | Sep 23 1994 | Reduction of mercury in coal combustion gas system and method | |
5795159, | Feb 02 1996 | The United States of America as represented by the Secretary of the Navy | Mercury removal method and apparatus |
5797742, | Feb 29 1996 | Amalgam solids collecting and separating apparatus | |
5809911, | Apr 16 1997 | Allied Technology Group, Inc. | Multi-zone waste processing reactor system |
5810910, | Oct 06 1995 | Air Products and Chemicals, Inc | Adsorbents for ozone recovery from gas mixtures |
5819672, | Apr 06 1995 | Addchem Systems | Treatment to enhance heat retention in coal and biomass burning furnaces |
5827352, | Apr 16 1997 | Electric Power Research Institute, Inc. | Method for removing mercury from a gas stream and apparatus for same |
5833736, | Jul 26 1993 | ADA-ES, INC | Method for removing undesired particles from gas streams |
5855649, | Jul 26 1993 | ADA-ES, INC | Liquid additives for particulate emissions control |
5871703, | Oct 09 1997 | POWERSPAN CORP A DELAWARE CORPORATION | Barrier discharge conversion of SO2 and NOx to acids |
5885076, | Dec 01 1995 | The United States of America as represented by the Secretary of the Navy | Method and system for removing mercury from dental waste water |
5888256, | Sep 11 1996 | Managed composition of waste-derived fuel | |
5893943, | Jul 26 1993 | ADA-ES, INC | Method and apparatus for decreased undesired particle emissions in gas streams |
5894806, | Sep 20 1996 | FUEL TECH, INC | Process for increasing the effectiveness of slag and/or corrosion control chemicals for combustion units |
5897688, | Apr 18 1997 | MINPLUS B V | Method of removing a metal from a stream of hot gas |
5899678, | Feb 02 1995 | University Court of the University of Dundee | Oxidation and/or combustion catalyst for use in a catalytic exhaust system and process for its preparation |
5900042, | Aug 18 1997 | The United States of America as represented by the United States | Method for the removal of elemental mercury from a gas stream |
5910292, | Aug 19 1997 | Entegris, Inc | Method for water removal from corrosive gas streams |
5972066, | Apr 22 1997 | IRON DYNAMICS, INC | Mixed bed iron reduction process |
5989506, | Dec 18 1996 | UOP LLC | Process for the removal and recovery of mercury from hydrocarbon streams |
6001152, | May 29 1997 | Flue gas conditioning for the removal of particulates, hazardous substances, NOx, and SOx | |
6022216, | May 29 1998 | Cattani S.p.A. | Fluid separator for dental aspiration apparatus |
6024931, | Jul 10 1995 | Deco-Hanulik AG | Process for removing mercury from mercury contaminated materials |
6027551, | Oct 07 1998 | Board of Control for Michigan Technological University | Control of mercury emissions using unburned carbon from combustion by-products |
6027552, | Apr 18 1996 | Graham Corporation | Method for removing ammonia and carbon dioxide gases from a steam |
6083289, | Mar 25 1996 | Kao Corporation | Pulverized coal carriability improver |
6083306, | Jan 19 1999 | Cattani S.p.A. | Separator and discharger device for waste fluids in dental aspiration apparatus |
6117403, | Oct 09 1996 | POWERSPAN CORP A DELAWARE CORPORATION | Barrier discharge conversion of Hg, SO2 and NOx |
6132692, | Oct 09 1996 | POWERSPAN CORP A DELAWARE CORPORATION | Barrier discharge conversion of SO2 and NOx to acids |
6136281, | Mar 31 1999 | Tennesee Valley Authority | Method to control mercury emissions from exhaust gases |
6136749, | Jul 28 1997 | Corning Incorporated | Mercury removal catalyst and method of making and using same |
6139751, | Aug 09 1996 | Cooperatie Cosun U.A. | Biodegradable complexing agents for heavy metals |
6165366, | Nov 01 1999 | ICET, Inc. | Process for removing mercury from industrial and clinical waste water |
6200543, | Feb 25 1998 | Mississippi Lime Company | Apparatus and methods for reducing carbon dioxide content of an air stream |
6206685, | Aug 31 1999 | GE Energy and Environmental Research Corporation | Method for reducing NOX in combustion flue gas using metal-containing additives |
6221001, | Jan 26 1999 | ADA-ES, INC | Fly-ash slurry with solidification retardant |
6240859, | May 05 2000 | Four Corners Group, Inc. | Cement, reduced-carbon ash and controlled mineral formation using sub- and supercritical high-velocity free-jet expansion into fuel-fired combustor fireballs |
6248217, | Apr 10 1997 | CINCINNATI, UNIVERSITY OF, THE | Process for the enhanced capture of heavy metal emissions |
6250235, | Jul 26 2000 | Global New Energy Technology Corporation | Method and product for improved fossil fuel combustion |
625754, | |||
6258334, | Jul 28 1997 | Corning Incorporated | Mercury removal catalyst and method of making and using same |
6258456, | Jan 30 1998 | BLACK DIAMOND GRANULES, INC | Spheroidal slag particles and apparatus and process for producing spheroidal slag and fly ash particles |
6267802, | Jun 17 1999 | ADA-ES, INC | Composition apparatus and method for flue gas conditioning |
6284199, | Mar 31 1999 | The Babcock & Wilcox Company | Apparatus for control of mercury |
6284208, | Oct 15 1996 | Method for removing mercury and sulfur dioxide from gases | |
6328939, | Mar 31 1999 | The Babcock & Wilcox Company | Mercury removal in utility wet scrubber using a chelating agent |
6368511, | Jan 22 1998 | Bayer Aktiengesellschaft | Conditioning method for dehydrating clarification sludge |
6372187, | Dec 07 1998 | The Babcock & Wilcox Company | Alkaline sorbent injection for mercury control |
6375909, | Sep 14 2000 | INFILCO DEGREMONT INC | Method for the removal of mercury and nitrogen oxides from combustion flue gas |
6401449, | Sep 18 1997 | Siemens Aktiengesellschaft | Expanded grid static mixer |
6447740, | May 08 1998 | ISCA Management Ltd. | Mercury removal from flue gas |
6471506, | Aug 31 1999 | GE Energy & Environmental Research Corp. | Methods for reducing NOx in combustion flue gas using metal-containing additives |
6475451, | Aug 23 2000 | Gas Technology Institute | Mercury removal from gaseous process streams |
6475461, | Mar 30 1995 | Nippon Sanso Corporation | Porous carbonaceous material, manufacturing method therefor and use thereof |
647622, | |||
6484651, | Oct 06 2000 | Crown Coal & Coke Co. | Method for operating a slag tap combustion apparatus |
6514907, | Jul 25 1997 | JAPAN ENVIROCHEMICALS, LTD | Bromine-impregnated activated carbon and process for preparing the same |
6521021, | Jan 09 2002 | The United States of America as represented by the United States Department of Energy | Thief process for the removal of mercury from flue gas |
6524371, | Sep 29 1999 | Merck Sharp & Dohme Corp | Process for adsorption of mercury from gaseous streams |
6528030, | Dec 07 1998 | McDermott Technology, Inc. | Alkaline sorbent injection for mercury control |
6533842, | Feb 24 2000 | MERCK & CO , INC | Adsorption powder for removing mercury from high temperature, high moisture gas streams |
6547874, | Jan 27 2000 | Wacker-Chemie GmbH | Hydrophobicizing agents for hydrophobicizing gypsum-plaster-bound construction materials |
6558454, | Aug 19 1997 | Electric Power Research Institute, Inc | Method for removal of vapor phase contaminants from a gas stream by in-situ activation of carbon-based sorbents |
6582497, | Jun 09 2000 | MERCK & CO , INC | Adsorption power for removing mercury from high temperature high moisture gas streams |
6589318, | Sep 29 1999 | Merck Sharp & Dohme Corp | Adsorption powder for removing mercury from high temperature, high moisture gas streams |
6595848, | Jul 03 2002 | Blender Products, Inc. | Static air mixing apparatus |
6610263, | Aug 01 2000 | Enviroscrub Technologies Corporation | System and process for removal of pollutants from a gas stream |
6613110, | Jan 11 2001 | Benetech, Inc. | Inhibition of reflective ash build-up in coal-fired furnaces |
6638347, | Sep 29 1999 | Merck Sharp & Dohme Corp | Carbon-based adsorption powder containing cupric chloride |
6638485, | Feb 19 1997 | MITSUBISHI HITACHI POWER SYSTEMS, LTD | Process for treating exhaust gas and exhaust gas treating equipment |
6649082, | May 26 2000 | Showa Denko K.K. | Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof |
6719828, | Apr 30 2001 | ENVIRONMENTAL ENERGY SERVICES, INC | High capacity regenerable sorbent for removal of mercury from flue gas |
6726888, | Jan 25 2002 | General Electric Company | Method to decrease emissions of nitrogen oxide and mercury |
6729248, | Jun 26 2000 | ADA-ES, INC | Low sulfur coal additive for improved furnace operation |
6732055, | Nov 06 2001 | General Electric Company | Methods and systems for energy and emissions monitoring |
6737031, | Sep 27 2000 | GENERAL ELECTRIC TECHNOLOGY GMBH | Method of simultaneously reducing CO2 and SO2 emissions in a combustion installation |
6773471, | Jun 26 2000 | ADA-ES, INC | Low sulfur coal additive for improved furnace operation |
6787742, | Jul 23 2001 | KANSA, KEN | High-frequency induction heating device |
6790420, | Feb 07 2002 | Mississippi Lime Company | Control of mercury and other elemental metal emissions from combustion devices by oxidation |
6790429, | Jul 14 2000 | Ferrate Treatment Technologies, LLC | Methods of synthesizing an oxidant and applications thereof |
6797035, | Aug 30 2002 | ADA-ES, INC | Oxidizing additives for control of particulate emissions |
6808692, | Feb 14 2002 | HAZELMERE RESEARCH LTD | Enhanced mercury control in coal-fired power plants |
6827837, | Nov 22 2002 | SELDOM SEEN AVIATION, INC | Method for recovering trace elements from coal |
6841513, | Mar 29 2001 | MERCK & CO , INC | Adsorption powder containing cupric chloride |
6848374, | Jun 03 2003 | GENERAL ELECTRIC TECHNOLOGY GMBH | Control of mercury emissions from solid fuel combustion |
685719, | |||
6864008, | Dec 22 2000 | Nippon Pilllar Packing Co., Ltd.; Toyota Jidosha Kabushiki Kaisha | Separator for a fuel cell and manufacturing method of the separator |
6878358, | Jul 22 2002 | Bromerc Limited | Process for removing mercury from flue gases |
688782, | |||
6916762, | Aug 28 2000 | Petroleum Energy Center; Cosmo Oil Co., Ltd. | Catalyst for fluidized catalytic cracking of heavy hydrocarbon oil and method of fluidized catalytic cracking |
6939523, | Dec 10 2002 | LHOIST NORTH AMERICA, INC | Method of removing SO3 from flue gases |
6942840, | Sep 24 2001 | MERCURY CONTROL TECHNOLOGIES, LLC | Method for removal and stabilization of mercury in mercury-containing gas streams |
6945925, | Jul 31 2003 | Biosequestration and organic assimilation of greenhouse gases | |
6953494, | May 06 2002 | ALBEMARLE AMENDMENTS, LLC | Sorbents and methods for the removal of mercury from combustion gases |
6960329, | Mar 12 2002 | Foster Wheeler Energy Corporation | Method and apparatus for removing mercury species from hot flue gas |
6962617, | Jul 03 2003 | Lehigh University | Method of removing mercury from exhaust gases |
6969494, | May 11 2001 | Continental Research & Engineering, LLC | Plasma based trace metal removal apparatus and method |
6972120, | Feb 16 2001 | FISIA DEUTSCHLAND GMBH AND; FISIA ITALIMPIANTI S P A | Method of removing mercury from flue gases |
6974562, | Jul 14 2000 | Ferrate Treatment Technologies, LLC | Methods of synthesizing an oxidant and applications thereof |
6974564, | Jan 26 2001 | MINPLUS HOLDING B V | Method for the removal of mercury from a gas stream |
6975975, | Sep 21 1999 | Emissions management and policy making system | |
700888, | |||
7118720, | Apr 27 2001 | The United States of America as represented by the United States Department of Energy | Method for combined removal of mercury and nitrogen oxides from off-gas streams |
7141091, | Dec 17 2003 | Electric Power Research Institute, Inc | Method and apparatus for removing particulate and vapor phase contaminants from a gas stream |
7151199, | Jun 25 2001 | ExxonMobil Chemical Patents Inc. | Hydrocarbon conversion processes using non-zeolitic molecular sieve catalysts |
7153481, | Jun 26 2003 | GENERAL ELECTRIC TECHNOLOGY GMBH | Method and device for separating sulphur dioxide from a gas |
7156959, | May 11 2001 | Continental Research & Engineering, LLC | Plasma based trace metal removal apparatus and method |
7250387, | Oct 16 2002 | W L GORE & ASSOCIATES, INC | Filter system |
7312300, | Feb 22 2005 | Solvay SA | Inferred water analysis in polyphenylene sulfide production |
7331533, | Mar 06 1996 | Compositech, L.L.C. | Thermoplastic railroad cross-ties |
7332002, | Jun 26 2000 | ADA-ES, INC | Low sulfur coal additive for improved furnace operation |
7361209, | Apr 03 2003 | ARQ SOLUTIONS ES , INC | Apparatus and process for preparing sorbents for mercury control at the point of use |
7381380, | May 11 2001 | Continental Research & Engineering | Plasma based trace metal removal apparatus |
7381387, | Aug 14 2003 | General Electric Company | Mercury reduction system and method in combustion flue gas using coal blending |
7384615, | Dec 02 2004 | Battelle Energy Alliance, LLC | Method oil shale pollutant sorption/NOx reburning multi-pollutant control |
7387719, | Apr 24 2001 | SCIMIST, LNC | Mediated electrochemical oxidation of biological waste materials |
7413719, | Oct 01 2004 | Composition and method for oxidizing mercury in combustion processes | |
7416137, | Jan 22 2003 | VAST HOLDINGS, LLC | Thermodynamic cycles using thermal diluent |
7435286, | Aug 30 2004 | Midwest Energy Emissions Corp | Sorbents for the oxidation and removal of mercury |
744908, | |||
7452392, | Nov 29 2003 | Process for pyrolytic heat recovery enhanced with gasification of organic material | |
7473303, | Mar 27 2006 | Nalco Company | System and method for improved mercury control |
7476324, | Jul 14 2000 | Ferrate Treatment Technologies, LLC | Methods of synthesizing a ferrate oxidant and its use in ballast water |
7479215, | Jan 24 2002 | SCIMIST, LNC | Mediated electrochemical oxidation of halogenated hydrocarbon waste materials |
7479263, | Apr 09 2004 | Regents of the University of California, The | Method for scavenging mercury |
7494632, | Jul 12 2006 | The United State of America as represented by the United States Department of Energy | Mercury sorbent delivery system for flue gas |
7507083, | Mar 17 2005 | NOx II, Ltd | Reducing mercury emissions from the burning of coal |
7514052, | Jan 06 2004 | General Electric Company | Method for removal of mercury emissions from coal combustion |
7517445, | Oct 09 2001 | SCIMIST, LNC | Mediated electrochemical oxidation of food waste materials |
7517511, | May 01 2003 | SCHOFIELD, KEITH | Method and apparatus for mitigating mercury emissions in exhaust gases |
7524473, | Mar 23 2007 | GENERAL ELECTRIC TECHNOLOGY GMBH | Method of mercury removal in a wet flue gas desulfurization system |
7531708, | Jul 29 2002 | SCIMIST, LNC | Mediated electrochemical oxidation for decontamination |
7544339, | Mar 27 2007 | General Electric Company | Method and apparatus for removing mercury from combustion exhaust gas |
7779777, | May 16 2006 | Kabushiki Kaisha Toshiba | Substrate processing apparatus and method |
7862646, | Jan 30 2006 | MORGAN STANLEY SENIOR FUNDING, INC | Nanoporous articles and methods of making same |
8124036, | Oct 27 2005 | ARQ SOLUTIONS ES , INC | Additives for mercury oxidation in coal-fired power plants |
8221532, | Jan 30 2006 | MORGAN STANLEY SENIOR FUNDING, INC | Nanoporous articles and methods of making same |
8372362, | Feb 04 2010 | ARQ SOLUTIONS ES , INC | Method and system for controlling mercury emissions from coal-fired thermal processes |
8383071, | Mar 10 2010 | ARQ SOLUTIONS ES , INC | Process for dilute phase injection of dry alkaline materials |
8439989, | Jun 26 2000 | ADA-ES, INC | Additives for mercury oxidation in coal-fired power plants |
846338, | |||
8784757, | Mar 10 2010 | ARQ SOLUTIONS ES , INC | Air treatment process for dilute phase injection of dry alkaline materials |
894110, | |||
896876, | |||
8974756, | Jul 25 2012 | ARQ SOLUTIONS ES , INC | Process to enhance mixing of dry sorbents and flue gas for air pollution control |
9017452, | Nov 14 2011 | ARQ SOLUTIONS ES , INC | System and method for dense phase sorbent injection |
911960, | |||
9149759, | Mar 10 2010 | ARQ SOLUTIONS ES , INC | Air treatment process for dilute phase injection of dry alkaline materials |
945331, | |||
945846, | |||
20020068030, | |||
20020114749, | |||
20020121482, | |||
20020162322, | |||
20030065236, | |||
20030079411, | |||
20030164309, | |||
20030166988, | |||
20030206843, | |||
20040013589, | |||
20040016377, | |||
20040129607, | |||
20040208809, | |||
20040256247, | |||
20050020828, | |||
20050026008, | |||
20050039598, | |||
20050056548, | |||
20050090379, | |||
20050132880, | |||
20060027488, | |||
20060029531, | |||
20060051270, | |||
20060124444, | |||
20060185226, | |||
20060204418, | |||
20060205592, | |||
20060210463, | |||
20060266391, | |||
20070051239, | |||
20070156288, | |||
20070167309, | |||
20070179056, | |||
20070180990, | |||
20070184394, | |||
20080060519, | |||
20080069749, | |||
20080107579, | |||
20080115704, | |||
20080121142, | |||
20080233238, | |||
20090007785, | |||
20090031929, | |||
20090047199, | |||
20090081092, | |||
20090104097, | |||
20090117019, | |||
20090136401, | |||
20100068111, | |||
20100221166, | |||
20110206586, | |||
20110223088, | |||
20130160643, | |||
20130192542, | |||
20140202497, | |||
20150013603, | |||
AU2003220713, | |||
CA1140572, | |||
CA2150529, | |||
CA2418578, | |||
CA2435474, | |||
CN1052838, | |||
DE10233173, | |||
DE19520127, | |||
DE19850054, | |||
DE2548845, | |||
DE2713197, | |||
DE2917273, | |||
DE3615759, | |||
DE3628963, | |||
DE3711503, | |||
DE3918292, | |||
DE4218672, | |||
DE4308388, | |||
DE4422661, | |||
DE60019603, | |||
EP115634, | |||
EP208036, | |||
EP220075, | |||
EP254697, | |||
EP433674, | |||
EP433677, | |||
EP435848, | |||
EP628341, | |||
EP666098, | |||
EP709128, | |||
EP794240, | |||
EP908217, | |||
EP1199354, | |||
EP1213046, | |||
EP1271053, | |||
EP1386655, | |||
EP1570894, | |||
EP1671706, | |||
ER9699, | |||
FR1394547, | |||
FR1394847, | |||
GB1121845, | |||
JP10109016, | |||
JP1194234, | |||
JP2000197811, | |||
JP2000205525, | |||
JP2001347131, | |||
JP2002355031, | |||
JP2003065522, | |||
JP2004066229, | |||
JP2005230810, | |||
JP4953590, | |||
JP4953591, | |||
JP4953592, | |||
JP4953593, | |||
JP4953594, | |||
JP4966592, | |||
JP515586, | |||
JP5910343, | |||
JP59160534, | |||
JP5976537, | |||
JP63100918, | |||
JP9239265, | |||
KR20040010276, | |||
WO128787, | |||
WO138787, | |||
WO3093518, | |||
WO2005092477, | |||
WO8604602, | |||
WO9109977, | |||
WO9630318, | |||
WO9717480, | |||
WO9815357, | |||
WO9958228, | |||
ZA200305568, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 28 2019 | ADA-ES, Inc. | (assignment on the face of the patent) | / | |||
Jun 05 2019 | HANSON, RONALD | ADA-ES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050152 | /0618 | |
Feb 01 2023 | ADA Carbon Solutions, LLC | CF GLOBAL CREDIT, LP | PATENT SECURITY AGREEMENT | 062622 | /0051 | |
Feb 01 2023 | ADA-ES, INC | CF GLOBAL CREDIT, LP | PATENT SECURITY AGREEMENT | 062622 | /0051 | |
Feb 01 2024 | ADA-ES, INC | ARQ SOLUTIONS ES , INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 066643 | /0579 |
Date | Maintenance Fee Events |
May 28 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jun 28 2025 | 4 years fee payment window open |
Dec 28 2025 | 6 months grace period start (w surcharge) |
Jun 28 2026 | patent expiry (for year 4) |
Jun 28 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 28 2029 | 8 years fee payment window open |
Dec 28 2029 | 6 months grace period start (w surcharge) |
Jun 28 2030 | patent expiry (for year 8) |
Jun 28 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 28 2033 | 12 years fee payment window open |
Dec 28 2033 | 6 months grace period start (w surcharge) |
Jun 28 2034 | patent expiry (for year 12) |
Jun 28 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |