A method and device for anchoring a length of self-retaining suture. The method of anchoring includes providing for an assembly having a length of self-retaining suture and a suture insertion device. The length of suture includes at least a portion of the length having a plurality of retainers thereon extending in a first direction. The insertion device has a length and a recess to receive a portion of the suture length. The method further includes placing a portion of the suture length in the recess and inserting the device into the body of a mammal until the recess reaches a predetermined location thereby forming an insertion pathway. The method further includes retrieving the insertion device from the body by moving the insertion device in a direction substantially opposed to the insertion pathway.

Patent
   10441270
Priority
Nov 03 2008
Filed
Dec 15 2014
Issued
Oct 15 2019
Expiry
Apr 07 2030

TERM.DISCL.
Extension
155 days
Assg.orig
Entity
Large
2
964
currently ok
18. A suture insertion device, comprising:
(a) an enclosed loop of suture including:
(i) a first end,
(ii) a second end,
(iii) a first plurality of retainers extending toward the first end,
(iv) a second plurality of retainers extending toward the second end, and
(v) an intervening section positioned between the first and second plurality of retainers, wherein tip portions of the first and second plurality of retainers are directed away from the intervening section;
(b) an elongated body extending along a longitudinal axis, wherein the elongated body includes a distal end and a proximal end; and
(c) a recess proximate to the distal end, wherein the recess is configured to receive the intervening section of the suture.
11. A suture insertion device, comprising:
(a) an enclosed loop of suture including:
(i) a first section having a plurality of retainers extending outwardly in a first direction,
(ii) a second section having a plurality of retainers extending outwardly in a second direction opposite from the first direction, and
(iii) an intervening section positioned between the first and second sections, wherein tip portions of the plurality of retainers of the first and second sections are directed away from the intervening section;
(b) an elongated body extending along a longitudinal axis, wherein the elongated body includes a distal end and a proximal end; and
(c) a recess proximate to the distal end, wherein the recess is configured to receive the intervening section of the suture.
1. A suture insertion device comprising:
(a) a suture including:
(i) a first section having a plurality of outwardly projecting retainers,
(ii) a second section having a plurality of outwardly projecting retainers, and
(iii) an intervening section separating the first and second sections such that the retainers terminate at the intervening section;
(b) a substantially rigid, elongate body having a first device end, a second device end and a device length, said first device end comprising a point at a terminal end defined by an underside and a topside;
(c) a recess proximate to the first device end to receive a cross section of the intervening section of the suture without the first and second section of the suture extending therein, said recess having a frontward end and a rearward end, and said frontward end and said rearward end comprise crescent shaped walls that are generally parallel to each other; and
(d) a forwardly extending finger located at the rearward end of the recess for maintaining the intervening section of the suture within the recess during insertion; and
wherein said underside extends longitudinally along a length of the suture insertion device opposed to the recess and terminates at said point of said first device end, said underside being generally parallel to an axis of the elongate body, and wherein said topside extends from said frontward end and terminates at said point of said first device end, said topside being non-parallel to the axis of said elongate body.
2. The suture insertion device of claim 1, wherein at least a portion of the topside or underside of the first device end is sharpened so as to pierce the surface of the tissue.
3. The suture insertion device of claim 1 wherein at least a portion of the underside of the device length is sharpened so as to cut the tissue during insertion.
4. The suture insertion device of claim 1 further comprising a gripping member located proximate to the second device end.
5. The suture device of claim 4 wherein the gripping member further comprises a suture recess for receiving a length of suture along the length of the gripping member.
6. The suture device of claim 4 wherein the gripping member is textured on at least a portion of its surface to aid in manual manipulation.
7. The suture insertion device of claim 1 wherein the device length is straight.
8. The suture insertion device of claim 1 wherein the device length is curved.
9. The suture insertion device of claim 1 wherein at least a portion of the device length is helical.
10. The device of claim 1 wherein the suture insertion device comprises a needle.
12. The suture insertion device of claim 11, wherein the plurality of retainers of the suture terminate along the intervening section.
13. The suture insertion device of claim 11, wherein the recess is sized and shaped to receive the intervening section therein.
14. The suture insertion device of claim 11, wherein the recess is defined by a distal portion and a proximal portion, wherein the proximal and distal portions of the recess comprise crescent shaped walls.
15. The suture insertion device of claim 14, further comprising an extending finger extending distally from the proximal portion toward the distal portion, wherein the extending finger is configured to hold the suture within the recess against the proximal portion.
16. The suture insertion device of claim 15, wherein the distal end of the elongated body includes an underside that extends distally from the proximal portion towards a point, wherein the underside is separated from the extending finger by the recess, wherein the underside is parallel to the longitudinal axis.
17. The suture insertion device of claim 16, wherein the distal end of the elongated body includes a topside that extends distally from the distal portion towards the point, wherein the topside is transversely orientated relative to the longitudinal axis.

This application is a continuation of U.S. patent application Ser. No. 13/127,220, filed May 2, 2011, now U.S. Pat. No. 8,932,328, which was a National Stage application under 35 U.S.C. 371 of Application No. PCT/US2009/063081 filed Nov. 3, 2009, which claims priority from U.S. Provisional Patent Application No. 61/110,952, filed Nov. 3, 2008. The complete disclosures of the aforementioned related patent applications are hereby incorporated herein by reference for all purposes.

The present invention relates generally to an improved length of self-retaining suture and, more particularly, relates to converging sections of self-retaining suture as well as the method and device for using the same.

Self-retaining sutures have been used in the past in many different surgical applications. Self-retaining sutures have been shown to perform particularly well in binding together various body parts such as skin, muscle tissue, organs, blood vessels, tendons, organs and the like. Self-retaining sutures are advantageous to the surgical team because they provide an effective ligature of tissue without the requirement of an anchoring suture knot which can be difficult to tie and which can cause damage to tissue during the wound healing process. Self-retaining sutures also simplify many tissue repair applications by more evenly distributing repair retention forces along the length of the suture. The optimization of self-retaining sutures is disclosed in detail in U.S. Patent Publication US 2004/0060409A, issued as U.S. Pat. No. 8,100,940 on Jan. 24, 2012 and is incorporated herein in its entirety.

Typically, self-retaining sutures have been used to bind mammalian body parts together by passing a first length of self-retaining suture through a first section of tissue to be bound in a direction in which the retainers may pass relatively freely in one direction through the tissue, but will resist movement if the suture is moved in the direction opposed to the insertion direction. Then a second length of suture is passed through a second section of tissue in a second direction. Finally, the surgeon joins the two lengths together by tying them or otherwise binding them together.

One alternative method for use of a self-retaining suture is to use a single length of rigid self-retaining suture having a first end, a second end and the retainers disposed on the length of the suture in a bidirectional fashion. A portion of the length of the suture has retainers facing a first end and a portion of the length of the suture has retainers facing the second end. The suture binds tissue together by inserting the first end in a first section of tissue and inserting the second end in a second section of tissue. The diverging retainers resisted movement of the sections away from the wound and help bind them together. This retainer design and methodology is disclosed more fully in U.S. Pat. No. 6,241,747B1 and is incorporated herein in its entirety.

Further, there are devices for use in inserting self-retaining sutures into the body of a mammal. These include tubular instruments having a hollow portion for holding a length of self-retaining suture. The end of the instrument includes a holding point for a pointed first end of the suture length and the front of the instrument includes a handle. In use, the end of the instrument is inserted into the body of a mammal at the point. The instrument, guided by the user holding it at the handle, is inserted along a pathway through an incision or wound for closure and up through the tissue, or the like, where the pointed end can clear the subject tissue. The user, while holding the pointed end, reverses direction along the insertion pathway with the instrument. This releases the length of suture within the instrument and enables the retainers to grasp the surrounding tissue. The instrument clears the wound area and the retainers holding the surrounding tissue keep the wound closed. Such a device is disclosed in U.S. Pat. No. 5,342,376.

Other self-retaining suture technologies are known to the applicants. Table 1 summarizes applicable self-retaining suture technology. Table 1 is attached and, along with its foreign counterparts and any continuations and/or divisionals, is incorporated herein by reference in its entirety.

In spite of the advances made to date relating to self-retaining suture technology, there does not exist a suture length made up of one or more sections containing converging retainer patterns that facilitates the placement of a suture without an attached needle. Such placement would be advantageous in several surgical tissue repair applications wherein the location of the tissue to be repaired constrains the passage and retrieval of an attached suture insertion device or where adjacent tissues could be harmed by the passage of the attached needle such as the passage of a needle past the bladder during the placement of a bladder neck suspension sling. Further, such placement would be useful in certain cases where robotic or other mechanically assisted surgical methods are employed in which simplified suture anchoring methods are desired. Also, such placement would be advantageous in fixing therapeutic devices to delicate tissues such as tumors in which such devices would operate more effectively if they were placed with minimal tissue disruption and if such therapeutic devices were immobilized during the period of therapeutic treatment. Also, such placement reduces the number of attached needles that must be retrieved from the surgical tissue. Thus reducing the established risk of inadvertently leaving needles in the patient after surgery is completed. Further, the manipulation of needles during this process of thread passage and needle retrieval is a well known risk for “needle stick” to the operator that can lead to the transmission of blood borne pathogens such as HIV and hepatitis.

At present, there does not exist any system or method where a length of suture is inserted with a detachable suture insertion device where the suture insertion device may be easily retracted along the needle's insertion pathway. Presently, after tissue or the like is anchored, the surgeon in some cases must continue to move the suture insertion device further through tissue to retrieve the needle. This may result in further damage to the tissue, as discussed above. When the surgeon moves the suture insertion device further through tissue to enable the suture insertion device to exit the body, this also results in the formation of a suture insertion-device-exiting-pathway which creates an opportunity for the suture to migrate from its initial placement position Such migration can lead to movement of the anchored tissue or disconnection of joined tissues relative to each other. Such movement could lead to complete or partial failure of the procedure. Also, the suture itself may migrate into positions that are harmful to adjacent tissue and organs.

A further disadvantage of the present state of the art is that the area tissue surrounding the suture placement may become damaged during the procedure because of the surgeon's need to retrieve the attached needle. Presently, a surgeon must not only insert a suture and any attachment to the desired location, but to retrieve the needle, the surgeon must move the needle through a particular area of tissue to enable the needle to exit. Alternatively, the surgeon may choose to try to reverse the attached needle's pathway at the point of suture placement. In either case, there can be significant disruption to the tissue in the surrounding area. This can become a critical issue where the surgeon is working in the area of a cancerous tumor. If the tumor becomes damaged or as a result of the disruption to tissue, the procedure is ineffective, the cancer may spread or the procedure to treat the cancer may fail. Thus, there is no system or method of placing a suture at a desired location that leaves the surrounding tissue unharmed and undamaged.

Another disadvantage of the present state of art relates to surgical procedures that require a significantly deep incision relative to the size of the incision at the skin level. In particular, endoscopic procedures and surgeries often require minimum incisions at the skin level and yet may be quite deep. As a result, it is often difficult for the surgeon to work in such a cramped environment. Closing this access port is challenging to do with conventional attached needles, especially at the deepest portion s of the narrow opening where there is little room to manipulate a needle driver and forceps to grasp and retrieve an attached needle.

One version of a converging self-retaining suture pattern is in a suture length made up of a continuous loop having converging retainers along at least a portion of the length, wherein the loop is inserted into a section of tissue to support a body part of a mammal. Further, there is no method or device at present that enables a user to accurately and effectively insert a looped length of self-retaining suture into the body of a mammal where the insertion end of the suture length remains within the body of a mammal without the need for holding, joining or pulling on the insertion end of the suture. Such a method or a device would enable a surgeon or other medical personnel to engage in procedures that would deliver more effective treatment to patients while minimizing damage to the surrounding tissue. This would provide greater success rates of certain procedures, decrease recovery time, minimize complications and thus decrease the overall cost to perform such procedures.

Accordingly, it is desired to provide a continuous loop of suture having converging retainers on at least a portion of its length where the loop is inserted into the body of a mammal to support a body part.

It is further desired to provide a method and device for inserting a length of suture having converging retainers along at least a portion thereon, where the inserted end remains within the body of the mammal and does not need to be pulled or manually held or joined to another length thereof.

It is yet further desired to provide a method of support a body part of a mammal by inserting a length of suture having retainers along at least a portion thereof, where the length of suture remains within the insertion pathway and the insertion end of the suture does not need to be held or joined to another length of suture or pulled clear of insertion area for the method to be effective.

It is still further desired to provide a method and device for supporting a body part of a mammal where the length of suture is inserted into the body of mammal at a point that ensures significant effectiveness in the continued support of the body part.

It is yet further desired to provide a method and device for supporting a body part of a mammal where the procedure is minimally invasive, minimizes damage to the body during the procedure recovery time and reduces the overall cost of performing the procedure.

It is yet further desired to provide a method and device for placing sutures in tissue where the procedure is minimally invasive, minimizes damage to the body during the repair procedure, minimizes recovery time and reduces the overall costs of performing the procedure.

It is still further desired to provide a method and device for placing sutures in tissue where the suture is easily detached from the suture insertion device and the suture insertion device is able to be retracted from the tissue by reversing its travel along the insertion pathway.

It is yet further desired to provide a method and device for anchoring a length of suture in a particular location in tissue in such a manner that minimizes the possibility for suture migration and for damage to surrounding tissue.

It is further desired to provide a method and device for anchoring a suture and attachment such as a marker, tack, tag, chemotherapeutic drug delivery agent, seroma evacuation tube or the like into the tissue with great accuracy and with minimal disruption to surrounding tissue.

It is also desired to provide a method and system for ensuring that all needles used in a surgical procedure are retrieved.

The present invention provides for a suture having an elongated body having a first end, a second end, and a plurality of retainers projecting from the body. The retainers are disposed on the periphery of the body along at least a portion of the length of the body. All of the retainers face the first end. The retainers are configured such that when the length of suture is inserted into the tissue of a mammal the retainers generally flex toward the body during insertion where damage to the tissue by the retainers is minimized, and the retainers generally resist movement when the suture is pulled in a direction opposed to the insertion pathway. The suture also has a temporary holding point for an insertion device to hold the body. The point is located proximate to the first end.

The present invention also provides for a continuous length of suture where the ends are joined together to form a loop. The loop has a first length of suture having an elongate first body. A plurality of first retainers project from the first body in a first direction. The first retainers are disposed on the periphery of the first body along at least a portion of the first length. The loop also has a second length having a plurality of second retainers projecting from the second body in a second direction, the second direction being opposite to the first direction. The second retainers are disposed on the periphery of the second body along at least a portion of the second length. The loop has an intervening length located between the first and second lengths, whereby all of the first retainers and all of the second retainers face the intervening length.

The present invention further provides for a continuous length of suture where the ends are joined together to form a loop. The loop has a first half having an elongate first half body having a first section, a second section and a first intervening section. A plurality of first retainers project peripherally from the first section along at least a portion thereof, in a first direction. A plurality of second retainers project peripherally from the second section along at least a portion thereof in a direction opposed to the first direction. The intervening section is disposed between the first and second sections. The first and second retainers face the first intervening section. The loop also has a second half having an elongate second half body having a third section, a fourth section and a second intervening section. A plurality of third retainers project peripherally from the third section along at least a portion thereof, in a second direction. A plurality of fourth retainers project peripherally from the fourth section along at least a portion thereof in a direction opposed to the second direction. The second intervening section is disposed between the third and fourth sections and the third and fourth retainers face the second intervening section.

The present invention still further provides for a continuous length of suture where the ends are joined together to form a loop. The loop has a plurality of sections of suture length. Each section has an elongate body having a first part, a second part and an intervening part located between the first part and the second part. A plurality of first retainers project from the first part in a first direction. The first retainers are disposed on the periphery of the body along at least a portion of the first part. A plurality of second retainers project from the second part in a second direction. The second direction being opposite to the first direction. The second retainers are disposed on the periphery of the body along at least a portion of the second part. Substantially all of the first retainers of the first part of each section and substantially all of the second retainers from the second part of each section face the intervening part of each section.

The present invention further provides for a method of supporting an object within the body of a mammal. The steps include providing a continuous length of suture where the ends of the suture are joined forming a loop, the loop having a first half and a second half. The first half of the loop has an elongate first half body having a first section, a second section and a first intervening section, a plurality of first retainers projecting peripherally from the first section along at least a portion thereof, in a first direction, a plurality of second retainers projecting peripherally from the second section along at least a portion thereof in a direction opposed to the first direction, and the intervening section disposed between the first and second sections where the first and second retainers face the intervening section. The loop also has a second half having an elongate second half body having a third section, a fourth section and a second intervening section, a plurality of third retainers projecting peripherally from the third section along at least a portion thereof, in a second direction, a plurality of fourth retainers projecting peripherally from the fourth section along at least a portion thereof in a direction opposed to the second direction, and the second intervening section disposed between the third and fourth sections where the third and fourth retainers face the second intervening section. The method further includes placing the point in the loop where the first and second halves are joined under an object within the body of a mammal to be supported. The method includes inserting the first half of the loop into a first section of tissue of a mammal at a point along the first intervening section forming a first insertion pathway, and inserting the second half of the loop into a second section of tissue forming a second insertion pathway, whereby the object within the body of a mammal is supported.

The present invention further provides for a method of supporting an object within the body of a mammal. The method includes the step of providing a continuous length of suture where the ends of the suture are joined forming a loop. The loop has a first length of suture having an elongate first body, a plurality of first retainers projecting from the first body in a first direction, the first retainers being disposed on the periphery of the first body along at least a portion of the first length. The loop also has a second length having a plurality of second retainers projecting from the second body in a second direction, the second direction being opposite to the first direction, the second retainers being disposed on the periphery of the second body along at least a portion of the second length. The loop has an intervening length located between the first and second lengths, whereby substantially all of the first retainers and substantially all of the second retainers face the intervening length. The loop also has a diverging length where the first length and second lengths are joined and where the first retainers and second retainers diverge and face in opposing direction. The method also includes the steps of placing at least a portion of the diverging length under an object within the body of a mammal to be supported, and inserting the suture into a section of tissue of a mammal at a point along the intervening section forming an insertion pathway, whereby the object within the body of a mammal is supported.

The present invention also provides for a method of supporting an object within the body of a mammal by providing a continuous length of suture where the ends of the suture are joined forming a loop. The loop has a plurality of sections of suture length. Each section has an elongate body having a first part, a second part and an intervening part located between the first part and the second part. A plurality of first retainers project from the first part in a first direction, the first retainers being disposed on the periphery of the body along at least a portion of the first part. A plurality of second retainers project from the second part in a second direction, the second direction being opposite to the first direction, the second retainers being disposed on the periphery of the second body along at least a portion of the second length. The first retainers of the first part of each section and the second retainers from the second part of each section face the intervening part of each section. The method further includes the steps of placing a portion of the length of suture between sections under an object within the body of a mammal to be supported, inserting a first section of suture length into a first section of tissue of a mammal at a point along the first intervening part forming a first insertion pathway, and inserting the each remaining section of suture length into a subsequent section of tissue forming subsequent insertion pathways, whereby the object within the body of a mammal is supported.

The present invention yet further provides for a suture insertion device for use in inserting a length of suture into the tissue of a mammal. The suture insertion device has a substantially rigid, elongate body having a first end, a second end and a length. The suture insertion device also has a recess proximate to the first end to receive a cross-section of suture, and a forwardly extending finger located at the rearward end of the recess for maintaining the suture within the recess during insertion.

The present invention still further provides for an assembly for inserting a length of suture within the body of a mammal. The assembly has a length of suture having an elongated body having a first end, a second end, and a plurality of retainers projecting from the body. The retainers are disposed on the periphery of the body along at least a portion of the length of the body. The retainers face the first end, and are configured such that when the length of suture is inserted into the tissue of a mammal the retainers generally flex toward the body during insertion where damage to the tissue by the retainers is minimized, and the retainers are generally rigid and resist movement when the suture is pulled in a direction opposed to the insertion pathway. The length of suture also has a temporary holding point for receipt within a recess within a suture insertion device to hold the body. The temporary holding point is located proximate to the first end. The assembly also has a suture insertion device having a substantially rigid, elongate body having a first end, a second end and a length, a recess proximate to the first end to receive a cross-section of suture, and a forwardly extending finger located at the rearward end of the recess. When the temporary holding point is received within the recess of the suture insertion device, the length of suture is inserted within the body of a mammal via the suture insertion device in a first direction with the length of suture received within the recess, and the is withdrawn by moving the suture insertion device in a direction opposed to the first direction, the holding point being released from its position within the recess and thus frees the suture insertion device for removal therefrom.

The present invention further provides for another assembly for inserting a length of suture within the body of a mammal. The assembly includes a suture having an elongated body having a first end, a second end, and an intervening point located between the first and second ends. The suture also includes a plurality of retainers projecting from the body, the retainers being disposed on the periphery of the body along at least a portion of the length of the body, all of the retainers from both ends facing the intervening point. The retainers are configured such that when the length of suture is inserted into the tissue of a mammal at the intervening point, the retainers generally flex toward the body during insertion where damage to the tissue by the retainers is minimized, and the retainers are generally rigid and resist movement when the suture is pulled in a direction opposed to the insertion pathway. The assembly also includes a suture insertion device having a substantially rigid, elongate body having a first end, a second end and a length, a recess proximate to the first end to receive a cross-section of suture, and a forwardly extending finger located at the rearward end of the recess. When the intervening point is received within the recess of the suture insertion device, the length of suture is inserted within the body of a mammal by moving the suture insertion device in a first direction within the body of a mammal, when at least a portion of the length of suture is received within the body of the mammal, the suture insertion device is withdrawn from the body of a mammal by moving the suture insertion device in a direction opposed to the first direction, as a result of the opposed movement of the suture insertion device, the intervening point is released from its position within the recess and enables the suture insertion device to be withdrawn while allowing the length of suture to remain within the body of a mammal.

The present invention provides for a further assembly for inserting a length of suture within the body of a mammal. The assembly has a continuous length of suture and a suture insertion device. The continuous length of suture is joined at the ends to form a loop. The loop has a first length of suture having an elongate first body, a plurality of first retainers projecting from the first body in a first direction, the first retainers being disposed on the periphery of the first body along at least a portion of the first length. The loop has a second length having a plurality of second retainers projecting from the second body in a second direction, the second direction being opposite to the first direction, the second retainers being disposed on the periphery of the second body along at least a portion of the second length. The loop has an intervening length located between the first and second lengths, and substantially all of the first retainers and substantially all of the second retainers face the intervening length. The suture insertion device has a substantially rigid, elongate body having a first end, a second end and a length, a recess proximate to the first end to receive a cross-section of suture, and a forwardly extending finger located at the rearward end of the recess. When the intervening length is received within the recess of the suture insertion device, the length of suture is inserted within the body of a mammal by moving the suture insertion device in an insertion direction. When at least a portion of the length of suture is received within the body of the mammal, the suture insertion device is withdrawn from the body of a mammal by moving the suture insertion device in a direction opposed to the insertion direction, as a result of the opposed movement of the suture insertion device, the intervening length is released from its position within the recess and the suture insertion device is able to be withdrawn while enabling the length of suture to remain within the body of a mammal.

The present invention still further provides an assembly for inserting a length of suture within the body of a mammal. The assembly includes a continuous length of suture where the ends are joined together to form a loop, and a suture insertion device. The loop has a first half having an elongate first half body having a first section, a second section and a first intervening section. A plurality of first retainers project peripherally from the first section along at least a portion thereof, in a first direction. A plurality of second retainers project peripherally from the second section along at least a portion thereof in a direction opposed to the first direction. The intervening section is disposed between the first and second sections where the first and second retainers face the first intervening section. The second half of the loop has an elongate second half body having a third section, a forth section and a second intervening section. A plurality of third retainers project peripherally from the third section along at least a portion thereof, in a second direction. A plurality of fourth retainers project peripherally from the fourth section along at least a portion thereof in a direction opposed to the second direction. The second intervening section is disposed between the third and fourth sections where the third and fourth retainers face the second intervening section. The suture insertion device has a substantially rigid, elongate body having a first end, a second end and a length, a recess proximate to the first end to receive a cross-section of suture, and a forwardly extending finger located at the rearward end of the recess. When the first intervening length is received within the recess of the suture insertion device, the first half is inserted within the body of a mammal by moving the suture insertion device in a first insertion direction. When at least a portion of the first half is received within the body of the mammal, the suture insertion device is withdrawn from the body of a mammal by moving the suture insertion device in a direction opposed to the first insertion direction. As a result of the opposed movement of the suture insertion device, the first intervening length is released from its position within the recess, and enables the suture insertion device to be withdrawn while enabling the first half to remain within the body of a mammal. When the second intervening length is received within the recess of the suture insertion device, the second half is inserted within the body of a mammal by moving the suture insertion device in a second insertion direction. When at least a portion of the second half is received within the body of the mammal, the suture insertion device is withdrawn from the body of a mammal by moving the suture insertion device in a direction opposed to the second insertion direction. As a result of the opposed movement of the suture insertion device, the second intervening length is released from its position within the recess and enables the suture insertion device to be withdrawn while enabling the second half to remain within the body of the mammal.

The present invention provides for another assembly for inserting a length of suture within the body of a mammal. The assembly includes a continuous length of suture where the ends are joined together to form a loop and a suture insertion device. The loop has a plurality of sections of suture length. Each section has an elongate body having a first part, a second part and an intervening part located between the first part and the second part. A plurality of first retainers project from the first part in a first direction. The first retainers are disposed on the periphery of the body along at least a portion of the first part. A plurality of second retainers project from the second part in a second direction, the second direction being opposite to the first direction. The second retainers are disposed on the periphery of the second body along at least a portion of the second length. Substantially of the first retainers of the first part of each section and substantially all of the second retainers from the second part of each section face the intervening part of each section. The suture insertion device has a substantially rigid, elongate body having a first end, a second end and a length, a recess proximate to the first end to receive a cross-section of suture, and a forwardly extending finger located at the rearward end of the recess. When each intervening part is separately received within the recess of the suture insertion device, the corresponding section of suture is inserted within the body of a mammal by moving the suture insertion device in a first insertion direction. When at least a portion of that section of suture is received within the body of the mammal, the suture insertion device is withdrawn from the body of a mammal by moving the suture insertion device in a direction opposed to the first insertion direction, as a result of the opposed movement of the suture insertion device, the intervening part is released from its position within the recess and enables the suture insertion device to be withdrawn while enabling the section of suture inserted to remain within the body of the mammal. The insertion of remaining sections is similarly repeated until all sections of the length of suture are inserted into a body of a mammal.

The present invention further provides for a method of anchoring a suture within the body of a mammal. The method includes the steps of providing an assembly having a length of suture and a suture insertion device. The length of suture has an elongated body having a first end, a second end, and a plurality of retainers projecting from the body. The retainers are disposed on the periphery of the body along at least a portion of the length of the body. The retainers face the first end, and are configured such that when the length of suture is inserted into the body of a mammal the retainers generally flex toward the body during insertion where damage to the tissue by the retainers is minimized, and the retainers are generally rigid and resist movement when the suture is pulled in a direction opposed to the insertion pathway. The length of suture also has a temporary holding point to be received by a suture insertion device. The temporary holding point is located proximate to the first end. The suture insertion device has a substantially rigid, elongate body having a first end, a second end and a length, and a recess proximate to the first end to receive a length of suture. The method further includes placing a portion of the temporary holding point within the recess of the suture insertion device, inserting the suture insertion device, so as to form an insertion pathway, into the body of a mammal until the first end of the suture reaches a predetermined location, retrieving the suture insertion device in a direction substantially opposed to the insertion pathway until the suture insertion device is removed from the body of a mammal, and causing the length of suture to remain in the body of a mammal.

The present invention still further provides for a method of anchoring a suture within the body of a mammal. The method includes providing an assembly having a length of suture where the ends are joined together to form a loop. The loop has a first length of suture having an elongate first body, a plurality of first retainers projecting from the first body in a first direction, the first retainers being disposed on the periphery of the first body along at least a portion of the first length, a second length having a plurality of second retainers projecting from the second body in a second direction, the second direction being opposite to the first direction, the second retainers being disposed on the periphery of the second body along at least a portion of the second length, and

an intervening length located between the first and second lengths, whereby all of the first retainers and all of the second retainers face the intervening length. The assembly further includes a suture insertion device having a substantially rigid, elongate body having a first end, a second end and a length, and a recess proximate to the first end to receive a length of suture. The method further includes placing a portion of the intervening length within the recess of the suture insertion device, inserting the suture insertion device into the body of a mammal so as to form a suture insertion device insertion pathway until the recess reaches a predetermined location, retrieving the suture insertion device substantially along the insertion pathway until the suture insertion device is removed from the body of a mammal, and causing the length of suture to remain in the body of a mammal.

The present invention further provides for a method of anchoring a suture within the body of a mammal. The method includes providing an assembly having a continuous length of suture where the ends are joined together to form a loop. The loop has a first half having an elongate first half body having a first section, a second section and a first intervening section, a plurality of first retainers projecting peripherally from the first section along at least a portion thereof, in a first direction, a plurality of second retainers projecting peripherally from the second section along at least a portion thereof in a direction opposed to the first direction, and the intervening section disposed between the first and second sections where the first and second retainers face the first intervening section; and a second half having an elongate second half body having a third section, a fourth section and a second intervening section, a plurality of third retainers projecting peripherally from the third section along at least a portion thereof, in a second direction, a plurality of fourth retainers projecting peripherally from the fourth section along at least a portion thereof in a direction opposed to the second direction, and the second intervening section disposed between the third and fourth sections where the third and fourth retainers face the second intervening section. The assembly also includes a suture insertion device having a substantially rigid, elongate body having a first end, a second end and a length, and a recess proximate to the first end to receive a length of suture. The method also includes placing a portion of the first intervening length of suture within the recess of the suture insertion device, inserting the suture insertion device into the body of a mammal until the recess reaches a predetermined location so as to form a first suture insertion device insertion pathway, retrieving the suture insertion device substantially along the insertion pathway until the suture insertion device is removed from the body of a mammal. The method further includes placing a portion of the second intervening length of suture within the recess of the suture insertion device, inserting the suture insertion device into the body of a mammal until the recess reaches a predetermined location so as to form a second suture insertion device insertion pathway, retrieving the suture insertion device substantially along the second insertion pathway until the suture insertion device is removed from the body of a mammal, and causing the length of suture to remain in the body of a mammal.

The present invention still further provides for a method of anchoring a suture within the body of a mammal. The method includes the steps of providing an assembly having a continuous length of suture where the ends are joined together to form a loop, and a suture insertion device. The loop has a plurality of sections of suture length, each section having an elongate body having a first part, a second part and an intervening part located between the first part and the second part, a plurality of first retainers projecting from the first part in a first direction, the first retainers being disposed on the periphery of the body along at least a portion of the first part, and a plurality of second retainers projecting from the second part in a second direction, the second direction being opposite to the first direction, the second retainers being disposed on the periphery of the second body along at least a portion of the second length, all of the first retainers of the first part of each section and all of the second retainers from the second part of each section face the intervening part of each section. The suture insertion device has a substantially rigid, elongate body having a first end, a second end and a length, and a recess proximate to the first end to receive a length of suture. The method further includes placing a portion of the intervening part within the recess of the suture insertion device, inserting the suture insertion device into the body of a mammal so as to form a suture insertion device insertion pathway until the recess reaches a predetermined location, retrieving the suture insertion device substantially along the insertion pathway until the suture insertion device is removed from the body of a mammal causing the length of suture to remain in the body of a mammal, and repeating the inserting and retrieving steps until all sections of the loop are inserted into the body of a mammal.

The present invention also provides for a self-retaining suture having an elongated body having a first end, a second end and a first section and a second section, a plurality of retainers projecting from the body along the first section in a first direction, and a plurality of retainers projecting from the body along the second section in a second direction. The first direction is opposed to the second direction. The retainers of the first section face the retainers of the second section, and the retainers being configured such that when the length of suture is inserted into the tissue of a mammal at the point where the retainers converge, the retainers generally flex toward the body during insertion where damage to the tissue by the retainers is minimized, and the retainers generally resist movement when the suture is pulled in a direction opposed to the insertion pathway.

The present invention yet further provides for a method of using a self-retaining suture comprising the steps of providing a self-retaining suture having an elongated body having a first end, a second end and a first section and a second section, a plurality of retainers projecting from the body along the first section in a first direction, and a plurality of retainers projecting from the body along the second section in a second direction, the first direction being opposed to the second direction. The method also includes providing a suture insertion device having a substantially rigid, elongate body having a first device end, a second device end and a device length, and a recess proximate to the first device end to receive a cross section of suture. The method further includes placing a cross-section of the self-retaining suture into the recess of the suture insertion device at a place along the length of the suture between the first and second sections, and inserting the first device end into the body of a mammal so as to form an insertion pathway until the recess reaches a predetermined location. The method further includes retrieving the suture insertion device by substantially reversing direction along the insertion pathway until the suture insertion device is removed from the body of a mammal, and causing the suture to remain in the body of a mammal, whereby when the suture is inserted into the tissue of a mammal, the retainers generally flex toward the body during insertion where damage to the tissue by the retainers is minimized, and the retainers generally resist movement when the suture is pulled in a direction opposed to the insertion pathway.

The details of one or more aspects or embodiments are set forth in the description below. Other features, objects and advantages will be apparent from the description, the drawings, and the claims. In addition, the disclosures of all patents and patent applications referenced herein are incorporated by reference in their entirety.

FIG. 1 is a front view of a first embodiment of the present invention.

FIG. 1A is a front view of a first alternative embodiment of the embodiment of FIG. 1.

FIG. 2A is a front view of a suture insertion device of the present invention.

FIG. 2B is a side view of the embodiment of FIG. 2A.

FIG. 3 is a top view of the suture insertion device of FIG. 2A with the first embodiment of FIG. 1 held therein.

FIG. 4 is an enlarged sectional view of a portion of the assembly of FIG. 3 taken along line A-A.

FIG. 5 is a diagrammatic representation of the tested suture length having converging retainers thereon.

FIG. 6 is a front view of a second alternative embodiment of the present invention.

FIG. 7 is a front view of a third alternative embodiment of the present invention.

FIG. 7A is a perspective view of the embodiment of FIG. 7 having an object attached thereto.

FIG. 7B is a front view of the embodiment of FIG. 7 having a tack attached thereto.

FIG. 7C is a front view of a seroma evacuation tube for anchoring to the skin surface.

FIG. 8 is a front view of the fourth alternative embodiment of the present invention.

FIG. 9 is a front view of the embodiment of FIG. 8 with a mesh sling attached thereto.

FIG. 10 is a perspective view of the assembly of the embodiment of FIG. 8 and the suture insertion device of FIGS. 2A and 2B.

FIG. 11 is a diagrammatic view of the embodiment of FIG. 9 in a proposed installed position for use as a support for a human organ.

FIG. 12 is a front view of an alternative embodiment of FIG. 10 in use for closing an incision where one end of the embodiment of FIG. 10 is inserted using a detachable suture insertion device as shown and the other has an attached curved suture insertion device.

FIG. 12A is a front view of an alternative suture insertion device

FIG. 12B is a front view of the embodiment of FIG. 12 showing the insertion and removal of the curved suture insertion device, as shown in FIG. 12A.

FIG. 13 is a front view of the fifth alternative embodiment of the present invention.

FIG. 14A is a diagrammatic view of the embodiment of FIG. 13 as it is being installed.

FIG. 14B is a diagrammatic view of the embodiment of FIG. 13 in its fully installed position.

FIG. 15 is a front view of an alternative placement of the self-retaining suture of the present invention.

FIG. 16 is a front view of a sixth alternative embodiment of the present invention with the suture insertion device of FIGS. 2A and 2B.

FIG. 17 is a table that provides a comparative analysis regarding the pullout strength in ounces of various sutures tested.

Certain terminology is used herein for convenience only and is not to be taken as a limitation on the invention. For example, words such as “first” and “second”, “forward” and “rearward”, “inner” and “outer” merely describe the configuration shown in the figures. Indeed, the referenced components may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise.

In addition, prior to setting forth the invention, it may be helpful to an understanding thereof to first set forth definitions of certain terms that are used hereinafter.

“Self-retaining system” refers to a self-retaining suture together with means for deploying the suture into tissue. Such deployment means include, without limitation, suture needles and deployment devices as well as sufficiently rigid and sharp portions on the suture itself to penetrate tissue.

“Self-retaining suture” refers to a suture that does not require a knot or a suture anchor in order to maintain its position into which it is deployed during a surgical procedure. These may be monofilament sutures or braided sutures, and are positioned in tissue in two stages, namely deployment and affixation, and include at least one tissue retainer.

“Tissue retainer” (or simply “retainer”) or “barb” refers to a suture element having a retainer body projecting from the suture body and a retainer end adapted to penetrate tissue. Each retainer is adapted to resist movement of the suture in a direction other than the direction in which the suture is deployed into the tissue by the surgeon, by being oriented to substantially face the deployment direction. As the tissue-penetrating end of each retainer faces away from the deployment direction when moving through tissue during deployment, the tissue retainers should not catch or grab tissue during this phase. Once the self-retaining suture has been deployed, a force exerted in another direction (often substantially opposite to the deployment direction) causes the retainers to be displaced from their deployment positions (i.e., resting substantially along the suture body), forces the retainer ends to open from the suture body in a manner that catches and penetrates into the surrounding tissue, and results in tissue being caught between the retainer and the suture body; thereby “anchoring” or affixing the self retaining suture in place.

“Retainer configurations” refers to configurations of tissue retainers and can include features such as size, shape, surface characteristics, and so forth. These are sometimes also referred to as “barb configurations”.

“Suture thread” refers to the filamentary body component of the suture, and, for sutures requiring needle deployment, does not include the suture needle. The suture thread may be monofilamentary, or, multifilamentary.

“Monofilament suture” or “monofilament” refers to a suture comprising a monofilamentary suture thread.

“Braided suture” refers to a suture comprising a multifilamentary suture thread. The filaments in such suture threads are typically braided, twisted, or woven together.

“Degradable (also referred to as “biodegradable” or “bioabsorbable”) suture” refers to a suture which, after introduction into a tissue is broken down and absorbed by the body. Typically, the degradation process is at least partially mediated by, or performed in, a biological system. “Degradation” refers to a chain scission process by which a polymer chain is cleaved into oligomers and monomers. Chain scission may occur through various mechanisms, including, for example, by chemical reaction (e.g., hydrolysis, oxidation/reduction, enzymatic mechanisms or a combination or these) or by a thermal or photolytic process. Polymer degradation may be characterized, for example, using gel permeation chromatography (GPC), which monitors the polymer molecular mass changes during erosion and breakdown. Degradable suture material may include polymers such as polyglycolic acid, copolymers of glycolide and lactide, copolymers of trimethylene carbonate and glycolide with diethylene glycol (e.g., MAXON™, Tyco Healthcare Group), terpolymer composed of glycolide, trimethylene carbonate, and dioxanone (e.g., BIOSYN™ [glycolide (60%), trimethylene carbonate (26%), and dioxanone (14%)], Tyco Healthcare Group), copolymers of glycolide, caprolactone, trimethylene carbonate, and lactide (e.g., CAPROSYN™, Tyco Healthcare Group). These sutures can be in either a braided multifilament form or a monofilament form. The polymers used in the present invention can be linear polymers, branched polymers or multi-axial polymers. Examples of multi-axial polymers used in sutures are described in U.S. Patent Application Publication Nos. 20020161168, now abandoned, 20040024169, issued as U.S. Pat. No. 7,026,437 on Apr. 11, 2006, and 20040116620, issued as U.S. Pat. No. 7,070,858 on Jul. 4, 2006. Sutures made from degradable suture material lose tensile strength as the material degrades.

“Non-degradable (also referred to as “non-absorbable”) suture” refers to a suture comprising material that is not degraded by chain scission such as chemical reaction processes (e.g., hydrolysis, oxidation/reduction, enzymatic mechanisms or a combination or these) or by a thermal or photolytic process. Non-degradable suture material includes polyamide (also known as nylon, such as nylon 6 and nylon 6.6), polyester (e.g., polyethylene terephthlate), polytetrafluoroethylene (e.g., expanded polytetrafluoroethylene), polyether-ester such as polybutester (block copolymer of butylene terephthalate and polytetra methylene ether glycol), polyurethane, metal alloys, metal (e.g., stainless steel wire), polypropylene, polyethelene, silk, and cotton. Sutures made of non-degradable suture material are suitable for applications in which the suture is meant to remain permanently or is meant to be physically removed from the body.

“Suture diameter” refers to the diameter of the body of the suture. It is to be understood that a variety of suture lengths may be used with the sutures described herein and that while the term “diameter” is often associated with a circular periphery, it is to be understood herein to indicate a cross-sectional dimension associated with a periphery of any shape. Suture sizing is based upon diameter. United States Pharmacopeia (“USP”) designation of suture size runs from 0 to 7 in the larger range and 1-0 to 11-0 in the smaller range; in the smaller range, the higher the value preceding the hyphenated zero, the smaller the suture diameter. The actual diameter of a suture will depend on the suture material, so that, by way of example, a suture of size 5-0 and made of collagen will have a diameter of 0.15 mm, while sutures having the same USP size designation but made of a synthetic absorbable material or a non-absorbable material will each have a diameter of 0.1 mm. The selection of suture size for a particular purpose depends upon factors such as the nature of the tissue to be sutured and the importance of cosmetic concerns; while smaller sutures may be more easily manipulated through tight surgical sites and are associated with less scarring, the tensile strength of a suture manufactured from a given material tends to decrease with decreasing size. It is to be understood that the sutures and methods of manufacturing sutures disclosed herein are suited to a variety of diameters, including without limitation 7, 6, 5, 4, 3, 2, 1, 0, 1-0, 2-0, 3-0, 4-0, 5-0, 6-0, 7-0, 8-0, 9-0, 10-0 and 11-0.

“Needle attachment” refers to the attachment of a needle to a suture requiring same for deployment into tissue, and can include methods such as crimping, swaging, using adhesives, and so forth. The point of attachment of the suture to the needle is known as the swage.

“Suture needle” refers to needles used to deploy sutures into tissue, which come in many different shapes, forms and compositions. There are two main types of needles, traumatic needles and atraumatic needles. Traumatic needles have channels or drilled ends (that is, holes or eyes) and are supplied separate from the suture thread and are threaded on site. Atraumatic needles are eyeless and are attached to the suture at the factory by swaging whereby the suture material is inserted into a channel at the blunt end of the needle which is then deformed to a final shape to hold the suture and needle together. In the traumatic needle the thread comes out of the needle's hole on both sides and often the suture rips the tissues to a certain extent as it passes through. Most modern sutures are swaged atraumatic needles. Atraumatic needles may be permanently swaged to the suture or may be designed to come off the suture with a sharp straight tug. These “pop-offs” are commonly used for interrupted sutures, where each suture is only passed once and then tied.

Suture needles may also be classified according to their point geometry. For example, needles may be (i) “tapered” whereby the needle body is round and tapers smoothly to a point; (ii) “cutting” whereby the needle body is triangular and has sharpened cutting edge on the inside; (iii) “reverse cutting” whereby the cutting edge is on the outside; (iv) “trocar point” or “tapercut” whereby the needle body is round and tapered, but ends in a small triangular cutting point; (v) “blunt” points for sewing friable tissues; (vi) “side cutting” or “spatula points” whereby the needle is flat on top and bottom with a cutting edge along the front to one side (these are typically used for eye surgery).

Suture needles may also be of several shapes including, (i) straight, (ii) half curved or ski, (iii) ¼ circle, (iv) ⅜ circle, (v) ½ circle, (vi) ⅝ circle, (v) and compound curve.

Suturing needles are described, for example, in U.S. Pat. No. 6,322,581 and U.S. Pat. No. 6,214,030 (Mani, Inc., Japan); and U.S. Pat. No. 5,464,422 (W. L. Gore, Newark, Del.); and U.S. Pat. Nos. 5,941,899; 5,425,746; 5,306,288 and 5,156,615 (US Surgical Corp., Norwalk, Conn.); and U.S. Pat. No. 5,312,422 (Linvatec Corp., Largo, Fla.); and U.S. Pat. No. 7,063,716 (Tyco Healthcare, North Haven, Conn.). Other suturing needles are described, for example, in U.S. Pat. Nos. 6,129,741; 5,897,572; 5,676,675; and 5,693,072. The sutures described herein may be deployed with a variety of needle types (including without limitation curved, straight, long, short, micro, and so forth), needle cutting surfaces (including without limitation, cutting, tapered, and so forth), and needle attachment techniques (including without limitation, drilled end, crimped, and so forth).

“Needle diameter” refers to the diameter of a suture deployment needle at the widest point of that needle. While the term “diameter” is often associated with a circular periphery, it is to be understood herein to indicate a cross-sectional dimension associated with a periphery of any shape.

“Wound closure” refers to a surgical procedure for closing of a wound. An injury, especially one in which the skin or another external or internal surface is cut, torn, pierced, or otherwise broken is known as a wound. A wound commonly occurs when the integrity of any tissue is compromised (e.g., skin breaks or burns, muscle tears, or bone fractures). A wound may be caused by an act, such as a gunshot, fall, or surgical procedure; by an infectious disease; or by an underlying medical condition. Surgical wound closure facilitates the biological event of healing by joining, or closely approximating, the edges of those wounds where the tissue has been torn, cut, or otherwise separated. Surgical wound closure directly apposes or approximates the tissue layers, which serves to minimize the volume new tissue formation required to bridge the gap between the two edges of the wound. Closure can serve both functional and aesthetic purposes. These purposes include elimination of dead space by approximating the subcutaneous tissues, minimization of scar formation by careful epidermal alignment, and avoidance of a depressed scar by precise eversion of skin edges.

“Tissue elevation procedure” refers to a surgical procedure for repositioning tissue from a lower elevation to a higher elevation (i.e., moving the tissue in a direction opposite to the direction of gravity). The retaining ligaments of the face support facial soft tissue in the normal anatomic position. However, with age, gravitational effects achieve a downward pull on this tissue and the underlying ligaments, and fat descends into the plane between the superficial and deep facial fascia, thus allowing facial tissue to sag. Face-lift procedures are designed to lift these sagging tissues, and are one example of a more general class of medical procedure known as a tissue elevation procedure. More generally, a tissue elevation procedure reverses the appearance change that results from gravitation effects over time, and other temporal effects that cause tissue to sag, such as genetic effects. It should be noted that tissue can also be repositioned without elevation; in some procedures tissues are repositioned laterally (away from the midline), medially (towards the midline) or inferiorly (lowered) in order to restore symmetry (i.e. repositioned such that the left and right sides of the body “match”).

“Medical device” or “implant” refers to any object placed in the body for the purpose of restoring physiological function, reducing/alleviating symptoms associated with disease, and/or repairing/replacing damaged or diseased organs and tissues. While normally composed of biologically compatible synthetic materials (e.g., medical-grade stainless steel, titanium and other metals: polymers such as polyurethane, silicon, PLA, PLGA and other materials) that are exogenous, some medical devices and implants include materials derived from animals (e.g., “xenografts” such as whole animal organs; animal tissues such as heart valves; naturally occurring or chemically-modified molecules such as collagen, hyaluronic acid, proteins, carbohydrates and others), human donors (e.g., “allografts” such as whole organs; tissues such as bone grafts, skin grafts and others), or from the patients themselves (e.g., “autografts” such as saphenous vein grafts, skin grafts, tendon/ligament/muscle transplants). Medical devices that can be used in procedures in conjunction with the present invention include, but are not restricted to, orthopaedic implants (artificial joints, ligaments and tendons; screws, plates, and other implantable hardware), dental implants, intravascular implants (arterial and venous vascular bypass grafts, hemodialysis access grafts; both autologous and synthetic), skin grafts (autologous, synthetic), tubes, drains, implantable tissue bulking agents, pumps, shunts, sealants, surgical meshes (e.g., hernia repair meshes, tissue scaffolds), fistula treatments, spinal implants (e.g., artificial intervertebral discs, spinal fusion devices, etc.) and the like.

As discussed above, the present invention provides compositions, configurations, methods of manufacturing and methods of using self-retaining systems in surgical procedures which greatly increase their ability to anchor into the surrounding tissue to provide superior holding strength and improve clinical performance.

Referring now to the drawings, wherein like reference numerals designate corresponding or similar elements throughout the several views, FIG. 1 shows a front view of the first embodiment of the present invention. The first embodiment of the present invention includes a length of suture 10 and having a first section 12, a second section 14 and an intervening section 16. The length of suture 10 has an elongated body 11 and free ends 13 and 15. The first section 12 has free end 13 and a plurality of first retainers 18 extending from the periphery of the length of the first section in a first direction, indicated by arrow 20. The arrow 20 indicates the direction in which the suture is pulled to cause the retainers to flex outwardly. The second section 14 has free end 15 and a plurality of second retainers 22 extending from the periphery of the length of the second section in a second direction, indicated by arrow 24. The second direction is opposed to the first direction. Both the first retainers 18 and the second retainers 22 face the intervening section 16 and thus each other. The intervening section 16 has no retainers thereon.

FIGS. 2A and 2B show a suture insertion device 26 of the present invention. FIG. 3 shows the suture insertion device assembled with a length of self-retaining suture 10 of the embodiment shown in FIG. 1. As shown in FIGS. 2A and 2B, the device 26 includes a relatively straight needle body 25 having a pointed first device end 28, a second device end 30 and a length 32. A protective cover 21 covers the pointed end 28 to prevent needle sticks. A recess 34 is located proximate to the first device end 28. The recess 34 is for receiving a cross-sectional portion of the intervening section 16. Thus the recess 34 must be sized appropriately to accommodate the diameter of the suture 10. It should also be noted that the intervening section 16 must be of sufficient length so as to enable the intervening length to properly rest within the recess 34 without the first 12 or second sections 14 of retainers extending therein. The first suture insertion device end 28 also includes a forwardly facing finger 36. The finger 36 serves to hold the cross-section of the intervening section 16 during insertion into a body of a mammal, as discussed in more detail below. The length and diameter of the finger 36 will vary depending upon the suture insertion device 26 size and the suture 10 diameter. The device 26 also includes a rearwardly extending member 29 adjacent to the first device end 28. The rearwardly extending member 29 also serves to hold the suture within the recess during forward movement of the device 26. The length of the suture insertion device 26 opposed to the recess 36, is the underside 38. The underside 38 of the suture insertion device is sharpened so that it may easily cut an insertion pathway as the suture insertion device 26 is inserted into the body of a mammal, as will be discussed in more detail below. A handle 31 is located proximate and fixed to the second device end 30. The handle 31 serves as a holding point for the user during use. The handle 31 includes a handle body 33 having a length and a suture holding channel 35 extending along the side of the handle along its length. The suture holding channel 35 is sized to receive a length of suture of the present invention during use, which will be discussed in detail below.

In use, the assembly of the suture length 10 and suture insertion device 26 are designed to be inserted into the body of a mammal. This procedure may be for the purpose of binding a wound, closing an incision or endoscopic port. Such that, when the length of suture is received within the recess 34 the intervening section 16 is relatively perpendicular to the suture insertion device length 32 at that point, as shown in FIG. 3. FIG. 4 also shows an enlarged view of the cross-section of the intervening section 16 of the length of suture 10 received into the recess 34 of the suture insertion device 26. After the protective cover 21 is removed from the first end 28 of the suture insertion device 26, it is then inserted into a section of the body of the mammal, typically within a section of tissue that will provide support for the first 18 and second retainers 22 upon removal of the suture insertion device, such as a section of muscle. As the suture insertion device 26 moves in a forwardly direction, the device holds the length of suture 10 within its recess 34. The finger 36 helps to hold the intervening section 16 within the recess 34 during forward travel of the device 26. The sharpened underside 28 of the device 26 cuts through the mammalian tissue to form an insertion pathway 40. In addition, as the length of suture 10 moves in a forwardly direction, the first 18 and second 22 retainers flex and remain close to the perimeter of the suture body 11. When the first 12 and second 14 sections of the suture length 10 have been completely inserted into the body of a mammal, the user stops the forward travel of the device 26. The user then begins to remove the device 26 by moving the device in a direction substantially opposed to the insertion pathway. As this occurs, the opposed movement of the device 26 enables the intervening section 16 to free itself from its location within the recess 34. The finger 36 no longer is able to hold the intervening section 16 within the recess 34 when the device 26 travels in an opposite direction from the insertion pathway. As a result, the intervening section 16 is freed from its position within the recess 34, and the device 26 may be completely removed from the tissue of the mammal by reversing the direction taken on the insertion pathway. At this time any movement of the suture length 10 in a direction opposed to the insertion pathway would result in the first 18 and second 22 retainers becoming rigid and opposing movement in a direction opposed to the insertion pathway by extending outwardly relative to the periphery of the suture body 11 and into the surrounding body of the mammal to secure the position of the first 12 or second 14 section at that location.

In the situation where a wound is being repaired or an incision is being closed, this method would further involve joining the length of suture with a second length of suture similarly inserted into the body of a mammal at an alternative location. The free ends of each length of suture would then be tied or joined in an appropriate fashion to complete the closure of the wound or incision.

In the case where the length of suture is inserted for the purpose of supporting a body part, such as a bladder neck, and other pelvic floor prolapsed conditions, the length of suture would be joined to at least one other length of suture similarly inserted into the body where the free ends would remain proximate to the body part to be supported. The part would be supported by joining the free ends of the lengths of suture 10 under the body part so as to form a sling or similar support member to ensure that the lengths of suture will prevent the body part from any further movement. Such ends may also be joined to a single piece of mesh or other material conductive to prolonged contact with the particular body part being suspended.

It is further anticipated that the free ends of the suture may be joined with a drug delivery agent, such as a chemotherapeutic agent for the precise localized delivery of chemotherapeutic drug to cancerous tissues such as in the prostrate and in tuomor growths in other various locations. It is also anticipated that the suture may be attached to a tacking device for use in connection with mesh that is used in hernia repair. The tacks are used to hold the mesh in repairing herniated tissue while providing a profile that is less palpable to the patient. It is further anticipated that the suture may be attached to a marker for use in radiation therapy. It is anticipated that the suture may also be attached to a radio labeled tag for the identification of tissue in x-rays.

It should be stressed that the advantage of the present invention over the prior art provides a greater level of accuracy in fixing these items, such as markers, tags, tacks or therapeutic and drug delivery agents or the like to the self-retaining suture because the exact location of the item can be achieved by the needle or suture insertion device. With these items fixed to the suture, the surgeon or other medical professional can place the item in the precise location needed in the patient's body to provide maximum efficacy and can retrieve the needle or insertion device with no movement by the suture or the attachment because of the retainered configuration.

It is anticipated that the free ends of the length of suture 10 may include an attachment loop 41 or other attachment means for fixing an object to the suture, as shown in FIG. 1A. This may be done ahead of time to securely fix an object, such as a tack, marker, therapeutic or chemotherapeutic agent to the suture length for insertion into a patient rather than making the attachment at the time of the procedure. This attachment ahead of time results in a more secure attachment and thus a more accurate placement since it is less likely that the object attached will move or the attachment means will fail.

In addition, because the attached items are inserted into the body by means of a suture that is inserted to the desired location and then reversed, the insertion device or needle does not create a further pathway through the tissue. This results in further assuring that the suture remains in its intended location because there is no further pathway for the suture to migrate. In some cases, standard suture may migrate along an insertion pathway if that pathway is cut or ripped or otherwise disrupted. In the present case, because the sutures are retainered and the suture and attachment are inserted using a detachable needle or insertion device, no further insertion pathway is created. Thus, potential migration of the suture and attachment are significantly prevented.

Also, because the insertion occurs only to the point of placement, neighboring tissue located beyond the placement point, is not disrupted and thus, damage to the surrounding tissue area is prevented. This results in minimal pain and exposure to infection for the patient. This also results in a higher success rate as complications resulting from surrounding tissue damage are eliminated.

In cases of chemotherapy delivered locally, it is critical to the success of the delivery of the chemotherapeutic drug that the drug delivery agent be located as close as possible to or at a specific site within the tumor being treated. With this assembly, the surgeon can deliver with fine accuracy the agent or item to the desired location and a reduced risk to adjacent normal tissue. This enables the drug agent to work at its maximum potential without loss of efficacy due to migration of the drug agent. Furthermore, in situations where markers are used for radiation therapy or the like, the greater the accuracy and localized placement of the marker, the more focused the radiation therapy on a particular location will be. In cases of using the suture assembly of the present invention with tacks in hernia repair, the repair procedure will have a higher success rate, if the tacks are anchored in such a way as to reduce migration. The present invention will provide sufficient reduction in migration as well as accurate placement of the tacks for such a procedure. Further, the present invention minimizes the profile of the tack overall, a favorable improvement over current larger tacking devices that are often palpable to the patient and thus a cause of patient distress.

It should be further noted that the attachments to the suture discussed above are equally applicable to the remaining embodiments that will be discussed in more detail below. In some cases, an alternative embodiment may provide greater attachment capability than the first embodiment discussed above. For instance, the embodiments having a continuous loop of suture may be more appropriately suited to the affixation of a marker or therapeutic agent than the single length which requires manual attachment.

Applicants have conducted tests relating to the self-retaining suture assembly described above. The tests were designed to determine the pull strength required to remove the self-retaining suture length of the first embodiment of the present invention from within a test sample of mammalian tissue. A total of 62 threads were tested. Some of the suture lengths were swedged onto a standard surgical needle. The standard surgical needle had a diameter of 0.68 mm. Other suture lengths were placed within the recess of the suture insertion device of the present invention as shown in FIGS. 2A and 2B. The diameter of the needle of the present invention was 0.70 mm. Another variable in the suture insertion device design was the curvature. Some of the samples tested had the suture length inserted by means of an attached needle and some of the samples tested had the suture length inserted by means of a detachable suture insertion device.

The term “attached” means that the needle was physically tied to the suture and detachment from the suture was accomplished by cutting the suture away from the needle. The term “detachable” means that the suture insertion device was designed in accordance with the embodiment discussed above. Each detachable suture insertion device had a recess for receiving a portion of the intervening length of the suture.

Some of the attached needles and some of the detachable suture insertion devices were straight and some of the attached needles and detachable suture insertion devices were curved. The attached needles were 0.70 mm in diameter and the detachable suture insertion devices had a diameter of 0.68 mm. It should be noted that the attached needle diameter cannot be made any smaller due to the present state of manufacture. The attached needle diameter must be of a minimum diameter to provide for the boring of its end to a sufficient clearance to receive the thread while retaining enough unbored perimeter to enable the perimeter to be swedged or crimped onto the suture body. At present, if the suture insertion device diameter is less than 0.70 mm, it will not provide a sufficient bore to allow the insertion of the diameter of the thread that was tested. This presents a further advantage of the present invention. Detached suture insertion devices of the present invention may be made smaller in diameter than currently available attached needles. This results in a less invasive procedure and may enable the self-retaining suture to grip the surrounding tissue more effectively since a narrower insertion pathway permits the retainers to make contact with the surrounding tissue with less flexure of the retainer. It should be further noted that a smaller diameter suture insertion device enables the use of a smaller diameter suture. These relative dimensions have been previously optimized in the cited prior art of Table 1.

The curved needles and suture insertion devices tested had a radius of curvature of 180°/30 mm. The lengths of the attached needles and detached suture insertion devices were 50 mm. Both the attached straight and curved needles were made of surgical grade stainless steel and were made by B. G. Sulzle, Inc of Syracuse, N.Y. The detachable curved and straight suture insertion devices were made of stainless steel and were made by Prym-Dritz Corporation of Spartenburg, S.C.

The suture material was USP #1 black monofilament nylon supplied by Ashaway having a diameter of 0.433 mm. The suture length was 38 cm. The retainer dimensions were 1.0 mm in length, 0.16 mm in depth and the angle from the longitudinal axis was 27°. In addition, the retainers were arrayed in a helical pattern with one retainer being located every 1 mm. The retainer pattern completed 360° of rotation around the circumference of the suture for each 8 mm of suture length.

In addition, there were three types of suture arrangements used in the testing. The first group was standard suture having no retainers at all. This group is described as “0x0”. The second group had retainers on one side of the suture only (referred to as “1x0”). The third group had retainers on both sides of the suture length (referred to as “1x1”). In the second and third groups, a single section of retainers had a length of 3.5 cm. In the case of the third group, the space between facing retainers was 5 mm. A diagram of the retainer configuration for the third group is shown in FIG. 5.

The test samples were pork shoulder segments cut into rectangular strips having the following dimensions: 3 cm wide, 10 cm long and 4 cm thick. The tissue had no skin and consisted essentially of muscle with varying amounts of fat and fascia. This tissue is considered to be similar in structure/performance to that of soft tissue located in the pelvic floor and in other areas of the human body, such as where access ports are made for endoscopic procedures. Each tissue sample was marked using a guide to ensure that the self-retaining suture lengths would be fully inserted in each sample tested. The markings indicated where the self-retaining suture lengths started and ended. The markings were located in substantially the lower half of the longitudinal axis of the each sample. This was done to ensure that each sample had sufficient length on the upper portion to enable an effective grip by the tensiometer without interfering with the suture length. The suture lengths were inserted into the tissue samples in one of two ways. For those inserted with a straight suture insertion device, the sutures were inserted with the suture insertion device at approximately the center point at one end and moved along the longitudinal axis of the tissue sample until all of the retainered section of the suture length was between the marking. For those test samples having an attached suture insertion device, the suture insertion device was moved through the tissue sample length along the longitudinal axis. Once the retainered sections were located between the markings, the suture insertion device was moved out of the tissue and severed from the suture.

For the tissue samples using a curved suture insertion device, the suture insertion device was inserted through a side of the tissue sample and moved along a curved insertion pathway. The curved insertion pathway samples were located approximately one-third of the length of the sample. Further, the samples that were threaded with needles having the suture attached thereto were moved through the insertion pathway. Once the full length of the self-retaining suture segment was contained within the tissue, the needle was guided outward from the tissue. Once the needle was cleared from the tissue, the suture was cut from the needle prior to testing.

The pull tests were performed by a Test Resources Universal Tester Tensiometer, model 200Q. The free ends of the suture length were attached between two sides of the bottom vice grip. The top of the tissue strip was attached between two sides of the top vice grip which had serrated surfaces on each side to achieve greater gripping strength on the sample. Care was taken to ensure that the portion of the tissue containing the suture was not held within the top vice grip. The tensiometer was operated at a rate of 10 inches per minute until either the suture broke or until the suture was pulled from the tissue sample. The tensiometer displayed the maximum pull-out force at the time of failure or pull out. A total of 62 threads were tested including those inserted by attached needles and detachable suture insertion devices, with one exception. The detachable suture insertion devices were the only type able to deliver the self-retaining suture segments having retainered portions on both sides of the length (e.g. the 1×1 segments). Of the 62 threads tested, 56 samples resulted in the sutures being pulled from the tissue, 4 samples resulted in thread breakage, and 2 resulted in the tissue segment pulling away from the top vice grip of the tensiometer prior to suture pull out or breakage. The maximum pull strength recorded for each sample, in ounces, is set forth below in Table 2

Data In Ounces
Needle
Type Type Pattern 1 2 3 4 5 6 7 Average
0x0 attached Straight  0.5  0.6  0.6  0.8  0.5 n/a n/a  0.6
0x0 detached Straight  2.4  2.2  1.9  2.2  2.2 n/a n/a  2.2
0x0 attached Curved  0.6  0.8  0.6  0.6  0.6 n/a n/a  0.7
0x0 detached Curved  2.7  2.6  5.4  2.6  2.1 n/a n/a  3.1
1x0 attached Straight 17.3 37.0 30.6 23.8 17.0 43.4 49.9 31.3
(B)
1x0 detached Straight 33.9 56.3 34.7 37.9 25.3 32.3 33.1 36.2
1x1 detached Straight 43.2 31.2 35.8 25.3 52.8 29.9 26.7 35.0
1x0 attached Curved 39.7 31.0 46.4 53.0 37.4 42.7 43.5 42.0
(B) (B) (B)
1x0 detached Curved 26.6 39.4 32.8 41.0 48.8 45.8 35.4 38.5
1x1 detached Curved 43.4 67.4 66.6 55.0 65.4 34.2 67.7 57.1
(T) (T)
Notes:
(B) Thread Broke
(T) Tissue separated from tensionmeter clasp

FIG. 17 is a table that provides a comparative analysis regarding the pullout strength in ounces of each suture tested. The sutures are grouped into sample groups. The table indicates the average pull out strength of sutures with straight vs. curved insertion pathways, as well as those with attached needles and those using the suture insertion device of the present invention. Further, the table assesses the average pull strength of the different sutures having none, one or two sections with retainers thereon. As can be seen from the data in Table 3, the sutures having a curved pathway with both sections of the suture length having retainers thereon and having been inserted with the suture insertion device of the present invention, demonstrated the highest level of pull out strength. All test groups inserted with the suture insertion device of the present invention demonstrated at least equivalent holding strength when compared with sutures with similar retainer patterns that were delivered with an attached needle.

FIG. 6 shows a first alternative embodiment to the present invention of FIG. 1. FIG. 6 includes a length of suture 42 having a first end 44 and a second end 46. A loop 48 is located at the first end 44 of the length 42. A plurality of retainers 50 extend along the periphery of the length of suture 42. All of the retainers 50 face the loop 48. The loop 48 is relatively small relative to the length of suture 42.

In use, the cross-section of the loop 48 is received into the recess 34 of the suture insertion device 26 discussed in detail above. The suture insertion device 26 is inserted into a section of a body of a mammal. As discussed previously, it is preferable to insert the suture insertion device 26 with the suture 42 into a section of muscle so that the retainers 50 are better able to grab the muscle tissue and hold the suture 42 in place. Conversely, the insertion of the suture into an area of fat will not enable the retainers to effectively bind themselves to the surrounding fat and thus not enable the suture to be effective in its ability to bind a wound or support an organ or the like. Once the suture insertion device 26 is inserted into the tissue of a mammal, the finger 36 of the device holds the loop 48 within the recess 34 during forward travel of the device within the body. When the length of suture desired is fully inserted within the body of a mammal, the user stops the forward travel of the suture insertion device 26. The user removes the device 26 from the body by reversing the forward travel of the device. This results in a release of the loop 48 from its position within the recess 34 and enables the device to be completely removed from the body while enabling the length of suture 42 to remain in position within the body. During insertion of the suture length, the retainers 50 of the suture 42 flex towards the suture length. Conversely, if the length of suture 42 were pulled in a direction opposed to the insertion direction, the retainers 50 would become rigid and flex outwardly and resist movement in the opposed direction.

FIG. 7 of the present invention displays a further alternative to the present invention. This alternative includes a length of suture where the ends have been joined to form a second alternative looped suture 52. The loop 52 has an elongated second alternative length 54 that is generally circular in cross section. The loop 52 includes a first half 56 and a second half 58 and a second alternative intervening section 60. The intervening section 60 is located between the first 56 and second 58 halves. The first half 56 has a plurality of first half retainers 62 extending from the periphery of the length of the first half in a first direction, indicated by the arrow 64. Similarly, the second half 58 has a plurality of second half retainers 66 extending from the periphery of the length of the second half in a second direction, indicated by the arrow 68. The second direction is opposed to the first direction. Both the first half retainers 62 and the second half retainers 66 face the second alternative intervening section 60 and thus each other. In the present embodiment, there also exists empty loop space 70 located at the divergence of the first half retainers 62 and second half retainers 66. The empty loop space 70 may be used as a support for an organ or other body part when in use.

In use, the assembly of the looped suture 52 and suture insertion device 26 are designed to be inserted into the body of a mammal. This procedure may be for the purpose of binding a wound, closing an incision or attaching an object such as a surgical tack, implant, marker or chemotherapeutic agent. FIGS. 7A and 7B show proposed uses of the embodiment shown in FIG. 7. Because the present invention provides for the effective and accurate anchoring of a length of suture within mammalian tissue, it is anticipated that such self-retaining suture lengths or loops may be used to fix objects within tissue as well. As discussed above with respect to previous embodiments, the self-retaining suture embodiment of FIG. 7 may be used to effectively fix a chemotherapeutic agent into the body of a mammal, as shown in FIG. 7A. The chemotherapeutic agent 190 is embedded within a polymer resin structure 192 and attached to the empty loop space 70 of the second alternative looped structure 52. The chemotherapeutic agent 190 is designed to be controllably released into the mammal's body at a specific rate.

FIG. 7B shows the second alternative looped structure 52 of FIG. 7 with a surgical tack 194 attached to the empty loop space 70. The tacks are used primarily in hernia procedures as discussed in detail above. The looped configuration of the second alternative looped structure 52 may be more suited to attachment of objects as the loop is a closed structure and there is less opportunity for the object to disconnect or break away from the loop structure than a length of suture with an object manually attached as described above. It should be noted that the embodiments of FIGS. 7A and 7B could also be used with a single length of suture 42 as shown in FIG. 6, or with a length of converging retainers as shown in FIG. 1A and discussed in detail above.

The embodiments of FIGS. 6 and 7 are also applicable for use in anchoring a seroma evacuation tube assembly 222, as shown in FIG. 7C. Typically, such a tube is placed at the end of a procedure, such as an endoscopic procedure, within the wound to allow any pockets of fluid that may form to drain. The tube assembly 222 has a first end (not shown) which is positioned within the incision, or existing pocket of fluid. It should be noted that the located of the first end is extremely important. If the first end is placed too shallow, it will not make sufficient contact with the fluid pocket and be able to effectively drain it. If the first end is placed too deeply, it will surpass the fluid pocket and make contact with the surrounding tissue and will not be effective in draining the seroma. Tube assembly also has a second end 226 that is opposed to the first end and is located at the surface of the skin 228. A pair of opposing tabs 230 extend from the second end 226 in opposed directions to form a platform to secure the tube assembly 222. Once secure, the tabs 230 help to maintain a fixed position for the tube assembly 222. Each tab 230 has an anchoring hole 232. Each anchoring hole is used to secure the tube assembly 222 to the skin surface 228. This is done by placing a few sutures or stitches in the skin surface 228 to effectively secure the position of the tube assembly relative to the skin surface. With the present invention, the securing of the tube assembly 222 to the skin surface can be accomplished quickly and easily. The user inserts either a suture length 42 (as shown in FIG. 6) or a second alternative loop suture (as shown in FIG. 7) into the anchoring hole 232 using the suture insertion device 26. Once a portion of the length or loop is embedded into the tissue, the suture insertion device 26 is retrieved leaving a length of self-retaining suture within the tissue. Once the suture is fixed to the tube assembly 222, it effectively anchors the tube assembly in place. This procedure is an improvement over the prior art in that the anchoring method may be accomplished by someone other than a doctor, such as a nurse or medical technician. Furthermore, because the anchoring method of the present invention does not require any movement of the tube assembly 222 during suturing, it is an appropriate application for this procedure. The absence of having to tie off the suture or move the needle in and out during suturing enables the medical professional to quickly and accurately secure the tube assembly 222 into place with minimum pain to the patient and little or no movement of the tube assembly during the process.

FIG. 8 shows a further alternative embodiment of the present invention. FIG. 8 shows a first alternative looped suture 74 having a first alternative loop half 76 and a second alternative loop half 78. The first alternative loop half 76 includes a first alternative section 80, a second alternative section 82 an intermediate section 83 in between the first 80 and second 82 alternative sections. The first alternative section 80 has first alternative retainers 84 extending from the suture 74 in a first direction shown by arrow 86. The second alternative section 82 has second alternative section retainers 88 extending therefrom in a second direction shown by arrow 90. The first 84 and second 88 alternative section retainers both face the intermediate section 83 and thus each other.

The second alternative loop half 78 is similarly structured to the first alternative loop half 76. The second half 78 includes a third section 92, a fourth section 94 and a second intermediate section 96. The second intermediate section 96 is located between the third 92 and fourth 94 sections. The third section 92 has a plurality of third retainers 98 extending from the periphery of the length of the third section in the second direction, indicated by arrow 90. Similarly, the fourth section 94 has a plurality of fourth retainers 100 extending from the periphery of the length of the fourth section in a first direction, indicated by arrow 86. Because the first and second directions are opposed, as discussed above, the third retainers 98 and the fourth retainers 100 face the second intermediate section 96 and thus each other. The spaces between the first alternative loop half 76 and the second alternative loop half 78 is first alternative empty loop space 102 and has no retainers thereon.

The embodiment of FIG. 8 is shown in FIG. 9 with a mesh sling 91 attached thereto. This enables the assembly of FIG. 11 to support an object such as a bladder neck without cutting into the tissue and also effectively distributing the support load across the sling.

In use as a support for an object, such as the suspension of a bladder neck, the suture insertion device 26 receives a portion of the first intermediate section 83 within its recess 34. The first alternative empty loop space 102 and the mesh sling 91 attached thereto between the first alternative loop half 76 and the second alternative loop half is located under a body part 72 to be supported, such as the bladder neck, as shown diagrammatically in FIG. 11. It should be noted that the sling 91 may be looped over the empty loop space or it may be fixed thereto. The user places the intermediate section 83 within the recess 34 of the suture insertion device 26. The suture insertion device 26 is then inserted into a section of the body of the mammal, typically within a section of tissue that will provide support for the first alternative looped suture 74 upon removal of the suture insertion device, such as a section of muscle. As the suture insertion device 26 moves in a forwardly direction, the finger 36 helps to hold the first alternative looped suture within the recess 34 during forward travel of the suture insertion device. The sharpened underside 38 of the suture insertion device 26 cuts through the mammalian tissue to form an insertion pathway. In addition, as the first alternative looped suture 74 moves in a forwardly direction, the first alternative retainers 84 and second alternative retainers 88 retainers flex and remain close to the perimeter of the first alternative looped suture. When the first alternative retainers 84 and the second alternative retainers 88 of the first alternative looped suture 74 have been completely inserted into the section of tissue, the user stops the forward travel of the suture insertion device 26. The user then begins to remove the suture insertion device 26 by moving the suture insertion device in a direction opposed to the insertion pathway. As this occurs, the opposed movement of the suture insertion device 26 enables the first alternative looped suture 74 to free itself from its location within the recess 34. The finger 36 no longer is able to hold the intermediate section 83 within the recess 34 when the suture insertion device 26 travels in an opposite direction from the insertion pathway. As a result, the intermediate section 83 is freed from its position within the recess 34, and the suture insertion device 26 may be completely removed from the tissue of the mammal by reversing the direction taken on the insertion pathway. At this time any movement of the first alternative loop half 76 in a direction opposed to the insertion pathway would result in the first alternative retainers 84 and the second alternative retainers 88 becoming rigid and opposing movement in a direction opposed to the insertion pathway. This also results in the first alternative retainers 84 and second alternative retainers 88 extending outwardly relative to the periphery of the first alternative looped suture 74 and into the surrounding body of the mammal to secure the position of the suture at that location.

Once the suture insertion device 26 is removed from the body of the mammal, the suture insertion device is then used to insert the second alternative loop half 78 of the first alternative looped suture 74 within the body of the mammal. As discussed above, the position of the first alternative empty loop space 102 and mesh sling 91, between the first alternative loop half 76 and the second alternative loop half 78, are checked to ensure that they remain located under the bladder neck to provide support. Thus, with the first alternative loop half 76 already inserted, the user, typically a surgeon or other medical professional, would insert the second alternative loop half 78 into an alternative section of tissue that would be able to provide effective support to the organ. This is accomplished by inserting both halves of the first alternative looped suture 74 at particular locations and angles within the mammalian tissue, such that when both halves of the first alternative looped suture 74 are completely inserted, would support and hold the organ in a position or location as medically or surgically desired. FIG. 11 provides a diagrammatic depiction of such an arrangement where the body part 72 is supported by the two halves of the first alternative looped suture 74.

The insertion of the second alternative loop half 78 of the first alternative looped suture 74 is similar in many respects to the steps taken to insert the first alternative loop half 76. To insert the second alternative loop half 78, the user places the second intermediate section 96 within the suture insertion device recess 34 and inserts the suture insertion device 26 into the body of a mammal at the appropriate location and angle relative to the insertion pathway taken with the first alternative loop half 76 to ensure that the subject body part will be supported when the second alternative loop half 78 is fully inserted. Similarly, as discussed above, the user inserts the suture insertion device 26 into a section of the body of the mammal, typically within a section of tissue, such as a section of muscle. As the suture insertion device 26 moves in a forwardly direction, the suture insertion device holds the second alternative looped half 78 within its recess 34 at the second intermediate section 96. The finger 36 helps to hold the second intermediate section 96 within the recess 34 during forward travel of the suture insertion device 26. The sharpened underside 38 of the suture insertion device 26 cuts through the mammalian tissue to form a second insertion pathway. During insertion, the third 98 and fourth 100 retainers flex inwardly toward the periphery of the first alternative looped suture 74 so as to ease forward movement of the suture insertion device 26. When the second alternative loop half 78 has been completely inserted into the selected section of muscle, the user stops the forward travel of the suture insertion device 26. The user then begins to remove the suture insertion device 26 by moving it in a direction opposed to the second insertion pathway. As this occurs, the opposed movement of the suture insertion device 26 enables the second intermediate section 96 to free itself from its location within the recess 34. The finger 36 is no longer able to hold onto the second intermediate section 96 within the recess 34 when the suture insertion device 26 travels in an opposite direction from the second insertion pathway. As a result, the second alternative loop half 78 is freed from its position within the recess 34, and the suture insertion device 26 may be completely removed from the tissue of the mammal by reversing the direction taken on the second insertion pathway. This also results in the third 98 and fourth 100 retainers extending outwardly relative to the periphery of the first alternative looped suture 74 and into the surrounding body of the mammal to secure the position of the second alternative loop half 78 at that location.

Once the first alternative loop half 76 and second alternative loop half 78 of the first alternative looped suture 74 have been inserted into the body of a mammal, the first alternative empty loop space 102 between the first 76 and second 78 halves should be taught and properly positioned under the body part 72 to be supported, as shown in FIG. 11. Any reverse movement of the suture length 10 along the first alternative loop half 76 would result in the first alternative 84 and second alternative 88 retainers becoming rigid and opposing movement in a direction opposed to the first insertion pathway. This enables the first alternative loop half 76 to continue to support the body part 72. Similarly, any reverse movement of the second alternative loop half 78 would result in the third 98 and fourth 100 retainers becoming rigid and opposing movement in a direction opposed to the second insertion pathway. This enables the second alternative loop half 78 to continue to support the body part at the intended location.

A further alternative use for the embodiment of FIG. 8 is shown in FIGS. 10 and 12. FIG. 10 shows the embodiment of FIG. 9 in assembly with the suture insertion device 26. FIG. 12 shows the use of the looped suture 74 used in the closure of an incision 150 made following an endoscopic procedure. During such a procedure, a relatively small incision is made at the surface of the body. However, the incision, as can be seen in the figure, may be relatively deep to provide access to the desired surgical objective. Upon completion of the procedure the incision 150 made must be effectively closed throughout its full depth in order to prevent the formation of fluid pockets called seromas that can harbor infection. A deep incision requires suturing at a number of levels of different tissue. Further, it is often times difficult to properly close the deepest levels of tissue using present equipment and techniques because of insufficient space to manipulate suture needles. As a result, the present invention provides a significant advancement in this area.

In closing an endoscopic port closure, the user may use the loop suture 74 shown in FIG. 12 and ensure that a portion of the first intermediate section 83 was received within the recess 34 of the suture insertion device 26. In the case of a port closure, the layers of tissue needing closure may include fascia 152, muscle 154, fat 156, and skin 158. The incision 150 creates a pair of opposing incision walls, 151, 153.

As can been seen in FIG. 12, the deepest portion of the incision is narrow. As a result, it is more challenging for a surgeon to effectively manipulate the tissue in this area to properly close the incision. In view of this challenge, it is most effective to use a curved, detached suture insertion device in this application rather than a straight suture insertion device or an attached suture insertion device that would require detachment and tying off. It should be noted that where there is more space or a different location where the tissue is more accessible, a straight suture insertion device or an attached suture insertion device may be more effective. The curved suture insertion device 27, as shown in FIG. 12A offers the advantage of being able to create curved insertion pathways that can easily weave between two sides of an incision, as shown in FIG. 12 to effectively close all layers of tissue in the incision.

The curved suture insertion device 27, as shown in FIG. 12A, is the same in all respects to the suture insertion device 26 shown in FIGS. 2A, 2B and 4 except that the curved device has a radius of curvature along the suture insertion device body 25A rather than a straight length. Thus, reference to the suture insertion device recess 34 and the other features of the suture insertion device will be the same for both configurations where applicable. It should also be noted that the radius of curvature of the suture insertion device body 25A, like the length and diameter, are determined by the application and suture size used.

To initiate the closing of the port closure of FIG. 12, the curved suture insertion device 27 is inserted into the deeper tissues, such as the muscle 152 at point A. The curved suture insertion device is pushed into the incision wall 153 at point A until at least a portion of the curved suture insertion device body 25A and the first alternative loop half 76 held within the recess 34 are embedded in the muscle 154 tissue. At that point, the curved suture insertion device 27 is pivoted toward the incision as indicated by arrow B so that a portion of the first end 28 of the device 27 and the loop half exit the incision wall 153 and reenter incision wall 151. As the user continues to pivot the curved suture insertion device 27, a portion of the curved suture insertion device body 25A that holds the first alternative loop half 76 is urged forwardly and becomes embedded in the fascia tissue 152. As discussed above, the finger 36 helps to hold the first alternative loop half 76 within the recess 34 during forward travel of the curved suture insertion device 27. Also as discussed above, as the first alternative loop half 76 moves in a forwardly direction, the first alternative retainers 84 and second alternative retainers 88 retainers flex and remain close to the perimeter of the first alternative loop half 76. Moreover, as the curved suture insertion device is inserted into the incision wall 153 and rotated therein, it creates a curved insertion pathway 160. Once the surgeon has effectively embedded at least a portion of the first alternative loop half 76 in the fascia tissue 152, forward movement of the curved insertion device and the first alternative loop half 76 stop at point C in FIG. 12B.

To retrieve the curved suture insertion device 27, the user reverses the travel along the curved insertion pathway 160. As this occurs, the opposed movement of the curved suture insertion device 27 enables the first alternative loop half 76 to free itself from its location within the recess 34. The finger 36 no longer is able to hold the intermediate section 83 within the recess 34. As a result, the intermediate section 83 is freed from its position within the recess 34, and the curved suture insertion device 27 may be completely retrieved from the incision wall 153 at the point of entry A. To secure the first loop half 76 within the incision and effectively bind the incision walls 151,153 together, the user would pull on the embedded first alternative loop half 76 at the first alternative empty loop space 102 to create tension in the loop half and pull the incision walls 151, 153 together. At this time any movement of the first alternative loop half 76 in a direction opposed to the curved insertion pathway 160 would result in the first alternative retainers 84 and the second alternative retainers 88 becoming rigid and opposing movement in a direction opposed to the insertion pathway. This also results in the first alternative retainers 84 and second alternative retainers 88 extending outwardly relative to the periphery of the first alternative looped half 76 and into the surrounding body of the tissue to secure the position of the first alternative loop half 76 at that location.

Once the curved suture insertion device 27 is removed, an attached, curved needle 23 is then used to insert the second alternative loop half 78 of the first alternative looped suture 74 to close the remaining layers of tissue. An attached curved needle 23 is appropriate in this application because the suture pathway for closing the second half of the incision is upward, out of the incision where the surgeon will have adequate space to tie off the suture ends. The attached curved needle 23 is fixedly attached to the second intermediate section 96 of the second alternative loop half 78. It should be noted that the curved suture insertion device 23 may also be fixedly attached to two free ends of a length of self-retaining suture rather than a loop end. The function of the fixed suture insertion device and self-retaining suture attached thereto remains the same.

The insertion of the second alternative loop half 78 is similar in many respects to the steps taken to insert the first alternative loop half 76. The user inserts the curved needle 23 with the second alternative loop half 78 fixed thereto into the tissue on the opposed side of the incision from the exit point of the first alternative loop half 76 at point D in FIG. 12. Similarly with the first insertion of the curved suture insertion device 27, the curved suture insertion device 23 is inserted into the incision wall 151 and moved inwardly. Then the curved suture insertion device 23 is pivoted so that the first end 28 of the suture insertion device exits the incision wall 151 and reenters the opposing incision wall 153 at point E. The curved suture insertion device 23 is inserted as discussed above into the incision wall 153 and then pivoted so as to cause the first end 28 to exit the incision wall 153 and reenter the opposing wall 151 at point F. Once the curved suture insertion device 23 exits the skin 158, the user pulls on the second alternative loop half 78 so that it is in tension Once the second alternative loop half 78 is pulled taught, the lengths extending outside the skin may be cut back to reduce accidental pulling or catching. It should be noted that the second portion of the above closing procedure may be accomplished with a detached suture insertion device using the suture of the present invention. Alternatively, a straight suture insertion device, attached or detached, may be used in the appropriate circumstance. The use of curved and straight, and attached and detached suture insertion devices will vary depending upon the particular procedural situation as discussed above.

The above provide examples of several different types of suture configurations that may be used for support of body parts, to bind wounds or close incisions created during surgical procedures. FIG. 13 shows a further alternative loop configuration that has multiple loop sections. A multi-sectional looped suture may be used in a number of different surgical or medical procedures, including the support of an organ, such as the bladder neck discussed above. It is anticipated that the multi-sectional looped suture may also have other applications such as the support or binding of other body parts, or the binding or closing of wounds or incisions that require a multi-point approach in the repair or procedure. For example, in a wound that has multiple tears or rips, a multi-sectional loop may be an appropriate suture for repair in that it may be able to pull all sections of the wound together without having to resort to the use of multiple lengths of suture. In addition, one advantage of using a multi-sectional looped suture is that the self-retaining sutures are inserted into the tissue below the skin line and thus pull the tissue or sections of the wound together so that there may not need to be any sutures on the skin surface. This results in the ability to allow the wound to heal without additional sutures on the skin surface which may minimize the chance of further scarring.

FIG. 13 shows a length of suture where the ends are joined to form a multi-sectional loop 104. The multi-sectional loop 104 has three sections 105. Each section 105 has a first length 106, a second length 108, and an intermediate length 110. The first length 106 has first length retainers 114 extending peripherally from the first length in a first direction shown by arrow 116. The second length 108 has second length retainers 118 extending peripherally from the second length in a second direction shown by arrow 120 which is opposed to the first direction. The first length retainers 114 along the first length 106 and the second length retainers 118 along the second length 108 face the intermediate length 110 and each other. The empty loop space 112 is that length of the multi-sectional loop 104 that is not an intermediate length 110 that has no retainers thereon. The empty loop space 112 on the multi-sectional loop 104 also separates each section 105.

In use, the multi-sectional loop 104 may be used to support a body part, or to close a multi-angled wound or incision. To close a wound, one intermediate length 110 of one of the sections 105 of the multi-sectional loop 104 is inserted into recess 34 of the suture insertion device 26. The suture insertion device 26 is then inserted into the side of a section of tissue that is the subject of the wound or incision to be closed. With the intermediate length 110 of one of the sections 105 of the multi-sectional loop 104 held within the recess 34 of the suture insertion device 26, the suture insertion device is moved in a forwardly direction. As the suture insertion device 26 moves, it holds a portion of the intermediate length 110 within its recess 34. The sharpened underside 38 of the suture insertion device 26 cuts through the mammalian tissue to form a first insertion pathway indicated by the dashed line 122. As the section 105 moves in a forwardly direction, the first length 114 and second length 118 retainers flex and remain close to the perimeter of the length of the multi-sectional loop 104. When the first length 114 and second length 118 retainers are completely embedded within the tissue, the user stops the forward travel of the suture insertion device 26. The user then begins to remove the suture insertion device 26 by moving it in a direction opposed to the first insertion pathway 122. As this occurs, the opposed movement of the suture insertion device 26 enables the intermediate length 110 to free itself from its location within the recess 34. The finger 36 no longer is able to hold the intermediate length 110 within the recess 34 when the suture insertion device 26 travels in an opposite direction from the insertion pathway 122. As a result, the inserted section of the multi-sectional loop 104 is freed from its position within the recess 34, and the suture insertion device 26 may be completely removed from the tissue of the mammal by reversing the direction taken on the insertion pathway. At this time any movement of the inserted section in a direction opposed to the first insertion pathway 122 would result in the first length retainers 114 and second length retainers 118 becoming rigid and would oppose movement in a direction opposite to the first insertion pathway 122. This also results in the first length retainers 114 and second length retainers 118 extending outwardly relative to the periphery of the inserted section 105 of the multi-sectional loop 104 and into the surrounding tissue to secure the position of the inserted section 105 and the section of tissue held by that inserted section.

The process of wound or incision closure is repeated as described above with the insertion of the suture insertion device 26 into a second section of tissue to create a second insertion pathway 124 to bind the first 126 and second 128 sections of tissue together, as shown in FIG. 14A. The process is repeated yet again where the user inserts the suture insertion device into the third section of tissue 130 to create a third insertion pathway 132 and to bind the third section of tissue with the first 126 and second 128 sections of tissue. FIG. 14B shows the multi-sectional loop 104 in its fully installed position.

It is appreciated that the multi-sectional loop 104 described above may include additional loop sections and may be used to bind wounds that have multiple sections, not presently shown in FIGS. 14A and 14B. It is further appreciated that the multi-sectional loop 104 described above or other multi-sectional loops having additional converging loop portions may be used on surgical or medical procedures, such as the bladder support procedure described above. It is appreciated that the multi-sectional loop configurations provides additional support points (more than two) in such a procedure. Additional support points may result in more effective support and thus a greater chance of success of the procedure.

FIG. 15 shows a further alternative embodiment 170 of the present invention. A first free length of suture 172 is shown having first alternating retainers 174 extending peripherally from the length at alternating intervals in a first direction shown by arrow 176. The embodiment also has a second free length of suture 178 having second alternating retainers 180 extending peripherally from the length at alternating intervals in a second direction shown by arrow 182. The first 172 and second 178 free lengths of suture are separated by a midsection 184. The first alternating retainers 174 are located along the length of the free length of suture 172 at first intervals 186 and the second alternating retainers 180 are located along the length at second intervals 188 so that when the free length of suture 170 is inserted into the tissue of a mammal, and the first 172 and second 178 free lengths are placed relatively adjacent to one another, there is no overlap of first intervals 186 with the second intervals 188, and thus the first alternating retainers 174 do not overlap the second alternating retainers 180 as shown in FIG. 15.

FIG. 16 shows a further alternative embodiment of the present invention. FIG. 16 shows a multi-sectional length of suture 196 having free ends 198, 200. The suture 196 has four sections of retainers thereon. The first section 202 has first section retainers 204 extending outwardly in a first direction shown by arrow 206. The second 208 and third 210 sections have converging retainers thereon. The second section 208 has second section retainers 212 facing a second direction shown by arrow 214 and the third section 210 has third section retainers 216 facing in the first direction. The first and second directions are opposed and thus the second 212 and third 216 section retainers face each other at converging point 215. The third section retainers 216 are also in the same direction as the first section retainers 204. The fourth section 218 has fourth section retainers 220 that face in the second direction and face away from the third section retainers 216 but face in the same direction as the second section retainers 212.

In use, this embodiment would likely be used to anchor or support an object or organ, or for closing an endoscopic access port. The second 208 and third 210 sections would first be anchored into tissue using the suture insertion device 26 described above. The suture insertion device 26 is shown in FIG. 16 using a straight length 32, however, it is anticipated that a curved suture insertion device 27 may also be used when appropriate. Subsequently, the first section 202 would be anchored into neighboring tissue using a curved needle 23, (as shown) or straight needle, that is either attached (as shown) or detachable from the suture using the suture insertion device of the present invention. Similarly, the fourth section 218 would be anchored in the same fashion in neighboring tissue by inserting either a straight or curved detachable suture insertion device as described above, or by an attached conventional needle or curved needle 23 as shown. This embodiment provides for the flexibility in surgical applications where the anchoring of some section of self-retaining suture is needed where access to the area is limited while other sections may have more accessibility and an attached needle may be more appropriate.

It is anticipated that the detachable suture insertion device may be automated to some degree. It is anticipated that the suture insertion device may include a mechanism for moving the needle body from a first, initial position to a second installed position within the body. It is anticipated that the mechanism would be moveably linked to the needle body so that during installation, the mechanism would be able to move the needle body, and thus the recess and suture therein, from a first position to a second installed position within the body upon activation. It is further anticipate that the mechanism may be spring loaded. Such a mechanism would provide a further level of accuracy and efficacy in placing a self-retaining suture in a desired location, especially in situations that are currently present challenges in that regard. A spring loaded device would provide further accuracy because the length of extension and retraction of the needle body could be predetermined with great accuracy. Use of an automated mechanism would enable a surgeon to place the suture and any attachment in a specific location without having to reach that location and with greater confidence in the accuracy of the placement. Incorporation of the present invention would further increase overall efficacy of the procedure and minimize pain and possible infection to the patient. These effects would decrease the overall recovery time and decrease the overall cost of the procedure.

Because it is anticipated that the present invention may be automated to some degree, it is anticipated that the present invention may be used in an automated surgical system. Due to the high level of accurate placement of the suture and any attachment, the present invention is an ideal candidate to be used with a robotic surgical system or minimally invasive surgical procedures.

While the invention has been described in detail with respect to specific preferred embodiments thereof, numerous modifications to these specific embodiments will occur to those skilled in the art upon a reading and understanding of the foregoing description; such modifications are embraced within the scope of the present invention.

Megaro, Matthew A., Megaro, Anthony R.

Patent Priority Assignee Title
11234689, Nov 03 2008 Ethicon, Inc Length of self-retaining suture and method and device for using the same
11690614, Mar 23 2011 Cilag GmbH International Self-retaining variable loop sutures
Patent Priority Assignee Title
1142510,
1248825,
1321011,
1558037,
1728316,
1886721,
2094578,
2201610,
2232142,
2254620,
2347956,
2355907,
2421193,
2452734,
2472009,
2480271,
2572936,
2684070,
2736964,
2779083,
2814296,
2817339,
2866256,
2910067,
2928395,
2988028,
3003155,
3066452,
3066673,
3068869,
3068870,
3082523,
3123077,
3166072,
3187752,
3206018,
3209652,
3209754,
3212187,
3214810,
3221746,
3234636,
3273562,
3352191,
3378010,
3385299,
3394704,
3494006,
3522637,
3525340,
3527223,
3545608,
3557795,
3570497,
3586002,
3608095,
3608539,
3618447,
3646615,
3683926,
3700433,
3716058,
3720055,
3748701,
3762418,
3825010,
3833972,
3845641,
3847156,
3889322,
3918455,
3922455,
3941164, Feb 13 1975 Process for making barbed material
3963031, Dec 11 1974 Ethicon, Inc. Juncture-lubricated needle-suture combination
3977937, Oct 10 1973 System for making a non-woven sheet by creating an electrostatic field action
3980177, May 31 1972 Johnson & Johnson Controlled release suture
3981051, Mar 16 1970 Bristle-like gripping device
3981307, Jul 01 1974 Ethicon, Inc. Thermal attachment of surgical sutures to needles
3985138, Aug 17 1970 Preformed ligatures for bleeders and methods of applying such ligatures
3990144, Jun 30 1975 Suture cutter and removal means
4006747, Apr 23 1975 Ethicon, Inc. Surgical method
4008303, Aug 30 1971 American Cyanamid Company Process for extruding green polyglycolic acid sutures and surgical elements
4027608, Feb 20 1976 Raymond, Kelder Suturing device
4043344, Sep 20 1976 American Cyanamid Company Non-absorbable surgical sutures coated with polyoxyethylene-polyoxypropylene copolymer lubricant
4052988, Jan 12 1976 Ethicon, Inc. Synthetic absorbable surgical devices of poly-dioxanone
4069825, Jan 28 1976 Surgical thread and cutting apparatus for the same
4073298, Aug 03 1976 New Research & Development Lab., Inc. Wound clip
4137921, Jun 24 1977 Ethicon, Inc. Addition copolymers of lactide and glycolide and method of preparation
4159686, Dec 01 1975 Manufacture Belge d'Aiguilles S.A. Process for smoothing the eye of a needle and needle made thereby
4182340, Sep 10 1970 Hoof repair
4186239, Dec 06 1976 Berkley & Company, Inc. Monofilament weed cutters
4198734, Apr 04 1972 Self-gripping devices with flexible self-gripping means and method
4204541, Jan 24 1977 Surgical instrument for stitching up soft tissues with lengths of spiked suture material
4204542, Aug 03 1977 CarboMedics, Inc. Multistrand carbon coated sutures
4259959, Dec 20 1978 Suturing element
4278374, May 16 1978 9110003 ONTARIO INC Apparatus for screw-threading
4300424, Mar 14 1977 American Greetings Corporation Candle manufacturing system including wick cutting means
4311002,
4313448, Jan 28 1980 MEDTRONIC PUERTO RICO, INC Myocardial sutureless lead
4316469, Sep 07 1976 Surgical apparatus for suturing soft tissues with lengths of suturing material with spicules
4317451, Feb 19 1980 Ethicon, Inc. Plastic surgical staple
4372293, Dec 24 1980 Apparatus and method for surgical correction of ptotic breasts
4428376, May 02 1980 Ethicon Inc. Plastic surgical staple
4430998, Jun 01 1982 Thoratec Laboratories Corporation Wound closing device
4434796, Apr 07 1981 VSESOJUZNY NAUCHNO-ISSLEDOVATELSKY I ISPYTATELNY INSTITUT MEDITSINSKOI TEKHNIKI Surgical staple, a method of and forceps for its removal
4449298, Jul 22 1981 Siemens Aktiengesellschaft Hand-operated apparatus for peeling off the outer jacket layer of electric lines and cables
4454875, Apr 15 1982 ZIMMER, INC Osteal medical staple
4467805, Aug 25 1982 Skin closure stapling device for surgical procedures
4490326, Jul 30 1981 ETHICON INC Molding process for polydioxanone polymers
4492075, Jan 26 1982 Rovatex Method for producing fiber spun yarns and the fiber spun yarns obtained with said method
4493323, Dec 13 1982 University of Iowa Research Foundation Suturing device and method for using same
4505274, Oct 17 1980 Propper Manufacturing Co., Inc. Suture clip
4510934, May 13 1983 Suture
4531522, Jun 20 1983 Ethicon, Inc. Two-piece tissue fastener with locking top and method for applying same
4532926, Jun 20 1983 Ethicon, Inc. Two-piece tissue fastener with ratchet leg staple and sealable latching receiver
4535772, Mar 10 1983 Kells Medical, Incorporated Skin closure device
4548202, Jun 20 1983 Ethicon, Inc. Mesh tissue fasteners
4553544, Sep 20 1982 JANOME SEWING MACHINE CO. LTD. Suturing instrument for surgical operation
4610250, Oct 08 1985 United States Surgical Corporation Two-part surgical fastener for fascia wound approximation
4610251, Apr 19 1985 Surgical staple
4635637, Mar 29 1984 Surgical suture
4637380, Jun 24 1985 Surgical wound closures
4653486, Apr 12 1984 Fastener, particularly suited for orthopedic use
4669473, Sep 06 1985 Smith & Nephew, Inc Surgical fastener
4676245, Feb 09 1983 Interlocking surgical staple assembly
4689882, Oct 22 1984 United Technologies Automotive, Inc. Hand tool and method for removing insulation from wire-wound ignition cable
4702250, Sep 02 1983 Galil Advanced Technologies Ltd. Surgical implement particularly useful for suturing prosthetic valves
4712553, May 30 1985 CORVITA CORPORATION, A CORP OF FL Sutures having a porous surface
4719917, Feb 17 1987 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP OF DE Surgical staple
4741330, May 20 1982 Method and apparatus for anchoring and manipulating cartilage
4750910, Jan 22 1986 Mitsui Toatsu Chemicals, Incorporated Indigo blue-colored bioabsorbable surgical fibers and production process thereof
4776337, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4832025, Jul 30 1987 Sherwood Services AG Thermoplastic surgical suture with a melt fused length
4841960, Feb 10 1987 Method and apparatus for interosseous bone fixation
4865026, Apr 23 1987 Sealing wound closure device
4873976, Feb 28 1984 Surgical fasteners and method
4887601, Nov 06 1987 United States Surgical Corporation Adjustable surgical staple and method of using the same
4895148, May 16 1988 Concept, Inc. Method of joining torn parts of bodily tissue in vivo with a biodegradable tack member
4898156, May 18 1987 MITEK SURGICAL PRODUCTS, INC , A MA CORP Suture anchor
4899743, Dec 15 1987 MITEK SURGICAL PRODUCTS, INC , A MA CORP Suture anchor installation tool
4900605, Sep 16 1988 Bristle pile textile for garment applications
4905367, Nov 08 1988 CORVITA CORPORATION, A CORP OF FL Manufacture of stretchable porous sutures
4930945, May 20 1988 Mitsubishi Materials Corporation; Mitsubishi Metal Corporation Insert rotary cutter
4932962, May 16 1989 InBae, Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
4946468, Jun 06 1989 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
4948444, Sep 23 1987 SOCIETE LYONNAISE DES EAUX SOCIETE ANONYME Process for production of a bundle of hollow semi-permeable fibers
4950258, Jan 28 1988 JMS CO , LTD Plastic molded articles with shape memory property
4950285, Nov 27 1989 Suture device
4968315, Dec 15 1987 MITEK SURGICAL PRODUCTS, INC , A CORP OF MA Suture anchor and suture anchor installation tool
4976715, May 20 1986 Concept, Inc. Repair tack for bodily tissue
4979956, Oct 30 1987 Stryker Technologies Corporation Device and method for tendon and ligament repair
4981149, May 16 1989 RHONE-POULENC RORER PHARMACEUTICALS INC Method for suturing with a bioabsorbable needle
4994073, Feb 22 1989 United States Surgical Corp. Skin fastener
4994084, Jun 23 1989 Reconstructive surgery method and implant
4997439, Jan 26 1989 CHEN, LANA S Surgical closure or anastomotic device
5002550, Jun 06 1989 Mitek Surgical Products, Inc. Suture anchor installation tool
5002562, Jun 03 1988 Surgical clip
5007921, Oct 26 1989 Surgical staple
5007922, Nov 13 1989 Ethicon, Inc. Method of making a surgical suture
5026390, Oct 26 1989 Surgical staple
5037422, Jul 02 1990 Smith & Nephew, Inc Bone anchor and method of anchoring a suture to a bone
5037433, May 17 1990 Endoscopic suturing device and related method and suture
5041129, Jul 02 1990 Smith & Nephew, Inc Slotted suture anchor and method of anchoring a suture
5046513, May 18 1987 Mitek Surgical Products, Inc. Method for anchoring suture to bone
5047047, Oct 26 1988 Wound closing device
5053047, May 16 1989 Suture devices particularly useful in endoscopic surgery and methods of suturing
5084063, Sep 27 1989 United States Surgical Corporation Surgical needle-suture attachment
5089010, Sep 27 1989 United States Surgical Corporation Surgical needle-suture attachment possessing weakened suture segment for controlled suture release
5102418, Sep 27 1989 United States Surgical Corporation Method for attaching a surgical needle to a suture
5102421, Jun 14 1990 INNOVASIVE ACQUISITION CORP Suture anchor and method of forming
5103073, Aug 28 1987 Device for laser treatment of an object
5112344, Oct 04 1988 Covidien AG; TYCO HEALTHCARE GROUP AG Surgical instrument and method of utilization of such
5123911, Feb 27 1991 United States Surgical Corporation Method for attaching a surgical needle to a suture
5123913, Nov 27 1989 Suture device
5123919, Nov 21 1991 SULZER CARBOMEDICS, INC Combined prosthetic aortic heart valve and vascular graft
5127413, Aug 09 1990 Sinous suture
5133738, Sep 27 1989 United States Surgical Corporation Combined surgical needle-spiroid braided suture device
5141520, Oct 29 1991 GOBLE, E MARLOWE Harpoon suture anchor
5147382, Dec 08 1978 Ethicon, Inc. Elastomeric surgical sutures comprising segmented copolyether/esters
5156615, Sep 27 1989 United States Surgical Corporation Surgical needle-suture attachment for controlled suture release
5156788, Nov 14 1989 United States Surgical Corporation Method and apparatus for heat tipping sutures
5176692, Dec 09 1991 Method and surgical instrument for repairing hernia
5179964, Aug 30 1991 Surgical stapling method
5192274, May 08 1991 VENETEC INTERNATIONAL, INC Anchor pad for catheterization system
5192302, Dec 04 1989 KENSEY NASH CORPORATION A CORPORATION OF PA Plug devices for sealing punctures and methods of use
5192303, May 18 1987 Mitek Surgical Products, Inc. Suture anchor
5197597, Jun 05 1990 United States Surgical Corporation Suture retainer
5201326, Aug 30 1989 Hakle-Kimberly Deutschland GmbH Tampon for medical or hygienic purposes and method of making the same
5207679, Sep 26 1991 Mitek Surgical Products, Inc. Suture anchor and installation tool
5207694, Jun 18 1992 Surgical Invent AB Method for performing a surgical occlusion, and kit and applicator for carrying out the method
5217486, Feb 18 1992 MITEK SURGICAL PRODUCTS, INC Suture anchor and installation tool
5217494, Jan 12 1989 Tissue supporting prosthesis
5222508, Oct 09 1992 Method for suturing punctures of the human body
5222976, May 16 1989 Suture devices particularly useful in endoscopic surgery
5224946, Jul 02 1990 Smith & Nephew, Inc Bone anchor and method of anchoring a suture to a bone
5234006, Jan 18 1991 MEDFLEX INCORPORATED Adjustable sutures and method of using the same
5242457, May 08 1992 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
5246441, Sep 08 1989 Linvatec Corporation Bioabsorbable tack for joining bodily tissue
5258013, Jan 07 1991 United States Surgical Corporation Siliconized surgical needle and method for its manufacture
5259846, Jan 07 1991 UNITED STATES SURGICAL CORPORATION, Loop threaded combined surgical needle-suture device
5263973, Aug 30 1991 Surgical stapling method
5269783, May 13 1991 Tyco Healthcare Group LP Device and method for repairing torn tissue
5282832, Oct 09 1992 United States Surgical Corporation Suture clip
5292326, Sep 13 1990 United States Surgical Corporation Apparatus and method for subcuticular stapling of body tissue
5306288, Sep 05 1990 United States Surgical Corporation Combined surgical needle-suture device
5306290, Feb 12 1993 Mitek Surgical Products, Inc. Suture button
5312422, Jul 16 1992 Linvatec Corporation Endoscopic suturing needle
5320629, Jan 07 1991 ADVANCED SURGICAL, INC Device and method for applying suture
5330488, Mar 23 1993 Verres needle suturing kit
5330503, May 16 1989 Spiral suture needle for joining tissue
5336239, Jan 15 1993 Surgical needle
5342376, May 03 1993 Ethicon, Inc Inserting device for a barbed tissue connector
5342395, Nov 27 1991 Sherwood Services AG Absorbable surgical repair devices
5350385, Apr 28 1993 SYNERGISTIC MEDICAL TECHNOLOGIES, INC Surgical stab wound closure device and method
5352515, Mar 02 1992 Sherwood Services AG Coating for tissue drag reduction
5354271, Aug 05 1993 Vascular sheath
5354298, Jun 15 1992 United States Surgical Corporation Suture anchor installation system
5358511, May 18 1987 Mitek Surgical Products, Inc. Suture anchor
5363556, Mar 27 1992 General Electric Company Water jet mixing tubes used in water jet cutting devices and method of preparation thereof
5372146, Nov 06 1990 Method and apparatus for re-approximating tissue
5374268, May 13 1991 Tyco Healthcare Group LP Device and method for repairing torn tissue
5374278, Nov 14 1989 United States Surgical Corporation Method and apparatus for heat tipping sutures
5380334, Feb 17 1993 Smith & Nephew Dyonics, Inc. Soft tissue anchors and systems for implantation
5387227, Sep 10 1992 VASCUTECH ACQUISITION LLC Method for use of a laparo-suture needle
5391173, Feb 10 1994 Wilk Patent Development Corporation Laparoscopic suturing technique and associated device
5403346, Dec 31 1992 Self-affixing suture assembly
5411523, Apr 11 1994 GCL, L C ; MITEK SURGICAL PRODUCTS, INC Suture anchor and driver combination
5414988, Nov 04 1991 kabelmetal electro GmbH Device for twisting rope-shaped material with changing twist direction
5417691, May 20 1982 Apparatus and method for manipulating and anchoring tissue
5425746, Dec 13 1990 United States Surgical Corporation Suture-needle combination with cyanoacrylate tipped sutures
5425747, Oct 12 1993 Suture
5437680, May 14 1987 Suturing method, apparatus and system for use in endoscopic procedures
5450860, Aug 31 1993 W L GORE & ASSOCIATES, INC Device for tissue repair and method for employing same
5451461, Sep 01 1989 Ethicon, Inc. Thermal treatment of thermoplastic filaments for the preparation of surgical sutures
5462561, Aug 05 1993 Suture device
5464422, Jul 01 1993 W L GORE & ASSOCIATES, INC Suture needle
5464426, May 14 1993 Bonutti Skeletal Innovations LLC Method of closing discontinuity in tissue
5464427, Oct 04 1994 Synthes USA, LLC Expanding suture anchor
5472452, Aug 30 1994 Linvatec Corporation Rectilinear anchor for soft tissue fixation
5478353, May 14 1987 Suture tie device system and method for suturing anatomical tissue proximate an opening
5480403, Mar 22 1991 United States Surgical Corporation Suture anchoring device and method
5480411, Mar 03 1992 United States Surgical Corporation Method of suturing using a polyetherimide ester suture
5484451, May 08 1992 EHTICON, INC Endoscopic surgical instrument and staples for applying purse string sutures
5486197, Mar 24 1994 Ethicon, Inc Two-piece suture anchor with barbs
5500000, Jul 01 1993 FEAGIN, JOHN; GLISSON, RICHARD R Soft tissue repair system and method
5500991, Jan 13 1994 Ethicon, Inc. Needle and suture swaging and pull-testing method
5520084, Aug 17 1990 United States Surgical Corporation Apparatus and method for producing braided suture products
5520691, Nov 06 1990 Method and apparatus for re-approximating tissue
5522845, Sep 27 1994 MITEK SURGICAL PRODUCTS, INC Bone anchor and bone anchor installation
5527342, Dec 14 1993 Biomet Manufacturing, LLC Method and apparatus for securing soft tissues, tendons and ligaments to bone
5531760, Apr 14 1995 Skin closure clip
5531761, May 16 1989 Methods for suturing tissue sections
5531790, May 07 1992 MXM; Patrick, Frechet Device for extending living tissue
5533982, Oct 05 1993 United States Surgical Corporation Heat treated stainless steel needles
5536582, May 13 1993 Sherwood Services AG Aqueous silicone coating compositions, method of coating substrates with the same and coated surgical needles produced thereby
5540705, May 19 1995 Intuitive Surgical Operations, Inc Suturing instrument with thread management
5540718, Sep 20 1993 Apparatus and method for anchoring sutures
5545148, Oct 24 1992 Endoscopic sewing instrument
5546957, Sep 09 1993 BIP ACQUISITION COMPANY INC Biopsy needle
5549631, May 14 1993 Bonutti Skeletal Innovations LLC Method of closing discontinuity in tissue
5554171, May 18 1987 Mitek Surgical Products, Inc. Suture anchor
5569272, Jan 31 1991 M E D SYSTEMS, LTD Tissue-connective devices with micromechanical barbs
5571139, May 19 1995 Bidirectional suture anchor
5571175, Jun 07 1995 St. Jude Medical, Inc.; ST JUDE MEDICAL, INC Suture guard for prosthetic heart valve
5571216, Jan 19 1994 General Hospital Corporation, The Methods and apparatus for joining collagen-containing materials
5573543, May 08 1992 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
5584859, Oct 12 1993 Suture assembly
5593424, Aug 10 1994 PETERS SURGICAL Apparatus and method for reducing and stabilizing the circumference of a vascular structure
5601557, May 20 1982 Anchoring and manipulating tissue
5626590, Feb 10 1994 Wilk Patent Development Corporation Laparoscopic suturing technique and associated device
5626611, Feb 10 1994 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
5632753, Dec 31 1992 Surgical procedures
5643288, Jun 14 1995 DEXTERITY SURGICAL, INC Apparatus and method for laparoscopic urethropexy
5643295, Dec 29 1994 Methods and apparatus for suturing tissue
5643319, May 13 1991 United States Surgical Corporation Device for applying a meniscal staple
5645568, Nov 20 1995 INNOVASIVE ACQUISITION CORP Expandable body suture
5647874, May 20 1982 John O., Hayhurst Anchoring and manipulating tissue
5649939, Dec 08 1992 VASCUTECH ACQUISITION LLC Laparoscopic suture introducer
5653716, Dec 29 1994 Smith & Nephew, Inc Suture manipulating instrument with grasping members
5662654, Jun 04 1995 DEXTERITY SURGICAL, INC Bone anchor, insertion tool and surgical kit employing same
5662714, Jan 21 1994 M.X.M.; Patrick, Frechet Device for extending living tissues
5669935, Jul 28 1995 Ethicon, Inc. One-way suture retaining device for braided sutures
5676675, Sep 10 1992 VASCUTECH ACQUISITION LLC Laparo-suture needle and method for use thereof
5683417, Aug 14 1996 Suture and method for endoscopic surgery
5693072, Apr 14 1992 Blunt tip surgical needle
5695879, Nov 10 1994 B. Braun Surgical GmbH Surgical suture material and method of making and using same
5697976, Jun 15 1992 United States Surgical Corporation Bioabsorbable implant material
5702397, Feb 20 1996 INNOVASIVE ACQUISITION CORP Ligament bone anchor and method for its use
5702462, Jan 24 1996 Method of meniscal repair
5709692, Sep 16 1994 General Surgical Innovations Surgical instrument for placing suture or fasteners
5716358, Dec 02 1994 BIOMET C V Directional bone fixation device
5716376, Jun 28 1996 United States Surgical Corporation Absorbable mixture and coatings for surgical articles fabricated therefrom
5722991, Jun 07 1995 United States Surgical Corporation Apparatus and method for attaching surgical needle suture components
5723008, Jul 20 1995 Splint for repair of tendons or ligaments and method
5725557, May 18 1987 Mitek Surgical Products, Inc. Suture anchor
5728114, Aug 24 1994 Kensey Nash Corporation Apparatus and methods of use for preventing blood seepage at a percutaneous puncture site
5731855, Sep 27 1995 Sharp Kabushiki Kaisha Liquid crystal display device having a film for protecting interface between interlayer insulating film and underlying layer and manufacturing method thereof
5741277, Sep 04 1992 Boston Scientific Scimed, Inc Endoscopic suture system
5744151, Jun 27 1996 Silver-based pharmaceutical compositions
5763411, Oct 18 1993 VIVOLUTION A S Nondynamic fibrin monomer on bandages, sutures, prostheses and dressings
5765560, Dec 16 1991 ADEVA MEDICAL, GESELLSCHAFT FUR ENTWICKLUNG UND VERTRIEB VON MEDIZINISCHEN, IMPLANTAT-ARTIKELN MBH Trachostoma valve and tissue connector and housing for use as a part thereof
5766246, May 20 1992 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis
5779719, Dec 10 1992 Abbott Laboratories Device and method for the percutaneous suturing of a vascular puncture site
5782864, Apr 03 1997 Mitek Surgical Products, Inc. Knotless suture system and method
5807403, Nov 13 1992 AMS Research Corporation Medical anchor device with suture thread and method for implantation into bone
5807406, Oct 07 1994 Baxter International Inc Porous microfabricated polymer membrane structures
5810853, Jan 16 1996 Knotting element for use in suturing anatomical tissue and methods therefor
5814051, Jun 06 1997 MITEK SURGICAL PRODUCTS, INC Suture anchor insertion system
5843087, Jan 30 1997 DEPUY SYNTHES PRODUCTS, INC; DEPUY SYNTHES SALES, INC ; DEPUY SPINE, LLC; Depuy Synthes Products, LLC; DEPUY MITEK HOLDING CORPORATION; Synthes USA, LLC Suture anchor installation tool
5843178, Jun 20 1996 St. Jude Medical, Inc.; ST JUDE MEDICAL, INC Suture guard for annuloplasty ring
5855619, Jun 06 1994 CLARIAN HEALTH PARTNERS, INC Biomatrix for soft tissue regeneration
5863360, Mar 05 1994 The University of Nottingham Surface treatment of shape memory alloys
5887594, Sep 22 1997 BETH ISRAEL DEACONESS MEDICAL CENTER, INC Methods and devices for gastroesophageal reflux reduction
5891166, Oct 30 1996 Ethicon, Inc. Surgical suture having an ultrasonically formed tip, and apparatus and method for making same
5893856, Jun 12 1996 Mitek Surgical Products, Inc. Apparatus and method for binding a first layer of material to a second layer of material
5895395, Jul 17 1997 Partial to full thickness suture device & method for endoscopic surgeries
5895413, Mar 01 1996 Surgical suture
5897572, Oct 08 1997 Cornell Research Foundation, Inc. Microsurgical suture needle
5899911, Aug 25 1993 COOPERSURGICAL, INC Method of using needle-point suture passer to retract and reinforce ligaments
5916224, Jul 09 1997 ARMY, UNITED STATES OF AMERICA, THE SECRETARY OF, AS REPRESENTED BY Tendon repair clip implant
5919234, Aug 19 1996 MACROPORE, INC Resorbable, macro-porous, non-collapsing and flexible membrane barrier for skeletal repair and regeneration
5921982, Jul 30 1993 Systems and methods for ablating body tissue
5925078, Jan 19 1994 The General Hospital Corporation Methods and apparatus for joining collagen-containing materials
5931855, May 21 1997 Ethicon, Inc Surgical methods using one-way suture
5935138, Sep 24 1997 Ethicon, Inc Spiral needle for endoscopic surgery
5938668, Oct 07 1994 United States Surgical Corporation Surgical suturing apparatus
5941899, Apr 18 1997 United States Surgical Corporation Channel-bodied surgical needle and method of manufacture
5950633, Oct 02 1997 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Microsurgical technique for cosmetic surgery
5954747, Nov 20 1997 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC Meniscus repair anchor system
5964765, Apr 16 1998 AXYA HOLDINGS, INC ; TORNIER, INC Soft tissue fixation device
5964783, Nov 07 1997 Arthrex, Inc. Suture anchor with insert-molded suture
5968097, Dec 20 1996 FRECHET, PATRICK Elastic device for extending living tissue and having large capacity for elongation
5972024, Dec 24 1997 Medtronic, Inc Suture-staple apparatus and method
5984933, Dec 29 1994 Apparatus for suturing tissue
5993459, Oct 04 1996 Suture anchor installation system with insertion tool
5997554, Jun 14 1995 DEXTERITY SURGICAL, INC Surgical template and surgical method employing same
6001111, Jan 16 1998 Maquet Cardiovascular, LLC Low profile vessel occluder with and without detachable applicator
6012216, Apr 30 1997 Ethicon, Inc Stand alone swage apparatus
6015410, Dec 23 1997 Bionx Implants Oy Bioabsorbable surgical implants for endoscopic soft tissue suspension procedure
6024757, Apr 14 1998 Ethicon, Inc. Method for cutting a surgical suture tip
6027523, Oct 06 1997 Arthrex, Inc.; ARTHREX, INC Suture anchor with attached disk
6039741, Aug 15 1997 Method for surgical repair with hook-and-loop fastener
6042583, Jun 14 1995 DEXTERITY SURGICAL, INC Bone anchor-insertion tool and surgical method employing same
6045571, Apr 14 1999 Ethicon, Inc. Multifilament surgical cord
6056778, Oct 29 1997 Arthrex, Inc. Meniscal repair device
6063105, Jun 18 1996 United States Surgical Medical devices fabricated from elastomeric alpha-olefins
6071292, Jun 28 1997 Medtronic Vascular, Inc Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
6074419, Dec 31 1996 St. Jude Medical, Inc.; ST JUDE MEDICAL, INC Indicia for prosthetic device
6076255, Feb 16 1996 KABUSHIKI KAISHA AZWELL AZWELL INC Apparatus for manufacturing needle attached sutures
6083244, Sep 13 1996 TENDON TECHNOLOGY, LTD Apparatus and method for tendon or ligament repair
6102947, Jul 20 1995 Splint with flexible body for repair of tendons or ligaments and method
6106544, Oct 06 1994 Theratechnologies, Inc. Cutaneous harness for sutureless wound closing
6106545, Apr 16 1998 AXYA HOLDINGS, INC ; TORNIER, INC Suture tensioning and fixation device
6110484, Nov 24 1998 ANGIOTECH PHARMACEUTICALS, INC Collagen-polymer matrices with differential biodegradability
6129741, Jun 10 1995 Forschungszentrum Karlsruhe GmbH Surgical suturing needle
6146406, Feb 12 1998 Smith & Nephew, Inc. Bone anchor
6146407, Sep 11 1998 Bio Innovation, Ltd. Suture anchor installation devices and methods
6149660, Apr 22 1996 Covidien LP Method and apparatus for delivery of an appliance in a vessel
6159234, Aug 01 1997 Bonutti Skeletal Innovations LLC Method and apparatus for securing a suture
6160084, Feb 23 1998 Massachusetts Institute of Technology Biodegradable shape memory polymers
6163948, Apr 30 1997 Ethicon, Inc. Stand alone swage method
6165203, Sep 11 1998 Bio Innovation, Ltd. Suture anchor installation devices and methods
6168633, Aug 10 1998 Composite surface composition for an implant structure
6174324, Jul 13 1998 AXYA HOLDINGS, INC ; TORNIER, INC Suture guide and fastener
6183499, Sep 11 1998 Ethicon, Inc Surgical filament construction
6187095, Oct 31 1996 Process and apparatus for coating surgical sutures
6203565, Jun 28 1990 P Tech, LLC Surgical devices assembled using heat bondable materials
6206908, Jun 16 1994 United States Surgical Absorbable polymer and surgical articles fabricated therefrom
6214030, Aug 10 1998 MANI, INC Suture needle
6231911, Oct 29 1999 Ultra high speed hot dog incisor
6235869, Oct 20 1998 United States Surgical Corporation Absorbable polymers and surgical articles fabricated therefrom
6241747, May 03 1993 Ethicon, Inc Barbed Bodily tissue connector
6251143, Jun 04 1999 DePuy Orthopaedics, Inc Cartilage repair unit
6264675, Feb 04 2000 Single suture structure
6267772, May 27 1994 C. R. Bard, Inc. Implantable prosthesis
6270517, Feb 04 2000 Suture assembly and method
6315788, Feb 10 1994 United States Surgical Corporation Composite materials and surgical articles made therefrom
6319231, Feb 12 1999 ABIOMED, INC Medical connector
6322581, Aug 26 1999 MANI, Inc. Suturing needle for medical use
6334865, Aug 04 1998 Baxter International Inc; BAXTER HEALTHCARE S A Percutaneous tissue track closure assembly and method
6383201, May 14 1999 Surgical prosthesis for repairing a hernia
6387363, Dec 31 1992 United States Surgical Corporation Biocompatible medical devices
6388043, Feb 23 1998 GKSS-Forschungszentrum Geesthacht GmbH Shape memory polymers
6395029, Jan 19 1999 CHILDREN S HOSPITAL OF PHILADELPHIA, THE Sustained delivery of polyionic bioactive agents
6443962, Mar 10 2000 Benny, Gaber Stitching tool
6471715, Jan 19 1998 Wisebands Ltd Suture tightening device for closing wounds and method for its use
6478809, Feb 04 2000 Suture and method of use
6485503, May 19 2000 MicroAire Surgical Instruments LLC Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
6491701, Dec 08 1998 Intuitive Surgical Operations, Inc Mechanical actuator interface system for robotic surgical tools
6491714, May 03 1996 ZipTek LLC Surgical tissue repair and attachment apparatus and method
6494898, Feb 25 1998 United States Surgical Corporation Absorbable copolymers and surgical articles fabricated therefrom
6495127, Aug 27 1999 AngioDevice International GmbH Compositions and systems for forming high strength medical sealants, and associated methods of preparation and use
6506190, May 21 1998 Tissue anchor system
6506197, Nov 15 2000 Ethicon, Inc Surgical method for affixing a valve to a heart using a looped suture combination
6508833, Jun 28 1998 Cook Medical Technologies LLC Multiple-sided intraluminal medical device
6511488, Jun 23 1998 Orthopaedic Biosystems Ltd., Inc. Surgical knot manipulator
6514265, Mar 01 1999 Medtronic, Inc Tissue connector apparatus with cable release
6527795, Oct 18 2000 DePuy Mitek, LLC Knotless suture anchor system and method of use
6548002, Aug 13 1997 DEPUY MITEK, INC Method of making a biodegradable interbody spinal fusion devices
6548569, Mar 25 1999 TEPHA, INC Medical devices and applications of polyhydroxyalkanoate polymers
6551343, Apr 01 1998 Bionx Implants, Oy Bioabsorbable surgical fastener for tissue treatment
6554802, Mar 31 1999 Medtronic, Inc Medical catheter anchor
6565597, Jul 16 1999 Cook Medical Technologies LLC Stent adapted for tangle-free deployment
6575976, Jun 12 2000 Arthrex, Inc. Expandable tissue anchor
6592609, Aug 09 1999 Bonutti Skeletal Innovations LLC Method and apparatus for securing tissue
6592625, Oct 20 1999 KRT INVESTORS, INC Spinal disc annulus reconstruction method and spinal disc annulus stent
6596296, Aug 06 1999 Board of Regents, The University of Texas System Drug releasing biodegradable fiber implant
6599310, Jun 29 2001 Ethicon, Inc Suture method
6607541, Jun 03 1998 Medtronic, Inc Tissue connector apparatus and methods
6610078, Feb 09 1999 OptMed Inc Suture material for wounds based on methylidene malonate
6613059, Mar 01 1999 Medtronic, Inc Tissue connector apparatus and methods
6613254, Oct 19 1999 Ethicon, Inc. Method for making extruded, oriented fiber
6616982, Nov 17 1995 Massachusetts Institute of Technology Poly(ethylene oxide) coated surfaces
6623492, Jan 25 2000 Smith & Nephew, Inc. Tissue fastener
6626930, Oct 21 1999 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
6632245, Aug 19 1998 Anterior cruciate ligament reconstruction hamstring tendon fixation system
6641592, Nov 19 1999 CARDIVA MEDICAL, INC System for wound closure
6641593, Jun 03 1998 Medtronic, Inc Tissue connector apparatus and methods
6645226, May 19 2000 MicroAire Surgical Instruments LLC Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
6645227, Nov 21 2001 Stryker Corporation Suture anchor
6648921, Oct 03 2001 Boston Scientific Corporation; Boston Scientific Scimed, Inc Implantable article
6656182, May 20 1982 Tissue manipulation
6689153, Apr 16 1999 Orthopaedic Biosystems Ltd, Inc. Methods and apparatus for a coated anchoring device and/or suture
6689166, Apr 02 1998 Drexel University Hybrid nanofibril matrices for use as tissue engineering devices
6692761, Feb 10 1999 OCTOPLUS SCIENCES B V Scaffold for tissue engineering cartilage having outer surface layers of copolymer and ceramic material
6702844, Mar 09 1988 LIFEPORT SCIENCES LLC Artificial graft and implantation method
6712830, Mar 15 2000 Esplin Medical Inventions, L.L.C.; ESPLIN MEDICAL INVENTIONS, LLC Soft tissue anchor
6712838, Oct 10 1997 Ethicon, Inc. Braided suture with improved knot strength and process to produce same
6712859, Jun 28 2001 Ethicon, Inc Hernia repair prosthesis and methods for making same
6716234, Sep 13 2001 ARTHREX, INC High strength suture material
6720402, Feb 23 1998 GKSS-Forschungszentrum Geesthacht GmbH Shape memory polymers
6723107, Apr 19 1999 Orthopaedic Biosystems Ltd.; ORTHOPAEDIC BIOSYSTEMS LTD Method and apparatus for suturing
6726705, Jun 25 2002 COOPERSURGICAL, INC Mechanical method and apparatus for bilateral tissue fastening
6746443, Jul 27 2000 Intuitive Surgical Operations, Inc Roll-pitch-roll surgical tool
6746458, Sep 07 2000 Mesh material to repair hernias
6749616, Nov 21 2001 Baylor College of Medicine Surgical system for repairing and grafting severed nerves and methods of repairing and grafting severed nerves
6756000, Oct 03 2000 Ethicon, Inc Process of making multifilament yarn
6773450, Aug 09 2002 Ethicon, Inc Suture anchor and method
6776340, Jul 23 1999 CARLISLE INTERCONNECT TECHNOLOGIES, INC Duplicate laser marking discrete consumable articles
6776789, Apr 16 2001 Cinch suture and method for using
6783554, Feb 20 2001 ATRIUM MEDICAL CORPORATION Pile mesh prosthesis
6814748, Jun 07 1995 LIFEPORT SCIENCES LLC Intraluminal grafting system
6818010, Apr 29 2000 Aesculap AG Suture anchor system for joining pieces of tissue and instrument for inserting an anchor implant
6838493, Mar 25 1999 TEPHA, INC Medical devices and applications of polyhydroxyalkanoate polymers
6848152, Aug 31 2001 Cilag GmbH International Method of forming barbs on a suture and apparatus for performing same
6852825, Apr 18 2002 GKSS-Forschungszentrum Geesthacht GmbH Polyester urethanes
6858222, Aug 06 1999 Board of Regents, The University of Texas System Fabrication of drug loaded biodegradable polymer fibers
6860891, Sep 28 2001 Ethicon, Inc Arrangement and method for vascular anastomosis
6860901, Mar 09 1988 LIFEPORT SCIENCES LLC Intraluminal grafting system
6867248, May 12 1997 TEPHA, INC Polyhydroxyalkanoate compositions having controlled degradation rates
6877934, Oct 28 2002 Rem Sales, Inc. Milling head for thread whirling
6881766, Aug 17 2000 Covidien LP Sutures and coatings made from therapeutic absorbable glass
6893452, May 19 2000 MicroAire Surgical Instruments LLC Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
6905484, Sep 30 2002 DAMAGE CONTROL SURGICAL TECHNOLOGIES, INC Method and apparatus for rapid deployment chest drainage
6911035, Apr 28 1998 SUTURING MEANS FOR CONNECTING A TUBULAR VASCULAR PROSTHESIS TO A BLOOD VESSEL IN THE BODY IN ADDITION TO BRANCH MEANS, A VASCULAR PROSTHESIS, A DEVICE FOR INSERTING AND SUTURING A VASCULAR PROSTHESIS IN THE BODY, AND A VASCULAR PROSTHESIS SYSTEM
6911037, Sep 07 1999 ev3 Endovascular, Inc Retrievable septal defect closure device
6913607, May 01 2001 Medtronic, Inc Self-closing surgical clip for tissue
6915623, Aug 14 2003 Ethicon, Inc Method for assembling a package for sutures
6921811, Sep 22 1998 BIOSURFACE ENGINEERING TECHNOLOGIES, INC Bioactive coating composition and methods
6923819, Jun 14 2001 Intuitive Surgical Operations, Inc Apparatus and method for surgical suturing with thread management
6945021, Mar 22 2001 Chassis for grass treatment machine
6945980, Jun 03 1998 Medtronic, Inc Multiple loop tissue connector apparatus and methods
6951565, Apr 24 2002 Linvatec Biomaterials Oy Device for inserting surgical implants
6960221, Mar 01 1999 Medtronic, Inc Tissue connector apparatus with cable release
6960233, Dec 10 2002 TORAX MEDICAL, INC Methods and apparatus for improving the function of biological passages
6974450, Dec 30 1999 WEBER, PAUL J Face-lifting device
6981983, Mar 31 1999 Rosenblatt Associates, LLC System and methods for soft tissue reconstruction
6984241, Sep 13 1996 TENDON TECHNOLOGY, LTD Apparatus and methods for tendon or ligament repair
6986780, Mar 26 2002 Ethicon, Inc Surgical element delivery system and method
6991643, Dec 20 2000 SAADAT, VAHID Multi-barbed device for retaining tissue in apposition and methods of use
6996880, Apr 01 2003 Velcro IP Holdings LLC Fastener elements and methods of manufacture
7004970, Oct 20 1999 KRT INVESTORS, INC Methods and devices for spinal disc annulus reconstruction and repair
7021316, Aug 07 2003 Tools For Surgery, LLC Device and method for tacking a prosthetic screen
7026437, Oct 27 2000 Poly-Med, Inc Amorphous polymeric polyaxial initiators and compliant crystalline copolymers therefrom
7033379, Jun 08 2001 COOPERSURGICAL, INC Suture lock having non-through bore capture zone
7037984, Apr 18 2002 GKSS-Forschungszentrum Geesthacht GmbH Interpenetrating networks
7048748, Mar 21 2001 Automatic surgical suturing instrument and method
7056331, Jun 29 2001 Ethicon, Inc Suture method
7056333, May 21 1998 Tissue anchor system
7057135, Mar 04 2004 Matsushita Electric Industrial, Co. Ltd.; MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Method of precise laser nanomachining with UV ultrafast laser pulses
7063716, Jul 17 2002 Covidien LP Uniform stress needle
7070610, Mar 30 2002 SAMYANG HOLDINGS CORPORATION Monofilament suture and manufacturing method thereof
7070858, Oct 27 2000 Poly Med Inc Amorphous polymeric polyaxial initiators and compliant crystalline copolymers therefrom
7074117, Sep 14 2005 Quill International Industries PLC Blasting nozzle
7081135, Jun 09 2003 Mastopexy stabilization apparatus and method
7083637, Jun 09 1999 ETHICON GMBH & CO Method and apparatus for adjusting flexible areal polymer implants
7083648, Oct 31 2000 East Carolina University Tissue lockable connecting structures
709392,
7107090, Dec 08 1998 Intuitive Surgical Operations, Inc Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
7112207, Oct 21 1999 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
7112214, Jun 25 2002 COOPERSURGICAL, INC Dynamic bioabsorbable fastener for use in wound closure
7125403, Dec 08 1998 Intuitive Surgical Operations, Inc In vivo accessories for minimally invasive robotic surgery
7125413, Jun 20 2002 Boston Scientific Scimed, Inc Endoscopic fundoplication devices and methods for treatment of gastroesophageal reflux disease
7138441, May 28 1999 United States Surgical Corporation Bioabsorbable blends and surgical articles therefrom
7141302, Dec 14 2001 Deutsche Institute fur Textil-und Faserforschung Stuttgart Stiftung des offentlichen Rechts Suture material for surgery, processes for its production and the use thereof
7144401, Jun 07 2001 APOLLO ENDOSURGERY US, INC Suturing device for endoscope
7144412, Jun 25 2003 GOLD THREAD, LLP Gold suture and method of use in wound closure
7144415, Nov 16 2004 The Anspach Effort, Inc. Anchor/suture used for medical procedures
7150712, Nov 07 2000 Artemis Medical, Inc Target tissue localization assembly and method
7150757, Jun 11 2003 MedicineLodge, Inc Adjustable line locks and methods
7152605, Nov 08 1999 Boston Scientific Scimed, Inc Adjustable left atrial appendage implant deployment system
7156858, Apr 20 2000 Ethicon GmbH Implant
7156862, May 19 2000 MicroAire Surgical Instruments LLC Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
7160312, Jun 25 1999 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Implantable artificial partition and methods of use
7172595, Oct 03 2000 ARTHREX, INC Bone fixation systems and related methods
7172615, May 19 2000 MicroAire Surgical Instruments LLC Remotely anchored tissue fixation device
7186262, Jun 25 1999 AURIS HEALTH, INC Apparatus and methods for treating tissue
7195634, Aug 05 1996 Arthrex, Inc. Corkscrew suture anchor
7211088, Feb 02 1999 Arthrex, Inc. Bioabsorbable tissue tack with oval-shaped head and method of tissue fixation using the same
7214230, Feb 24 1998 AURIS HEALTH, INC Flexible instrument
7217744, Feb 26 2002 GKSS-Forschungszentrum Geesthacht GmbH Polymeric networks
7225512, Aug 31 2001 Cilag GmbH International Method of forming barbs on a suture and apparatus for performing same
7226468, May 03 1993 Ethicon, Inc Barbed bodily tissue connector
7232447, Jun 12 2002 Boston Scientific Scimed, Inc Suturing instrument with deflectable head
7244270, Sep 16 2004 EVERA MEDICAL, INC Systems and devices for soft tissue augmentation
7279612, Apr 22 1999 KCI Licensing, Inc Wound treatment apparatus employing reduced pressure
7294357, Sep 28 2001 Covidien LP Plasma coated sutures
7297142, Feb 24 1998 AURIS HEALTH, INC Interchangeable surgical instrument
7322105, Nov 18 2005 Ultradent Products, Inc. Methods for manufacturing endodontic instruments by milling
7329271, Dec 18 2003 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC High strength suture with absorbable core
733723,
7351250, Aug 21 2002 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Circumferential medical closure device and method
7357810, Dec 18 2003 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC High strength suture with absorbable core and suture anchor combination
7371253, Aug 09 2002 Ethicon, Inc Suture anchor and method
7381211, Aug 21 2002 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Medical closure screen device and method
7387634, Nov 23 1998 Springboard Medical Ventures, LLC System for securing sutures, grafts and soft tissue to bone and periosteum
7410495, Aug 21 2002 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Medical closure clip system and method
7413570, Aug 21 2002 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Medical closure screen installation systems and methods
7413571, Aug 21 2002 SOLVENTUM INTELLECTUAL PROPERTIES COMPANY Flexible medical closure screen and method
7416556, Jun 06 2002 Abbott Laboratories Stop-cock suture clamping system
7425200, Sep 24 1998 Pacesetter, Inc Implantable sensor with wireless communication
7445626, Dec 10 1992 Abbott Laboratories Device and method for suturing tissue
7452371, Jun 02 1999 Cook Medical Technologies LLC Implantable vascular device
7467710, May 04 2005 Ethicon, Inc Molded package
7468068, Jun 30 2004 Sinclair Pharmaceuticals Limited Suture for wound closure, tissue approximation, tissue support, suspension and/or fixation
7481826, Sep 30 2003 Ethicon, Inc.; Ethicon, Inc Fluid emitting suture needle
7491214, Oct 04 1999 MicroVention, Inc. Filamentous embolization device with expansible elements
7510566, May 19 2000 MicroAire Surgical Instruments LLC Multi-point tissue tension distribution device and method, a chin lift variation
7513904, Mar 15 2004 Surgical thread and cosmetic surgery method
7547315, Jun 25 2002 COOPERSURGICAL, INC Mechanical method and apparatus for tissue fastening
7547316, Jun 09 1999 Ethicon, Inc. Method and apparatus for adjusting flexible areal polymer implants
7572275, Dec 08 2004 Stryker Corporation System and method for anchoring suture to bone
7582105, Jun 30 2004 Sinclair Pharmaceuticals Limited Suture for wound closure, tissue approximation, tissue support, suspension and/or fixation
7591850, Apr 01 2005 Arthrocare Corporation Surgical methods for anchoring and implanting tissues
7601164, Apr 23 2004 Surgical thread
7611521, Sep 13 1996 Tendon Technology, Ltd.; Ortheon Medical L.L.C. Apparatus and methods for tendon or ligament repair
7615076, Oct 20 1999 KRT INVESTORS, INC Method and apparatus for the treatment of the intervertebral disc annulus
7624487, May 13 2003 Cilag GmbH International Apparatus and method for forming barbs on a suture
7641672, Nov 21 2001 Stryker Endo; Stryker Endoscopy Suture anchor
7641825, Aug 03 2004 TEPHA, INC Method of making a polyhydroxyalkanoate filament
7645293, Apr 18 2005 United States Surgical Corporation Suture anchor installation system and method
7678134, Oct 10 2003 Arthrex, Inc. Knotless anchor for tissue repair
7682374, Oct 21 2003 Arthrocare Corporation Knotless suture lock and bone anchor implant method
7686200, Jun 25 2002 COOPERSURGICAL, INC Mechanical method and apparatus for bilateral tissue fastening
7691112, Sep 11 2003 W L GORE & ASSOCIATES, INC Devices, systems, and methods for suturing tissue
7708759, Sep 13 1996 Tendon Technology, Ltd. Apparatus and methods for securing tendons or ligaments to bone
7740646, Mar 31 2006 Ethicon Endo-Surgery, Inc Adhesives for use with suture system minimize tissue erosion
7744609, Oct 21 1999 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
7758595, Oct 21 1999 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
7766926, Apr 30 2002 Cook Medical Technologies LLC Sling for supporting tissue
7766939, Mar 14 2002 Teleflex Life Sciences Limited Suture anchor and approximating device
7803574, May 05 2003 GLO TECHNOLOGIES LLC Medical device applications of nanostructured surfaces
7806908, May 03 1993 Ethicon, Inc Barbed tissue connector
7815589, Dec 09 2003 MORPHIC MEDICAL, INC Methods and apparatus for anchoring within the gastrointestinal tract
7845356, Sep 06 2002 Koninklijke Philips Electronics N V Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
7850894, May 04 2006 Ethicon, Inc Tissue holding devices and methods for making the same
7857829, Jun 29 2001 Ethicon, Inc Suture method
7862583, May 27 2004 Ethicon Endo-Surgery, Inc Fusible suture and method for suturing therewith
7871425, Jul 28 2006 Ethicon, Inc Minimally-invasive nipple-lift procedure and apparatus
7875055, Dec 04 2003 Ethicon, Inc.; Ethicon, Inc Active suture for the delivery of therapeutic fluids
7879072, Aug 01 1997 Bonutti Skeletal Innovations LLC Method for implanting a flowable fastener
7901381, Sep 15 2003 APOLLO ENDOSURGERY US, INC Implantable device fastening system and methods of use
7913365, Aug 31 2001 Cilag GmbH International Method of forming barbs on a suture and apparatus for performing same
7919112, Aug 26 2004 Pathak Holdings, LLC Implantable tissue compositions and method
7923075, Jul 17 2006 HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, THE Methods for preparing nanotextured surfaces and applications thereof
7935773, Aug 19 2004 Covidien LP Water-swellable copolymers and articles and coatings made therefrom
7950559, Jun 25 2002 COOPERSURGICAL, INC Mechanical method and apparatus for bilateral tissue fastening
7951065, Jun 26 2006 Cook Medical Technologies LLC Tension free pelvic floor repair
7956100, Sep 28 2007 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from block copolymers
7967841, Jun 02 2008 Ethicon, Inc. Methods for using looped tissue-grasping devices
7972347, Jun 27 2003 Surgical Security, LLC Device for surgical repair, closure, and reconstruction
7981140, Mar 30 2005 Arthrex, Inc. Knotless fixation of tissue to bone with suture chain
7996967, Aug 31 2001 Cilag GmbH International System for variable-angle cutting of a suture to create tissue retainers of a desired shape and size
7996968, Aug 31 2001 Cilag GmbH International Automated method for cutting tissue retainers on a suture
8011072, Aug 31 2001 Cilag GmbH International Method for variable-angle cutting of a suture to create tissue retainers of a desired shape and size
8015678, Aug 31 2001 Cilag GmbH International Method for cutting a suture to create tissue retainers of a desired shape and size
8016881, Jul 31 2002 MiRus LLC Sutures and surgical staples for anastamoses, wound closures, and surgical closures
8020263, Aug 31 2001 Cilag GmbH International Automated system for cutting tissue retainers on a suture
8028387, Aug 31 2001 Cilag GmbH International System for supporting and cutting suture thread to create tissue retainers thereon
8028388, Aug 31 2001 Cilag GmbH International System for cutting a suture to create tissue retainers of a desired shape and size
8032996, May 13 2004 Cilag GmbH International Apparatus for forming barbs on a suture
8056599, Sep 24 2008 Covidien LP System and method of making tapered looped suture
8062654, Aug 06 1999 The Board of Regents of the University of Texas System Drug releasing biodegradable fiber for delivery of therapeutics
8066736, Jun 25 2002 COOPERSURGICAL, INC Dynamic bioabsorbable fastener for use in wound closure
8074654, Sep 06 2002 Koninklijke Philips Electronics N V Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
8074857, Jun 25 2002 COOPERSURGICAL, INC Method and apparatus for tissue fastening with single translating trigger operation
8083770, Aug 09 2002 Ethicon, Inc Suture anchor and method
8097005, Jul 26 1999 Teleflex-CT Devices Incorporated Suture system
8100940, Sep 30 2002 Cilag GmbH International Barb configurations for barbed sutures
8118822, Mar 01 1999 Medtronic, Inc Bridge clip tissue connector apparatus and methods
8118834, Dec 20 2007 Ethicon, Inc Composite self-retaining sutures and method
8128393, Dec 04 2006 HEALTHCARE ROYALTY PARTNERS IV, L P , AS SUCCESSOR SUBORDINATED LENDER Methods and materials for fabricating laminate nanomolds and nanoparticles therefrom
8151661, Jun 30 2006 Intuitive Surgical Operations, Inc Compact capstan
8158143, Jul 14 2000 Helmholtz-Zentrum Geesthacht Zentrum Fuer Material- und Kuestenforschung GmbH Systems for releasing active ingredients, based on biodegradable or biocompatible polymers with a shape memory effect
816026,
8161618, Sep 17 2007 Covidien LP Method of forming barbs on a suture
8202531, Jul 23 2008 Warsaw Orthopedic, Inc Drug depots having one or more anchoring members
8216273, Feb 25 2008 Cilag GmbH International Self-retainers with supporting structures on a suture
8222564, Feb 13 2008 Covidien LP Methods of altering surgical fiber
8225673, Oct 31 2007 Ethicon, Inc Method of manufacturing and testing monofilament and multi-filaments self-retaining sutures
8226684, Dec 22 2008 Ethicon, Inc Surgical sutures having collapsible tissue anchoring protrusions and methods therefor
8236027, Apr 07 2004 Surgical thread
8246652, May 03 1993 Ethicon, Inc Suture with a pointed end and an anchor end and with equally spaced yieldable tissue grasping barbs located at successive axial locations
8257393, Dec 04 2003 Ethicon, Inc. Active suture for the delivery of therapeutic fluids
8267961, Jun 29 2005 Ethicon, Inc Barbed suture
8273105, Feb 20 2008 Covidien LP Compound barb medical device and method
8287555, Jun 13 2002 ANCORA HEART, INC Devices and methods for heart valve repair
8303625, Apr 18 2002 HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUR MATERIAL UND KUSTENFORSCHUNG; Helmholtz-Zentrum Geesthacht Zentrum Fuer Material- und Kuestenforschung GmbH Biodegradable shape memory polymeric sutures
8308761, Dec 06 2004 ECOLE DE TECHNOLOGIE SUPERIEURE; Institut de Cardiologie de Montreal Binding component
8353931, Nov 02 2006 Covidien LP Long term bioabsorbable barbed sutures
8403017, Oct 27 2008 Covidien LP System, method and apparatus for making tapered looped suture
8403947, Jun 17 2008 Method of suturing
8454653, Feb 20 2008 Covidien LP Compound barb medical device and method
8480557, Jul 27 2006 Sinclair Pharmaceuticals Limited Nonaugmentive mastopexy
8500762, Oct 17 2007 SURGICAL STRUCTURES, LTD Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
8541027, Jun 06 2001 Smith & Nephew PLC Fixation devices for tissue repair
8562644, Aug 06 2007 Ethicon, Inc. Barbed suture with non-symmetric barbs
8563117, Aug 04 2006 DSM IP ASSETS B V Biomimetic modular adhesive complex: materials, methods and applications therefore
8615856, Jan 30 2008 Ethicon, Inc Apparatus and method for forming self-retaining sutures
8628465, Jun 14 2004 Boston Scientific Scimed, Inc Systems, methods and devices relating to implantable supportive slings
8641732, Feb 26 2008 Ethicon, Inc Self-retaining suture with variable dimension filament and method
8652170, Aug 09 2002 Ethicon, Inc Double ended barbed suture with an intermediate body
8652215, Mar 07 2005 Georgia Tech Research Corporation Nanofilament scaffold for tissue regeneration
8663277, Jun 29 2005 Ethicon, Inc Braided barbed suture
8673536, Jan 08 2003 HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUR MATERIAL UND KUSTENFORSCHUNG; Helmholtz-Zentrum Geesthacht Zentrum Fuer Material- und Kuestenforschung GmbH Photosensitive polymeric networks
8679158, Aug 09 2002 Ethicon, Inc Multiple suture thread configuration with an intermediate connector
8690914, Aug 09 2002 Ethicon, Inc Suture with an intermediate barbed body
8707959, Sep 06 2002 Koninklijke Philips Electronics N V Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
8721664, May 14 2004 Cilag GmbH International Suture methods and devices
8721681, Sep 30 2002 Ethicon, Inc Barbed suture in combination with surgical needle
8734485, Sep 30 2002 Ethicon, Inc Sutures with barbs that overlap and cover projections
8734486, Aug 09 2002 Ethicon, Inc Multiple suture thread configuration with an intermediate connector
8747436, Jun 13 2007 Ethicon, Inc Bi-directional barbed suture
8747437, Jun 29 2001 Ethicon, Inc Continuous stitch wound closure utilizing one-way suture
8764776, Jun 29 2001 Ethicon, Inc Anastomosis method using self-retaining sutures
8764796, Jun 29 2001 Ethicon, Inc Suture method
8771313, Dec 19 2007 Cilag GmbH International Self-retaining sutures with heat-contact mediated retainers
8777987, Sep 27 2007 Ethicon, Inc Self-retaining sutures including tissue retainers having improved strength
8777988, Jun 29 2001 Ethicon, Inc Methods for using self-retaining sutures in endoscopic procedures
8777989, Jun 29 2001 Ethicon, Inc Subcutaneous sinusoidal wound closure utilizing one-way suture
8793863, Apr 13 2007 Cilag GmbH International Method and apparatus for forming retainers on a suture
8795332, Sep 30 2002 Ethicon, Inc Barbed sutures
879758,
8821539, Jul 23 2008 Ethicon, Inc Collapsible barbed sutures having reduced drag and methods therefor
8821540, Sep 30 2002 Ethicon, Inc Self-retaining sutures having effective holding strength and tensile strength
8852232, Sep 30 2002 Ethicon, Inc Self-retaining sutures having effective holding strength and tensile strength
8864776, Apr 11 2008 Covidien LP Deployment system for surgical suture
8870916, Jul 07 2006 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use
8875607, Jan 30 2008 Cilag GmbH International Apparatus and method for forming self-retaining sutures
8876865, Apr 15 2008 Cilag GmbH International Self-retaining sutures with bi-directional retainers or uni-directional retainers
8888796, Jun 07 2008 Ethicon, Inc Devices for tensioning barbed sutures and methods therefor
8888810, Feb 20 2008 Covidien LP Compound barb medical device and method
8915943, Apr 13 2007 Cilag GmbH International Self-retaining systems for surgical procedures
8926659, Aug 31 2001 Cilag GmbH International Barbed suture created having barbs defined by variable-angle cut
8932327, Apr 01 2008 Covidien LP Anchoring device
8932328, Nov 03 2008 Cilag GmbH International Length of self-retaining suture and method and device for using the same
8944804, Jan 04 2006 HEALTHCARE ROYALTY PARTNERS IV, L P , AS SUCCESSOR SUBORDINATED LENDER Nanostructured surfaces for biomedical/biomaterial applications and processes thereof
8961560, May 16 2008 Ethicon, Inc Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
9011489, May 14 2008 Boston Scientific Scimed, Inc. Surgical composite barbed suture
9125647, Feb 21 2008 Ethicon, Inc Method and apparatus for elevating retainers on self-retaining sutures
9138222, Feb 17 2004 Bonutti Skeletal Innovations LLC Method and device for securing body tissue
9220499, Oct 28 2010 Covidien LP Wound closure device including barbed pins
9248580, Sep 30 2002 Cilag GmbH International Barb configurations for barbed sutures
9307983, Sep 06 2006 Covidien LP Bioactive substance in a barbed suture
9398943, Nov 30 2009 Covidien LP Ventral hernia repair with barbed suture
9439746, Dec 13 2007 INSIGHTRA MEDICAL, INC Methods and apparatus for treating ventral wall hernia
9545191, Jun 13 2005 Ethicon Endo-Surgery, Inc Method for suture lacing
9718190, Jun 29 2006 Intuitive Surgical Operations, Inc Tool position and identification indicator displayed in a boundary area of a computer display screen
20020022861,
20020029011,
20020029066,
20020095164,
20020099394,
20020111641,
20020111688,
20020151980,
20020161168,
20020165555,
20020173822,
20030014077,
20030040795,
20030069602,
20030088270,
20030149447,
20030167072,
20030204193,
20040010275,
20040068293,
20040068294,
20040087970,
20040087978,
20040088003,
20040098051,
20040138683,
20040153153,
20040167572,
20040186487,
20040193257,
20040260340,
20040267309,
20050004601,
20050004602,
20050033324,
20050049636,
20050055051,
20050065533,
20050096698,
20050113936,
20050119694,
20050154255,
20050181009,
20050186247,
20050197699,
20050199249,
20050203576,
20050209542,
20050209612,
20050267531,
20060020272,
20060036266,
20060058799,
20060058844,
20060079469,
20060085016,
20060089672,
20060111742,
20060116503,
20060135994,
20060135995,
20060142784,
20060194721,
20060200062,
20060207612,
20060229671,
20060235447,
20060241658,
20060253126,
20060258938,
20060272979,
20060276808,
20060286289,
20060287675,
20060287676,
20070016251,
20070027475,
20070088135,
20070088391,
20070134292,
20070135840,
20070151961,
20070156175,
20070208355,
20070213770,
20070219587,
20070224237,
20070225642,
20070225761,
20070225763,
20070239206,
20070239207,
20070293892,
20080009902,
20080046094,
20080066764,
20080077181,
20080082113,
20080082129,
20080086169,
20080086170,
20080132943,
20080195147,
20080215072,
20080221618,
20080262542,
20080281338,
20080281357,
20090018577,
20090082856,
20090099597,
20090105753,
20090112236,
20090112259,
20090143819,
20090226500,
20090228021,
20090248066,
20090248070,
20090259251,
20090299408,
20100057123,
20100063540,
20100163056,
20100239635,
20100298637,
20100298867,
20100298868,
20100298871,
20100313729,
20100318123,
20110022086,
20110125188,
20110264138,
BE1014364,
CA2309844,
CN2640420,
D246911, Feb 27 1976 Automatic blind suturing machine
D386583, Feb 16 1993 Smith & Nephew, Inc Proximal end of a surgical suture slotted knot pusher
D387161, Feb 16 1993 Smith & Nephew, Inc Surgical suture knot pusher with hooks
D433753, Sep 24 1999 Wisebands Ltd. Suture band tightening device for closing wounds
D462766, Feb 16 2001 COAPT SYSTEMS, INC Brow lift device
D532107, Jun 25 2003 COOPERSURGICAL, INC Tissue fastening instrument
DE102005004317,
DE10245025,
DE1810800,
DE19618891,
DE19833703,
DE3227984,
DE4302895,
DE628038,
EP121362,
EP329787,
EP428253,
EP464479,
EP464480,
EP513713,
EP513736,
EP558993,
EP574707,
EP576337,
EP612504,
EP632999,
EP664198,
EP668056,
EP673624,
EP705567,
EP755656,
EP826337,
EP839499,
EP913123,
EP916310,
EP960600,
EP991359,
EP1075843,
EP1525851,
EP1532942,
EP1726317,
EP1948261,
EP2036502,
FR2619129,
FR2693108,
GB1091282,
GB1428560,
GB1506362,
GB1508627,
GB267007,
JP1085225,
JP1113091,
JP11313826,
JP11332828,
JP2002059235,
JP2003275217,
JP2009118967,
JP3165751,
JP4266749,
JP496758,
JP54116419,
JP63288146,
JP9103477,
KR20050072908,
KR20060013299,
NZ501224,
NZ531262,
RE37963, Jun 06 1995 Knotless suture anchor assembly
RU2139690,
RU2175855,
RU2241389,
RU2268752,
SU1745214,
SU1752358,
WO51658,
WO51685,
WO106952,
WO156626,
WO3002027,
WO2003001979,
WO2003003925,
WO2003045255,
WO2003077772,
WO2003092758,
WO2003103733,
WO2003103972,
WO2003105703,
WO2004014236,
WO2004030517,
WO2004030520,
WO2004030704,
WO2004030705,
WO2004062459,
WO2004100801,
WO2004112853,
WO2005016176,
WO2005074913,
WO2005096955,
WO2005096956,
WO2005112787,
WO2006005144,
WO2006012128,
WO2006037399,
WO2006061868,
WO2006079469,
WO2006082060,
WO2006099703,
WO2006138300,
WO2007005291,
WO2007005296,
WO2007038837,
WO2007053812,
WO2007089864,
WO2007112024,
WO2007133103,
WO2007145614,
WO2008014491,
WO2008107919,
WO2008128113,
WO2008136549,
WO2008141034,
WO2008150773,
WO2009042841,
WO2009068252,
WO2009087105,
WO2009097556,
WO2009151876,
WO2010052007,
WO2011053375,
WO2011139916,
WO2011140283,
WO8600020,
WO8701270,
WO8809157,
WO8905618,
WO9009149,
WO9014795,
WO9222336,
WO9516399,
WO9529637,
WO9606565,
WO9700047,
WO9852473,
WO9855031,
WO9921488,
WO9933401,
WO9952478,
WO9959477,
WO9962431,
////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 19 2009MEGARO, ANTHONY R ANGIOTECH PHARMACEUTICALS INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0351830818 pdf
Sep 19 2009MEGARO, MATTHEW A ANGIOTECH PHARMACEUTICALS INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0351830818 pdf
Apr 04 2012ANGIOTECH PHARMACEUTICALS, INC Ethicon, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0351840104 pdf
Apr 04 2012SURGICAL SPECIALTIES PUERTO RICO, INC Ethicon, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0351840104 pdf
Apr 04 2012QUILL MEDICAL, INC Ethicon, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0351840104 pdf
Dec 15 2014Ethicon, Inc.(assignment on the face of the patent)
Apr 05 2021Ethicon LLCCilag GmbH InternationalASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0569830569 pdf
Sep 28 2022Cilag GmbH InternationalEthicon, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0612880457 pdf
Date Maintenance Fee Events
Mar 29 2023M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Oct 15 20224 years fee payment window open
Apr 15 20236 months grace period start (w surcharge)
Oct 15 2023patent expiry (for year 4)
Oct 15 20252 years to revive unintentionally abandoned end. (for year 4)
Oct 15 20268 years fee payment window open
Apr 15 20276 months grace period start (w surcharge)
Oct 15 2027patent expiry (for year 8)
Oct 15 20292 years to revive unintentionally abandoned end. (for year 8)
Oct 15 203012 years fee payment window open
Apr 15 20316 months grace period start (w surcharge)
Oct 15 2031patent expiry (for year 12)
Oct 15 20332 years to revive unintentionally abandoned end. (for year 12)