A robotic surgical tool includes an elongate shaft having a working end and a shaft axis, and a pair of linking arms each having a proximal end and a distal end. The proximal end is pivotally mounted on the working end of the shaft to rotate around a first pitch axis to produce rotation in first pitch. A wrist member has a proximal portion pivotally connected to the distal end of the linking arm to rotate around a second pitch axis to produce rotation in second pitch. An end effector is pivotally mounted on a distal portion of the wrist member to rotate around a wrist axis of the wrist member to produce rotation in distal roll. The wrist axis extends between the proximal portion and the distal portion of the wrist member. The elongate shaft is rotatable around the shaft axis to produce rotation in proximal roll. At about 90°C pitch, the wrist axis is generally perpendicular to the shaft axis. The proximal roll around the shaft axis and the distal roll around the wrist axis do not overlap. The use of the linking arms allows the end effector to be bent back beyond 90°C pitch. The ability to operate the end effector at about 90°C pitch and to bend back the end effector renders the wrist mechanism more versatile and adaptable to accessing hard to reach locations, particularly with small entry points such as those involving spinal, neural, or rectal surgical sites.

Patent
   6746443
Priority
Jul 27 2000
Filed
Jul 27 2000
Issued
Jun 08 2004
Expiry
Oct 11 2021
Extension
441 days
Assg.orig
Entity
Large
539
25
all paid
1. A minimally invasive surgical instrument comprising:
an elongate shaft having a working end and a shaft axis;
a wrist member having a proximal portion connected with the working end of the elongate shaft, the wrist member being movable relative to the elongate shaft in at least one degree of freedom including rotation around the shaft axis; and
an end effector coupled to a distal portion of the wrist member to rotate around a wrist axis of the wrist member, the wrist axis extending between the proximal portion and the distal portion of the wrist member, the end effector being movable relative to the wrist member in at least one additional degree of freedom including rotation around a pitch axis nonparallel to the wrist axis.
2. The instrument of claim 1 wherein the pitch axis is perpendicular to the shaft axis.
3. The instrument of claim 1 wherein the end effector includes an end effector support pivotally mounted on the distal portion of the wrist member to rotate around the wrist axis, and wherein the end effector includes at least one end effector link pivotally mounted on the end effector support to rotate around a pivot axis which is nonparallel to the wrist axis.
4. The instrument of claim 3 wherein the pivot axis is perpendicular to the wrist axis.
5. The instrument of claim 3 wherein the end effector includes a pair of end effector links pivotally mounted on the end effector support to rotate around the pivot axis.
6. The instrument of claim 1 wherein the wrist member has a circular cross-section with a wrist diameter.
7. The instrument of claim 6 wherein the proximal portion of the wrist is connected to the working end of the elongate shaft at a proximal wrist joint, wherein the distal portion of the wrist is connected to the end effector at a distal wrist joint, and wherein a distance between the proximal wrist joint and the distal wrist joint is less than twice the wrist diameter.
8. The instrument of claim 7 wherein the distance between the proximal wrist joint and the distal wrist joint is 1.6 times the wrist diameter.
9. The instrument of claim 6 wherein the distal portion of the wrist is connected to the end effector at a distal wrist joint, and wherein a distance between the proximal wrist joint and a distal end of the end effector is less than twice the wrist diameter.
10. The instrument of claim 9 wherein the distance between the proximal wrist joint and the distal end of the end effector is 1.5 times the wrist diameter.
11. The instrument of claim 1 wherein the elongate shaft includes a proximal end and the shaft axis extends between the proximal end and the working end, and wherein the wrist member is rotatable relative to the working end, from a forward position in which the wrist axis is oriented with the end effector at the distal portion pointing generally away from the proximal end of the elongate shaft, to a backward position in which the wrist axis is oriented with the end effector at the distal portion pointing generally toward the proximal end of the elongate shaft.
12. The instrument of claim 11 further comprising at least one linking member rotatably coupled between the wrist member and the working end to permit rotation of the wrist member relative to the working end from the forward position to the backward position.
13. The instrument of claim 11 wherein the wrist member is coupled via the at least one linking member to the working end to permit rotation relative to the working end around a pitch axis which is perpendicular to the shaft axis.
14. The instrument of claim 11 wherein the wrist member is coupled via the at least one linking member to the working end to permit rotation relative to the working end around a pitch axis which is perpendicular to the wrist axis.
15. The instrument of claim 11 wherein the linking member includes a proximal end pivotally mounted on the working end to rotate around a first pitch axis which is nonparallel to the shaft axis and a distal end pivotally connected to the proximal portion of the wrist member to rotate around a second pitch axis which is nonparallel to the shaft axis.
16. The instrument of claim 15 wherein the first pitch axis is perpendicular to the shaft axis.
17. The instrument of claim 15 wherein the second pitch axis is perpendicular to the shaft axis.
18. The instrument of claim 15 wherein the first pitch axis is parallel to the second pitch axis.
19. The instrument of claim 15 wherein the wrist axis is perpendicular to the second pitch axis.
20. The instrument of claim 15 wherein a pair of linking arms are connected between the working end and the wrist member.
21. The instrument of claim 15 wherein the elongate shaft is rotatable around the shaft axis.
22. The instrument of claim 15 wherein the proximal portion of the wrist member is pivotally connected to the distal end of the linking arm at a proximal pivot location and the end effector is pivotally mounted on the distal portion of the wrist member at a distal pivot location, the wrist axis extending between the proximal pivot location and the distal pivot location.
23. The instrument of claim 15 further comprising a pair of elongate element lengths extending from two opposed positions on the end effector support and in a direction toward a proximal end of the elongate shaft opposed from the working member, the elongate element lengths being coupled to a drive member so as to cause angular displacement of the end effector support around the wrist axis in one angular direction in response to the pulling of one of the elongate element lengths by the drive member and to cause angular displacement of the end effector support around the wrist axis in an opposed angular direction in response to the pulling of the other elongate element length by the drive member.
24. The instrument of claim 23 further comprising a plurality of roll pulleys disposed between the working end and the end effector support, the roll pulleys being oriented generally parallel to the wrist axis, the elongate element lengths each riding over at least one roll pulley in extending from the end effector support to the proximal end of the elongate shaft.
25. The instrument of claim 24 wherein the end effector support includes a pair of channels each receiving one of the elongate element lengths, the channels being generally perpendicular to the roll pulleys.
26. The instrument of claim 11 wherein an angle from the shaft axis to the wrist axis is less than about 60°C in the backward position.
27. The instrument of claim 26 wherein the angle from the shaft axis to the wrist axis is less than about 45°C in the backward position.
28. The instrument of claim 11 wherein an angle from the shaft axis to the wrist axis is about 180°C in the forward position.

This application is related to the following patents and patent applications, the full disclosures of which are incorporated herein by reference: PCT International Application No. PCT/US98/19508, entitled "Robotic Apparatus", filed on Sep. 18, 1998, U.S. application Ser. No. 09/418,726, entitled "Surgical Robotic Tools, Data Architecture, and Use", filed on Oct. 15, 1999; U.S. Application Serial No. 60/111,711, entitled "Image Shifting for a Telerobotic System", filed on Dec. 8, 1998; U.S. application Ser. No. 09/378,173, entitled "Stereo Imaging System for Use in Telerobotic System", filed on Aug. 20, 1999; U.S. application Ser. No. 09/398,507, entitled "Master Having Redundant Degrees of Freedom", filed on Sep. 17, 1999, U.S. application Ser. No. 09/399,457, entitled "Cooperative Minimally Invasive Telesurgery System", filed on Sep. 17, 1999; U.S. application Ser. No. 09/373,678, entitled "Camera Referenced Control in a Minimally Invasive Surgical Apparatus", filed on Aug. 13, 1999; U.S. Provisional Application Serial No. 09/398,958, entitled "Surgical Tools for Use in Minimally Invasive Telesurgical Applications", filed on Sep. 17, 1999; and U.S. Pat. No. 5,808,665, entitled "Endoscopic Surgical Instrument and Method for Use", issued on Sep. 15, 1998.

Advances in minimally invasive surgical technology could dramatically increase the number of surgeries performed in a minimally invasive manner. Minimally invasive medical techniques are aimed at reducing the amount of extraneous tissue that is damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. The average length of a hospital stay for a standard surgery may also be shortened significantly using minimally invasive surgical techniques. Thus, an increased adoption of minimally invasive techniques could save millions of hospital days, and millions of dollars annually in hospital residency costs alone. Patient recovery times, patient discomfort, surgical side effects, and time away from work may also be reduced with minimally invasive surgery.

The most common form of minimally invasive surgery may be endoscopy. Probably the most common form of endoscopy is laparoscopy, which is minimally invasive inspection and surgery inside the abdominal cavity. In standard laparoscopic surgery, a patient's abdomen is insufflated with gas, and cannula sleeves are passed through small (approximately ½ inch) incisions to provide entry ports for laparoscopic surgical instruments. The laparoscopic surgical instruments generally include a laparoscope (for viewing the surgical field) and working tools. The working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by an extension tube. As used herein, the term "end effector" means the actual working part of the surgical instrument and can include clamps, graspers, scissors, staplers, and needle holders, for example. To perform surgical procedures, the surgeon passes these working tools or instruments through the cannula sleeves to an internal surgical site and manipulates them from outside the abdomen. The surgeon monitors the procedure by means of a monitor that displays an image of the surgical site taken from the laparoscope. Similar endoscopic techniques are employed in, e.g., arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy and the like.

There are many disadvantages relating to current minimally invasive surgical (MIS) technology. For example, existing MIS instruments deny the surgeon the flexibility of tool placement found in open surgery. Most current laparoscopic tools have rigid shafts, so that it can be difficult to approach the worksite through the small incision. Additionally, the length and construction of many endoscopic instruments reduces the surgeon's ability to feel forces exerted by tissues and organs on the end effector of the associated tool. The lack of dexterity and sensitivity of endoscopic tools is a major impediment to the expansion of minimally invasive surgery.

Minimally invasive telesurgical robotic systems are being developed to increase a surgeon's dexterity when working within an internal surgical site, as well as to allow a surgeon to operate on a patient from a remote location. In a telesurgery system, the surgeon is often provided with an image of the surgical site at a computer workstation. While viewing a three-dimensional image of the surgical site on a suitable viewer or display, the surgeon performs the surgical procedures on the patient by manipulating master input or control devices of the workstation. The master controls the motion of a servomechanically operated surgical instrument. During the surgical procedure, the telesurgical system can provide mechanical actuation and control of a variety of surgical instruments or tools having end effectors such as, e.g., tissue graspers, needle drivers, or the like, that perform various functions for the surgeon, e.g., holding or driving a needle, grasping a blood vessel, or dissecting tissue, or the like, in response to manipulation of the master control devices.

Some surgical tools employ a roll-pitch-yaw mechanism for providing three degrees of rotational movement to an end effector around three perpendicular axes. At about 90°C pitch, the yaw and roll rotational movements overlap, resulting in the loss of one degree of rotational movement.

The present invention is generally directed to robotic surgery methods, devices, and systems. The invention provides a minimally invasive surgical tool which operates with three degrees of rotational movement at about 90°C pitch. In particular, the surgical tool employs a roll-pitch-roll configuration in which an elongate shaft is rotatable in proximal roll, a wrist member is pivotally mounted on the working end of the elongate shaft to rotate in pitch, and an end effector is pivotally mounted on the wrist member to rotate in distal roll around the wrist axis of the wrist member. At about 90°C pitch, the wrist axis is generally perpendicular to the shaft axis of the elongate shaft. The proximal roll around the shaft axis and the distal roll around the wrist axis do not overlap. In some embodiments, a pulley and cable mechanism is used to rotate and actuate the end effector.

In some embodiments, the end effector can be bent back beyond 90°C pitch. The mechanism coupling the end effector to the working end of the elongate shaft allows the wrist member and end effector to bend back by an angle θ of more than about 90°C from the forward position, desirably by more than about 120°C, and more desirably by more than about 135°C. The ability to operate the end effector at about 90°C pitch and to bend back the end effector renders the wrist mechanism more versatile and adaptable to accessing hard to reach locations, particularly with small entry points such as those involving spinal, neural, or rectal surgical sites. In specific embodiments, a pair of linking arms are pivotally connected between the working end and the wrist member to facilitate bend back pitching while maintaining the size of the tool to a sufficiently small size for minimally invasive surgical applications.

In accordance to an aspect of the present invention, a minimally invasive surgical instrument comprises an elongate shaft having a working end and a shaft axis, and at least one linking arm having a proximal end and a distal end. The proximal end is pivotally mounted on the working end of the shaft to rotate around a first pitch axis which is nonparallel to the shaft axis. A wrist member has a proximal portion pivotally connected to the distal end of the linking arm to rotate around a second pitch axis which is nonparallel to the shaft axis. An end effector is pivotally mounted on a distal portion of the wrist member to rotate around a wrist axis of the wrist member. The wrist axis extends between the proximal portion and the distal portion of the wrist member. The elongate shaft is rotatable around the shaft axis.

In some embodiments, the first pitch axis and the second pitch axis are parallel, and are perpendicular to the shaft axis. A pair of linking arms are connected between the working end and the wrist member. The end effector includes an end effector support pivotally mounted on the distal portion of the wrist member to rotate around the wrist axis. The end effector includes at least one end effector link pivotally mounted on the end effector support to rotate around a pivot axis which is nonparallel to the wrist axis. The pivot axis may be perpendicular to the wrist axis. The end effector may include a pair of end effector links. The end effector links may be rotatable around the pivot axis to move toward and away from one another. The end effector links may be rotatable around the pivot axis to move together in the same direction. One of the end effector links may be fixed relative to the end effector support.

In accordance with another aspect of the invention, a minimally invasive surgical instrument comprises an elongate shaft having a working end and a proximal end. The elongate shaft has a shaft axis between the proximal end and the working end. A wrist member includes a wrist axis between a proximal portion and a distal portion. An end effector is pivotally mounted on the distal portion of the wrist member to rotate around the wrist axis. At least one linking member is rotatably coupled between the working end and the wrist member to permit rotation of the wrist member relative to the working end, from a forward position in which the wrist axis is oriented with the end effector at the distal portion pointing generally away from the proximal end of the elongate shaft, to a backward position in which the wrist axis is oriented with the end effector at the distal portion pointing generally toward the proximal end of the elongate shaft.

In accordance with another aspect of the present invention, a method of performing minimally invasive surgery in a body cavity of a patient comprises introducing an elongate shaft having a working end into the cavity. The elongate shaft has a proximal end and a shaft axis between the working end and the proximal end. A wrist member which is pivotally coupled with the working end is rotated relative to the working end. The wrist member having a wrist axis. The method further comprises rotating at least one of the elongate shaft around the shaft axis and an end effector pivotally mounted on the wrist member around the wrist axis to position the end effector at a desired location inside the cavity.

In some embodiments, the wrist member is rotated around a pitch axis which is perpendicular to at least one of the shaft axis and the wrist axis to change an angle between the wrist axis and the shaft axis. The wrist member is rotated relative to the working end until the wrist axis is approximately perpendicular to the shaft axis. The wrist member may be rotated relative to the working end from a forward position in which the wrist axis is oriented with the end effector pointing generally away from the proximal end of the elongate shaft, to a backward position in which the wrist axis is oriented with the end effector pointing generally toward the proximal end of the elongate shaft.

FIG. 1 is a side view of a robotic arm and surgical instrument assembly according to a preferred embodiment of the invention;

FIG. 2 is a perspective view of the robotic arm and surgical instrument assembly of FIG. 1;

FIG. 3 is a perspective view of a surgical instrument according to a preferred embodiment of the invention;

FIG. 4 is a schematic kinematic diagram corresponding to the side view of the robotic arm shown in FIG. 1, and indicates the arm having been displaced from one position into another position;

FIG. 5 is a perspective view of a roll-pitch-yaw wrist mechanism;

FIG. 6 is a front view of the wrist mechanism of FIG. 5 along arrow VI;

FIG. 7 is a side view of the wrist mechanism of FIG. 5 along arrow VII;

FIG. 8 is a perspective view of the wrist mechanism of FIG. 5 schematically illustrating the singularity at the 90°C pitch position;

FIG. 9 is a perspective view of a roll-pitch-roll wrist mechanism according to a preferred embodiment of the present invention;

FIG. 10 is a front view of the wrist mechanism of FIG. 9 along arrow X;

FIG. 11 is a side view of the wrist mechanism of FIG. 9 along arrow XI;

FIG. 12 is a perspective view of the wrist mechanism of FIG. 9 at the 90°C pitch position;

FIG. 13 is a perspective view of a roll-pitch-roll wrist mechanism according to another preferred embodiment of the present invention;

FIG. 14 is a sectional view of the wrist mechanism of FIG. 13 along XIV--XIV;

FIG. 15 is another perspective view of the wrist mechanism of FIG. 13;

FIG. 16 is another perspective view of the wrist mechanism of FIG. 13; and

FIG. 17 is a perspective view of the wrist mechanism of FIG. 13 schematically illustrating the bend back feature of the end effector.

FIGS. 1 and 2 illustrate a robotic arm and surgical instrument assembly 10. The assembly 10 includes a robotic arm 12 and a surgical instrument 14. FIG. 3 indicates the general appearance of the surgical instrument 14.

The surgical instrument 14 includes an elongate shaft 14.1. A wrist-like mechanism 50 is located at a working end of the shaft 14.1. A housing 53 arranged releasably to couple the instrument 14 to the robotic arm 12 is located at an opposed end of the shaft 14.1. In FIG. 1, and when the instrument 14 is coupled or mounted on the robotic arm 12, the shaft 14.1 extends along an axis indicated at 14.2. The instrument 14 is typically releasably mounted on a carriage 11 which is driven to translate along a linear guide formation 24 in the direction of arrows P. The surgical instrument 14 is described in greater detail herein below.

The robotic arm 12 is typically mounted on a base (not shown) by a bracket or mounting plate 16. The base is typically in the form of a mobile cart or trolley (not shown) which is retained in a stationary position during a surgical procedure.

The robotic arm 12 includes a cradle 18, an upper arm portion 20, a forearm portion 22, and the guide formation 24. The cradle 18 is pivotally mounted on the plate 16 in a gimbaled fashion to permit rocking movement of the cradle in the direction of arrows 26 about a pivot axis 28, as shown in FIG. 2. The upper arm portion includes link members 30, 32 and the forearm portion 22 includes link members 34, 36. The link members 30, 32 are pivotally mounted on the cradle 18 and are pivotally connected to the link members 34, 36. The link members 34, 36 are pivotally connected to the guide formation 24. The pivotal connections between the link members 30, 32, 34, 36, the cradle 18, and the guide formation 24 are arranged to enable the robotic arm to move in a specific manner.

The movements of the robotic arm 12 is illustrated schematically in FIG. 4. The solid lines schematically indicate one position of the robotic arm and the dashed lines indicate another possible position into which the arm can be displaced from the position indicated in solid lines.

It will be understood that in a preferred embodiment, the axis 14.2 along which the shaft 14.1 of the instrument 14 extends when mounted on the robotic arm 12 pivots about a pivot center or fulcrum 49. Thus, irrespective of the movement of the robotic arm 12, the pivot center 49 normally remains in substantially the same position relative to the stationary cart 300 on which the arm 12 is mounted. In use, the pivot center 49 is typically positioned at a port of entry into a patient's body during an endoscopic procedure when an internal surgical procedure is to be performed. It will be appreciated that the shaft 14.1 extends through such a port of entry, the wrist-like mechanism 50 then being positioned inside the patient's body. Thus, the general position of the mechanism 50 relative to the surgical site in a patient's body can be changed by movement of the arm 12. Since the pivot center 49 is coincident with the port of entry, such movement of the arm does not excessively effect the surrounding tissue at the port of entry. It is to be appreciated that the field of application of the invention is not limited to surgical procedures at internal surgical sites only, but can be used on open surgical sites as well.

As can best be seen in FIG. 4, the robotic arm 12 provides three degrees of freedom of movement to the surgical instrument 14 when mounted thereon. These degrees of freedom of movement are firstly the gimbaled motion indicated by arrows 26, pivoting or pitching movement as indicated by arrows 27, and the linear displacement in the direction of arrows P. Movement of the arm as indicated by arrows 26, 27 and P is controlled by appropriately positioned actuators, e.g., electrical motors or the like, which respond to inputs from its associated master control to drive the arm 12 to a desired position as dictated by movement of the master control.

Roll-Pitch-Yaw Mechanism

FIGS. 5, 6 and 7 show a roll-pitch-yaw wrist-like mechanism 50. In FIG. 5, the working end of the shaft 14.1 is indicated at 14.3. The wrist-like mechanism 50 includes a rigid wrist member 52. One end portion of the wrist member 52 is pivotally mounted in a clevis 17 on the end 14.3 of the shaft 14.1 by means of a pivotal connection 54. As best seen in FIG. 7, the wrist member 52 can pitch in the direction of arrows 56 about the pivotal connection 54. This rotation around the pivotal connection 54 in the direction 56 is referred to as the pivot or pitch of the wrist member 52. The end 14.3 is rotatable with the shaft 14.1 around the axis 14.2 in the direction H, as shown in FIGS. 3 and 5. This rotation around the axis 14.2 in the direction H is referred to as the roll of the working end 14.3.

An end effector, generally indicated by reference numeral 58, is pivotally mounted on an opposed end of the wrist member 52. The end effector 58 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, the end effector 58 has two parts 58.1, 58.2 together defining a jaw-like arrangement. The end effector 58 is pivotally mounted in a clevis 19 on an opposed end of the wrist member 52, by means of a pivotal connection 60. Free ends 11, 13 of the parts 58.1, 58.2 are angularly displaceable about the pivotal connection 60 toward and away from each other as indicated by arrows 62, 63 in FIG. 6. This movement of the parts 58.1, 58.2 is referred to as the grip of the end effector 58. The members 58.1, 58.2 can be displaced angularly about the pivotal connection 60 to change the orientation of the end effector 58 as a whole, relative to the wrist member 52. Thus, each part 58.1, 58.2 is angularly displaceable about the pivotal connection 60 independently of the other, so that the end effector 58 is, as a whole, angularly displaceable about the pivotal connection 60 in the direction 61, as indicated in dashed lines in FIG. 6. This rotation around the pivotal connection 60 in the direction 61 is referred to the yaw of the end effector 58. The wrist mechanism 50 as illustrated in FIGS. 5-7 is referred to as a roll-pitch-yaw mechanism having roll in the direction H, pitch in the direction 56, and yaw in the direction 61.

The parts 58.1, 58.2 each include an elongate finger portion or end effector element 58.3 and an end effector mounting formation in the form of, e.g., a pulley portion 58.5. In a preferred embodiment, the finger portion 58.3 is integrally formed with the pulley portion 58.5. The pulley portion 58.5 defines a circumferentially extending channel 58.6 in which an elongate element in the form of, e.g., an activation cable, is carried. A generally circumferentially directed hole 58.8 extends through a nape region of the finger portion 58.3 and generally in register with the circumferentially extending channel 58.6. The hole 58.8 has a first portion 58.9 and a second portion 58.10 having a diameter greater than the first portion 58.9. In use, the activation cable has a thickened portion along its length which seats in the hole portion 58.10, the rest of the activation cable then extending along the channel 58.6 in opposed directions. The thickened portion is crimped in its seated position in the hole portion 58.10 so as to anchor the cable in the hole 58.8. It will be appreciated that a greater force is necessary to clamp the free ends together when gripping an object therebetween, than that which is required to open the free ends 11, 13. Thus, the thickened portion of the cable is urged against an annular stepped surface between the hole portion 58.9 and the hole portion 58.10, when the free ends 11, 13 are urged into a closed condition.

As best seen in FIG. 6, the wrist member 52 is flanked by two sets of pulleys 64, 66 which are coaxially positioned on the pivotal connection 54 and in the clevis 17 at the end 14.3 of the shaft 14.1. Two further sets of pulleys 68, 70 are rotatably mounted on opposed sides of the wrist member 52. Each pulley of the set of pulleys 68 on the one side of the wrist member 52 is generally co-planar with an associated pulley of the pulley set 66. Furthermore, each of the pulleys 68 is positioned such that its circumference is in close proximity to the circumference of its associated pulley of the pulley set 66. A similar arrangement exists for each pulley of the pulley set 70 on the other side of the wrist member and its associated pulley of the pulley set 64. Thus, the circumferentially extending channel formation of each pulley of the pulley sets 68, 70 and their associated pulleys of the pulley sets 64, 66 define between each of them a space 72 through which an activation cable can snugly pass.

A plurality of elongate elements, e.g., cables, are used to effect movement of the wrist mechanism 50 and end effector 58. As seen in FIG. 7, two cables C1, C2 are anchored on the parts 58.1, 58.2, respectively, to effect movement of the parts 58.1, 58.2 independently in directions 62, 63 or as a whole (FIG. 6).

Cable C1 rides over an outer pulley of the pulley set 64, an outer pulley of the pulley set 70, over part of circumferential channel 58.6 of the pulley portion 58.5 of the part 58.2 of the end effector 58, through the hole 58.8, again along part of the circumferential channel 58.6 of the pulley portion 58.5, over an outer pulley of the pulley set 68 and over an outer pulley of the pulley set 66. Similarly, cable C2 rides over an inner pulley of the pulley set 64, over an inner pulley of the pulley set 70, along the circumferential channel 58.6 of the part 58.1 of the end effector 58, through the hole 58.8 of the part 58.1, again along the circumferential channel 58.6 of the pulley portion 58.5, over an inner pulley of the pulley set 68 and over an inner pulley of the pulley set 66. The cables C1, C2 pass from the wrist mechanism 50 through appropriately positioned holes 47 in the base region of the clevis 17 (FIG. 5), and internally along the shaft, toward the housing 53 (FIG. 3). The housing 53 includes driving members, e.g., in the form of spool assemblies for manipulating the cables. Additional details of the spool assemblies and the grip mechanism for manipulating the finger portions 58.1, 58.2 to achieve gripping as well as description of various surgical tools can be found in U.S. application Ser. No. 09/398,958, entitled "Surgical Tools for Use in Minimally Invasive Telesurgical Applications", filed on Sep. 17, 1999.

When the end effector 58 is oriented forward, the roll, pitch, and yaw provide rotational movements relative to three generally perpendicular axes. FIG. 8 shows the position of the end effector 58 after rotation in pitch in the direction 56 of the wrist member 52 around the pivotal connection 54 by about 90°C. In this position, the yaw in the direction 61 around the pivotal connection 60 overlaps with the roll H of the working end 14.3. The overlap or redundancy results in the loss of one degree of freedom of movement of the end effector 58 at or near this position of singularity. In some applications, the end effector 58 may be used primarily at this position of about 90°C pitch. It is desirable to provide a wrist mechanism that does not operate at a singularity in this position.

Roll-Pitch-Roll Mechanism

FIGS. 9-11 show a roll-pitch-roll wrist-like mechanism 500. In FIG. 9, the working end of the tool shaft is indicated at 502, and includes a pair of extensions 506. The wrist-like mechanism 500 includes a rigid wrist member 504. One end portion of the wrist member 504 forms a clevis 508 in which the extensions 506 of the working end 502 of the tool shaft is pivotally mounted by means of a pivotal connection 510. As best seen in FIG. 10, the wrist member 504 can pitch in the direction of arrows 512 about the pivotal connection 510. This rotation around the pivotal connection 510 in the direction 512 is referred to as the pivot or pitch of the wrist member 504. The end 502 is rotatable with the tool shaft around the shaft axis in the direction 516. This rotation around the shaft axis in the direction 516 is referred to as the roll of the working end 502.

An end effector, generally indicated by reference numeral 514, is supported on an end effector support base 518 which is pivotally mounted on an opposed end of the wrist member 504 to rotate around its axis in the direction 520 as shown in FIG. 9. In the embodiment shown, the axis of the base 518 coincides with the axis of the wrist member 504. The rotation in the direction 520 is referred to the distal roll of the end effector 514. This distal roll of the end effector 514 in the direction 520 is differentiated from the proximal roll of the working end 502 in the direction 516. In the position of the wrist mechanism 500 as shown in FIGS. 9-11, the distal roll 520 of the end effector 514 overlaps with the proximal roll 516 of the working end 502. Because the rotation of the wrist member 504 around the pivotal connection 510 provides pitch 512 of the end effector 514, the distal roll 520 generally will not coincide with the proximal roll 516. The wrist mechanism 500 as illustrated in FIGS. 9-11 is referred to as a roll-pitch-roll mechanism.

The end effector 514 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, the end effector 514 has two parts 522.1, 522.2 together defining a jaw-like arrangement. The two parts 522.1, 522.2 are pivotally mounted in a clevis 524 on the base 518, by means of a pivotal connection 526. Free ends 528.1, 528.2 of the parts 522.1, 522.2 are angularly displaceable about the pivotal connection 526 toward and away from each other as indicated by arrows 530, 532 in FIG. 10. This movement is referred to as the grip of the end effector 514. The members 522.1, 522.2 can be displaced angularly about the pivotal connection 526 to change the orientation of the end effector 514 as a whole, relative to the wrist member 504. Thus, each part 522.1, 522.2 is angularly displaceable about the pivotal connection 526 independently of the other, so that the end effector 514 is, as a whole, angularly displaceable about the pivotal connection 526 in the direction 534, as shown in FIG. 10. This rotation around the pivotal connection 526 is referred to the yaw of the end effector 514. In the position of the wrist mechanism 500 as shown in FIGS. 9-11, the yaw 534 of the end effector 514 overlaps with the pitch 512 of the wrist member 504. Because the rotation of the base 518 provides distal roll 520 of the end effector 514, the yaw 534 generally will not coincide with the pitch 512. With the additional degree of freedom in yaw in the specific embodiment shown, the wrist mechanism 500 as illustrated in FIGS. 9-11 may be referred to as a roll-pitch-roll-yaw mechanism.

The parts 522.1, 522.2 each include an elongate finger portion or end effector element 536 and an end effector mounting formation in the form of, e.g., a pulley portion 538. The finger portion 536 may be integrally formed with the pulley portion 538. The pulley portion 538 defines a circumferentially extending channel for receiving an activation cable in a manner similar to the pulley portion 58.5 in the end effector 58 of FIGS. 5-7. Two elongate members such as cables C1, C2 are used to effect movement of the parts 522.1, 522.2 in yaw 534 and grip 530, 532. The cables C1, C2 pass from the wrist mechanism 500 internally through the shaft toward the housing 53 (FIG. 3). For simplicity, details of the pulley portion 538 in the end effector 514 of FIGS. 9-11 are omitted. The configuration and operation of the parts 522.1, 522.2 are similar to those of the parts 58.1, 58.2 in FIGS. 5-7.

In an alternate embodiment, the end effector 514 does not include the additional degree of freedom in yaw 534 but is still configured to perform the grip function. The parts 522.1, 522.2 perform gripping and does not move as a whole in yaw. For example, one part 522.1 may be substantially fixed with respect to the support base 518, while the other part 522.2 is rotatable relative to the pivotal connection 526 to move away from and toward the fixed part 522.1 in grip 530, 532. In that case, only one cable C2 is needed to manipulate the part 522.2 to effect the grip movement thereof (C1 is no longer needed). This alternate roll-pitch-roll mechanism with grip capability is simpler in structure and operation than the roll-pitch-roll-yaw mechanism with grip.

As best seen in FIG. 11, the pair of working end extensions 506 are flanked by two pulleys 540, 542 which are coaxially positioned on the pivotal connection 510 and in the clevis 508 at the proximal end of the wrist member 504. A tangent pulley 544 which is associated with the pulley 540 is attached to the bottom of the end effector support base 518. Another tangent pulley 546 which is associated with the pulley 542 is also attached to the bottom of the base 518. The tangent pulleys 544, 546 in the specific embodiment shown are generally perpendicular to the pair of pulleys 540, 542, and move together with the base 518. The circumference of each tangent pulley 544 or 546 is in close proximity to the circumference of its associated pulley 540 or 542. In a specific embodiment, the tangent pulleys are integrally formed with the bottom of the base 518.

Two elongate elements such as cables C3, C4 are used to effect movement of the end effector 514 and support base 518 in distal roll 520. As best seen in FIG. 11, two cables C3, C4 are anchored on the tangent pulleys 544, 546, respectively, to effect distal roll 520 of the base 518 attached to the tangent pulleys 544, 546. Cable C3 wraps around a portion of the tangent pulley 544, rides over the pulley 540 and extends through the shaft 14.1 to the housing 53, while cable C4 wraps around a portion of the tangent pulley 546, rides over the pulley 542 and extends through the shaft 14.1 to the housing 53 (FIG. 3). The circumference of each tangent pulley 544 or 546 is in sufficiently close proximity to the circumference of its associated pulley 540 or 542 to allow the corresponding cable C3 or C4 to slide in the pulley channels securely through the approximately 90°C change in orientation from one pulley to the other. In a preferred embodiment, cables C3, C4 are connected in the housing 53 and form a single cable. The single cable substantially does not change in length during distal roll 520 so that no tensioning spring or similar member is needed.

Another pulley 550 is disposed adjacent the pulley 540 and is coaxially positioned with the pulleys 540, 542 on the pivotal connection 510 and in the clevis 508 at the proximal end of the wrist member 504. An elongate element such as cable C5 is used to effect movement of the wrist member 504 in pitch 512. As seen in FIGS. 9-11, cable C5 is anchored on the pulley 550, rides over the pulley 540, and extends through the shaft 14.1 to the housing 53 (FIG. 3). In an alternate embodiment, another pulley is coaxially positioned adjacent the pulley 542 opposite from the pulley 550 on the other side of the pair of working end extensions 506, and the opposite end of cable C5 is anchored on that pulley. In the alternate embodiment, cable C5 substantially does not change in length during pitch 512 of the wrist member 504 so that no tensioning spring or similar member is needed.

FIG. 12 shows the position of the end effector 514 after rotation in pitch 512 of the wrist member 504 around the pivotal connection 510 by about 90°C. In this position, there is no overlap among the proximal roll 516, pitch 512, and distal roll 520, which are oriented around axes that are generally perpendicular to each other, making the wrist mechanism 500 more suitable to operate in the 90°C pitch position than the wrist mechanism 50 of FIGS. 5-8. In addition, the two parts 522.1, 522.2 of the end effector 514 are movable in yaw 524 and in grip 530, 532 in the specific embodiment shown. In the forward position of the end effector 514 as shown in FIGS. 9-11, the distal roll 520 coincides with the proximal roll 516, which presents a singularity. The addition of the yaw 524 of the end effector 514 in conjunction with the distal roll 520 in a preferred embodiment essentially eliminates the singularity by providing roll 516, pitch 512, and yaw 534 oriented around axes that are nonparallel and may be generally perpendicular to each other.

Bend Back Roll-Pitch-Roll Mechanism

FIGS. 13-17 show a roll-pitch-roll wrist-like mechanism 560 including a bend back feature in the pitch direction to increase the versatility of the mechanism 560. In FIG. 13, the working end of the tool shaft is indicated at 562. The end 562 is rotatable with the tool shaft around the shaft axis in the proximal roll 563. The wrist-like mechanism 560 includes a rigid wrist member 564. The working end 562 forms a working end clevis 566, and one end portion of the wrist member 564 forms a wrist member clevis 568 facing the clevis 566. The working end 562 includes a central extension 570. Disposed in the working end clevis 566 are a first pair of pitch or knee pulleys 572, 574 on opposite sides of the central extension 570. The pulleys 572, 574 are coaxially positioned on a pivotal connection 575. A central extension 576 is located in the wrist member clevis 568. Disposed in the wrist member clevis 568 are a second pair of pitch or knee pulleys 578, 580 on opposite sides of the central extension 576. The pulleys 578, 580 are coaxially positioned on a pivotal connection 581. The second pair of pitch pulleys 578, 580 in the wrist member clevis 568 are coplanar with the first pair of pitch pulleys 572, 574 in the working end clevis 566, respectively.

As best seen in FIGS. 13 and 14, a first pair of distal roll pulleys 584, 586 are disposed in the working end clevis 566 on opposite sides of the central extension 570. The pulleys 584, 586 are coaxially positioned on the pivotal connection 575. A second pair of distal roll pulleys 588, 590 are disposed in the wrist member clevis 568 on opposite sides of the central extension 576. The pulleys 588, 590 are coaxially positioned on the pivotal connection 581. The second pair of distal roll pulleys 588, 590 in the wrist member clevis 568 are coplanar with the first pair of distal roll pulleys 584, 586 in the working end clevis 566, respectively.

A pair of bend back pulley arms or lining arms 592, 594 extend between the working end clevis 566 and the wrist member clevis 568, and are disposed on opposite sides of the central extensions 570, 576. Each pulley arm 592, 594 has an end coaxially positioned on the pivotal connection 575 of the working end 562 and another end coaxially positioned on the pivotal connection 581 of the wrist member 564. Rotation of the bend back pulley arms 592, 594 relative to the working end 562 around the pivotal connection 575 in the direction 596 provides proximal pitch, while rotation of the wrist member 564 relative to the bend back pulley arms 592, 594 around the pivotal connection 581 in the direction 598 provides distal pitch. The proximal pitch 596 and distal pitch 598 allow the wrist member 564 to be bent back in pitch by more than 90°C as discussed in more detail below.

The central extension 576 in the wrist member clevis 568 is connected to a support base 602 for an end effector, generally indicated by reference numeral 600. The central extension 576 may be integrally formed with the base 602. The support base 602 is pivotally mounted on an opposed end of the wrist member 564 to rotate around its axis in the direction 604, as shown in FIG. 13. In the embodiment shown, the axis of the base 602 coincides with the wrist axis of the wrist member 564. The rotation in the direction 604 is referred to the distal roll of the end effector 600. This distal roll of the end effector 600 in the direction 604 is differentiated from the proximal roll of the working end 562 in the direction 563. In the position of the wrist mechanism 560 as shown in FIGS. 13-16, the distal roll 604 of the end effector 600 coincides with the proximal roll 563 of the working end 562. Because the rotation of the wrist member 564 around the pivotal connections 575, 581 provides compound pitch 596, 598 of the end effector 600, the distal roll 604 generally will not coincide with the proximal roll 563. The wrist mechanism 560 as illustrated in FIGS. 13-17 is referred to as a bend back roll-pitch-roll mechanism.

The end effector 600 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, the end effector 600 has two parts 608.1, 608.2 together defining a jaw-like arrangement. The two parts 608.1, 608.2 are pivotally mounted in a clevis 610 on the base 602, by means of a pivotal connection 612. Although free ends 614.1, 614.2 of the parts 608.1, 608.2 may be angularly displaceable about the pivotal connection 612 toward and away from each other in some embodiments, the specific embodiment shown in FIGS. 13-17 permits rotation of only the part 608.2 relative to the pivotal connection 612. The other part 608.1 is fixed relative to the base 602. The movable part 608.2 is movable toward and away from the fixed part 608.1 as indicated by arrows 616, 618 in FIG. 16. This movement is referred to as the grip of the end effector 600.

The movable part 608.2 includes a mounting formation in the form of, e.g., a pulley portion 620. The pulley portion 620 defines a circumferentially extending channel for receiving an elongate member such as an activation cable C1 which is anchored to the pulley portion 620, as best seen in FIGS. 13 and 14. The cable C1 pass through the central extensions 576, 570 and the shaft toward the housing 53 (FIG. 3). In a preferred embodiment, the cable C1 forms a continuous loop between the pulley portion 620 and the housing 53 and does not change in length during grip 616, 618 of the end effector 600, so that no tensioning spring is needed.

Two elongate elements such as cables C3, C4 are used to effect movement of the end effector 600 and support base 602 in distal roll 604. As best seen in FIG. 14, two cables C3, C4 are anchored on the tangent surface 624 of the central extension 576 of the base 602 to effect distal roll 604 of the base 602 (FIG. 13). Cable C3 wraps around a portion of the tangent surface 624, while cable C4 wraps around another portion of the tangent surface 624. Cable C3 rides over the roll pulleys 588, 584 and extends through the shaft 14.1 to the housing 53, while cable C4 rides over the roll pulleys 590, 586 and extends through the shaft 14.1 to the housing 53 (FIG. 3). The circumference of the tangent surface 624 is in sufficiently close proximity to the circumferences of the two roll pulleys 588, 590 to allow the corresponding cables C3, C4, respectively, to slide in the pulley channels securely through the approximately 90°C change in orientation from the roll pulleys 588, 590 to the tangent surface 624. In a preferred embodiment, cables C3, C4 are connected in the housing 53 and form a single cable. The single cable substantially does not change in length during distal roll 604 so that no tensioning spring or similar member is needed. For clarity, cables C3, C4 are not shown in FIGS. 13 and 15-17. In an alternate embodiment, the tangent surface 624 may include a pair of circumferential channels for receiving the cables C3, C4 such as those for the tangent pulleys 544, 546 shown in FIG. 11 for the wrist mechanism 500.

As best seen in FIG. 14, two cables C5, C6 are provided for activating roll 596, 598 of the wrist member 564. Cable C5 is anchored on the pulley 578, rides over the pulleys 578, 572, and extends through the shaft 14.1 to the housing 53 (FIG. 3). Cable C6 is anchored on the pulley 580, rides over the pulleys 580, 574, and extends through the shaft 14.1 to the housing 53. In a preferred embodiment, the two cables C5, C6 are connected to form a single cable that substantially does not change in length during pitch 596, 598 of the wrist member 564 so that no tensioning spring is needed.

FIG. 17 illustrates the bend back feature of the wrist mechanism 560. The compound pitch 596, 598 around pivotal connections 575, 581 allows the wrist member 564 and end effector 600 to bend back by an angle θ of more than about 90°C from the forward position of FIGS. 13-16, desirably by more than about 120°C, and more desirably by more than about 135°C. Thus, the angle between the shaft axis and the wrist axis is about 180°C when the end effector 600 is in the forward position, and is less than 90°C in the bent back position, and may be down to less than about 60°C or less than about 45°C. The ability to bend back the end effector 600 renders the wrist mechanism 560 more versatile and adaptable to accessing hard to reach locations, particularly with small entry points such as those involving spinal, neural, or rectal surgical sites. The use of the linking arms 592, 594 provides this capability while maintaining the size of the tool 560 to a sufficiently small size for minimally invasive surgical applications.

The above-described arrangements of apparatus and methods are merely illustrative of applications of the principles of this invention and many other embodiments and modifications may be made without departing from the spirit and scope of the invention as defined in the claims. For instance, the linking arms may have other configurations. Different actuation mechanisms other than activating cables may be used to manipulate the wrist member and end effector. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Morley, Tracey A., Wallace, Daniel T.

Patent Priority Assignee Title
10010339, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10022567, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
10022568, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
10034684, Jun 15 2015 Cilag GmbH International Apparatus and method for dissecting and coagulating tissue
10034704, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable algorithms
10045794, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10052155, Jul 27 2000 Intuitive Surgical Operations, Inc. Roll-pitch-roll surgical tool
10092310, Mar 27 2014 Cilag GmbH International Electrosurgical devices
10092348, Dec 22 2014 Cilag GmbH International RF tissue sealer, shear grip, trigger lock mechanism and energy activation
10111699, Dec 22 2014 Cilag GmbH International RF tissue sealer, shear grip, trigger lock mechanism and energy activation
10111711, Jul 11 2011 Board of Regents of the University of Nebraska Robotic surgical devices, systems, and related methods
10117667, Feb 11 2010 Cilag GmbH International Control systems for ultrasonically powered surgical instruments
10117702, Apr 10 2015 Cilag GmbH International Surgical generator systems and related methods
10130410, Apr 17 2015 Cilag GmbH International Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
10154852, Jul 01 2015 Cilag GmbH International Ultrasonic surgical blade with improved cutting and coagulation features
10159524, Dec 22 2014 Cilag GmbH International High power battery powered RF amplifier topology
10166060, Aug 30 2011 Cilag GmbH International Surgical instruments comprising a trigger assembly
10172669, Oct 09 2009 Cilag GmbH International Surgical instrument comprising an energy trigger lockout
10179022, Dec 30 2015 Cilag GmbH International Jaw position impedance limiter for electrosurgical instrument
10188384, Jun 06 2011 Ethicon, Inc Methods and devices for soft palate tissue elevation procedures
10194972, Aug 26 2014 Cilag GmbH International Managing tissue treatment
10194973, Sep 30 2015 Cilag GmbH International Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
10194976, Aug 25 2014 Cilag GmbH International Lockout disabling mechanism
10201365, Oct 22 2012 Cilag GmbH International Surgeon feedback sensing and display methods
10201382, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
10219870, May 01 2012 Board of Regents of the University of Nebraska Single site robotic device and related systems and methods
10226273, Mar 14 2013 Cilag GmbH International Mechanical fasteners for use with surgical energy devices
10245064, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
10245065, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10251664, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
10263171, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
10265094, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10265117, Oct 09 2009 Cilag GmbH International Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
10278721, Jul 22 2010 Cilag GmbH International Electrosurgical instrument with separate closure and cutting members
10285723, Aug 09 2016 Cilag GmbH International Ultrasonic surgical blade with improved heel portion
10285724, Jul 31 2014 Cilag GmbH International Actuation mechanisms and load adjustment assemblies for surgical instruments
10299810, Feb 11 2010 Cilag GmbH International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
10299821, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor control limit profile
10307199, Jun 22 2006 Board of Regents of the University of Nebraska Robotic surgical devices and related methods
10314638, Apr 07 2015 Cilag GmbH International Articulating radio frequency (RF) tissue seal with articulating state sensing
10321927, Nov 23 2004 Intuitive Surgical Operations, Inc Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
10321950, Mar 17 2015 Cilag GmbH International Managing tissue treatment
10335024, Aug 15 2007 Board of Regents of the University of Nebraska Medical inflation, attachment and delivery devices and related methods
10335177, May 13 2011 Intuitive Surgical Operations, Inc. Medical instrument with snake wrist structure
10335182, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
10335183, Jun 29 2012 Cilag GmbH International Feedback devices for surgical control systems
10335614, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
10342561, Sep 12 2014 Virtual Incision Corporation Quick-release end effectors and related systems and methods
10342602, Mar 17 2015 Cilag GmbH International Managing tissue treatment
10342626, May 23 2003 Intuitive Surgical Operations, Inc. Surgical instrument
10349999, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
10350000, Jun 10 2011 Board of Regents of the University of Nebraska Methods, systems, and devices relating to surgical end effectors
10357303, Jun 30 2015 Cilag GmbH International Translatable outer tube for sealing using shielded lap chole dissector
10376305, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
10376322, Nov 11 2014 Board of Regents of the University of Nebraska Robotic device with compact joint design and related systems and methods
10376323, May 31 2005 Board of Regents of the University of Nebraska Multifunctional operational component for robotic devices
10390897, Nov 08 2013 Covidien LP Medical device adapter with wrist mechanism
10398466, Jul 27 2007 Cilag GmbH International Ultrasonic end effectors with increased active length
10398497, Jun 29 2012 Cilag GmbH International Lockout mechanism for use with robotic electrosurgical device
10420546, May 04 2010 Cilag GmbH International Self-retaining systems having laser-cut retainers
10420579, Jul 31 2007 Cilag GmbH International Surgical instruments
10420580, Aug 25 2016 Cilag GmbH International Ultrasonic transducer for surgical instrument
10426507, Jul 31 2007 Cilag GmbH International Ultrasonic surgical instruments
10433865, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10433866, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10433900, Jul 22 2011 Cilag GmbH International Surgical instruments for tensioning tissue
10441270, Nov 03 2008 Ethicon, Inc Length of self-retaining suture and method and device for using the same
10441308, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
10441310, Jun 29 2012 Cilag GmbH International Surgical instruments with curved section
10441345, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
10456193, May 03 2016 Cilag GmbH International Medical device with a bilateral jaw configuration for nerve stimulation
10463421, Mar 27 2014 Cilag GmbH International Two stage trigger, clamp and cut bipolar vessel sealer
10463887, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10470828, Mar 15 2013 Board of Regents of the University of Nebraska Local control robotic surgical devices and related methods
10485607, Apr 29 2016 Cilag GmbH International Jaw structure with distal closure for electrosurgical instruments
10492780, Mar 23 2011 Cilag GmbH International Self-retaining variable loop sutures
10517627, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
10524852, Mar 28 2014 Cilag GmbH International Distal sealing end effector with spacers
10524854, Jul 23 2010 Cilag GmbH International Surgical instrument
10524872, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
10531910, Jul 27 2007 Cilag GmbH International Surgical instruments
10537351, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with variable motor control limits
10537352, Oct 08 2004 Cilag GmbH International Tissue pads for use with surgical instruments
10543008, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned jaw assemblies
10548592, May 14 2004 Cilag GmbH International Suture methods and devices
10555769, Feb 22 2016 Cilag GmbH International Flexible circuits for electrosurgical instrument
10575892, Dec 31 2015 Cilag GmbH International Adapter for electrical surgical instruments
10582973, Aug 08 2012 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
10595929, Mar 24 2015 Cilag GmbH International Surgical instruments with firing system overload protection mechanisms
10595930, Oct 16 2015 Cilag GmbH International Electrode wiping surgical device
10603064, Nov 28 2016 Cilag GmbH International Ultrasonic transducer
10603117, Jun 28 2017 Cilag GmbH International Articulation state detection mechanisms
10603121, Mar 14 2013 Board of Regents of the University of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
10610286, Sep 30 2015 Cilag GmbH International Techniques for circuit topologies for combined generator
10624691, Sep 30 2015 Cilag GmbH International Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
10624704, Aug 08 2012 Board of Regents of the University of Nebraska Robotic devices with on board control and related systems and devices
10639092, Dec 08 2014 Cilag GmbH International Electrode configurations for surgical instruments
10646269, Apr 29 2016 Cilag GmbH International Non-linear jaw gap for electrosurgical instruments
10667883, Mar 15 2013 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
10687884, Sep 30 2015 Cilag GmbH International Circuits for supplying isolated direct current (DC) voltage to surgical instruments
10688321, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
10695137, Jul 12 2007 Board of Regents of the University of Nebraska Methods, systems, and devices for surgical access and procedures
10702329, Apr 29 2016 Cilag GmbH International Jaw structure with distal post for electrosurgical instruments
10702347, Aug 30 2016 The Regents of the University of California Robotic device with compact joint design and an additional degree of freedom and related systems and methods
10709469, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with energy conservation techniques
10709906, May 20 2009 Cilag GmbH International Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
10716615, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
10722261, Mar 22 2007 Cilag GmbH International Surgical instruments
10722314, May 23 2003 Intuitive Surgical Operations, Inc. Articulating retractors
10722319, Dec 14 2016 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
10729494, Feb 10 2012 Cilag GmbH International Robotically controlled surgical instrument
10729885, Jun 07 2004 Intuitive Surgical Operations, Inc. Articulating mechanism with flex-hinged links
10736617, Nov 04 2015 Olympus Corporation Force transmission mechanism for medical device and medical device
10736685, Sep 30 2015 Cilag GmbH International Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
10743949, Mar 14 2013 Board of Regents of the University of Nebraska Methods, systems, and devices relating to force control surgical systems
10751108, Sep 30 2015 Cilag GmbH International Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
10751109, Dec 22 2014 Cilag GmbH International High power battery powered RF amplifier topology
10751117, Sep 23 2016 Cilag GmbH International Electrosurgical instrument with fluid diverter
10751136, May 18 2016 Virtual Incision Corporation Robotic surgical devices, systems and related methods
10765470, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
10779815, May 14 2004 Cilag GmbH International Suture methods and devices
10779845, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned transducers
10779847, Aug 25 2016 Cilag GmbH International Ultrasonic transducer to waveguide joining
10779848, Jan 20 2006 Cilag GmbH International Ultrasound medical instrument having a medical ultrasonic blade
10779849, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
10779876, Oct 24 2011 Cilag GmbH International Battery powered surgical instrument
10779879, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
10799284, Mar 15 2017 Cilag GmbH International Electrosurgical instrument with textured jaws
10806538, Aug 03 2015 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
10820920, Jul 05 2017 Cilag GmbH International Reusable ultrasonic medical devices and methods of their use
10828057, Mar 22 2007 Cilag GmbH International Ultrasonic surgical instruments
10828058, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
10828059, Oct 05 2007 Cilag GmbH International Ergonomic surgical instruments
10835307, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
10835768, Feb 11 2010 Cilag GmbH International Dual purpose surgical instrument for cutting and coagulating tissue
10842522, Jul 15 2016 Cilag GmbH International Ultrasonic surgical instruments having offset blades
10842523, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument and methods therefor
10842580, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
10856896, Oct 14 2005 Cilag GmbH International Ultrasonic device for cutting and coagulating
10856929, Jan 07 2014 Cilag GmbH International Harvesting energy from a surgical generator
10856934, Apr 29 2016 Cilag GmbH International Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
10874418, Feb 27 2004 Cilag GmbH International Ultrasonic surgical shears and method for sealing a blood vessel using same
10881449, Sep 28 2012 Cilag GmbH International Multi-function bi-polar forceps
10888347, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10888388, Apr 06 2016 Olympus Corporation Medical-manipulator rotation mechanism
10893883, Jul 13 2016 Cilag GmbH International Ultrasonic assembly for use with ultrasonic surgical instruments
10898256, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques based on tissue impedance
10912580, Dec 16 2013 Cilag GmbH International Medical device
10912603, Nov 08 2013 Cilag GmbH International Electrosurgical devices
10925659, Sep 13 2013 Cilag GmbH International Electrosurgical (RF) medical instruments for cutting and coagulating tissue
10932847, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
10952721, May 04 2010 Cilag GmbH International Laser cutting system and methods for creating self-retaining sutures
10952759, Aug 25 2016 Cilag GmbH International Tissue loading of a surgical instrument
10952788, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable algorithms
10959771, Oct 16 2015 Cilag GmbH International Suction and irrigation sealing grasper
10959790, May 31 2005 Board of Regents of the University of Nebraska Multifunctional operational component for robotic devices
10959806, Dec 30 2015 Cilag GmbH International Energized medical device with reusable handle
10966700, Jul 17 2013 Virtual Incision Corporation Robotic surgical devices, systems and related methods
10966744, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
10966747, Jun 29 2012 Cilag GmbH International Haptic feedback devices for surgical robot
10987123, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
10987156, Apr 29 2016 Cilag GmbH International Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
10993763, Jun 29 2012 Cilag GmbH International Lockout mechanism for use with robotic electrosurgical device
11006971, Oct 08 2004 Cilag GmbH International Actuation mechanism for use with an ultrasonic surgical instrument
11007296, Nov 03 2010 Cilag GmbH International Drug-eluting self-retaining sutures and methods relating thereto
11013564, Jan 05 2018 Board of Regents of the University of Nebraska Single-arm robotic device with compact joint design and related systems and methods
11020140, Jun 17 2015 Cilag GmbH International Ultrasonic surgical blade for use with ultrasonic surgical instruments
11032125, Jul 11 2011 Board of Regents of the University of Nebraska Robotic surgical devices, systems and related methods
11033292, Dec 16 2013 Cilag GmbH International Medical device
11033322, Sep 30 2015 Cilag GmbH International Circuit topologies for combined generator
11033323, Sep 29 2017 Cilag GmbH International Systems and methods for managing fluid and suction in electrosurgical systems
11033325, Feb 16 2017 Cilag GmbH International Electrosurgical instrument with telescoping suction port and debris cleaner
11051840, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
11051873, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
11051894, Sep 27 2017 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
11051895, Aug 08 2012 Board of Regents of the University of Nebraska Robotic surgical devices, systems, and related methods
11058447, Jul 31 2007 Cilag GmbH International Temperature controlled ultrasonic surgical instruments
11058448, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multistage generator circuits
11058475, Sep 30 2015 Cilag GmbH International Method and apparatus for selecting operations of a surgical instrument based on user intention
11065050, Jun 10 2011 Board of Regents of the University of Nebraska Methods, systems, and devices relating to surgical end effectors
11090103, May 21 2010 Cilag GmbH International Medical device
11090104, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
11090110, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
11096752, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
11129669, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques based on tissue type
11129670, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
11134978, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
11141213, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable techniques
11173617, Aug 25 2016 Board of Regents of the University of Nebraska Quick-release end effector tool interface
11179173, Oct 22 2012 Cilag GmbH International Surgical instrument
11202670, Feb 22 2016 Cilag GmbH International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
11229450, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor drive
11229471, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11229472, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
11234689, Nov 03 2008 Ethicon, Inc Length of self-retaining suture and method and device for using the same
11234692, May 04 2010 Cilag GmbH International Self-retaining system having laser-cut retainers
11234694, Aug 18 2008 Intuitive Surgical Operations, Inc. Instrument with multiple articulation locks
11253288, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
11266430, Nov 29 2016 Cilag GmbH International End effector control and calibration
11266433, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
11272952, Mar 14 2013 Cilag GmbH International Mechanical fasteners for use with surgical energy devices
11284958, Nov 29 2016 Virtual Incision Corporation User controller with user presence detection and related systems and methods
11311326, Feb 06 2015 Cilag GmbH International Electrosurgical instrument with rotation and articulation mechanisms
11324527, Nov 15 2012 Cilag GmbH International Ultrasonic and electrosurgical devices
11337747, Apr 15 2014 Cilag GmbH International Software algorithms for electrosurgical instruments
11344362, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
11350959, Aug 25 2016 Cilag GmbH International Ultrasonic transducer techniques for ultrasonic surgical instrument
11357526, May 13 2011 Intuitive Surgical Operations, Inc. Medical instrument with snake wrist structure
11357595, Nov 22 2016 Board of Regents of the University of Nebraska Gross positioning device and related systems and methods
11369402, Feb 11 2010 Cilag GmbH International Control systems for ultrasonically powered surgical instruments
11382642, Feb 11 2010 Cilag GmbH International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
11399855, Mar 27 2014 Cilag GmbH International Electrosurgical devices
11406458, Nov 11 2014 Board of Regents of the University of Nebraska Robotic device with compact joint design and related systems and methods
11413060, Jul 31 2014 Cilag GmbH International Actuation mechanisms and load adjustment assemblies for surgical instruments
11419626, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
11426191, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned jaw assemblies
11432890, Jan 04 2018 Covidien LP Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough
11432891, Jun 03 2015 Covidien LP Offset instrument drive unit
11439426, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11446099, Jun 03 2016 Covidien LP Control arm for robotic surgical systems
11452525, Dec 30 2019 Cilag GmbH International Surgical instrument comprising an adjustment system
11464593, Jun 03 2016 Covidien LP Passive axis system for robotic surgical systems
11471209, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
11484358, Sep 29 2017 Cilag GmbH International Flexible electrosurgical instrument
11484372, Feb 15 2019 Covidien LP Articulation mechanisms for surgical instruments such as for use in robotic surgical systems
11484374, Jun 22 2012 Board of Regents of the University of Nebraska Local control robotic surgical devices and related methods
11490951, Sep 29 2017 Cilag GmbH International Saline contact with electrodes
11491310, Sep 24 2004 Intuitive Surgical Operations, Inc. Articulating mechanism with flex-hinged links
11497546, Mar 31 2017 Cilag GmbH International Area ratios of patterned coatings on RF electrodes to reduce sticking
11497572, Nov 08 2013 Covidien LP Medical device adapter with wrist mechanism
11504196, Jan 05 2018 Board of Regents of the University of Nebraska Single-arm robotic device with compact joint design and related systems and methods
11510747, May 25 2017 Covidien LP Robotic surgical systems and drapes for covering components of robotic surgical systems
11517183, Oct 23 2015 Covidien LP Surgical system for detecting gradual changes in perfusion
11523509, May 26 2016 Covidien LP Instrument drive units
11529201, May 01 2012 Board of Regents of the University of Nebraska Single site robotic device and related systems and methods
11529203, Sep 25 2015 Covidien LP Robotic surgical assemblies and instrument drive connectors thereof
11547287, May 23 2003 Intuitive Surgical Operations, Inc. Surgical instrument
11547508, May 26 2016 Covidien LP Robotic surgical assemblies
11553954, Jun 30 2015 Cilag GmbH International Translatable outer tube for sealing using shielded lap chole dissector
11553974, May 25 2017 Covidien LP Systems and methods for detection of objects within a field of view of an image capture device
11553984, Jun 03 2016 Covidien LP Robotic surgical system with an embedded imager
11559347, Sep 30 2015 Cilag GmbH International Techniques for circuit topologies for combined generator
11576562, Apr 07 2016 Covidien LP Camera positioning method and apparatus for capturing images during a medical procedure
11576695, Sep 12 2014 Virtual Incision Corporation Quick-release end effectors and related systems and methods
11576732, Nov 13 2017 Vicarious Surgical Inc. Virtual reality wrist assembly
11576733, Feb 06 2019 Covidien LP Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies
11576739, Jul 03 2018 Covidien LP Systems, methods, and computer-readable media for detecting image degradation during surgical procedures
11583306, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11583358, Sep 06 2017 Covidien LP Boundary scaling of surgical robots
11586106, Dec 28 2018 Covidien LP Imaging apparatus having configurable stereoscopic perspective
11589916, Dec 30 2019 Cilag GmbH International Electrosurgical instruments with electrodes having variable energy densities
11595242, Jul 11 2011 Board of Regents of the University of Nebraska Robotic surgical devices, systems and related methods
11596489, Mar 10 2015 Covidien LP Measuring health of a connector member of a robotic surgical system
11602371, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
11607268, Jul 27 2007 Cilag GmbH International Surgical instruments
11612446, Jun 03 2016 Covidien LP Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator
11615884, Mar 06 2018 DIGITAL SURGERY LIMITED Techniques for virtualized tool interaction
11617626, Aug 08 2012 Board of Regents of the University of Nebraska Robotic surgical devices, systems and related methods
11618171, Dec 11 2013 Covidien LP Wrist and jaw assemblies for robotic surgical systems
11622824, Jun 16 2015 Covidien LP Robotic surgical system torque transduction sensing
11628022, Sep 05 2017 Covidien LP Collision handling algorithms for robotic surgical systems
11628024, Mar 08 2018 Covidien LP Surgical robotic systems
11628028, Dec 31 2018 ASENSUS SURGICAL US, INC Articulating surgical instrument
11633243, Oct 10 2018 Covidien LP Instrument insertion system, method, and apparatus for performing medical procedures
11633253, Mar 15 2013 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
11638590, Nov 23 2004 Intuitive Surgical Operations, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
11647888, Apr 20 2018 Covidien LP Compensation for observer movement in robotic surgical systems having stereoscopic displays
11660089, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a sensing system
11666375, Oct 16 2015 Cilag GmbH International Electrode wiping surgical device
11666395, Jun 23 2015 Covidien LP Robotic surgical assemblies
11666784, Jul 31 2007 Cilag GmbH International Surgical instruments
11684402, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11684412, Dec 30 2019 Cilag GmbH International Surgical instrument with rotatable and articulatable surgical end effector
11690614, Mar 23 2011 Cilag GmbH International Self-retaining variable loop sutures
11690641, Jul 27 2007 Cilag GmbH International Ultrasonic end effectors with increased active length
11690643, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11690691, Feb 15 2017 MEDTRONIC GMBH, EARL-BAKKEN-PLATZ System and apparatus for crush prevention for medical robot applications
11696776, Dec 30 2019 Cilag GmbH International Articulatable surgical instrument
11707318, Dec 30 2019 Cilag GmbH International Surgical instrument with jaw alignment features
11717311, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11717355, Jan 29 2019 Covidien LP Drive mechanisms for surgical instruments such as for use in robotic surgical systems
11717361, May 24 2017 Covidien LP Electrosurgical robotic system having tool presence detection
11717706, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
11723654, May 14 2004 Cilag GmbH International Suture methods and devices
11723716, Dec 30 2019 Cilag GmbH International Electrosurgical instrument with variable control mechanisms
11730507, Feb 27 2004 Cilag GmbH International Ultrasonic surgical shears and method for sealing a blood vessel using same
11730552, Jan 04 2018 Covidien LP Robotic surgical instrument including high articulation wrist assembly with torque transmission and mechanical manipulation
11744636, Dec 30 2019 Cilag GmbH International Electrosurgical systems with integrated and external power sources
11751929, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11759251, Dec 30 2019 Cilag GmbH International Control program adaptation based on device status and user input
11766276, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11766287, Sep 30 2015 Cilag GmbH International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
11779329, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a flex circuit including a sensor system
11779387, Dec 30 2019 Cilag GmbH International Clamp arm jaw to minimize tissue sticking and improve tissue control
11779413, Nov 19 2015 Covidien LP Optical force sensor for robotic surgical system
11786291, Dec 30 2019 Cilag GmbH International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
11786294, Dec 30 2019 Cilag GmbH International Control program for modular combination energy device
11786334, Dec 14 2016 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
11806097, Mar 14 2013 Board of Regents of the University of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
11812957, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a signal interference resolution system
11813124, Nov 22 2016 Board of Regents of the University of Nebraska Gross positioning device and related systems and methods
11819299, May 01 2012 Board of Regents of the University of Nebraska Single site robotic device and related systems and methods
11826014, May 18 2016 Virtual Incision Corporation Robotic surgical devices, systems and related methods
11826032, Jul 17 2013 Virtual Incision Corporation Robotic surgical devices, systems and related methods
11832871, Jun 10 2011 Board of Regents of the University of Nebraska Methods, systems, and devices relating to surgical end effectors
11832902, Aug 08 2012 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
11839422, Sep 23 2016 Cilag GmbH International Electrosurgical instrument with fluid diverter
11839441, May 25 2017 Covidien LP Robotic surgical system with automated guidance
11864820, May 03 2016 Cilag GmbH International Medical device with a bilateral jaw configuration for nerve stimulation
11871955, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11871982, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
11872090, Aug 03 2015 Virtual Incision Corporation Robotic surgical devices, systems, and related methods
11877734, Jul 31 2007 Cilag GmbH International Ultrasonic surgical instruments
11883055, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
11883065, Jan 10 2012 Board of Regents of the University of Nebraska Methods, systems, and devices for surgical access and insertion
11890491, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
11896280, Jan 15 2016 Cilag GmbH International Clamp arm comprising a circuit
11903634, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable techniques
11903658, Jan 07 2019 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods
11909576, Jul 11 2011 Board of Regents of the University of Nebraska Robotic surgical devices, systems, and related methods
11911063, Dec 30 2019 Cilag GmbH International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
7090637, May 23 2003 Intuitive Surgical Operations, Inc Articulating mechanism for remote manipulation of a surgical or diagnostic tool
7410483, May 23 2003 Intuitive Surgical Operations, Inc Hand-actuated device for remote manipulation of a grasping tool
7470268, Jul 20 2000 CARDINAL HEALTH CMP 200, INC; Carefusion 2200, Inc Hand-actuated articulating surgical tool
7492116, Jul 08 2003 Virtual Incision Corporation Robot for surgical applications
7540867, Mar 29 2005 Terumo Kabushiki Kaisha Manipulator
7615066, May 23 2003 Intuitive Surgical Operations, Inc Articulating mechanism for remote manipulation of a surgical or diagnostic tool
7678117, Jun 07 2004 Intuitive Surgical Operations, Inc Articulating mechanism with flex-hinged links
7682307, May 23 2003 Intuitive Surgical Operations, Inc Articulating mechanism for remote manipulation of a surgical or diagnostic tool
7758569, Feb 24 1998 AURIS HEALTH, INC Interchangeable surgical instrument
7772796, Jul 08 2003 Board of Regents of the University of Nebraska Robotic devices with agent delivery components and related methods
7785252, Nov 23 2004 Intuitive Surgical Operations, Inc Articulating sheath for flexible instruments
7824401, Oct 08 2004 Intuitive Surgical Operations, Inc Robotic tool with wristed monopolar electrosurgical end effectors
7828808, Jun 07 2004 Intuitive Surgical Operations, Inc Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
7862554, Apr 16 2007 Intuitive Surgical Operations, Inc Articulating tool with improved tension member system
7955321, Jan 11 2005 Hitachi, Ltd. Surgical operation apparatus and manipulator for use therein
7960935, Jul 08 2003 The Board of Regents of the University of Nebraska Robotic devices with agent delivery components and related methods
7996967, Aug 31 2001 Cilag GmbH International System for variable-angle cutting of a suture to create tissue retainers of a desired shape and size
7996968, Aug 31 2001 Cilag GmbH International Automated method for cutting tissue retainers on a suture
8005571, Aug 13 2002 DEERFIELD IMAGING, INC Microsurgical robot system
8011072, Aug 31 2001 Cilag GmbH International Method for variable-angle cutting of a suture to create tissue retainers of a desired shape and size
8015678, Aug 31 2001 Cilag GmbH International Method for cutting a suture to create tissue retainers of a desired shape and size
8020263, Aug 31 2001 Cilag GmbH International Automated system for cutting tissue retainers on a suture
8021358, Jun 16 2004 Steris Corporation Surgical tool kit
8028387, Aug 31 2001 Cilag GmbH International System for supporting and cutting suture thread to create tissue retainers thereon
8028388, Aug 31 2001 Cilag GmbH International System for cutting a suture to create tissue retainers of a desired shape and size
8032996, May 13 2004 Cilag GmbH International Apparatus for forming barbs on a suture
8041459, Aug 13 2002 DEERFIELD IMAGING, INC Methods relating to microsurgical robot system
8083770, Aug 09 2002 Ethicon, Inc Suture anchor and method
8100824, May 23 2003 Intuitive Surgical Operations, Inc Tool with articulation lock
8105319, Jul 20 2000 CARDINAL HEALTH CMP 200, INC; Carefusion 2200, Inc Hand-actuated articulating surgical tool
8105320, Apr 18 2002 Intuitive Surgical Operations Inc. Methods for replaceable end-effector cartridges
8170717, Aug 13 2002 DEERFIELD IMAGING, INC Microsurgical robot system
8182417, Nov 24 2004 Intuitive Surgical Operations, Inc Articulating mechanism components and system for easy assembly and disassembly
8246652, May 03 1993 Ethicon, Inc Suture with a pointed end and an anchor end and with equally spaced yieldable tissue grasping barbs located at successive axial locations
8277375, Nov 23 2004 Intuitive Surgical Operations, Inc. Flexible segment system
8323297, Jun 07 2004 Intuitive Surgical Operations, Inc Articulating mechanism with flex-hinged links
8343171, Jul 12 2007 Board of Regents of the University of Nebraska Methods and systems of actuation in robotic devices
8353897, Jun 16 2004 Steris Corporation Surgical tool kit
8396598, Aug 13 2002 DEERFIELD IMAGING, INC Microsurgical robot system
8398619, Jun 27 2008 Steris Corporation Flexible wrist-type element and methods of manufacture and use thereof
8398634, Apr 18 2002 Intuitive Surgical Operations, Inc Wristed robotic surgical tool for pluggable end-effectors
8409244, Apr 16 2007 Intuitive Surgical Operations, Inc Tool with end effector force limiter
8419747, Jun 07 2004 Intuitive Surgical Operations, Inc Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
8444631, Jun 14 2007 MACDONALD, DETTWILER AND ASSOCIATES INC Surgical manipulator
8460338, Feb 25 2008 Cilag GmbH International Self-retainers with supporting structures on a suture
8465475, Aug 18 2008 Intuitive Surgical Operations, Inc Instrument with multiple articulation locks
8491603, Jun 14 2006 MACDONALD, DETTWILER AND ASSOCIATES INC Surgical manipulator
8512316, Mar 29 2005 Terumo Kabushiki Kaisha Manipulator
8535347, May 23 2003 Intuitive Surgical Operations, Inc Articulating mechanisms with bifurcating control
8562640, Apr 16 2007 Intuitive Surgical Operations, Inc Tool with multi-state ratcheted end effector
8604742, Jul 08 2003 Board of Regents of the University of Nebraska Robotic devices with arms and related methods
8615856, Jan 30 2008 Ethicon, Inc Apparatus and method for forming self-retaining sutures
8641732, Feb 26 2008 Ethicon, Inc Self-retaining suture with variable dimension filament and method
8652170, Aug 09 2002 Ethicon, Inc Double ended barbed suture with an intermediate body
8679096, Jun 21 2007 Board of Regents of the University of Nebraska Multifunctional operational component for robotic devices
8679158, Aug 09 2002 Ethicon, Inc Multiple suture thread configuration with an intermediate connector
8690914, Aug 09 2002 Ethicon, Inc Suture with an intermediate barbed body
8721664, May 14 2004 Cilag GmbH International Suture methods and devices
8721681, Sep 30 2002 Ethicon, Inc Barbed suture in combination with surgical needle
8734485, Sep 30 2002 Ethicon, Inc Sutures with barbs that overlap and cover projections
8734486, Aug 09 2002 Ethicon, Inc Multiple suture thread configuration with an intermediate connector
8747437, Jun 29 2001 Ethicon, Inc Continuous stitch wound closure utilizing one-way suture
8764776, Jun 29 2001 Ethicon, Inc Anastomosis method using self-retaining sutures
8764796, Jun 29 2001 Ethicon, Inc Suture method
8768516, Jun 30 2009 Intuitive Surgical Operations, Inc Control of medical robotic system manipulator about kinematic singularities
8771313, Dec 19 2007 Cilag GmbH International Self-retaining sutures with heat-contact mediated retainers
8777987, Sep 27 2007 Ethicon, Inc Self-retaining sutures including tissue retainers having improved strength
8777988, Jun 29 2001 Ethicon, Inc Methods for using self-retaining sutures in endoscopic procedures
8777989, Jun 29 2001 Ethicon, Inc Subcutaneous sinusoidal wound closure utilizing one-way suture
8793863, Apr 13 2007 Cilag GmbH International Method and apparatus for forming retainers on a suture
8795332, Sep 30 2002 Ethicon, Inc Barbed sutures
8821540, Sep 30 2002 Ethicon, Inc Self-retaining sutures having effective holding strength and tensile strength
8827996, Apr 18 2002 Intuitive Surgical Operations, Inc. Methods for pluggable end-effectors of robotic surgical instruments
8828024, Jul 12 2007 Board of Regents of the University of Nebraska Methods, systems, and devices for surgical access and procedures
8834488, Jun 22 2006 Virtual Incision Corporation Magnetically coupleable robotic surgical devices and related methods
8852232, Sep 30 2002 Ethicon, Inc Self-retaining sutures having effective holding strength and tensile strength
8875607, Jan 30 2008 Cilag GmbH International Apparatus and method for forming self-retaining sutures
8876865, Apr 15 2008 Cilag GmbH International Self-retaining sutures with bi-directional retainers or uni-directional retainers
8894633, Dec 17 2009 BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA AT LINCOLN Modular and cooperative medical devices and related systems and methods
8906002, Sep 30 2010 Olympus Corporation Bending joint mechanism, surgical instrument having this bending joint mechanism, and manipulator having this bending joint mechanism
8915940, Dec 02 2010 AGILE ENDOSURGERY, INC Surgical tool
8915943, Apr 13 2007 Cilag GmbH International Self-retaining systems for surgical procedures
8916077, Dec 19 2007 Ethicon, Inc Self-retaining sutures with retainers formed from molten material
8920429, Jun 07 2004 Intuitive Surgical Operations, Inc. Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
8926659, Aug 31 2001 Cilag GmbH International Barbed suture created having barbs defined by variable-angle cut
8932328, Nov 03 2008 Cilag GmbH International Length of self-retaining suture and method and device for using the same
8939963, Dec 30 2008 Intuitive Surgical Operations, Inc Surgical instruments with sheathed tendons
8961560, May 16 2008 Ethicon, Inc Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
8968267, Aug 06 2010 Board of Regents of the University of Nebraska Methods and systems for handling or delivering materials for natural orifice surgery
8968332, Jun 22 2006 Virtual Incision Corporation Magnetically coupleable robotic surgical devices and related methods
8974440, Aug 15 2007 Board of Regents of the University of Nebraska Modular and cooperative medical devices and related systems and methods
8986333, Oct 22 2012 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
9010214, Jun 22 2012 Board of Regents of the University of Nebraska Local control robotic surgical devices and related methods
9011450, Aug 08 2012 DEPUY SYNTHES PRODUCTS, INC Surgical instrument
9033960, Aug 18 2008 Intuitive Surgical Operations, Inc. Instrument with multiple articulation locks
9044225, Dec 20 2007 Ethicon, Inc Composite self-retaining sutures and method
9060781, Jun 10 2011 Board of Regents of the University of Nebraska Methods, systems, and devices relating to surgical end effectors
9066747, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
9072427, May 23 2003 Intuitive Surgical Operations, Inc. Tool with articulation lock
9085085, May 23 2003 Intuitive Surgical Operations, Inc. Articulating mechanisms with actuatable elements
9089353, Jul 11 2011 Board of Regents of the University of Nebraska Robotic surgical devices, systems, and related methods
9095253, Jun 07 2004 Intuitive Surgical Operations, Inc. Articulating mechanism with flex hinged links
9095367, Oct 22 2012 Cilag GmbH International Flexible harmonic waveguides/blades for surgical instruments
9125647, Feb 21 2008 Ethicon, Inc Method and apparatus for elevating retainers on self-retaining sutures
9144452, Apr 18 2002 Intuitive Surgical Operations, Inc. Robotic surgical tool for pluggable end-effectors
9155449, Nov 23 2004 Intuitive Surgical Operations Inc. Instrument systems and methods of use
9158373, Aug 04 2011 Olympus Corporation Surgical assistant system
9161771, May 13 2011 Intuitive Surgical Operations Inc. Medical instrument with snake wrist structure
9161772, Aug 04 2011 Olympus Corporation Surgical instrument and medical manipulator
9173643, Jul 27 2000 Intuitive Surgical Operations Inc. Pitch-roll-yaw surgical tool
9179981, Jun 21 2007 Board of Regents of the University of Nebraska Multifunctional operational component for robotic devices
9198714, Jun 29 2012 Cilag GmbH International Haptic feedback devices for surgical robot
9213402, Aug 04 2011 Olympus Corporation Surgical instrument and control method thereof
9218053, Aug 04 2011 Olympus Corporation Surgical assistant system
9220527, Jul 27 2007 Cilag GmbH International Surgical instruments
9220567, Aug 13 2002 DEERFIELD IMAGING, INC Microsurgical robot system
9221179, Jul 23 2009 Intuitive Surgical Operations, Inc. Articulating mechanism
9226766, Apr 09 2012 Cilag GmbH International Serial communication protocol for medical device
9226767, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
9232979, Feb 10 2012 Cilag GmbH International Robotically controlled surgical instrument
9237921, Apr 09 2012 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
9241728, Mar 15 2013 Cilag GmbH International Surgical instrument with multiple clamping mechanisms
9241731, Apr 09 2012 Cilag GmbH International Rotatable electrical connection for ultrasonic surgical instruments
9244523, Aug 04 2011 Olympus Corporation Manipulator system
9244524, Aug 04 2011 Olympus Corporation Surgical instrument and control method thereof
9248580, Sep 30 2002 Cilag GmbH International Barb configurations for barbed sutures
9283045, Jun 29 2012 Cilag GmbH International Surgical instruments with fluid management system
9295522, Nov 08 2013 Covidien LP Medical device adapter with wrist mechanism
9326788, Jun 29 2012 Cilag GmbH International Lockout mechanism for use with robotic electrosurgical device
9333041, Jun 14 2007 MACDONALD, DETTWILER AND ASSOCIATES INC Surgical manipulator
9339289, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
9351754, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned jaw assemblies
9358031, Apr 19 2001 Intuitive Surgical Operations, Inc Wristed robotic tool with replaceable end-effector cartridges
9370868, May 23 2003 Intuitive Surgical Operations, Inc Articulating endoscopes
9393037, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
9403281, Jul 08 2003 Board of Regents of the University of Nebraska Robotic devices with arms and related methods
9408622, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
9414853, Jul 27 2007 Cilag GmbH International Ultrasonic end effectors with increased active length
9417621, Jun 30 2009 Intuitive Surgical Operations, Inc. Control of medical robotic system manipulator about kinematic singularities
9423869, Aug 04 2011 Olympus Corporation Operation support device
9427249, Feb 11 2010 Cilag GmbH International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
9434077, May 23 2003 Intuitive Surgical Operations, Inc Articulating catheters
9439668, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
9440364, May 23 2003 Intuitive Surgical Operations, Inc Articulating instrument
9445832, Jul 31 2007 Cilag GmbH International Surgical instruments
9477301, Aug 04 2011 Olympus Corporation Operation support device and assembly method thereof
9486189, Dec 02 2010 FUJIFILM Healthcare Corporation Assembly for use with surgery system
9498292, May 01 2012 Board of Regents of the University of Nebraska Single site robotic device and related systems and methods
9498888, May 23 2003 Intuitive Surgical Operations, Inc Articulating instrument
9498893, Sep 27 2007 Ethicon, Inc Self-retaining sutures including tissue retainers having improved strength
9504483, Mar 22 2007 Cilag GmbH International Surgical instruments
9504855, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
9510850, Feb 11 2010 Cilag GmbH International Ultrasonic surgical instruments
9517326, Jun 07 2004 Intuitive Surgical Operations, Inc. Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
9519341, Aug 04 2011 Olympus Corporation Medical manipulator and surgical support apparatus
9524022, Aug 04 2011 Olympus Corporation Medical equipment
9526560, Apr 19 2001 Intuitive Surgical Operations, Inc. Surgical systems with robotic surgical tool having pluggable end-effectors
9550300, May 23 2003 Intuitive Surgical Operations, Inc Articulating retractors
9554846, Oct 01 2010 Cilag GmbH International Surgical instrument with jaw member
9554854, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
9561045, Jun 13 2006 Intuitive Surgical Operations, Inc Tool with rotation lock
9568992, Aug 04 2011 Olympus Corporation Medical manipulator
9579088, Feb 20 2007 Board of Regents of the University of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
9623237, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
9632573, Aug 04 2011 Olympus Corporation Medical manipulator and method of controlling the same
9632577, Aug 04 2011 Olympus Corporation Operation support device and control method thereof
9636135, Jul 27 2007 Cilag GmbH International Ultrasonic surgical instruments
9642644, Jul 27 2007 Cilag GmbH International Surgical instruments
9649126, Feb 11 2010 Cilag GmbH International Seal arrangements for ultrasonically powered surgical instruments
9671860, Aug 04 2011 Olympus Corporation Manipulation input device and manipulator system having the same
9675341, Nov 09 2010 ANGIOTECH PHARMACEUTICALS, INC Emergency self-retaining sutures and packaging
9693794, Apr 19 2001 Intuitive Surgical Operations, Inc. Replaceable end-effector cartridges with cam mechanisms
9700333, Jun 30 2014 Cilag GmbH International Surgical instrument with variable tissue compression
9700334, Nov 23 2004 Intuitive Surgical Operations, Inc Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
9700339, May 20 2009 Cilag GmbH International Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
9700343, Apr 09 2012 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
9707004, Jul 27 2007 Cilag GmbH International Surgical instruments
9707027, May 21 2010 Cilag GmbH International Medical device
9707030, Oct 01 2010 Cilag GmbH International Surgical instrument with jaw member
9713507, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
9724118, Apr 09 2012 Cilag GmbH International Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
9737298, Aug 18 2008 Intuitive Surgical Operations, Inc. Instrument with articulation lock
9737326, Jun 29 2012 Cilag GmbH International Haptic feedback devices for surgical robot
9737355, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
9737365, May 23 2003 KEYSIGHT TECHNOLOGIES SINGAPORE HOLDINGS PTE LTD Tool with articulation lock
9743947, Mar 15 2013 Cilag GmbH International End effector with a clamp arm assembly and blade
9743987, Mar 14 2013 Board of Regents of the University of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
9757186, Apr 17 2014 Cilag GmbH International Device status feedback for bipolar tissue spacer
9757187, Jun 11 2012 Board of Regents of the University of Nebraska Methods, systems, and devices relating to surgical end effectors
9764164, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
9770305, Aug 08 2012 Board of Regents of the University of Nebraska Robotic surgical devices, systems, and related methods
9795405, Oct 22 2012 Cilag GmbH International Surgical instrument
9795808, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
9801648, Mar 22 2007 Cilag GmbH International Surgical instruments
9808308, Apr 12 2010 Cilag GmbH International Electrosurgical cutting and sealing instruments with cam-actuated jaws
9820768, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
9848901, Feb 11 2010 Cilag GmbH International Dual purpose surgical instrument for cutting and coagulating tissue
9848902, Oct 05 2007 Cilag GmbH International Ergonomic surgical instruments
9848937, Dec 22 2014 Cilag GmbH International End effector with detectable configurations
9851782, Aug 04 2011 Olympus Corporation Operation support device and attachment and detachment method thereof
9861786, Jun 07 2004 Intuitive Surgical Operations, Inc. Articulating mechanism with flex hinged links
9872725, Apr 29 2015 Cilag GmbH International RF tissue sealer with mode selection
9877776, Aug 25 2014 Cilag GmbH International Simultaneous I-beam and spring driven cam jaw closure mechanism
9883884, Mar 22 2007 Cilag GmbH International Ultrasonic surgical instruments
9888966, Mar 14 2013 Board of Regents of the University of Nebraska Methods, systems, and devices relating to force control surgical systems
9913656, Jul 27 2007 Cilag GmbH International Ultrasonic surgical instruments
9913680, Apr 15 2014 Cilag GmbH International Software algorithms for electrosurgical instruments
9925003, Feb 10 2012 Cilag GmbH International Robotically controlled surgical instrument
9949788, Nov 08 2013 Cilag GmbH International Electrosurgical devices
9955962, Jun 11 2010 Cilag GmbH International Suture delivery tools for endoscopic and robot-assisted surgery and methods
9956043, Jul 12 2007 Board of Regents of the University of Nebraska Methods, systems, and devices for surgical access and procedures
9962182, Feb 11 2010 Cilag GmbH International Ultrasonic surgical instruments with moving cutting implement
9987033, Mar 22 2007 Cilag GmbH International Ultrasonic surgical instruments
D847990, Aug 16 2016 Cilag GmbH International Surgical instrument
D924400, Aug 16 2016 Cilag GmbH International Surgical instrument
D963851, Jul 10 2020 Covidien LP Port apparatus
RE45426, May 21 1997 Ethicon, Inc Surgical methods using one-way suture
RE47996, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
Patent Priority Assignee Title
4068156, Mar 01 1977 Martin Marietta Corporation Rate control system for manipulator arms
4370091, Jul 18 1979 Ateliers et Chantiers de Bretagne Remote manipulator arm
4606695, May 18 1984 Kurt Manufacturing Company, Inc.; KURT MANUFACTURING COMPANY, INC Multiple axis robot arm
4626165, Oct 20 1982 Fanuc Ltd Industrial robot wrist mechanism
4762455, Jun 01 1987 Northrop Grumman Corporation Remote manipulator
4911033, Jan 03 1989 Ross-Hime Designs, Incorporated; ROSS-HIME DESIGNS, INCORPORATED, A CORP OF MINNESOTA Robotic manipulator
4913617, Jul 20 1988 Martin Marietta Energy Systems, Inc. Remote tong/tool latch and storage bracket for an advanced servo-manipulator
5078140, May 08 1986 Imaging device - aided robotic stereotaxis system
5178032, Oct 04 1990 Comau SpA Robot wrist
5305653, Sep 30 1991 Tokico Ltd. Robot wrist mechanism
5524180, Aug 10 1992 Intuitive Surgical Operations, Inc Automated endoscope system for optimal positioning
5553198, Dec 15 1993 Intuitive Surgical Operations, Inc Automated endoscope system for optimal positioning
5754741, Aug 10 1992 Intuitive Surgical Operations, Inc Automated endoscope for optimal positioning
5762458, Feb 20 1996 Intuitive Surgical Operations, Inc Method and apparatus for performing minimally invasive cardiac procedures
5792135, May 16 1997 Intuitive Surgical Operations, Inc Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
5797900, May 16 1997 Intuitive Surgical Operations, Inc Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
5808665, Jan 21 1992 SRI International Endoscopic surgical instrument and method for use
5810716, Nov 15 1996 The United States of America as represented by the Secretary of the Navy; NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF NAVY, THE Articulated manipulator for minimally invasive surgery (AMMIS)
5814038, Jun 07 1995 SRI International Surgical manipulator for a telerobotic system
5855583, Feb 20 1996 Intuitive Surgical Operations, Inc Method and apparatus for performing minimally invasive cardiac procedures
5907664, Aug 10 1992 Intuitive Surgical Operations, Inc Automated endoscope system for optimal positioning
5931832, May 14 1993 SRI International Methods for positioning a surgical instrument about a remote spherical center of rotation
6132441, Nov 22 1996 Intuitive Surgical Operations, Inc Rigidly-linked articulating wrist with decoupled motion transmission
6197017, Feb 24 1998 HANSEN MEDICAL, INC Articulated apparatus for telemanipulator system
6223100, Jan 21 1992 SRI, International Apparatus and method for performing computer enhanced surgery with articulated instrument
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 27 2000Intuitive Surgical Inc.(assignment on the face of the patent)
Nov 14 2000MORLEY, TRACEY A Intuitive Surgical IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0113300658 pdf
Nov 14 2000WALLACE, DANIEL T Intuitive Surgical IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0113300658 pdf
Feb 19 2010Intuitive Surgical, IncIntuitive Surgical Operations, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0430160520 pdf
Date Maintenance Fee Events
Mar 28 2005ASPN: Payor Number Assigned.
Dec 15 2006STOL: Pat Hldr no Longer Claims Small Ent Stat
Nov 30 2007M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 11 2010ASPN: Payor Number Assigned.
Jun 11 2010RMPN: Payer Number De-assigned.
Dec 01 2011M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 30 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 08 20074 years fee payment window open
Dec 08 20076 months grace period start (w surcharge)
Jun 08 2008patent expiry (for year 4)
Jun 08 20102 years to revive unintentionally abandoned end. (for year 4)
Jun 08 20118 years fee payment window open
Dec 08 20116 months grace period start (w surcharge)
Jun 08 2012patent expiry (for year 8)
Jun 08 20142 years to revive unintentionally abandoned end. (for year 8)
Jun 08 201512 years fee payment window open
Dec 08 20156 months grace period start (w surcharge)
Jun 08 2016patent expiry (for year 12)
Jun 08 20182 years to revive unintentionally abandoned end. (for year 12)