A pumping system for moving water of a swimming pool includes a water pump, an infinitely variable speed motor, and an arrangement for operating the motor. In one example, the pumping system includes a memory configured to store a plurality of retained speed values, an arrangement for providing a plurality of retained speed values to the memory, and an arrangement for reading a selected one of the plurality of retained speed values from the memory. In addition or alternatively, the pumping system includes a storage medium for digitally storing a plurality of pre-established motor speed values and an arrangement for receiving input from a user to select one of the pre-established motor speeds. In addition or alternatively, the pumping system further includes an arrangement for restarting operation of the motor at a previously selected speed value when power supplied to the motor is interrupted during operation of the motor. A method for controlling the pumping system is also provided.
|
1. A control system for at least one aquatic application, a pump coupled to the at least one aquatic application, the control system comprising:
a variable speed motor adapted to be coupled to the pump;
a memory storing a schedule of speed and timing, a first speed value, and a first time period;
a user interface coupleable to the variable speed motor,
the user interface including a first button to select the first speed value and the first time period;
the user interface including a first visual indicator associated with the first button;
the user interface including an increase button and a decrease button to alter at least one of the first speed value and the first time period; and
the user interface including a visual display element to display a present speed value; and
a controller in communication with the variable speed motor, the memory, and the user interface, the controller operating the variable speed motor according to the schedule, the controller responding to activation of the first button by obtaining the first speed value and the first time period from the memory and initiating operation of the variable speed motor at a constant speed based on the first speed value for the first time period and subsequently operating the variable speed motor according to the schedule after the first time period.
2. The control system of
at least one of a start button to start the variable speed pump and a stop button to stop the variable speed pump; and
a removable protective cover.
3. The control system of
4. The control system of
5. The control system of
6. The control system of
7. The control system of
8. The control system of
9. The control system of
10. The control system of
12. The control system of
13. The control system of
14. The control system of
15. The control system of
16. The control system of
17. The control system of
18. The control system of
19. The control system of
20. The control system of
|
This application is a continuation of U.S. application Ser. No. 13/906,177, filed on May 30, 2013, which is a continuation of U.S. application Ser. No. 13/280,105, filed on Oct. 24, 2011 that issued as U.S. Pat. No. 8,465,262, which is a continuation of U.S. application Ser. No. 11/608,887, filed on Dec. 11, 2006 that issued as U.S. Pat. No. 8,043,070, which is a continuation-in-part of U.S. application Ser. No. 10/926,513, filed Aug. 26, 2004 that issued as U.S. Pat. No. 7,874,808 and U.S. application Ser. No. 11/286,888, filed Nov. 23, 2005 that issued as U.S. Pat. No. 8,019,479, the entire disclosures of which are hereby incorporated herein by reference as if fully set forth herein.
The present invention relates generally to control of a pump, and more particularly to control of a variable speed pumping system for a pool.
Conventionally, a pump to be used in a pool is operable at a finite number of predesigned speed settings (e.g., typically high and low settings). Typically these speed settings correspond to the range of pumping demands of the pool at the time of installation. Factors such as the volumetric flow rate of water to be pumped, the total head pressure required to adequately pump the volume of water, and other operational parameters determine the size of the pump and the proper speed settings for pump operation. Once the pump is installed, the speed settings typically are not readily changed to accommodate changes in the pool conditions and/or pumping demands.
Conventionally, it is also typical to equip a pumping system for use in a pool with auxiliary devices, such as a heating device, a chemical dispersion device (e.g., a chlorinator or the like), a filter arrangement, and/or an automation device. Often, operation of a particular auxiliary device can require different pump performance characteristics. For example, operation of a heating device may require a specific water flow rate or flow pressure for correct heating of the pool water. It is possible that a conventional pump can be manually adjusted to operate at one of a finite number of predetermined, non-alterable speed settings in response to a water demand from an auxiliary device. However, adjusting the pump to one of the predetermined, non-alterable settings may cause the pump to operate at a rate that exceeds a needed rate, while adjusting the pump to another setting may cause the pump to operate at a rate that provides an insufficient amount of flow and/or pressure. In such a case, the pump will either operate inefficiently or operate at a level below that which is desired.
Accordingly, it would be beneficial to provide a pump that could be readily and easily adapted to provide a suitably supply of water at a desired pressure to aquatic applications having a variety of sizes and features. The pump should be capable of pumping water to a plurality of aquatic applications and features, and should be variably adjustable to a number of user defined speeds, quickly and repeatably, over a range of operating speeds to pump the water as needed when conditions change. Further, the pump should be responsive to a change of conditions and/or user input instructions.
In accordance with one aspect, the present invention provides a pumping system for moving water of a swimming pool. The pumping system includes a water pump for moving water in connection with performance of an operation upon the water, and an infinitely variable speed motor operatively connected to drive the pump. The pumping system further includes a memory configured to store a plurality of retained speed values, means for providing a plurality of retained speed values to the memory, and means for reading a selected one of the plurality of retained speed values from the memory. The pumping system further includes means for operating the motor at the selected one of the plurality of retained speed values.
In accordance with another aspect, the present invention provides a pumping system for moving water of a swimming pool. The pumping system includes a water pump for moving water in connection with performance of an operation upon the water, and an infinitely variable speed motor operatively connected to drive the pump. The pumping system further includes a storage medium for digitally storing a plurality of pre-established motor speed values and means for receiving input from a user to select one of the plurality of pre-established motor speeds. The pumping system further includes means for operating the motor at the selected one of the plurality of pre-established motor speeds once input is received from a user.
In accordance with another aspect, the present invention provides a pumping system for moving water of a swimming pool. The pumping system includes a water pump for moving water in connection with performance of an operation upon the water, and an infinitely variable speed motor operatively connected to drive the pump. The pumping system further includes a storage medium for digitally storing a plurality of retained speed values and means for operating the motor at a selected one of the plurality of retained speed values. The pumping system further includes means for restarting operation of the motor at the previously selected one of the plurality of retained speed values when power supplied to the motor is interrupted during operation of the motor.
In accordance with yet another aspect, a method of controlling a pumping system for moving water of a swimming pool is provided. The pumping system includes a water pump for moving water in connection with performance of an operation upon the water, and an infinitely variable speed motor operatively connected to drive the pump. The method comprises the steps of providing a memory configured to store a plurality of retained speed values, and providing a plurality of retained speed values to the memory. The method also comprises the steps of reading a selected one of the plurality of retained speed values from the memory, and operating the motor at the selected one of the plurality of retained speed values.
The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. Further, in the drawings, the same reference numerals are employed for designating the same elements throughout the figures, and in order to clearly and concisely illustrate the present invention, certain features may be shown in somewhat schematic form.
An example variable-speed pumping system 10 in accordance with one aspect of the present invention is schematically shown in
The swimming pool 14 is one example of a pool. The definition of “swimming pool” includes, but is not limited to, swimming pools, spas, and whirlpool baths, and further includes features and accessories associated therewith, such as water jets, waterfalls, fountains, pool filtration equipment, chemical treatment equipment, pool vacuums, spillways and the like.
A water operation 22 is performed upon the water moved by the pump 16. Within the shown example, water operation 22 is a filter arrangement that is associated with the pumping system 10 and the pool 14 for providing a cleaning operation (i.e., filtering) on the water within the pool. The filter arrangement 22 is operatively connected between the pool 14 and the pump 16 at/along an inlet line 18 for the pump. Thus, the pump 16, the pool 14, the filter arrangement 22, and the interconnecting lines 18 and 20 form a fluid circuit or pathway for the movement of water.
It is to be appreciated that the function of filtering is but one example of an operation that can be performed upon the water. Other operations that can be performed upon the water may be simplistic, complex or diverse. For example, the operation performed on the water may merely be just movement of the water by the pumping system (e.g., re-circulation of the water in a waterfall or spa environment).
Turning to the filter arrangement 22, any suitable construction and configuration of the filter arrangement is possible. For example, the filter arrangement 22 can include a sand filter, a cartridge filter, and/or a diatomaceous earth filter, or the like. In another example, the filter arrangement 22 may include a skimmer assembly for collecting coarse debris from water being withdrawn from the pool, and one or more filter components for straining finer material from the water. In still yet another example, the filter arrangement 22 can be in fluid communication with a pool cleaner, such as a vacuum pool cleaner adapted to vacuum debris from the various submerged surfaces of the pool. The pool cleaner can include various types, such as various manual and/or automatic types.
The pump 16 may have any suitable construction and/or configuration for providing the desired force to the water and move the water. In one example, the pump 16 is a common centrifugal pump of the type known to have impellers extending radially from a central axis. Vanes defined by the impellers create interior passages through which the water passes as the impellers are rotated. Rotating the impellers about the central axis imparts a centrifugal force on water therein, and thus imparts the force flow to the water. Although centrifugal pumps are well suited to pump a large volume of water at a continuous rate, other motor-operated pumps may also be used within the scope of the present invention.
Drive force is provided to the pump 16 via a pump motor 24. In the one example, the drive force is in the form of rotational force provided to rotate the impeller of the pump 16. In one specific embodiment, the pump motor 24 is a permanent magnet motor. In another specific embodiment, the pump motor 24 is an induction motor. In yet another embodiment, the pump motor 24 can be a synchronous or asynchronous motor. The pump motor 24 operation is infinitely variable within a range of operation (i.e., zero to maximum operation). In one specific example, the operation is indicated by the RPM of the rotational force provided to rotate the impeller of the pump 16. In the case of a synchronous motor 24, the steady state speed (RPM) of the motor 24 can be referred to as the synchronous speed. Further, in the case of a synchronous motor 24, the steady state speed of the motor 24 can also be determined based upon the operating frequency in hertz (Hz).
A means for operating 30 provides for the control of the pump motor 24 and thus the control of the pump 16. Within the shown example, the means for operating 30 can include a variable speed drive 32 that provides for the infinitely variable control of the pump motor 24 (i.e., varies the speed of the pump motor). By way of example, within the operation of the variable speed drive 32, a single phase AC current from a source power supply is converted (e.g., broken) into a three-phase AC current. Any suitable technique and associated construction/configuration may be used to provide the three-phase AC current. The variable speed drive supplies the AC electric power at a changeable frequency to the pump motor to drive the pump motor. The construction and/or configuration of the pump 16, the pump motor 24, the means for operating 30 as a whole, and the variable speed drive 32 as a portion of the means for operating 30 are not limitations on the present invention. In one possibility, the pump 16 and the pump motor 24 are disposed within a single housing to form a single unit, and the means for operating 30 with the variable speed drive 32 are disposed within another single housing to form another single unit. In another possibility, these components are disposed within a single housing to form a single unit.
Further still, the means for operating 30 can receive input from a user interface 31 that can be operatively connected to the means for operating 30 in various manners. For example, the user interface 31 can include means for receiving input 40 from a user, such as a keypad, buttons, switches, or the like such that a user could use to input various parameters into the means for operating 30. As shown in
In addition or alternatively, the user interface 31 can be adapted to provide visual and/or audible information to a user. In one example, the user interface 31 can include written instructions 42 for operation of the means for operating 30. In another example, the user interface 31 can include one or more visual displays, such as an alphanumeric LCD display (not shown), LED lights 47, or the like. The LED lights 47 can be configured to indicate an operational status, various alarm conditions (e.g., overheat condition, an overcurrent condition, an overvoltage condition, obstruction, or the like) through associated printed indicia, a predetermined number of flashes of various durations or intensities, through color changes, or the like.
Additionally, the user interface 31 can include other features, such as a buzzer, loudspeaker, or the like (not shown) to provide an audible indication for various events. Further still, as shown in
The pumping system 10 can have additional means used for control of the operation of the pump. In accordance with one aspect of the present invention, the pumping system 10 includes means for sensing, determining, or the like one or more parameters indicative of the operation performed upon the water. Within one specific example, the system includes means for sensing, determining or the like one or more parameters indicative of the movement of water within the fluid circuit.
The example of
The means for controlling 30 can also be configured to protect itself and/or the pump 24 from damage by sensing alert conditions, such as an overheat condition, an overcurrent condition, an overvoltage condition, freeze condition, or even a power outage. The ability to sense, determine or the like one or more parameters may take a variety of forms. For example, one or more sensor or sensor arrangements (not shown) may be utilized. The sensor arrangement of the pumping system 10 can be configured to sense one or more parameters indicative of the operation of the pump 24, or even the operation 38 performed upon the water. Additionally, the sensor arrangement can be used to monitor flow rate and flow pressure to provide an indication of impediment or hindrance via obstruction or condition, whether physical, chemical, or mechanical in nature, that interferes with the flow of water from the pool to the pump such as debris accumulation or the lack of accumulation, within the filter arrangement 34.
Keeping with the example of
Within yet another aspect of the present invention, the pumping system 10 may operate to have different constant flow rates during different time periods. Such different time periods may be sub-periods (e.g., specific hours) within an overall time period (e.g., a day) within which a specific number of water turnovers is desired. During some time periods a larger flow rate may be desired, and a lower flow rate may be desired at other time periods. Within the example of a swimming pool with a filter arrangement as part of the water operation, it may be desired to have a larger flow rate during pool-use time (e.g., daylight hours) to provide for increased water turnover and thus increased filtering of the water. Within the same swimming pool example, it may be desired to have a lower flow rate during non-use (e.g., nighttime hours).
Turning to one specific example, attention is directed to the top-level operation chart that is shown in
Briefly, the Vacuum run operation 106 is entered and utilized when a vacuum device is utilized within the pool 14. For example, such a vacuum device is typically connected to the pump 16 possibly through the filter arrangement 22, via a relatively long extent of hose and is moved about the pool 14 to clean the water at various locations and/or the surfaces of the pool at various locations. The vacuum device may be a manually moved device or may autonomously move.
Similarly, the manual run operation 108 is entered and utilized when it is desired to operate the pump outside of the other specified operations. The cleaning sequence operation 112 is for operation performed in the course of a cleaning routine.
Turning to the filter mode 110, this is a typical operation performed in order to maintain water clarity within the pool 14. Moreover, the filter mode 110 is operated to obtain effective filtering of the pool while minimizing energy consumption. Specifically, the pump is operated to move water through the filter arrangement. It is to be appreciated that the various operations 104-112 can be initiated manually by a user, automatically by the means for operating 30, and/or even remotely by the various associated components, such as a heater or vacuum, as will be discussed further herein.
It should be appreciated that maintenance of a constant flow volume despite changes in pumping system 10, such as an increasing impediment caused by filter dirt accumulation, can require an increasing flow rate or flow pressure of water and result in an increasing motive force from the pump/motor. As such, one aspect of the present invention is to provide a means for operating the motor/pump to provide the increased motive force that provides the increased flow rate and/or pressure to maintain the constant water flow.
It is also to be appreciated that operation of the pump motor/pump (e.g., motor speed) has a relationship to the flow rate and/or pressure of the water flow that is utilized to control flow rate and/or flow pressure via control of the pump. Thus, in order to provide an appropriate volumetric flow rate of water for the various operations 104-112, the motor 24 can be operated at various speeds. In one example, to provide an increased flow rate or flow pressure, the motor speed can be increased, and conversely, the motor speed can be decreased to provide a decreased flow rate or flow pressure.
The pumping system 10 can include various elements to facilitate variable control of the pump motor 24, quickly and repeatably, over a range of operating speeds to pump the water as needed when conditions change. In one example, the pumping system 10 can include a storage medium, such as a memory, configured to store a plurality of retained or pre-selected motor speed values. In one example, the storage medium and/or memory can be an analog type, such as tape or other electro-mechanical storage methods. In another example, the storage medium and/or memory can be a digital type, such as volatile or non-volatile random access memory (RAM) and/or read only memory (ROM). The storage medium and/or memory can be integrated into the means for operating 30 the motor, though it can also be external and/or even removable.
Thus, depending upon the particular type of storage medium or memory, the retained or pre-selected speed values can be stored as analog information, such as through a continuous spectrum of information, or can be stored as digital information, such as through discrete units of data, signals, numbers, binary numbers, non-numeric symbols, letters, icons, or the like. Additionally, the retained or pre-selected speed values can be stored either directly as a speed measurement (e.g., RPM) or synchronous frequency (e.g., Hz), or indirectly such as a ranged value (e.g., a value between 1 and 128 or a percentage, such as 50%) or an electrical value (e.g., voltage, current, resistance). It is to be appreciated that the various retained and/or pre-selected motor speed values can be pre-existing, such as factory defaults or presets, or can be user defined values, as will be discussed in greater detail herein. For example, where the retained and/or pre-selected speed values are factory defaults or presets, four speed values can be provided, such as 750 RPM, 1500 RPM, 2350 RPM, and 3110 RPM, though various other speed values can also be used.
Where the various retained and/or pre-selected speed values can be user defined values, the pumping system 10 can also include means for providing a plurality of retained speed values to the storage medium and/or memory. For example, though the factory defaults may provide a sufficient flow rate or flow pressure of water to the swimming pool, a different user defined speed may provide greater efficiency for a user's specific pumping system 10. As can be appreciated, depending upon whether the storage medium or memory is of an analog or digital type, the means for providing can similarly include analog or digital elements for interaction with the storage medium and/or memory. Thus, for example, in an analog system utilizing a tape storage medium, the means for reading can include the associated hardware and electronics for interaction with the tape medium. Similarly, in a digital system, the means for reading can include the various electronics and software for interacting with a digital memory medium.
Additionally, the means for providing can include a user input component configured to receive user defined speed value input from a user, or it can also include a communication component configured to receive the speed value input or parameter from a remote device. In one example, the means for providing retained speed values can include the means for receiving input 40 from a user, such as the previously discussed keypad, buttons, switches, or the like such that a user could use to input various speed values into the means for operating 30.
In one example method of entering a user-defined speed, a user can use the speed alteration buttons 45a-45b to enter the speed. The user can perform the speed alteration beginning with various values, such as one of the retained speed values associated with speed buttons 41a-41d, or even a known value, such as the minimum pump speed. For example, a user can use button 45a to increase the user entered speed value, or button 45b to decrease the speed value to various other speed values between the motor's minimum and maximum speeds (e.g., within an example range of 400 RPM and 3450 RPM). The speed alteration buttons 45a-45b can be configured to alter the speed in various increments, such as to increase the speed by 1 RPM, 10 RPM, or the like per actuation of the button 45a. In one example, the speed alteration buttons 45a-45b can be quickly actuated and released to increase/decrease the motor speed by 10 RPM. In addition or alternatively, the button 45a-45b can also be configured to continuously alter the speed value an amount corresponding to the amount of time that the particular button 45a-45b is actuated (e.g., a touch-and-hold operation), such as to increase/decrease the motor speed by 20 RPM until released. It is to be appreciated that where the user interface 31 includes a numerical, visual display element (e.g., an LCD display or the like, not shown), the current motor speed can be displayed thereon. Alternatively, where the user interface 31 does not include such a numerical visual display, the current motor speed can be indicated by the various LEDs 43, 47 through flashing or color-changing schemes or the like, through an audible announcement or the like, or even on a remotely connected auxiliary device 50.
It is to be appreciated that the means for operating 30 can be configured to operate the motor 24 at the newly entered user-defined speed immediately upon entry by the user. Thus, the speed can be change “on-the-fly” through actuation of the speed alteration buttons 45a-45b. Alternatively, the means for operating 30 can wait until the new speed is completely entered before altering operating the motor 24 to operate at the new speed, or could even require the user to press the start button 46 before proceeding to operate at the new speed. In either case, the means for controlling 30 can also be configured to gradually ramp the motor speed towards the new speed to avoid quick speed changes that can cause problems for the pumping system 10, such as water hammer or the like. Further, the motor 24 can continue to operate at the newly entered speed until a different speed is chosen by actuation of one of the speed buttons 41a-41d or by a remote unit, as will be discussed further herein. Thus, in addition to the four speed values associated with the speed buttons 41a-41d, the means for controlling 30 can include a fifth user-entered speed value for temporary speed changes.
In addition or alternatively, when a new user-defined speed value has been entered by a user, the means for receiving input 40 can be further configured to provide the new speed value to the storage medium and/or memory for retrieval at a later time (e.g., save the new speed value to memory). In one example, the speed buttons 41a-41d can be used to store the new speed value to memory through a touch-and-hold operation. Thus, once a user has entered the new desired speed, and wishes to save it in one of the four locations (e.g., Speed #1-#4), the user can actuate the desired button for a predetermined amount of time, such as 5 seconds (e.g., a touch-and-hold operation), though various other amounts of time can also be used. In addition or alternatively, a visual or audible indication can be made to inform the user that the saving operation was successful. Thus, once the new speed is saved and associated with one of the speed buttons 41a-41d, a user can recall the new speed when desired by briefly actuating that associated speed button 41a-41d. Accordingly, as used herein, the terms retained speed value and pre-selected speed value can include the factory default or preset speed value, and/or can also include the user entered and saved speed values.
It is to be appreciated that the process of saving a new speed value to one of the four locations (e.g., Speed #1-#4) will replace the existing speed value associated with that button. However, the means for operating 30 can include factory defaults or presets that are stored in a permanent or non-alterable memory, such as ROM. Thus, if desired, it can be possible to reset the speed values associated with the speed buttons 41a-41d to the factory defaults. In one example, the speed values can be reset by pressing and holding all four speed buttons 41a-41d for a predetermined amount of time, such as 10 seconds or the like.
The pumping system 10 can further include means for reading a selected one of the retained or pre-selected speed values from the storage medium and/or memory. As can be appreciated, depending upon whether storage medium or memory is of an analog or digital type, the means for reading can similarly include analog or digital elements for interaction with the storage medium and/or memory. Thus, for example, in an analog system utilizing a tape storage medium, the means for reading can include the associated hardware and electronics for interaction with the tape medium. Similarly, in a digital system, the means for reading can include the various electronics and software for interacting with a digital memory medium. In addition to the analog or digital elements configured to actually retrieve the retained or pre-selected speed value from the storage medium and/or memory, the means for reading can also include means for receiving input from a user for choosing which of the plurality of retained or pre-selected speed values are to be retrieved. In one example, the means for providing retained speed values can include the means for receiving input 40 from a user, such as the previously discussed keypad, buttons, switches, or the like such that a user could use to choose a particular speed value.
Thus, in another example method of operation, a user can use the means for receiving input 40 to select one of the plurality of retained speed values. As shown, the four speed buttons 41a-41d (e.g., Speed #1-#4) can be actuated to select the retained or pre-selected speed value associated therewith. For example, if a user desired to operate the motor 24 at the speed associated with (e.g., saved under) the Speed #2 button 41b, the user could briefly actuate the speed button 41b to retrieve the saved speed value from memory. Subsequent to the retrieval of the speed value, the means for operating 30 the motor could proceed to alter the speed of the motor 24 towards the retrieved speed value to the exclusion of other speed values.
The pumping system 10 can include additional features, such as means for restarting operation of the motor 24 after a power interruption. For example, where the storage medium and/or memory is of the non-volatile type (e.g., does not require a continuous supply of power to retain the stored data), it can provide an operational reference point after a power interruption. Thus, after the power interruption, the means for restarting can be configured to automatically retrieve the previously selected retained speed value from the storage medium and/or memory, and can also be configured to automatically restart operation of the motor at that speed. As such, even if the power supply to the motor 24 is interrupted, the motor 24 can resume operation in an expeditious manner to so that the pumped water continues to circulate through the swimming pool.
Turning now to
In another example, the auxiliary devices 50 can include a user interface device capable of receiving information input by a user, such as a parameter related to operation of the pumping system 10. Various examples can include a remote keypad 66, such as a remote keypad similar to the keypad of the means for receiving user input 40 and display (not shown) of the means for operating 30, a personal computer 68, such as a desktop computer, a laptop, a personal digital assistant, or the like, and/or an automation control system 70, such as various analog or digital control systems that can include programmable logic controllers (PLC), computer programs, or the like. The various user interface devices 66, 68, 70, as illustrated by the remote keypad 66, can include a keypad 72, buttons, switches, or the like such that a user could input various parameters and information, and can even be adapted to provide visual and/or audible information to a user, and can include one or more visual displays 74, such as an alphanumeric LCD display, LED lights, or the like, and/or a buzzer, loudspeaker, or the like (not shown). Thus, for example, a user could use a remote keypad 66 or automation system 70 to monitor the operational status of the pumping system 10, such as the motor speed.
In still yet another example, the auxiliary devices 50 can include various miscellaneous devices (not shown) for interaction with the swimming pool. Various examples can include a valve, such as a mechanically or electrically operated water valve, an electrical switch, a lighting device for providing illumination to the swimming pool and/or associated devices, an electrical or mechanical relay 82, a sensor, and/or a mechanical or electrical timing device.
In addition or alternatively, as shown in
Additionally, the means for operating 30 can be configured to independently select one of the retained or pre-selected speed values from the storage medium and/or memory for operation of the motor 24 based upon input from an auxiliary device(s) 50. That is, although a user can select an operating speed via the user interface 31, the means for controlling 30 can be capable of independently selecting an operating speed from the memory based upon input from an auxiliary device(s) 50. Further still, a user-defined speed can even be input from an auxiliary device 50. However, it is to be appreciated that the user interface 31 can be configured to override the independent speed selection.
In one example, as shown in
In an example method of operation, the communication panel 88 can be configured such that each relay 84a-84c corresponds to one of the four retained/pre-selected speeds stored in the storage medium/memory of the means for controlling 30. Thus, activation of various relays 84a-84c can permit selection of the various retained speed values stored in memory to provide a form of automated control. For example, when power is supplied to the heater 52 for heating the water, the associated power relay 84b (e.g., Relay 2) can send a power signal to the interface unit 86. The interface unit 86 can convert/translate the power signal and transmit it to the means for controlling 30 through the data cable 90, and the means for controlling 30 can select the second speed value (e.g., Speed #2) from memory and operate the motor 24 at that speed. Thus, during operation of the heater 52, the pump 12 can provide an appropriate water flow rate or flow pressure. Similarly, once the heater 52 ceases operation, the power relay 84b can be de-energized, and the means for controlling 30 can operate the pump 12 a lower flow rate or flow pressure to increase system efficiency. It is to be appreciated that this form of automated control can be similar to that discussed previously herein with relation to the various operations 104-112 of
Additionally, the various relays 84a-84c can be setup in a hierarchy such that the means for controlling 30 can be configured to select the speed value of the auxiliary device 50 associated with the highest order relay 84a-84c that is energized. In one example, the hierarchy could be setup such that Relay #3 84c has a higher order than Relay #1 84a. Thus, even if Relay #1 84a is energized for operation of the chlorinator 54, a subsequent activation of Relay #3 84c for operation of the vacuum 64 will cause the means for controlling 30 to select the speed value associated with Relay #3 84c. As such, an appropriate water flow rate or flow pressure can be assured during operation of the vacuum 64. Further, once operation of the vacuum 64 is finished, and Relay #3 84c is de-energized, the means for controlling 30 can return to the speed selection associated with Relay #1 84a. It is to be appreciated that the hierarchy could be setup variously based upon various characteristics, such as run time, flow rate, flow pressure, etc. of the auxiliary devices 50.
Turning now to the example shown in
The various communication methods can include half-duplex communication (e.g., to provide communication in both directions, but only in one direction at a time and not simultaneously), or conversely, can include full duplex communication to provide simultaneous two-way communication. Further, the two-way communication system can be configured to provide analog communication, such as through a continuous spectrum of information, or it can also be configured to provide digital communication, such as through discrete units of data, such as discrete signals, numbers, binary numbers, non-numeric symbols, letters, icons, or the like.
In various digital communication schemes, two-way communication can be provided through various digital communication methods. In one example, the two-way communication system can be configured to provide digital serial communication to send and receive data one unit at a time in a sequential manner. Various digital serial communication specifications can be used, such as RS-232 and/or RS-485, both of which are known in the art. In addition or alternatively, the digital serial communication can be used in a master/slave configuration, as is know in the art. Various other digital communication methods can also be used, such as parallel communications (e.g., all the data units are sent together), or the like. It is to be appreciated that, despite the particular method used, the two-way communication system can be configured to permit any of the various connected devices to transmit and/or receive information.
The various communication methods can be implemented in various manners, including customized cabling or conventional cabling, including serial or parallel cabling. In addition or alternatively, the communications methods can be implemented through more sophisticated cabling and/or wireless schemes, such as over phone lines, universal serial bus (USB), firewire (IEEE 1394), ethernet (IEEE 802.03), wireless ethernet (IEEE 802.11), bluetooth (IEEE 802.15), WiMax (IEEE 802.16), or the like. The two-way communication system can also include various hardware and/or software converters, translators, or the like configured to provide compatibility between any of the various communication methods.
Further still, the various digital communication methods can employ various protocols including various rules for data representation, signaling, authentication, and error detection to facilitate the transmission and reception of information over the communications method. The communication protocols for digital communication can include various features intended to provide a reliable exchange of data or information over an imperfect communication method. In an example of RS-485 digital serial communication, an example communications protocol can include data separated into categories, such as device address data, preamble data, header data, a data field, and checksum data.
Additionally, the two-way communication system can be configured to provide either, or both, of wired or wireless communication. In the example of RS-485 digital serial communication having a two-wire differential signaling scheme, a data cable 90 can include merely two wires, one carrying an electrically positive data signal and the other carrying an electrically negative data signal, though various other wires can also be included to carry various other digital signals. As shown in
In addition or alternatively, the two-way communication system can be configured to provide analog and/or digital wireless communication between the means for operating 30 and the auxiliary devices 50. For example, the means for operating 30 and/or the auxiliary devices can include a wireless device 98, such as a wireless transmitter, receiver, or transceiver operating on various frequencies, such as radio waves (including cellular phone frequencies), microwaves, or the like. In addition or alternatively, the wireless device 98 can operate on various visible and invisible light frequencies, such as infrared light. As shown in
In yet another example, at least a portion of the two-way communication system can include a computer network 96. The computer network 96 can include various types, such as a local area network (e.g., a network generally covering to a relatively small geographical location, such as a house, business, or collection of buildings), a wide area network (e.g., a network generally covering a relatively wide geographical area and often involving a relatively large array of computers), or even the internet (e.g., a worldwide, public and/or private network of interconnected computer networks, including the world wide web). The computer network 96 can be wired or wireless, as previously discussed herein. The computer network 96 can act as an intermediary between one or more auxiliary devices 50, such as a personal computer 68 or the like, and the means for operating 30. Thus, a user using a personal computer 68 could exchange data and information with the means for operating 30 in a remote fashion as per the boundaries of the network 96. In one example, a user using a personal computer 68 connected to the internet could exchange data and information (e.g., for control and/or monitoring) with the means for operating 30, from home, work, or even another country. In addition or alternatively, a user could exchange data and information for control and/or monitoring over a cellular phone or other personal communication device.
In addition or alternatively, where at least a portion of the two-way communication system includes a computer network 96, various components of the pumping system 10 can be serviced and/or repaired from a remote location. For example, if the pump 12 or means for operating 30 develops a problem, an end user can contact a service provider (e.g., product manufacturer or authorized service center, etc.) that can remotely access the problematic component through the two-way communication system and the computer network 96 (e.g., the internet). Alternatively, the pumping system 10 can be configured to automatically call out to the service provider when a problem is detected. The service provider can exchange data and information with the problematic component, and can service, repair, update, etc. the component without having a dedicated service person physically present in front of the swimming pool. Thus, the service provider can be located at a central location, and can provide service to any connected pumping system 10, even from around the world. In another example, the service provider can constantly monitor the status (e.g., performance, settings, health, etc.) of the pumping system 10, and can provide various services, as required.
Regardless of the methodology used, the means for operating 30 can be capable of receiving a speed request from one or more of the auxiliary devices 50 through the various two-way communication systems discussed herein. In one example, the means for operating 30 can be operable to alter operation of the motor 24 based upon the speed request received from the auxiliary device(s) 50. For example, where a water heater 52 requires a particular water flow rate for proper operation, the means for operating 30 could receive a desired speed request (e.g., Speed #2 or Speed #4) from the water heater 52 through the two-way communication system. In response, the means for operating 30 could alter operation of the motor 24 to provide the requested speed request (e.g., Speed #2). It is to be appreciated that the auxiliary devices 50 can also be configured to transmit a user defined speed value to the means for operating 30 through the communication system.
Additionally, where the means for operating 30 is capable of independent operation, it can also be operable to selectively alter operation of the motor 24 based upon the speed requests received from the auxiliary device(s) 50. Thus, the means for operating 30 can choose whether or not to alter operation of the motor 24 when it receives a speed request from an auxiliary device 50. For example, where the pumping system 10 is performing a particular function, such as a backwash cycle, or is in a lockout state, such as may occur when the system 10 cannot be primed, the means for operating 30 can choose to ignore a speed request from the heater 52. In addition or alternatively, the means for operating 30 could choose to delay and/or reschedule altering operation of the motor 24 until a later time (e.g., after the backwash cycle finishes).
Thus, the means for operating 30 can be configured to control operation of the variable speed motor 24 independently, or in response to user input. However, it is to be appreciated that the means for operating 30 can also be configured to act as a slave device that is controlled by an automation system 70, such as a PLC or the like. It is to be appreciated that the means for operating 30 can be configured to switch between independent control and slave control. For example, the means for operating 30 can be configured to switch between the control schemes based upon whether the data cable 90 is connected (e.g., switching to independent control when the data cable 90 is disconnected).
In one example, the automation system 70 can receive various speed requests from various auxiliary devices 50, and based upon those requests, can directly control the speed operations of the means for operating 30 to alter operation of the motor 24. For example, over a course of a long period of time, it is typical that a predetermined volume of water flow is desired, such as to move a volume of water equal to multiple turnovers within a specified time period (e.g., a day). Thus, the automation system 70 can be configured to optimize a power consumption of the motor 24 based upon the various speed requests received from the auxiliary device(s) 50. It is to be appreciated that this form of automated control can be similar to that discussed previously herein with relation to the various operations 104-112 of
Focusing on the aspect of minimal energy usage (e.g., optimization of energy consumed over a time period), the system 10 with an associated filter arrangement 22 can be operated continuously (e.g., 24 hours a day, or some other time amount(s)) at an ever-changing minimum level (e.g., minimum speed) to accomplish the desired level of pool cleaning It is possible to achieve a very significant savings in energy usage with such a use of the present invention as compared to the known pump operation at the high speed. In one example, the cost savings would be in the range of 30-40% as compared to a known pump/filter arrangement.
Energy conservation in the present invention is based upon an appreciation that such other water movement may be considered as part of the overall desired water movement, cycles, turnover, filtering, etc. Associated with operation of various functions and auxiliary devices 50 is a certain amount of water movement. As such, water movement associated with such other functions and devices can be utilized as part of the overall water movement to achieve desired values within a specified time frame (e.g., turnovers per day). Thus, control of a first operation (e.g., filtering at Speed #1) in response to performance of a second operation (e.g., running a pool cleaner at Speed #3) can allow for minimization of a purely filtering aspect. This permits increased energy efficiency by avoiding unnecessary pump operation.
It is to be appreciated that the means for controlling 30 may have various forms to accomplish the desired functions. In one example, the means for operating 30 includes a computer processor that operates a program. In the alternative, the program may be considered to be an algorithm. The program may be in the form of macros. Further, the program may be changeable, and the means for operating 30 is thus programmable. It is to be appreciated that the programming for the means for operating 30 may be modified, updated, etc. through the two-way communication system.
Also, it is to be appreciated that the physical appearance of the components of the system 10 may vary. As some examples of the components, attention is directed to
In addition to the foregoing, a method of controlling the pumping system 10 for moving water of a swimming pool is provided. The pumping system 10 includes a water pump 12 for moving water in connection with performance of an operation upon the water, and an infinitely variable speed motor 24 operatively connected to drive the pump. The method comprises the steps of providing a memory configured to store a plurality of retained speed values, and providing a plurality of retained speed values to the memory. The method also comprises the steps of reading a selected one of the plurality of retained speed values from the memory, and operating the motor at the selected one of the plurality of retained speed values. In addition or alternatively, the method can include any of the various elements and/or operations discussed previously herein, and/or even additional elements and/or operations.
It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the scope of the teaching contained in this disclosure. As such it is to be appreciated that the person of ordinary skill in the art will perceive changes, modifications, and improvements to the example disclosed herein. Such changes, modifications, and improvements are intended to be within the scope of the present invention.
Stiles, Jr., Robert W., Berthelsen, Lars Hoffmann, Robol, Ronald B., Runarsson, Einar Kjartan, Hansen, Arne Fink, Murphy, Kevin, Lungeanu, Florin, Hruby, Daniel J., Westermann-Rasmussen, Peter, Yahnker, Christopher
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
1061919, | |||
1993267, | |||
2238597, | |||
2458006, | |||
2488365, | |||
2494200, | |||
2615937, | |||
2716195, | |||
2767277, | |||
2778958, | |||
2881337, | |||
3116445, | |||
3191935, | |||
3204423, | |||
3213304, | |||
3226620, | |||
3227808, | |||
3291058, | |||
3316843, | |||
3481973, | |||
3530348, | |||
3558910, | |||
3559731, | |||
3562614, | |||
3566225, | |||
3573579, | |||
3581895, | |||
3593081, | |||
3594623, | |||
3596158, | |||
3613805, | |||
3624470, | |||
3634842, | |||
3652912, | |||
3671830, | |||
3726606, | |||
3735233, | |||
3737749, | |||
3753072, | |||
3761750, | |||
3761792, | |||
3777232, | |||
3777804, | |||
3778804, | |||
3780759, | |||
3781925, | |||
3787882, | |||
3792324, | |||
3800205, | |||
3814544, | |||
3838597, | |||
3867071, | |||
3882364, | |||
3902369, | |||
3910725, | |||
3913342, | |||
3916274, | |||
3941507, | Apr 12 1974 | Safety supervisor for sump pumps and other hazards | |
3949782, | Apr 05 1973 | Premark FEG Corporation | Control circuit for dishwasher |
3953777, | Feb 12 1973 | Delta-X Corporation | Control circuit for shutting off the electrical power to a liquid well pump |
3956760, | Mar 12 1975 | Liquidometer Corporation | Liquid level gauge |
3963375, | Mar 12 1974 | Time delayed shut-down circuit for recirculation pump | |
3972647, | Apr 12 1974 | Screen for intake of emergency sump pump | |
3976919, | Jun 04 1975 | Baker Hughes Incorporated | Phase sequence detector for three-phase AC power system |
3987240, | Jun 26 1974 | AMTEK, INC | Direct current power system including standby for community antenna television networks |
4000446, | Jun 04 1975 | Baker Hughes Incorporated | Overload protection system for three-phase submersible pump motor |
4021700, | Jun 04 1975 | Baker Hughes Incorporated | Digital logic control system for three-phase submersible pump motor |
4030450, | Jun 24 1974 | American Fish Company | Fish raising |
4041470, | Jan 16 1976 | Industrial Solid State Controls, Inc. | Fault monitoring and reporting system for trains |
4061442, | Oct 06 1975 | Beckett Corporation | System and method for maintaining a liquid level |
4087204, | Apr 12 1974 | Enclosed sump pump | |
4108574, | Jan 21 1977 | International Paper Company | Apparatus and method for the indirect measurement and control of the flow rate of a liquid in a piping system |
4123792, | Apr 07 1977 | Circuit for monitoring the mechanical power from an induction motor and for detecting excessive heat exchanger icing | |
4133058, | Dec 15 1975 | Automated pool level and skimming gutter flow control system | |
4142415, | Oct 09 1976 | VDO Adolf Schindling AG | Device for continuously measuring the liquid level in a container |
4151080, | Feb 13 1978 | Enviro Development Co., Inc. | System and apparatus for control and optimization of filtration process |
4157728, | Jul 29 1976 | Showa Denko Kabushiki Kaisha | Process for direct chill casting of metals |
4168413, | Mar 13 1978 | Piston detector switch | |
4169377, | Apr 17 1978 | Nalco Chemical Company | Quantity sensing system for a container |
4182363, | Nov 29 1976 | Liquid level controller | |
4185187, | Aug 17 1977 | Electric water heating apparatus | |
4187503, | Sep 05 1978 | Sump alarm device | |
4206634, | Sep 06 1978 | Cummins Engine Company, Inc. | Test apparatus and method for an engine mounted fuel pump |
4215975, | Dec 13 1978 | Sump pump with air column therein when pump is not operating | |
4222711, | Jun 22 1978 | I2 DS | Sump pump control system |
4225290, | Feb 22 1979 | Instrumentation Specialties Company | Pumping system |
4228427, | Mar 29 1979 | Monitor apparatus for sump pumps | |
4233553, | May 10 1978 | Ault, Inc. | Automatic dual mode battery charger |
4241299, | Apr 06 1979 | Mine Safety Appliances Company | Control system for battery-operated pump |
4255747, | Nov 15 1978 | Sump pump level warning device | |
4263535, | Sep 29 1978 | BUCYRUS INTERNATIONAL, INC | Motor drive system for an electric mining shovel |
4276454, | Mar 19 1979 | Water level sensor | |
4286303, | Mar 19 1979 | Franklin Electric Co., Inc. | Protection system for an electric motor |
4303203, | Aug 30 1979 | Center pivot irrigation system having a pressure sensitive drive apparatus | |
4307327, | Sep 17 1979 | Franklin Electric Co., Inc. | Control arrangement for single phase AC systems |
4309157, | Mar 01 1979 | Protection device and sump pump | |
4314478, | Nov 16 1979 | Robertshaw Controls Company | Capacitance probe for high resistance materials |
4319712, | Apr 28 1980 | Energy utilization reduction devices | |
4322297, | Aug 18 1980 | Controller and control method for a pool system | |
4330412, | Jul 05 1977 | ITT Corporation | Hydrotherapy device, method and apparatus |
4332527, | Aug 10 1979 | BFM ROMEC CORP , A DE CORP | Variable speed centrifugal pump |
4353220, | Jun 17 1980 | MECHANICAL TECHNOLOGY INC A CORP OF N Y | Resonant piston compressor having improved stroke control for load-following electric heat pumps and the like |
4366426, | Sep 08 1981 | S A ARMSTRONG LIMITED, A COMPANY | Starting circuit for single phase electric motors |
4369438, | May 13 1980 | KETTELSON, ERNEST | Sump pump detection and alarm system |
4370098, | Oct 20 1980 | Esco Manufacturing Company | Method and apparatus for monitoring and controlling on line dynamic operating conditions |
4370690, | Feb 06 1981 | Matsushita Floor Care Company; WHIRLPOOL FLOOR CARE CORP , WHIRLPOOL SUB A CORP OF DELAWARE | Vacuum cleaner control |
4371315, | Sep 02 1980 | ITT Corporation | Pressure booster system with low-flow shut-down control |
4375613, | Dec 14 1976 | Electrical control circuit | |
4384825, | Oct 31 1980 | The Bendix Corporation | Personal sampling pump |
4399394, | Nov 02 1981 | Electronic motor start switch | |
4402094, | Mar 18 1982 | Safety circulation system | |
4409532, | Nov 06 1981 | General Electric Company | Start control arrangement for split phase induction motor |
4419625, | Dec 05 1980 | La Telemecanique Electrique | Determining asynchronous motor couple |
4420787, | Dec 03 1981 | Spring Valley Associates Inc. | Water pump protector |
4421643, | Oct 30 1975 | ITT Corporation | Swimming pool filtering system |
4425836, | Feb 20 1981 | Delaware Capital Formation, Inc | Fluid pressure motor |
4427545, | Dec 13 1982 | Dual fuel filter system | |
4428434, | Jun 19 1981 | Automatic fire protection system | |
4429343, | Dec 03 1981 | Leeds & Northrup Company | Humidity sensing element |
4437133, | May 24 1982 | Eaton Corporation | Current source inverter commutation-spike-voltage protection circuit including over-current and over-voltage protection |
4448072, | Feb 03 1982 | Tward 2001 Limited | Fluid level measuring system |
4449260, | Sep 01 1982 | Swimming pool cleaning method and apparatus | |
4453118, | Nov 08 1982 | CENTURY ELECTRIC, INC , A DE CORP | Starting control circuit for a multispeed A.C. motor |
4456432, | Oct 27 1980 | Jennings Pump Company | Emergency sump pump and alarm warning system |
4462758, | Jan 12 1983 | Franklin Electric Co., Inc. | Water well pump control assembly |
4463304, | Jul 26 1982 | Franklin Electric Co., Inc. | High voltage motor control circuit |
4468604, | Aug 20 1980 | Motor starting circuit | |
4470092, | Sep 27 1982 | Allen-Bradley Company | Programmable motor protector |
4473338, | Sep 15 1980 | Controlled well pump and method of analyzing well production | |
4494180, | Dec 02 1983 | Franklin Electric Co., Inc. | Electrical power matching system |
4496895, | May 09 1983 | Texas Instruments Incorporated | Universal single phase motor starting control apparatus |
4504773, | Sep 10 1981 | KUREHA KAGAKU KOGYO KABUSHIKI KAISHA, 9-11 HORIDOME-CHO 1-CHOME,NIHONBASHI,CHUO-KU,TOKYO,JAPAN A CORP OF JAPAN; RADIO RESEARCH & TECHNICAL INC 5-1-4 OHTSUKA,BUNKYO-KU,TOKYO,JAPAN A CORP OF JAPAN | Capacitor discharge circuit |
4505643, | Mar 18 1983 | North Coast Systems, Inc. | Liquid pump control |
4514989, | May 14 1984 | Carrier Corporation | Method and control system for protecting an electric motor driven compressor in a refrigeration system |
4520303, | Feb 21 1983 | ASSOCIATED ELECTRICAL INDUSTRIES LIMITED, 1 STANHOPE GATE, LONDON, W1A 1EH, ENGLAND A COMPANY OF BRITISH | Induction motors |
4529359, | May 02 1983 | Sewerage pumping means for lift station | |
4541029, | Oct 06 1982 | Tsubakimoto Chain Co. | Over-load and light-load protection for electric machinery |
4545906, | Oct 30 1975 | International Telephone and Telegraph Corporation | Swimming pool filtering system |
4552512, | Aug 22 1983 | PERMUTARE CORPORATION 3370 PORTSHIRE PALATINE IL 60067 A IL CORP | Standby water-powered basement sump pump |
4564041, | Oct 31 1983 | CAMPBELL MANUFACTURING, INC , A CORP OF PA ; CAMPBELL MANUFACTURING, INC | Quick disconnect coupling device |
4564882, | Aug 16 1984 | GENERAL SIGNAL CORPORATION A CORP OF NY | Humidity sensing element |
4581900, | Dec 24 1984 | YORK INTERNATIONAL CORPORATION, 631 SOUTH RICHLAND AVENUE, YORK, PA 17403, A CORP OF DE | Method and apparatus for detecting surge in centrifugal compressors driven by electric motors |
4604563, | Dec 11 1984 | REXNORD CORPORATION, A DE CORP | Electronic switch for starting AC motor |
4605888, | Feb 21 1983 | Starting winding switching circuit for single-phase induction motors | |
4610605, | Jun 25 1985 | WISCONSIN WESTERN COASTAL ACQUISITION CORP | Triple discharge pump |
4620835, | Jun 02 1983 | CHEMICAL BANK, AS COLLATERAL AGENT | Pump protection system |
4622506, | Dec 11 1984 | REXNORD CORPORATION, A DE CORP | Load and speed sensitive motor starting circuit |
4635441, | May 07 1985 | Sundstrand Corporation | Power drive unit and control system therefor |
4647825, | Sep 30 1982 | Square D Company | Up-to-speed enable for jam under load and phase loss |
4651077, | Jun 17 1985 | Start switch for a single phase AC motor | |
4652802, | May 29 1986 | S. J. Electro Systems, Inc. | Alternator circuit arrangement useful in liquid level control system |
4658195, | May 21 1985 | REXNORD CORPORATION, A DE CORP | Motor control circuit with automatic restart of cut-in |
4658203, | Dec 04 1984 | Airborne Electronics, Inc. | Voltage clamp circuit for switched inductive loads |
4668902, | Apr 09 1986 | ITT Corporation; ITT CORPORATION, A CORP OF DELAWARE | Apparatus for optimizing the charging of a rechargeable battery |
4670697, | Jul 14 1986 | REXNORD CORPORATION, A DE CORP | Low cost, load and speed sensitive motor control starting circuit |
4676914, | Mar 18 1983 | North Coast Systems, Inc. | Microprocessor based pump controller for backwashable filter |
4678404, | Oct 28 1983 | Baker Hughes Incorporated | Low volume variable rpm submersible well pump |
4678409, | Nov 22 1984 | Fuji Photo Film Co., Ltd. | Multiple magnetic pump system |
4686439, | Sep 10 1985 | MANAGEMENT RESOURCE GROUP, A CA PARTNERSHIP | Multiple speed pump electronic control system |
4695779, | May 19 1986 | Evi-Highland Pump Company | Motor protection system and process |
4697464, | Apr 16 1986 | Pressure washer systems analyzer | |
4703387, | May 22 1986 | Franklin Electric Co., Inc. | Electric motor underload protection system |
4705629, | Feb 06 1986 | YORK BANK AND TRUST COMPANY, THE | Modular operations center for in-ground swimming pool |
4716605, | Aug 29 1986 | PEARL BATHS, INC | Liquid sensor and touch control for hydrotherapy baths |
4719399, | Sep 24 1986 | REXNORD CORPORATION, A DE CORP | Quick discharge motor starting circuit |
4728882, | Apr 01 1986 | The Johns Hopkins University | Capacitive chemical sensor for detecting certain analytes, including hydrocarbons in a liquid medium |
4751449, | Sep 24 1986 | REXNORD CORPORATION, A DE CORP | Start from coast protective circuit |
4751450, | Sep 24 1986 | REXNORD CORPORATION, A DE CORP | Low cost, protective start from coast circuit |
4758697, | Nov 04 1983 | S I P R O C , - SOCIETE INTERNATIONALE DE PROMOTION COMMERCIALE | Intermittent supply control device for electric appliances of in particular a hotel room |
4761601, | Aug 20 1980 | Motor starting circuit | |
4764417, | Jun 08 1987 | Appleton Mills | Pin seamed papermakers felt having a reinforced batt flap |
4764714, | Dec 28 1987 | General Electric Company | Electronic starting circuit for an alternating current motor |
4766329, | Sep 11 1987 | Automatic pump control system | |
4767280, | Aug 26 1987 | Computerized controller with service display panel for an oil well pumping motor | |
4780050, | Dec 23 1985 | Sundstrand Corporation | Self-priming pump system |
4781525, | Jul 17 1987 | Terumo Cardiovascular Systems Corporation | Flow measurement system |
4782278, | Jul 22 1987 | REXNORD CORPORATION, A DE CORP | Motor starting circuit with low cost comparator hysteresis |
4786850, | Aug 13 1987 | REXNORD CORPORATION, A DE CORP | Motor starting circuit with time delay cut-out and restart |
4789307, | Feb 10 1988 | Floating pump assembly | |
4795314, | Aug 24 1987 | Gambro BCT, Inc | Condition responsive pump control utilizing integrated, commanded, and sensed flowrate signals |
4801858, | Jul 26 1984 | REXNORD CORPORATION, A DE CORP | Motor starting circuit |
4804901, | Nov 13 1987 | KILO-WATT-CH-DOG, INC ; KB ELECTRONICS, INC | Motor starting circuit |
4806457, | Apr 10 1986 | NEC Electronics Corporation | Method of manufacturing integrated circuit semiconductor device |
4820964, | Aug 22 1986 | Andrew S., Kadah | Solid state motor start circuit |
4827197, | May 22 1987 | Beckman Instruments, Inc. | Method and apparatus for overspeed protection for high speed centrifuges |
4834624, | Dec 13 1986 | Grundfos International A/S | Pump assembly for delivering liquids and gases |
4837656, | Feb 27 1987 | Malfunction detector | |
4839571, | Mar 17 1987 | Barber-Greene Company | Safety back-up for metering pump control |
4841404, | Oct 07 1987 | DAYTON SCIENTIFIC, INC | Pump and electric motor protector |
4843295, | Jun 04 1987 | Texas Instruments Incorporated | Method and apparatus for starting single phase motors |
4862053, | Aug 07 1987 | Reliance Electric Technologies, LLC | Motor starting circuit |
4864287, | Jul 11 1983 | Square D Company | Apparatus and method for calibrating a motor monitor by reading and storing a desired value of the power factor |
4885655, | Oct 07 1987 | DAYTON SCIENTIFIC, INC | Water pump protector unit |
4891569, | Aug 20 1982 | Versatex Industries | Power factor controller |
4896101, | Dec 03 1986 | Method for monitoring, recording, and evaluating valve operating trends | |
4907610, | Aug 15 1986 | CIRO-U-VAC, INC | Cleaning system for swimming pools and the like |
4912936, | Apr 11 1987 | Kabushiki Kaisha Toshiba | Refrigeration control system and method |
4913625, | Dec 18 1987 | Westinghouse Electric Corp. | Automatic pump protection system |
4949748, | Mar 02 1989 | FIKE CORPORATION, A CORP OF MO | Backflash interrupter |
4958118, | Aug 28 1989 | Thor Technology Corporation | Wide range, self-starting single phase motor speed control |
4963778, | Dec 13 1986 | Grundfos International A/S | Frequency converter for controlling a motor |
4967131, | Aug 16 1988 | Electronic motor starter | |
4971522, | May 11 1989 | Control system and method for AC motor driven cyclic load | |
4975798, | Sep 05 1989 | Motorola, Inc | Voltage-clamped integrated circuit |
4977394, | Nov 06 1989 | Whirlpool Corporation | Diagnostic system for an automatic appliance |
4985181, | Jan 03 1989 | Newa S.r.l. | Centrifugal pump especially for aquariums |
4986919, | Mar 10 1986 | Isco, Inc. | Chromatographic pumping method |
4996646, | Mar 31 1988 | SQUARE D COMPANY, A CORP OF MI | Microprocessor-controlled circuit breaker and system |
4998097, | Jul 11 1983 | Square D Company | Mechanically operated pressure switch having solid state components |
5015151, | Feb 10 1987 | Shell Oil Company | Motor controller for electrical submersible pumps |
5015152, | Nov 20 1989 | STA-RITE INDUSTRIES, INC | Battery monitoring and charging circuit for sump pumps |
5017853, | Feb 27 1990 | CREDIT SUISSE, AS ADMINISTRATIVE AGENT | Spikeless motor starting circuit |
5026256, | Dec 18 1987 | Hitachi, Ltd.; The Kansai Electric Power Co. Ltd. | Variable speed pumping-up system |
5028854, | Jan 30 1990 | MOLINE MACHINERY LTD LIMITED PARTNERSHIP | Variable speed motor drive |
5041771, | Jul 26 1984 | REXNORD CORPORATION, A DE CORP | Motor starting circuit |
5051068, | Aug 15 1990 | Compressors for vehicle tires | |
5051681, | Nov 28 1989 | Empresa Brasileira de Compressores S/A Embarco | Electronic circuit for a single phase induction motor starting |
5076761, | Jun 26 1990 | Graco Inc. | Safety drive circuit for pump motor |
5076763, | Dec 31 1984 | Rule Industries, Inc. | Pump control responsive to timer, delay circuit and motor current |
5079784, | Feb 03 1989 | HYDR-O-DYNAMIC BATH SYSTEMS CORPORATION, 3855 WEST HARMON AVE , LAS VEGAS, NV 89103, A CORP OF NV | Hydro-massage tub control system |
5091817, | Dec 03 1984 | General Electric Company | Autonomous active clamp circuit |
5098023, | Aug 19 1988 | COOPER, LESLIE A , NEW YORK, NY | Hand car wash machine |
5099181, | May 03 1991 | DELTA ELECTRTONICS, INC | Pulse-width modulation speed controllable DC brushless cooling fan |
5100298, | Mar 07 1989 | Ebara Corporation | Controller for underwater pump |
5103154, | May 25 1990 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE | Start winding switch protection circuit |
5117233, | Oct 18 1990 | WATER PIK TECHNOLOGIES, INC ; LAARS, INC | Spa and swimming pool remote control systems |
5123080, | Jul 20 1988 | Ranco Incorporated of Delaware | Compressor drive system |
5129264, | Dec 07 1990 | Goulds Pumps, Incorporated | Centrifugal pump with flow measurement |
5135359, | Feb 08 1991 | Emergency light and sump pump operating device for dwelling | |
5145323, | Nov 26 1990 | Tecumseh Products Company | Liquid level control with capacitive sensors |
5151017, | May 15 1991 | ITT Corporation | Variable speed hydromassage pump control |
5154821, | Nov 18 1991 | Pool pump primer | |
5156535, | Oct 31 1990 | ITT Corporation | High speed whirlpool pump |
5158436, | Mar 29 1990 | Grundfos International A/S | Pump with speed controller responsive to temperature |
5159713, | Nov 12 1985 | Seiko Instruments Inc | Watch pager and wrist antenna |
5164651, | Jun 27 1991 | Industrial Technology Research Institute | Starting-current limiting device for single-phase induction motors used in household electrical equipment |
5166595, | Sep 17 1990 | Circom Inc. | Switch mode battery charging system |
5167041, | Jun 20 1990 | G-G DISTRIBUTION AND DEVELOPMENT CO , INC | Suction fitting with pump control device |
5172089, | Jun 14 1991 | Pool pump fail safe switch | |
5206573, | Dec 06 1991 | Starting control circuit | |
5213477, | Apr 13 1990 | Kabushiki Kaisha Toshiba | Pump delivery flow rate control apparatus |
5222867, | Aug 29 1986 | Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance | |
5234286, | Jan 08 1992 | Underground water reservoir | |
5234319, | May 04 1992 | Sump pump drive system | |
5235235, | May 24 1991 | Sandia Corporation | Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase |
5238369, | Nov 26 1990 | Tecumseh Products Company | Liquid level control with capacitive sensors |
5240380, | May 21 1991 | Sundyne Corporation | Variable speed control for centrifugal pumps |
5245272, | Oct 10 1991 | Electronic control for series circuits | |
5247236, | Aug 31 1989 | The RectorSeal Corporation | Starting device and circuit for starting single phase motors |
5255148, | Aug 24 1990 | PACIFIC SCIENTIFIC COMPANY, A CORP OF CA | Autoranging faulted circuit indicator |
5272933, | Sep 28 1992 | General Motors Corporation | Steering gear for motor vehicles |
5295790, | Dec 21 1992 | COLE-PARMER INSTRUMENT COMPANY LLC | Flow-controlled sampling pump apparatus |
5295857, | Dec 23 1992 | Electrical connector with improved wire termination system | |
5296795, | Oct 26 1992 | Texas Instruments Incorporated | Method and apparatus for starting capacitive start, induction run and capacitive start, capacitive run electric motors |
5302885, | Jan 30 1991 | EMPRESA BRASILEIRA DE COMPRESSORES S A -EMBRACO | Starting device for a single phase induction motor |
5319298, | Oct 31 1991 | Battery maintainer and charger apparatus | |
5324170, | Dec 31 1984 | Rule Industries, Inc. | Pump control apparatus and method |
5327036, | Jan 19 1993 | General Electric Company | Snap-on fan cover for an electric motor |
5342176, | Apr 05 1993 | Sunpower, Inc. | Method and apparatus for measuring piston position in a free piston compressor |
5347664, | Jun 20 1990 | PAC-FAB, INC , A DELAWARE CORPORATION | Suction fitting with pump control device |
5349281, | Mar 22 1991 | HM Electronics, Inc. | Battery charging system and method of using same |
5351709, | Oct 07 1992 | Prelude Pool Products C C | Control valves |
5351714, | Dec 09 1992 | Paul Hammelmann Meschinenfabrik | Safety valve for high-pressure pumps, high-pressure water-jet machines and the like |
5352969, | May 30 1991 | Black & Decker Inc.; BLACK & DECKER INC , | Battery charging system having logarithmic analog-to-digital converter with automatic scaling of analog signal |
5360320, | Feb 27 1992 | TELEDYNE ISCO, INC | Multiple solvent delivery system |
5361215, | Jul 26 1988 | BALBOA WATER GROUP, INC | Spa control system |
5363912, | May 18 1993 | DYNAMATIC CORPORATION | Electromagnetic coupling |
5394748, | Nov 15 1993 | Modular data acquisition system | |
5418984, | Jun 28 1993 | Plastic Development Company - PDC | Hydrotherapy seat structure for a hydrotherapy spa, tub or swimming pool |
5422014, | Mar 18 1993 | Automatic chemical monitor and control system | |
5423214, | Feb 01 1993 | DILLI TECHNOLOGY, INC , FORMERLY LEE MAATUK ENGINGEERING | Variable fluid and tilt level sensing probe system |
5425624, | Oct 22 1993 | ITT Corporation | Optical fluid-level switch and controls for bilge pump apparatus |
5443368, | Jul 16 1993 | Brooks Automation, Inc | Turbomolecular pump with valves and integrated electronic controls |
5444354, | Mar 02 1992 | Hitachi, LTD; HITACHI AUTOMOTIVE ENGINEERING CO , LTD | Charging generator control for vehicles |
5449274, | Mar 24 1994 | Metropolitan Pump Company | Sump system having timed switching of plural pumps |
5449997, | May 30 1991 | Black & Decker Inc. | Battery charging system having logarithmic analog-to-digital converter with automatic scaling of analog signal |
5450316, | Sep 13 1988 | Brooks Automation, Inc | Electronic process controller having password override |
5457373, | Sep 24 1993 | A O SMITH CORPORATION | Electric motor with integrally packaged day/night controller |
5457826, | Dec 29 1988 | Toto Ltd. | Whirlpool bath with an inverter-controlled circulating pump |
5466995, | Sep 29 1993 | TACO, INC | Zoning circulator controller |
5469215, | Aug 02 1993 | Okuma Corporation | Method and apparatus for controlling an electric motor with compensation or torque ripple |
5471125, | Sep 09 1994 | DANFOSS DRIVES A S | AC/DC unity power-factor DC power supply for operating an electric motor |
5473497, | Feb 05 1993 | FRANKLIN ELECTRIC COMPANY, INC AN INDIANA CORPORATION | Electronic motor load sensing device |
5483229, | Feb 18 1993 | Yokogawa Electric Corporation | Input-output unit |
5495161, | Jan 05 1994 | SENCO BRANDS, INC | Speed control for a universal AC/DC motor |
5499902, | Dec 04 1991 | STEJADA CORPORATION | Environmentally safe pump including seal |
5511397, | Apr 28 1993 | Kabushiki Kaisha Toshiba | Washing machine with means for storing and displaying data of contents of washing operation |
5512809, | Aug 11 1994 | PENN ACQUISTION CORP | Apparatus and method for starting and controlling a motor |
5512883, | Nov 03 1992 | Method and device for monitoring the operation of a motor | |
5518371, | Jun 20 1994 | Wells, Inc. | Automatic fluid pressure maintaining system from a well |
5519848, | Nov 18 1993 | Apple Inc | Method of cell characterization in a distributed simulation system |
5520517, | Jun 01 1993 | Motor control system for a constant flow vacuum pump | |
5522707, | Nov 16 1994 | METROPOLITAN INDUSTRIES, INC | Variable frequency drive system for fluid delivery system |
5528120, | Sep 09 1994 | Sealed Unit Parts Co., Inc. | Adjustable electronic potential relay |
5529462, | Mar 07 1994 | Universal pump coupling system | |
5532635, | Sep 12 1994 | Silicon Power Corporation | Voltage clamp circuit and method |
5540555, | Oct 04 1994 | FIFECO, INC | Real time remote sensing pressure control system using periodically sampled remote sensors |
5545012, | Oct 04 1993 | Rule Industries, Inc. | Soft-start pump control system |
5548854, | Aug 16 1993 | KOHLER CO | Hydro-massage tub control system |
5549456, | Jul 27 1994 | Rule Industries, Inc. | Automatic pump control system with variable test cycle initiation frequency |
5550497, | May 26 1994 | SGS-Thomson Microelectronics, Inc. | Power driver circuit with reduced turnoff time |
5550753, | May 27 1987 | BALBOA WATER GROUP, INC | Microcomputer SPA control system |
5559418, | May 03 1995 | Emerson Electric Co | Starting device for single phase induction motor having a start capacitor |
5559720, | May 27 1987 | BALBOA WATER GROUP, INC | Spa control system |
5559762, | Jun 22 1994 | Seiko Epson Corporation | Electronic clock with alarm and method for setting alarm time |
5561357, | Apr 24 1995 | The RectorSeal Corporation | Starting device and circuit for starting single phase motors |
5562422, | Sep 30 1994 | Goulds Pumps, Incorporated | Liquid level control assembly for pumps |
5563759, | Apr 11 1995 | International Rectifier Corporation | Protected three-pin mosgated power switch with separate input reset signal level |
5570481, | Nov 09 1994 | G-G DISTRIBUTION AND DEVELOPMENT CO , INC | Suction-actuated control system for whirlpool bath/spa installations |
5571000, | Jul 07 1994 | Shurflo Pump Manufacturing Co. | Booster pump with bypass valve integrally formed in gasket |
5577890, | Mar 01 1994 | TRILOGY CONTROLS, INC | Solid state pump control and protection system |
5580221, | Oct 05 1994 | Franklin Electric Co., Inc. | Motor drive circuit for pressure control of a pumping system |
5582017, | Apr 28 1994 | Ebara Corporation | Cryopump |
5587899, | Jun 10 1994 | Fisher-Rosemount Systems, Inc | Method and apparatus for determining the ultimate gain and ultimate period of a controlled process |
5589076, | May 10 1994 | Womack International, Inc. | Method and apparatus for optimizing operation of a filter system |
5589753, | Apr 11 1994 | International Controls and Measurements Corporation | Rate effect motor start circuit |
5592062, | Mar 08 1994 | DGB TECHNOLOGIES, INC | Controller for AC induction motors |
5598080, | Feb 14 1992 | Grundfos A/S | Starting device for a single-phase induction motor |
5601413, | Feb 23 1996 | Great Plains Industries, Inc. | Automatic low fluid shut-off method for a pumping system |
5604491, | Apr 24 1995 | Google Technology Holdings LLC | Pager with user selectable priority |
5614812, | Mar 16 1995 | Franklin Electric Co. Inc. | Power supply with power factor correction |
5616239, | Mar 10 1995 | Swimming pool control system having central processing unit and remote communication | |
5618460, | Sep 30 1993 | Robertshaw Controls Company | Temperature regulating control system for an oven of a cooking apparatus and methods of making and operating the same |
5622223, | Sep 01 1995 | Haliburton Company | Apparatus and method for retrieving formation fluid samples utilizing differential pressure measurements |
5624237, | Mar 29 1994 | Pump overload control assembly | |
5626464, | May 23 1995 | Aquatec Water Systems, Inc. | Wobble plate pump |
5628896, | Oct 21 1994 | Klingenberger GmbH | Apparatus for operating a filter arrangement |
5629601, | Apr 18 1994 | ZINCFIVE POWER, INC | Compound battery charging system |
5632468, | Feb 24 1993 | AQUATEC WATER SYSTEMS, INC | Control circuit for solenoid valve |
5633540, | Jun 25 1996 | Lutron Technology Company LLC | Surge-resistant relay switching circuit |
5640078, | Jan 26 1994 | PHYSIO-CONTROL, INC | Method and apparatus for automatically switching and charging multiple batteries |
5654504, | Oct 13 1995 | Downhole pump monitoring system | |
5654620, | Mar 09 1995 | A O SMITH CORPORATION | Sensorless speed detection circuit and method for induction motors |
5669323, | Sep 06 1996 | Automatic bailer | |
5672050, | Aug 04 1995 | Lynx Electronics, Inc. | Apparatus and method for monitoring a sump pump |
5682624, | Jun 07 1995 | Vac-Alert IP Holdings, LLC | Vacuum relief safety valve for a swimming pool filter pump system |
5690476, | Oct 25 1996 | Safety device for avoiding entrapment at a water reservoir drain | |
5708348, | Nov 20 1995 | PARADISE MACHINING CORPORATION | Method and apparatus for monitoring battery voltage |
5711483, | Jan 24 1996 | Graco Minnesota Inc | Liquid spraying system controller including governor for reduced overshoot |
5712795, | Oct 02 1995 | CAREFUSION 303, INC | Power management system |
5713320, | Jan 11 1996 | MARATHON ENGINE SYSTEMS, INC | Internal combustion engine starting apparatus and process |
5727933, | Dec 20 1995 | Hale Fire Pump Company | Pump and flow sensor combination |
5730861, | May 06 1996 | Swimming pool control system | |
5731673, | Jul 06 1993 | Black & Decker Inc. | Electrical power tool having a motor control circuit for increasing the effective torque output of the power tool |
5736884, | Feb 16 1995 | U.S. Philips Corporation | Device for generating a control signal dependent on a variable resistance value and apparatus comprising such device |
5739648, | Aug 08 1996 | KOLLMORGEN CORPORATION | Motor controller for application in a motor controller network |
5744921, | May 02 1996 | Siemens Electric Limited | Control circuit for five-phase brushless DC motor |
5752785, | Sep 14 1994 | Hitachi, Ltd. | Drainage pump station and drainage operation method for drainage pump station |
5754036, | Jul 25 1996 | GLOBAL LIGHTING SOLUTIONS, LLC | Energy saving power control system and method |
5754421, | May 10 1994 | Load Controls, Incorporated | Power monitoring |
5763969, | Nov 14 1996 | Reliance Electric Technologies, LLC | Integrated electric motor and drive system with auxiliary cooling motor and asymmetric heat sink |
5767606, | Nov 27 1992 | Hydor S.R.L. | Synchronous electric motor, particularly for submersible pumps, and pump including the motor |
5777833, | Feb 02 1996 | Schneider Electric SA | Electronic relay for calculating the power of a multiphase electric load based on a rectified wave signal and a phase current |
5780992, | Aug 09 1996 | Intermec IP CORP | Rechargeable battery system adaptable to a plurality of battery types |
5791882, | Apr 25 1996 | Sta-Rite Industries, LLC | High efficiency diaphragm pump |
5796234, | Jan 19 1996 | HVAC MODULATION TECHNOLOGIES LLC | Variable speed motor apparatus and method for forming same from a split capacitor motor |
5802910, | Apr 15 1995 | Measuring system for liquid volumes and liquid levels of any type | |
5804080, | Oct 21 1994 | Computer controlled method of operating a swimming pool filtration system | |
5808441, | Jun 10 1996 | Tecumseh Products Company | Microprocessor based motor control system with phase difference detection |
5814966, | Aug 08 1994 | NATIONAL POWER SYSTEMS, INC | Digital power optimization system for AC induction motors |
5818708, | Dec 12 1996 | Philips Electronics North America Corporation; PHILIPS ELECTRONICS NORTH AMERICAS CORPORATION | High-voltage AC to low-voltage DC converter |
5818714, | Aug 01 1996 | Rosemount, Inc.; Rosemount Inc | Process control system with asymptotic auto-tuning |
5819848, | Aug 14 1996 | PRO CAV TECHNOLOGY, L L C | Flow responsive time delay pump motor cut-off logic |
5820350, | Nov 17 1995 | Highland/Corod, Inc. | Method and apparatus for controlling downhole rotary pump used in production of oil wells |
5828200, | Nov 21 1995 | Phase III | Motor control system for variable speed induction motors |
5833437, | Jul 02 1996 | Sta-Rite Industries, LLC | Bilge pump |
5836271, | Sep 29 1995 | Aisin Seiki Kabushiki Kaisha | Water pump |
5845225, | Apr 03 1995 | Microcomputer controlled engine cleaning system | |
5856783, | Jan 02 1990 | SEEWATER, INC | Pump control system |
5863185, | Oct 05 1994 | Franklin Electric Co. | Liquid pumping system with cooled control module |
5883489, | Sep 27 1996 | General Electric Company | High speed deep well pump for residential use |
5884205, | Aug 22 1996 | U S BANK NATIONAL ASSOCIATION | Boom configuration monitoring and control system for mobile material distribution apparatus |
5892349, | Oct 29 1996 | Therm-O-Disc, Incorporated | Control circuit for two speed motors |
5894609, | Mar 05 1997 | TRIODYNE, INC ; TRIODYNE SAFETY SYSTEMS L L C | Safety system for multiple drain pools |
5898958, | Oct 27 1997 | Quad Cities Automatic Pools, Inc. | Control circuit for delivering water and air to outlet jets in a water-filled pool |
5906479, | Mar 07 1994 | Universal pump coupling system | |
5907281, | May 05 1998 | Johnson Engineering Corporation | Swimmer location monitor |
5909352, | May 29 1996 | S J ELECTRO SYSTEMS, LLC | Alternator circuit for use in a liquid level control system |
5909372, | Jun 07 1996 | DANFOSS DRIVES A S | User interface for programming a motor controller |
5914881, | Apr 22 1997 | Programmable speed controller for a milling device | |
5920264, | Jun 08 1994 | JINGPIN TECHNOLOGIES, LLC | Computer system protection device |
5930092, | Jan 17 1992 | Load Controls, Incorporated | Power monitoring |
5941690, | Dec 23 1996 | Constant pressure variable speed inverter control booster pump system | |
5944444, | Aug 11 1997 | Technology Licensing Corp | Control system for draining, irrigating and heating an athletic field |
5945802, | Sep 27 1996 | General Electric Company | Ground fault detection and protection method for a variable speed ac electric motor |
5946469, | Nov 15 1995 | Dell Products L P | Computer system having a controller which emulates a peripheral device during initialization |
5947689, | May 07 1997 | Parker-Hannifin Corporation | Automated, quantitative, system for filtration of liquids having a pump controller |
5947700, | Jul 28 1997 | HAYWARD INDUSTRIES, INC | Fluid vacuum safety device for fluid transfer systems in swimming pools |
5959431, | Oct 03 1997 | Baldor Electric Company | Method and apparatus for instability compensation of V/Hz pulse width modulation inverter-fed induction motor drives |
5959534, | Oct 29 1993 | Splash Industries, Inc. | Swimming pool alarm |
5961291, | Aug 30 1996 | BOC EDWARDS JAMES LIMITED | Turbo vacuum pump with a magnetically levitated rotor and a control unit for displacing the rotator at various angles to scrape deposits from the inside of the pump |
5963706, | Oct 23 1997 | KANG, KI CHEOL | Control system for multi-phase brushless DC motor |
5969958, | Jan 23 1995 | DANFOSS DRIVES A S | Method for measuring phase currents in an inverter |
5973465, | Apr 28 1998 | Toshiba International Corporation | Automotive restart control for submersible pump |
5973473, | Oct 31 1996 | Therm-O-Disc, Incorporated | Motor control circuit |
5977732, | Feb 04 1997 | Nissan Motor Co., Ltd. | Apparatus and method for determining presence or absence of foreign object or the like caught in power-open-and-closure mechanism |
5983146, | Dec 27 1995 | Valeo Climatisation | Electronic control system for a heating, ventilating and/or air conditioning installation for a motor vehicle |
5986433, | Oct 30 1998 | Unwired Planet, LLC | Multi-rate charger with auto reset |
5987105, | Jun 25 1997 | Fisher & Paykel Limited | Appliance communication system |
5991939, | Aug 21 1997 | VAC-ALERT IP HOLDINGS LLC | Pool safety valve |
6030180, | Aug 26 1994 | MEADE, PHILLIP JOHN; CLAREY, MICHAEL | Apparatus for generating water currents in swimming pools or the like |
6037742, | Dec 07 1995 | DANFOSS DRIVES A S | Method for the field-oriented control of an induction motor |
6043461, | Apr 05 1993 | Whirlpool Corporation | Over temperature condition sensing method and apparatus for a domestic appliance |
6045331, | Aug 10 1998 | Fluid pump speed controller | |
6045333, | Dec 01 1997 | Camco International, Inc.; Camco International, Inc | Method and apparatus for controlling a submergible pumping system |
6046492, | Sep 12 1995 | SII Semiconductor Corporation | Semiconductor temperature sensor and the method of producing the same |
6048183, | Feb 06 1998 | Sta-Rite Industries, LLC | Diaphragm pump with modified valves |
6056008, | Sep 22 1997 | Fisher Controls International LLC | Intelligent pressure regulator |
6059536, | Jan 22 1996 | STINGL PRODUCTS, LLC | Emergency shutdown system for a water-circulating pump |
6065946, | Jul 03 1997 | HOFFMAN, LESLIE | Integrated controller pump |
6072291, | Mar 22 1996 | DANFOSS DRIVES A S | Frequency converter for an electromotor |
6080973, | Apr 19 1999 | Watkins Manufacturing Corporation | Electric water heater |
6081751, | Dec 19 1997 | National Instruments Corporation | System and method for closed loop autotuning of PID controllers |
6091604, | Mar 27 1998 | DANFOSS DRIVES A S | Power module for a frequency converter |
6092992, | Oct 24 1996 | MSA Technology, LLC; Mine Safety Appliances Company, LLC | System and method for pump control and fault detection |
6094026, | Aug 28 1992 | STMicroelectronics, Inc | Overtemperature warning cycle in operation of polyphase DC motors |
6094764, | Jun 04 1998 | ZODIAC POOL SYSTEMS, INC | Suction powered pool cleaner |
6098654, | Jan 22 1999 | FAIL-SAFE LLC | Flow blockage suction interrupt valve |
6102665, | Oct 28 1997 | Quincy Compressor LLC | Compressor system and method and control for same |
6110322, | Mar 06 1998 | Applied Materials, Inc.; Applied Materials, Inc | Prevention of ground fault interrupts in a semiconductor processing system |
6116040, | Mar 15 1999 | Carrier Corporation | Apparatus for cooling the power electronics of a refrigeration compressor drive |
6121746, | Jun 10 1999 | BLUFFTON MOTOR WORKS, LLC | Speed reduction switch |
6121749, | May 11 1998 | WORK SMART ENERGY ENTERPRISES, INC | Variable-speed drive for single-phase motors |
6125481, | Mar 11 1999 | Swimming pool management system | |
6125883, | Jan 09 1998 | DURR ECOCLEAN, INC | Floor mounted double containment low profile sump pump assembly |
6142741, | Feb 09 1995 | Matsushita Electric Industrial Co., Ltd. | Hermetic electric compressor with improved temperature responsive motor control |
6146108, | Apr 30 1999 | Portable pump | |
6150776, | May 04 1999 | METROPOLITAN INDUSTRIES, INC | Variable frequency motor starting system and method |
6157304, | Sep 01 1999 | Pool alarm system including motion detectors and a drain blockage sensor | |
6164132, | Jun 12 1997 | GDM, INC | Capacitive liquid level indicator |
6171073, | Jul 28 1997 | HAYWARD INDUSTRIES, INC | Fluid vacuum safety device for fluid transfer and circulation systems |
6178393, | Aug 23 1995 | Pump station control system and method | |
6184650, | Nov 22 1999 | PULSE TECHNOLOGIES INTERNATIONAL, INC | Apparatus for charging and desulfating lead-acid batteries |
6188200, | Aug 05 1997 | Alternate Energy Concepts, Inc. | Power supply system for sump pump |
6198257, | Oct 01 1999 | Metropolitan Industries, Inc. | Transformerless DC-to-AC power converter and method |
6199224, | May 29 1996 | Vico Products Mfg., Co. | Cleaning system for hydromassage baths |
6203282, | Nov 24 1995 | ITT Flygt AB | Method to control out pumping from a sewage pump station |
6208112, | Dec 28 1998 | GRUNDFOS A S | Method for controlling a voltage/frequency converter controlled single-phase or polyphase electric motor |
6212956, | Dec 23 1998 | Agilent Technologies Inc | High output capacitative gas/liquid detector |
6213724, | May 22 1996 | Ingersoll-Rand Company | Method for detecting the occurrence of surge in a centrifugal compressor by detecting the change in the mass flow rate |
6216814, | Jun 08 1998 | Koyo Seiko Co., Ltd. | Power steering apparatus |
6222355, | Dec 28 1998 | Yazaki Corporation | Power supply control device for protecting a load and method of controlling the same |
6227808, | Jul 15 1999 | Balboa Water Group, LLC | Spa pressure sensing system capable of entrapment detection |
6232742, | Aug 02 1994 | WEBASTO CHARGING SYSTEMS, INC | Dc/ac inverter apparatus for three-phase and single-phase motors |
6236177, | Jun 05 1998 | Milwaukee Electric Tool Corporation | Braking and control circuit for electric power tools |
6238188, | Aug 17 1998 | Carrier Corporation | Compressor control at voltage and frequency extremes of power supply |
6247429, | Dec 18 1998 | Aisin Seiki Kabushiki Kaisha | Cooling water circulating apparatus |
6249435, | Aug 16 1999 | General Electric Company | Thermally efficient motor controller assembly |
6251285, | Sep 17 1998 | Vac-Alert IP Holdings, LLC | Method for preventing an obstruction from being trapped by suction to an inlet of a pool filter pump system, and lint trap cover therefor |
6253227, | May 27 1987 | DYMAS FUNDING COMPANY, LLC | Spa control system |
6254353, | Oct 06 1998 | General Electric Company | Method and apparatus for controlling operation of a submersible pump |
6257304, | Aug 18 2000 | HOME DECOR COMPANY | Bi-fold door system |
6257833, | Jan 04 2000 | Metropolitan Industries, Inc. | Redundant, dedicated variable speed drive system |
6259617, | Jul 28 1997 | DANFOSS DRIVES A S | Electric bus arrangement and method for minimizing the inductance in an electric bus arrangement |
6264431, | May 17 1999 | Franklin Electric Co., Inc. | Variable-speed motor drive controller for a pump-motor assembly |
6264432, | Sep 01 1999 | Milton Roy, LLC | Method and apparatus for controlling a pump |
6280611, | Dec 26 1997 | Henkin-Laby, LLC | Water suction powered automatic swimming pool cleaning system |
6282370, | Sep 03 1998 | Balboa Water Group, LLC | Control system for bathers |
6298721, | Sep 03 1999 | Cummins Engine Company, Inc | Continuous liquid level measurement system |
6299414, | Nov 15 1999 | Aquatec Water Systems, Inc. | Five chamber wobble plate pump |
6299699, | Apr 01 1999 | HSBC BANK USA, N A | Pool cleaner directional control method and apparatus |
6318093, | Sep 13 1988 | Brooks Automation, Inc | Electronically controlled cryopump |
6320348, | Jun 14 1999 | International Controls and Measurements Corporation | Time rate of change motor start circuit |
6326752, | Dec 28 1998 | GRUNDFOS, ALS | Method for the commutation of a polyphase permanent magnet motor |
6329784, | Apr 16 1999 | Minu S.p.A. | Starter circuit for motors, particularly for refrigerator compressors |
6330525, | Dec 31 1997 | Innovation Management Group, Inc. | Method and apparatus for diagnosing a pump system |
6342841, | Apr 10 1998 | STINGL PRODUCTS, LLC | Influent blockage detection system |
6349268, | Mar 30 1999 | Nokia Siemens Networks Oy | Method and apparatus for providing a real time estimate of a life time for critical components in a communication system |
6350105, | Apr 25 1997 | Ebara Corporation | Frequency and current control for fluid machinery |
6351359, | Mar 13 1997 | DANFOSS DRIVES A S | Circuit for blocking a semiconductor switching device on overcurrent |
6354805, | Jul 12 1999 | DANFOSS DRIVES A S | Method for regulating a delivery variable of a pump |
6355177, | Mar 07 2000 | Maytag Corporation | Water filter cartridge replacement system for a refrigerator |
6356464, | Sep 24 1999 | Power Integrations, Inc. | Method and apparatus providing a multi-function terminal for a power supply controller |
6356853, | Jul 23 1999 | Enhancing voltmeter functionality | |
6362591, | Oct 29 1998 | MEDTRONIC MINIMED, INC | Method and apparatus for detection of occlusions |
6364620, | Aug 29 2000 | Zoeller Pump Company, LLC | Submersible pump containing two levels of moisture sensors |
6364621, | Apr 30 1999 | Almotechnos Co., Ltd. | Method of and apparatus for controlling vacuum pump |
6366053, | Mar 01 2000 | METROPOLITAN INDUSTRIES, INC | DC pump control system |
6366481, | Sep 24 1999 | Power Integrations, Inc. | Method and apparatus providing a multi-function terminal for a power supply controller |
6369463, | Jan 13 2000 | Alternate Energy Concepts, Inc. | Apparatus and method for supplying alternative energy and back-up emergency power to electrical devices |
6373204, | Jun 08 2000 | BAE SYSTEMS CONTROLS INC | Apparatus and method for driving a plurality of induction motors |
6373728, | Sep 27 1999 | GRUNFOS A S | Frequency converter with an intermediate buck-boost converter for controlling an electric motor |
6374854, | Jul 29 2000 | Enrique Acosta | Device for preventing permanent entrapment |
6375430, | May 03 2000 | WAYNE SCOTT FETZER COMPANY | Sump pump alarm |
6380707, | Oct 12 1998 | DANFOSS HOUSEHOLD COMPRESSORS GMBH | Method and device for controlling a brushless electric motor |
6388642, | Mar 20 2000 | Lucent Technologies Inc. | Bidirectional multispeed indexing control system |
6390781, | Jul 15 1999 | Balboa Water Group, LLC | Spa pressure sensing system capable of entrapment detection |
6406265, | Apr 21 2000 | Scroll Technologies | Compressor diagnostic and recording system |
6407469, | Nov 30 1999 | Balboa Water Group, LLC | Controller system for pool and/or spa |
6411481, | Apr 09 1998 | Robert Bosch GmbH | Method and device for suppressing over-voltages |
6415808, | Jan 27 1999 | MICROLIN, L C | Apparatus and method for controllably delivering fluid to a second fluid stream |
6416295, | Sep 03 1999 | SMC Kabushiki Kaisha | Vacuum-generating unit |
6426633, | Jun 18 1999 | DANFOSS DRIVES A S | Method for monitoring a rotational angle sensor on an electrical machine |
6443715, | Nov 19 1999 | WAYNE SCOTT FETZER COMPANY | Pump impeller |
6445565, | Feb 15 2001 | Denso Corporation | Capacitive moisture sensor and fabrication method for capacitive moisture sensor |
6447446, | Nov 02 1999 | Medtronic Xomed, Inc | Method and apparatus for cleaning an endoscope lens |
6448713, | Dec 07 2000 | General Electric Company | Sensing and control for dimmable electronic ballast |
6450771, | Nov 23 1994 | Quincy Compressor LLC | System and method for controlling rotary screw compressors |
6462971, | Sep 24 1999 | Power Integrations, Inc. | Method and apparatus providing a multi-function terminal for a power supply controller |
6464464, | Mar 24 1999 | ITT Manufacturing Enterprises, Inc | Apparatus and method for controlling a pump system |
6468042, | Jul 12 1999 | Danfoss Drives A/S | Method for regulating a delivery variable of a pump |
6468052, | Jul 28 1997 | HAYWARD INDUSTRIES, INC | Vacuum relief device for fluid transfer and circulation systems |
6474949, | May 20 1998 | Ebara Corporation | Evacuating unit with reduced diameter exhaust duct |
6475180, | Sep 09 1992 | SMITHS MEDICAL ASD, INC | Drug pump systems and methods |
6481973, | Oct 27 1999 | Little Giant Pump Company | Method of operating variable-speed submersible pump unit |
6483278, | Mar 04 1999 | DANFOSS HOUSEHOLD COMPRESSORS GMBH | Method and power supply device for generating regulated D.C. voltage from A.C. voltage |
6483378, | Jul 06 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Voltage pump with diode for pre-charge |
6490920, | Aug 25 1997 | TAMAR SENSORS LTD | Compensated capacitive liquid level sensor |
6493227, | Nov 24 2000 | DANFOSS DRIVES A S | Cooling apparatus for power semiconductors |
6496392, | Apr 13 2001 | Power Integrations, Inc. | Dissipative clamping of an electrical circuit with a clamp voltage varied in response to an input voltage |
6499961, | Oct 26 2000 | Tecumseh Products Company | Solid state liquid level sensor and pump controller |
6501629, | Oct 26 2000 | Tecumseh Products Company | Hermetic refrigeration compressor motor protector |
6503063, | Jun 02 2000 | Portable air moving apparatus | |
6504338, | Jul 12 2001 | HVAC MODULATION TECHNOLOGIES LLC | Constant CFM control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor |
6520010, | Aug 11 1998 | DIVERSEY, INC | System and methods for characterizing a liquid |
6522034, | Sep 03 1999 | Yazaki Corporation | Switching circuit and multi-voltage level power supply unit employing the same |
6523091, | Oct 01 1999 | Sun Microsystems, Inc. | Multiple variable cache replacement policy |
6527518, | Sep 21 2000 | Water-powered sump pump | |
6534940, | Jun 18 2001 | BELL, JOHN; BLACKMORE, DON; DAVIDSON, WILLIAM; DAVIDSON, JACK; FOLEY, MARTIN; CHRISTENSEN, TED | Marine macerator pump control module |
6534947, | Jan 12 2001 | Littelfuse, Inc | Pump controller |
6537032, | Sep 24 1999 | Daikin Industries, Ltd. | Load dependent variable speed hydraulic unit |
6538908, | Sep 24 1999 | Power Integrations, Inc. | Method and apparatus providing a multi-function terminal for a power supply controller |
6539797, | Jun 25 2001 | BECS Technology, Inc. | Auto-compensating capacitive level sensor |
6543940, | Apr 05 2001 | Fiber converter faceplate outlet | |
6548976, | Dec 28 1998 | Grundfos A/S | Method for the commutation of a polyphase permanent magnet motor |
6564627, | Jan 17 2002 | ITT Manufacturing Enterprises, Inc. | Determining centrifugal pump suction conditions using non-traditional method |
6570778, | Aug 30 2001 | Wisconsin Alumni Research Foundation | Adjustable speed drive for single-phase induction motors |
6571807, | May 08 2000 | Delaware Capital Formation, Inc | Vehicle wash system including a variable speed single pumping unit |
6590188, | Sep 03 1998 | Balboa Water Group, LLC | Control system for bathers |
6591697, | Apr 11 2001 | ITT Manufacturing Enterprises, Inc | Method for determining pump flow rates using motor torque measurements |
6591863, | Mar 12 2001 | Vac-Alert IP Holdings, LLC | Adjustable pool safety valve |
6595051, | Jun 08 2000 | SJE-Rhombus | Fluid level sensing and control system |
6595762, | May 03 1996 | World Heart Corporation | Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method |
6604909, | Mar 27 2001 | AQUATEC WATER SYSTEMS, INC | Diaphragm pump motor driven by a pulse width modulator circuit and activated by a pressure switch |
6607360, | Jul 17 2001 | ITT Manufacturing Enterprises, Inc | Constant pressure pump controller system |
6616413, | Mar 20 1998 | Automatic optimizing pump and sensor system | |
6623245, | Nov 26 2001 | SHURFLO PUMP MFG CO , INC | Pump and pump control circuit apparatus and method |
6626840, | Jun 12 2000 | Rutgers, The State University of New Jersey | Method and system for detecting vascular conditions using an occlusive arm cuff plethysmograph |
6628501, | Jun 15 2001 | Denso Corporation | Capacitive moisture sensor |
6632072, | Sep 15 2000 | Pneumatic pump control system and method of making the same including a pneumatic pressure accumulator tube | |
6636135, | Jun 07 2002 | Christopher J., Vetter | Reed switch control for a garbage disposal |
6638023, | Jan 05 2001 | Little Giant Pump Company | Method and system for adjusting operating parameters of computer controlled pumps |
6643153, | Sep 24 1999 | Power Integrations, Inc. | Method and apparatus providing a multi-function terminal for a power supply controller |
6651900, | Nov 29 1999 | Fuji Jakogyo Kabushiki Kaisha | Control apparatus for a fire pump, operation display apparatus for a fire pump and operation mode control apparatus for a fire pump |
6655922, | Aug 10 2001 | ROCKWELL AUTOMATION TECHNOLOGIES, INC | System and method for detecting and diagnosing pump cavitation |
6663349, | Mar 02 2001 | ROCKWELL AUTOMATION TECHNOLOGIES, INC | System and method for controlling pump cavitation and blockage |
6665200, | Jun 06 2001 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Air conditioner including a control unit powered by a switching power supply |
6672147, | Dec 14 1998 | Magneti Marelli France | Method for detecting clogging in a fuel filter in an internal combustion engine supply circuit |
6675912, | Dec 30 1998 | Black & Decker Inc. | Dual-mode non-isolated corded system for transportable cordless power tools |
6676382, | Nov 19 1999 | WAYNE SCOTT FETZER COMPANY | Sump pump monitoring and control system |
6676831, | Aug 17 2001 | Modular integrated multifunction pool safety controller (MIMPSC) | |
6687141, | Apr 13 2001 | Power Integrations, Inc. | Dissipative clamping of an electrical circuit with a clamp voltage varied in response to an input voltage |
6687923, | Aug 31 2000 | Poolside International Pty Ltd. | Vacuum release valve and method |
6690250, | Dec 07 2000 | Danfoss Drives A/S | RFI filter for a frequency converter |
6696676, | Mar 30 1999 | Haier US Appliance Solutions, Inc | Voltage compensation in combination oven using radiant and microwave energy |
6700333, | Oct 19 1999 | X-L Synergy, LLC | Two-wire appliance power controller |
6709240, | Nov 13 2002 | Eaton Corporation | Method and apparatus of detecting low flow/cavitation in a centrifugal pump |
6709241, | Mar 24 1999 | ITT Manufacturing Enterprises, Inc. | Apparatus and method for controlling a pump system |
6709575, | Dec 21 2000 | NELSON INDUSTRIES, INC | Extended life combination filter |
6715996, | Apr 02 2001 | Danfoss Drives A/S | Method for the operation of a centrifugal pump |
6717318, | Dec 14 1996 | DANFOSS DRIVES A S | Electric motor |
6732387, | Jun 05 2003 | Belvedere USA Corporation | Automated pedicure system |
6737905, | Feb 26 2002 | Denso Corporation | Clamp circuit |
6742387, | Nov 19 2001 | Denso Corporation | Capacitive humidity sensor |
6747367, | Nov 30 1999 | Balboa Water Group, LLC | Controller system for pool and/or spa |
6758655, | Aug 22 2001 | Pumpenfabrik Ernst Vogel Gesellschaft m.b.H. | Process for determining a reference characteristic for controlling a pump |
6761067, | Jun 13 2002 | Environment One Corporation | Scanning capacitive array sensor and method |
6768279, | May 27 1994 | Nidec Motor Corporation | Reprogrammable motor drive and control therefore |
6770043, | Apr 28 2000 | Hydrotherapy system with translating jets | |
6774664, | Sep 17 1998 | Danfoss Drives A/S | Method for automated measurement of the ohmic rotor resistance of an asynchronous machine |
6776038, | Apr 16 2002 | PACER DIGITAL SYSTEMS, INC | Self-generating differential pressure measurement for liquid nitrogen and other liquids |
6776584, | Jan 09 2002 | ITT Manufacturing Enterprises, Inc. | Method for determining a centrifugal pump operating state without using traditional measurement sensors |
6778868, | Sep 12 2000 | Toshiba Lifestyle Products & Services Corporation | Remote control of laundry appliance |
6779205, | Oct 18 2001 | VAC-ALERT INDUSTRIES INC IP HOLDINGS, LLC | Vacuum surge suppressor for pool safety valve |
6779950, | Mar 10 2003 | Quantax Pty Ltd | Reinforcing member |
6782309, | Nov 07 2000 | CAISSE CENTRALE DESJARDINS | SPA controller computer interface |
6783328, | Sep 30 1996 | Terumo Cardiovascular Systems Corporation | Method and apparatus for controlling fluid pumps |
6789024, | Nov 17 1999 | METROPOLITAN INDUSTRIES, INC | Flow calculation system |
6794921, | Jul 11 2002 | Denso Corporation | Clamp circuit |
6797164, | Nov 21 2001 | MAAX SPAS INDUSTRIES CORP | Filtering system for a pool or spa |
6798271, | Nov 18 2002 | Texas Instruments Incorporated | Clamping circuit and method for DMOS drivers |
6806677, | Oct 11 2002 | Gerard, Kelly | Automatic control switch for an electric motor |
6837688, | Feb 28 2002 | Standex International Corp. | Overheat protection for fluid pump |
6842117, | Dec 12 2002 | KEOWN, DANIEL LEE | System and method for monitoring and indicating a condition of a filter element in a fluid delivery system |
6847130, | Sep 19 2002 | METROPOLITAN INDUSTRIES, INC | Uninterruptible power system |
6847854, | Aug 10 2001 | ROCKWELL AUTOMATION TECHNOLOGIES, INC | System and method for dynamic multi-objective optimization of machine selection, integration and utilization |
6854479, | Aug 26 2002 | Sump liner | |
6863502, | Apr 14 2000 | ENERPAC TOOL GROUP CORP | Variable speed hydraulic pump |
6867383, | Mar 28 2003 | Little Giant Pump Company | Liquid level assembly with diaphragm seal |
6875961, | Mar 06 2003 | SOFTUB, INC | Method and means for controlling electrical distribution |
6882165, | Jul 29 2002 | Yamatake Corporation | Capacitive type sensor |
6884022, | Apr 25 2003 | Progress Rail Locomotive Inc | Diesel engine water pump with improved water seal |
6888537, | Feb 13 2002 | Siemens Corporation | Configurable industrial input devices that use electrically conductive elastomer |
6895608, | Apr 16 2003 | LDAG HOLDINGS, INC ; LDAG ACQUISITION CORP ; HAYWARD INDUSTRIES, INC | Hydraulic suction fuse for swimming pools |
6900736, | Dec 07 2000 | CAISSE CENTRALE DESJARDINS | Pulse position modulated dual transceiver remote control |
6906482, | Apr 22 2003 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Window glass obstruction detector |
6914793, | Sep 24 1999 | Power Integrations, Inc. | Method and apparatus providing a multi-function terminal for a power supply controller |
6922348, | Jul 07 2000 | Ebara Corporation | Water supply |
6925823, | Oct 28 2003 | Carrier Corporation | Refrigerant cycle with operating range extension |
6933693, | Nov 08 2002 | EATON INTELLIGENT POWER LIMITED | Method and apparatus of detecting disturbances in a centrifugal pump |
6941785, | May 13 2003 | UT-Battelle, LLC | Electric fuel pump condition monitor system using electrical signature analysis |
6943325, | Jun 30 2000 | Balboa Water Group, LLC | Water heater |
6965815, | May 27 1987 | BALBOA WATER GROUP, INC | Spa control system |
6966967, | May 22 2002 | Applied Materials, Inc | Variable speed pump control |
6973794, | Mar 14 2000 | Hussmann Corporation | Refrigeration system and method of operating the same |
6973974, | Sep 24 1999 | Schlumberger Technology Corporation | Valves for use in wells |
6976052, | May 27 1987 | DYMAS FUNDING COMPANY, LLC | Spa control system |
6981399, | Sep 26 2002 | GRUNDFOS A S | Method for detecting a differential pressure |
6981402, | May 31 2002 | TELEDYNE DETCON, INC | Speed and fluid flow controller |
6984158, | Feb 25 2003 | Suzuki Motor Corporation | Cooling water pump device for outboard motor |
6989649, | Jul 09 2003 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Switch assembly, electric machine having the switch assembly, and method of controlling the same |
6993414, | Dec 18 2003 | Carrier Corporation | Detection of clogged filter in an HVAC system |
6998807, | Apr 25 2003 | Xylem IP Holdings LLC | Active sensing and switching device |
6998977, | Apr 28 2003 | CHAMBERLIAN GROUP, INC , THE | Method and apparatus for monitoring a movable barrier over a network |
7005818, | Mar 27 2001 | DANFOSS A S | Motor actuator with torque control |
7012394, | Feb 12 2003 | SubAir Systems, LLC | Battery-powered air handling system for subsurface aeration |
7015599, | Jun 27 2003 | Briggs & Stratton, LLC | Backup power management system and method of operating the same |
7040107, | Sep 04 2003 | Samsung Electronics Co., Ltd. | Air conditioner and method of controlling the same |
7042192, | Jul 09 2003 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Switch assembly, electric machine having the switch assembly, and method of controlling the same |
7050278, | May 22 2002 | Danfoss Drives A/S | Motor controller incorporating an electronic circuit for protection against inrush currents |
7055189, | Apr 16 2003 | LDAG HOLDINGS, INC ; LDAG ACQUISITION CORP ; HAYWARD INDUSTRIES, INC | Hydraulic suction fuse for swimming pools |
7070134, | Oct 21 1999 | FLSMIDTH A S | Centrifugal grinding mills |
7077781, | Sep 05 2002 | NSK Ltd. | Power roller unit for toroidal-type continuously variable transmission |
7080508, | May 13 2004 | ITT Manufacturing Enterprises LLC | Torque controlled pump protection with mechanical loss compensation |
7081728, | Aug 27 2004 | SEQUENCE CONTROLS INC | Apparatus for controlling heat generation and recovery in an induction motor |
7083392, | Nov 26 2001 | SHURFLO PUMP MANUFACTURING COMPANY, INC | Pump and pump control circuit apparatus and method |
7083438, | Jan 18 2002 | International Business Machines Corporation | Locking covers for cable connectors and data ports for use in deterring snooping of data in digital data processing systems |
7089607, | May 14 2002 | LDAG HOLDINGS, INC ; LDAG ACQUISITION CORP ; HAYWARD INDUSTRIES, INC | Pool drain assembly with annular inlet |
7100632, | Aug 26 2002 | Sump liner | |
7102505, | May 27 2004 | GOOGLE LLC | Wireless sensor system |
7107184, | Nov 18 2004 | Global Asset Protection Services, LLC | Strategies for analyzing pump test results |
7112037, | Dec 20 2002 | ITT Manufacturing Enterprises, Inc.; ITT Manufacturing Enterprises, Inc | Centrifugal pump performance degradation detection |
7114926, | Mar 25 2003 | HONDA MOTOR CO , LTD | Water pump for cooling engine |
7117120, | Sep 27 2002 | Unico, LLC | Control system for centrifugal pumps |
7141210, | Apr 01 2002 | Xerox Corporation | Apparatus and method for a nanocalorimeter for detecting chemical reactions |
7142932, | Dec 19 2003 | Lutron Technology Company LLC | Hand-held remote control system |
7163380, | Jul 29 2003 | Tokyo Electron Limited | Control of fluid flow in the processing of an object with a fluid |
7172366, | Apr 10 2006 | SubAir Systems, LLC | Golf course environmental management system and method |
7174273, | May 11 2005 | Hamilton Sundstrand Corporation | Filter monitoring system |
7178179, | Jul 23 2004 | LDAG HOLDINGS, INC ; LDAG ACQUISITION CORP ; HAYWARD INDUSTRIES, INC | Anti-entrapment drain |
7183741, | Mar 16 2005 | A. O. Smith Corporation | Switch assembly, electric machine having the switch assembly, and method of controlling the same |
7195462, | Aug 23 2002 | GRUNDFOS A S | Method for controlling several pumps |
7201563, | Sep 27 2004 | LEGEND BRANDS, INC | Louvered fan grille for a shrouded floor drying fan |
7221121, | Nov 23 2001 | DANFOSS DRIVES A S | Frequency converter for different mains voltages |
7244106, | Sep 18 2000 | 3M Innovative Properties Company | Process and device for flow control of an electrical motor fan |
7245105, | Nov 17 2004 | Samsung Electronics Co., Ltd. | Single-phase induction motor and method for reducing noise in the same |
7259533, | Dec 08 2004 | LG Electronics Inc. | Method of controlling motor drive speed |
7264449, | Mar 07 2002 | Little Giant Pump Company | Automatic liquid collection and disposal assembly |
7281958, | Jan 23 2004 | American Power Conversion Corporation | Power terminal block |
7292898, | Sep 18 2000 | VIRTUAL TRAINING TECHNOLOGIES, INC ; VIRTUAL TRANSACTIONS TECHNOLOGIES, INC | Method and apparatus for remotely monitoring and controlling a pool or spa |
7307538, | Apr 06 2005 | METROPOLITAN INDUSTRIES, INC | Pump connector system |
7309216, | Jan 23 2004 | Pump control and management system | |
7318344, | Feb 23 2001 | Heger Research LLC | Wireless swimming pool water level system |
7327275, | Feb 02 2004 | CAISSE CENTRALE DESJARDINS | Bathing system controller having abnormal operational condition identification capabilities |
7339126, | Apr 18 2007 | Trusty Warns, Inc. | Variable differential adjustor |
7352550, | Jun 13 2003 | TDG AEROSPACE, INC | Method of detecting run-dry conditions in fuel systems |
7375940, | Mar 28 2005 | Adtran, Inc. | Transformer interface for preventing EMI-based current imbalances from falsely triggering ground fault interrupt |
7388348, | Jul 15 2005 | GODMAN POWER GROUP, INC | Portable solar energy system |
7407371, | Oct 29 2003 | Centrifugal multistage pump | |
7427844, | Mar 16 2005 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Switch assembly, electric machine having the switch assembly, and method of controlling the same |
7429842, | Dec 16 2005 | GLENTRONICS, INC | Control and alarm system for sump pump |
7437215, | Jun 18 2004 | Unico, LLC | Method and system for improving pump efficiency and productivity under power disturbance conditions |
7458782, | Jan 23 2004 | Computer monitoring system for pumps | |
7459886, | May 21 2004 | National Semiconductor Corporation | Combined LDO regulator and battery charger |
7484938, | May 21 2004 | Electronic control for pool pump | |
7516106, | Jul 28 2003 | Invensys Systems, Inc | System and method for controlling usage of a commodity |
7517351, | Aug 15 1996 | Stryker Corporation | Surgical tool system including plural powered handpieces and a console to which the handpieces are simultaneously attached, the console able to energize each handpiece based on data stored in a memory integral with each handpiece |
7525280, | May 07 2004 | Diversified Power International, LLC | Multi-type battery charger control |
7528579, | Oct 23 2003 | Schumacher Electric Corporation | System and method for charging batteries |
7542251, | May 09 2003 | CARTER GROUP, INC | Auto-protected power modules and methods |
7542252, | Jun 01 2005 | LEVITON MANUFACTURING CO , INC | Circuit interrupting device having integrated enhanced RFI suppression |
7572108, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
7612510, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
7612529, | Jan 20 2006 | METROPOLITAN INDUSTRIES, INC | Pump control with multiple rechargeable battery docking stations |
7623986, | Feb 21 2003 | MHWIRTH GMBH | System and method for power pump performance monitoring and analysis |
7641449, | Jun 24 2003 | Hitachi Koki Co., Ltd. | Air compressor having a controller for a variable speed motor and a compressed air tank |
7652441, | Jul 01 2005 | Infineon Technologies Americas Corp | Method and system for starting a sensorless motor |
7686587, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
7686589, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Pumping system with power optimization |
7690897, | Oct 13 2006 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Controller for a motor and a method of controlling the motor |
7700887, | Apr 18 2007 | Trusty Warns, Inc. | Variable differential adjustor |
7704051, | Dec 08 2003 | PENTAIR WATER POOL AND SPA, INC | Pump controller system and method |
7707125, | Dec 07 2005 | ControlSoft, Inc.; CONTROLSOFT, INC | Utility management system and method |
7727181, | Oct 09 2002 | Abbott Diabetes Care Inc | Fluid delivery device with autocalibration |
7739733, | Nov 02 2005 | RSA Security LLC | Storing digital secrets in a vault |
7746063, | Mar 16 2006 | ITT Manufacturing Enterprises, Inc | Speed indication for pump condition monitoring |
7751159, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
7755318, | Nov 06 2006 | Soft-start/stop sump pump controller | |
7775327, | Jan 30 2004 | DANFOSS A S | Method and system for stopping elevators using AC motors driven by static frequency converters |
7777435, | Feb 02 2006 | Adjustable frequency pump control system | |
7788877, | Sep 28 2006 | DNI Realty, LLC | Basement sump system and method |
7795824, | Feb 29 2008 | WONG, YEN-HONG | Linear motor automatic control circuit assembly for controlling the operation of a 3-phase linear motor-driven submersible oil pump of an artificial oil lift system |
7808211, | Oct 23 2003 | Schumacher Electric Corporation | System and method for charging batteries |
7815420, | Dec 08 2003 | PENTAIR WATER POOL AND SPA | Pump controller system and method |
7821215, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
7845913, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Flow control |
7854597, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Pumping system with two way communication |
7857600, | Dec 08 2003 | PENTAIR WATER POOL AND SPA | Pump controller system and method |
7874808, | Aug 26 2004 | Pentair Pool Products, INC | Variable speed pumping system and method |
7878766, | Nov 26 2001 | SHURflo, LLC | Pump and pump control circuit apparatus and method |
7900308, | Jan 25 1999 | HSBC BANK USA, N A | Water jet reversing propulsion and directional controls for automated swimming pool cleaners |
7925385, | Mar 08 2006 | ITT Manufacturing Enterprises LLC | Method for optimizing valve position and pump speed in a PID control valve system without the use of external signals |
7931447, | Jun 29 2006 | HAYWARD INDUSTRIES, INC | Drain safety and pump control device |
7945411, | Mar 08 2006 | ITT Manufacturing Enterprises LLC | Method for determining pump flow without the use of traditional sensors |
7976284, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
7983877, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
7990091, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
8007255, | Nov 22 2006 | Mitsubishi Heavy Industries, Ltd. | Inverter-integrated electric compressor with inverter storage box arrangement |
8011895, | Jan 06 2006 | Xylem IP Holdings LLC | No water / dead head detection pump protection algorithm |
8019479, | Aug 26 2004 | PENTAIR WATER POOL AND SPA, INC ; DANFOSS LOW POWER DRIVES, A DIVISION OF DANFOSS DRIVE A S | Control algorithm of variable speed pumping system |
8032256, | Apr 17 2009 | S J ELECTRO SYSTEMS, LLC | Liquid level control systems |
8043070, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Speed control |
8049464, | Mar 08 2005 | Rechargeable battery and method for its operation | |
8098048, | Jun 15 2007 | DURACELL U S OPERATIONS, INC | Battery charger with integrated cell balancing |
8104110, | Jan 12 2007 | CAISSE CENTRALE DESJARDINS | Spa system with flow control feature |
8126574, | Aug 10 2001 | Rockwell Automation Technologies, Inc. | System and method for dynamic multi-objective optimization of machine selection, integration and utilization |
8133034, | Apr 09 2004 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Controller for a motor and a method of controlling the motor |
8134336, | Jun 05 2009 | Apple Inc. | Method and system for charging a series battery |
8164470, | Feb 02 2004 | GECKO ALLIANCE GROUP INC. | Bathing system controller having abnormal operational condition identification capabilities |
8177520, | Apr 09 2004 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Controller for a motor and a method of controlling the motor |
8281425, | Nov 01 2004 | HAYWARD INDUSTRIES, INC | Load sensor safety vacuum release system |
8299662, | Jul 24 2007 | SEW-EURODRIVE GmbH & Co KG | Motor connecting box and converter motor |
8303260, | Mar 08 2006 | ITT MANUFACTURING ENTERPRISES INC | Method and apparatus for pump protection without the use of traditional sensors |
8313306, | Oct 06 2008 | DANFOSS POWER ELECTRONICS A S | Method of operating a safety vacuum release system |
8316152, | Feb 15 2005 | Qualcomm Incorporated; NPHASE, LLC | Methods and apparatus for machine-to-machine communications |
8317485, | Nov 26 2001 | SHURflo, LLC | Pump and pump control circuit apparatus and method |
8337166, | Nov 26 2001 | SHURflo, LLC | Pump and pump control circuit apparatus and method |
8380355, | Mar 19 2007 | WAYNE SCOTT FETZER COMPANY | Capacitive sensor and method and apparatus for controlling a pump using same |
8405346, | Feb 17 2009 | ANTONIO TRIGIANI | Inductively coupled power transfer assembly |
8405361, | Sep 21 2007 | GOLDMAN SACHS LENDING PARTNERS LLC, AS COLLATERAL AGENT; ALTER DOMUS US LLC, AS COLLATERAL AGENT | System and method for charging a rechargeable battery |
8444394, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
8465262, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Speed control |
8469675, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Priming protection |
8480373, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Filter loading |
8500413, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Pumping system with power optimization |
8540493, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump control system and method |
8547065, | Dec 11 2007 | Battery management system | |
8573952, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Priming protection |
8579600, | Mar 28 2008 | Pentair Flow Technologies, LLC | System and method for portable battery back-up sump pump |
8602745, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Anti-entrapment and anti-dead head function |
8641383, | Nov 26 2001 | SHURflo, LLC | Pump and pump control circuit apparatus and method |
8641385, | Dec 08 2003 | Pentair Flow Technologies, LLC | Pump controller system and method |
8669494, | Dec 01 2004 | Balboa Water Group, LLC | Spa heater system and methods for controlling |
8756991, | Oct 26 2010 | Q E D ENVIRONMENTAL SYSTEMS, INC | Pneumatic indicator for detecting liquid level |
8763315, | Jul 12 2007 | ULTRAFOLD BUILDINGS, INC | Folding shed |
8774972, | May 14 2007 | Flowserve Management Company | Intelligent pump system |
8801389, | Aug 26 2004 | DANFOSS POWER ELECTRONICS A S | Flow control |
8981684, | Oct 31 2011 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Human-machine interface for motor control |
9030066, | Oct 31 2011 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Electric motor with multiple power access |
9051930, | Aug 26 2004 | Pentair Water Pool and Spa, Inc. | Speed control |
9238918, | Oct 31 2011 | RBC Manufacturing Corporation; Regal Beloit America, Inc | Integrated auxiliary load control and method for controlling the same |
981213, | |||
9822782, | Oct 31 2011 | Regal Beloit America, Inc | Integrated auxiliary load control and method for controlling the same |
20010002238, | |||
20010029407, | |||
20010041139, | |||
20020000789, | |||
20020002989, | |||
20020010839, | |||
20020018721, | |||
20020032491, | |||
20020035403, | |||
20020050490, | |||
20020070611, | |||
20020070875, | |||
20020076330, | |||
20020082727, | |||
20020089236, | |||
20020093306, | |||
20020101193, | |||
20020111554, | |||
20020131866, | |||
20020136642, | |||
20020143478, | |||
20020150476, | |||
20020163821, | |||
20020172055, | |||
20020176783, | |||
20020190687, | |||
20030000303, | |||
20030017055, | |||
20030030954, | |||
20030034284, | |||
20030034761, | |||
20030048646, | |||
20030049134, | |||
20030061004, | |||
20030063900, | |||
20030099548, | |||
20030106147, | |||
20030138327, | |||
20030174450, | |||
20030186453, | |||
20030196942, | |||
20040000525, | |||
20040006486, | |||
20040009075, | |||
20040013531, | |||
20040016241, | |||
20040025244, | |||
20040055363, | |||
20040062658, | |||
20040064292, | |||
20040071001, | |||
20040080325, | |||
20040080352, | |||
20040090197, | |||
20040095183, | |||
20040116241, | |||
20040117330, | |||
20040118203, | |||
20040149666, | |||
20040205886, | |||
20040213676, | |||
20040261167, | |||
20040265134, | |||
20050050908, | |||
20050086957, | |||
20050092946, | |||
20050095150, | |||
20050097665, | |||
20050123408, | |||
20050133088, | |||
20050137720, | |||
20050156568, | |||
20050158177, | |||
20050162787, | |||
20050167345, | |||
20050168900, | |||
20050170936, | |||
20050180868, | |||
20050190094, | |||
20050193485, | |||
20050195545, | |||
20050226731, | |||
20050235732, | |||
20050248310, | |||
20050260079, | |||
20050281679, | |||
20050281681, | |||
20060045750, | |||
20060045751, | |||
20060078435, | |||
20060078444, | |||
20060090255, | |||
20060093492, | |||
20060106503, | |||
20060127227, | |||
20060138033, | |||
20060146462, | |||
20060162787, | |||
20060169322, | |||
20060201555, | |||
20060204367, | |||
20060226997, | |||
20060235573, | |||
20060269426, | |||
20070001635, | |||
20070041845, | |||
20070061051, | |||
20070080660, | |||
20070113647, | |||
20070114162, | |||
20070124321, | |||
20070154319, | |||
20070154320, | |||
20070154321, | |||
20070154322, | |||
20070154323, | |||
20070160480, | |||
20070163929, | |||
20070183902, | |||
20070187185, | |||
20070188129, | |||
20070212210, | |||
20070212229, | |||
20070212230, | |||
20070219652, | |||
20070258827, | |||
20080003114, | |||
20080031751, | |||
20080031752, | |||
20080039977, | |||
20080041839, | |||
20080044293, | |||
20080063535, | |||
20080095638, | |||
20080095639, | |||
20080131286, | |||
20080131289, | |||
20080131291, | |||
20080131294, | |||
20080131295, | |||
20080131296, | |||
20080140353, | |||
20080152508, | |||
20080168599, | |||
20080181785, | |||
20080181786, | |||
20080181787, | |||
20080181788, | |||
20080181789, | |||
20080181790, | |||
20080189885, | |||
20080229819, | |||
20080260540, | |||
20080288115, | |||
20080298978, | |||
20090014044, | |||
20090038696, | |||
20090052281, | |||
20090104044, | |||
20090143917, | |||
20090204237, | |||
20090204267, | |||
20090208345, | |||
20090210081, | |||
20090269217, | |||
20100079096, | |||
20100154534, | |||
20100166570, | |||
20100197364, | |||
20100303654, | |||
20100306001, | |||
20100312398, | |||
20110036164, | |||
20110044823, | |||
20110052416, | |||
20110061415, | |||
20110066256, | |||
20110077875, | |||
20110084650, | |||
20110110794, | |||
20110280744, | |||
20110311370, | |||
20120013285, | |||
20120020810, | |||
20120100010, | |||
20130106217, | |||
20130106321, | |||
20130106322, | |||
20140018961, | |||
20140372164, | |||
AU2005204246, | |||
AU2007332716, | |||
AU2007332769, | |||
AU3940997, | |||
CA2517040, | |||
CA2528580, | |||
CA2548437, | |||
CA2672410, | |||
CA2672459, | |||
CA2731482, | |||
CN101165352, | |||
CN1821574, | |||
D278529, | May 14 1982 | INTERMATIC ELECTRONICS INCORPORATED A CORP OF IL | Security light switch with built-in time display and on/off switch or a similar article |
D315315, | Sep 30 1987 | CHEMICAL BANK, AS COLLATERAL AGENT | Control unit for whirlpool baths or the like |
D334542, | Nov 16 1990 | PHILLIPS COMMUNCIATION & SECURITY | Housing for a control panel |
D359458, | Jun 27 1994 | Carrier Corporation | Thermostat |
D363060, | Oct 31 1994 | WILMINGTON TRUST FSB, AS SECOND LIEN ADMINISTRATIVE AGENT | Planar touch pad control panel for spas |
D372719, | Jun 03 1994 | GRUNDFOS A S | Water pump |
D375908, | Oct 31 1995 | Ford Motor Company | Front panel for an automotive climate control |
D429699, | May 20 1999 | HOBART LLC | Controller front face |
D429700, | May 21 1999 | VODAFONE AKTIENGESELLSCHAFT | Operating panel |
D445405, | Oct 13 1998 | GE GRAESSLIN GMBH & CO KG | Electronic control apparatus |
D482664, | Dec 16 2002 | Care Rehab & Orthopedic Products, Inc. | Control unit |
D490726, | May 06 2003 | Vtronix, LLC | Wall mounted thermostat housing |
D504900, | Jun 04 2004 | Eiko Electric Products Corp. | Water pump |
D505429, | Jun 04 2004 | Eiko Electric Products Corp. | Water pump |
D507243, | May 08 2002 | Electronic irrigation controller | |
D511530, | Jun 04 2004 | Eiko Electric Products Corp. | Water pump |
D512026, | Mar 14 2003 | ABB Schweiz AG | Operating terminal for an electronic unit |
D512440, | Jun 04 2004 | Eiko Electric Products Corp. | Water pump |
D513737, | Jan 13 2004 | BACHMANN INDUSTRIES, INC | Controller |
D533512, | Mar 07 2005 | PANASONIC ELECTRIC WORKS CO , LTD | Controller for a lighting unit |
D562349, | Aug 07 2006 | OASE GmbH | Water pump |
D567189, | Apr 18 2006 | PENTAIR WATER POOL AND SPA, INC ; DANFOSS LOW POWER DRIVES, A DIVISION OF DANFOSS DRIVE A S | Pump control pad |
D582797, | Sep 15 2008 | HOME DEPOT PRODUCT AUTHORITY, LLC; HOMER TLC, LLC | Bath fan timer console |
D583828, | May 23 2008 | CREATIVE TECHNOLOGY LTD | Media player |
DE10231773, | |||
DE19645129, | |||
DE19736079, | |||
DE19938490, | |||
DE2946049, | |||
DE29612980, | |||
DE29724347, | |||
DE3023463, | |||
EP150068, | |||
EP226858, | |||
EP246769, | |||
EP306814, | |||
EP314249, | |||
EP709575, | |||
EP735273, | |||
EP831188, | |||
EP833436, | |||
EP916026, | |||
EP978657, | |||
EP1112680, | |||
EP1134421, | |||
EP1315929, | |||
EP1429034, | |||
EP1585205, | |||
EP1630422, | |||
EP1698815, | |||
EP1790858, | |||
EP1995462, | |||
EP2102503, | |||
EP2122171, | |||
EP2122172, | |||
EP2273125, | |||
FR2529965, | |||
FR2703409, | |||
GB2124304, | |||
JP5010270, | |||
JP55072678, | |||
MX2009006258, | |||
RE33874, | Oct 10 1989 | Franklin Electric Co., Inc. | Electric motor load sensing system |
WO42339, | |||
WO127508, | |||
WO147099, | |||
WO2018826, | |||
WO3025442, | |||
WO3099705, | |||
WO5011473, | |||
WO2004006416, | |||
WO2004073772, | |||
WO2004088694, | |||
WO2005011473, | |||
WO2005055694, | |||
WO2005111473, | |||
WO2006069568, | |||
WO2008073329, | |||
WO2008073330, | |||
WO2008073386, | |||
WO2008073413, | |||
WO2008073418, | |||
WO2008073433, | |||
WO2008073436, | |||
WO2011100067, | |||
WO2014152926, | |||
WO9804835, | |||
ZA200506869, | |||
ZA200509691, | |||
ZA200904747, | |||
ZA200904849, | |||
ZA200904850, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 16 2006 | STEEN, DONALD | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | ROBOL, RONALD B | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | STILES, ROBERT W | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | HRUBY, DANIEL J | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | COX, EVERETT | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | YAHNKER, CHRISTOPHER | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | HRUBY, DANIEL J | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | STEEN, DONALD | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | COX, EVERETT | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | YAHNKER, CHRISTOPHER | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | ROBOL, RONALD B | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 16 2006 | STILES, ROBERT W | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 17 2006 | WOODCOCK, WALTER J , JR | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 17 2006 | WOODCOCK, WALTER J , JR | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 18 2006 | MURPHY, KEVIN | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 18 2006 | MURPHY, KEVIN | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 30 2006 | HANSEN, ARNE FINK | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 30 2006 | RUNARSSON, EINAR KJARTAN | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 30 2006 | WESTERMANN-RASMUSSEN, PETER | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 30 2006 | HANSEN, ARNE FINK | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 30 2006 | RUNARSSON, EINAR KJARTAN | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 30 2006 | WESTERMANN-RASMUSSEN, PETER | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 31 2006 | KJAER, GERT | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 31 2006 | HARVEST, NILS-OLE | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 31 2006 | LUNGEANU, FLORIN | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 31 2006 | LUNGEANU, FLORIN | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 31 2006 | MORANDO, ALBERTO | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 31 2006 | KJAER, GERT | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 31 2006 | HARVEST, NILS-OLE | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jan 31 2006 | MORANDO, ALBERTO | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Feb 07 2006 | BERTHELSEN, LARS HOFFMANN | DANFOSS DRIVES A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Feb 07 2006 | BERTHELSEN, LARS HOFFMANN | PENTAIR WATER POOL AND SPA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051240 | /0490 | |
Jun 04 2012 | DANFOSS DRIVES A S | DANFOSS POWER ELECTRONICS A S | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 051240 | /0555 | |
Apr 07 2015 | Danfoss Power Electronics A/S | (assignment on the face of the patent) | / | |||
Apr 07 2015 | Pentair Water Pool and Spa, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 22 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 07 2023 | 4 years fee payment window open |
Jul 07 2023 | 6 months grace period start (w surcharge) |
Jan 07 2024 | patent expiry (for year 4) |
Jan 07 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 07 2027 | 8 years fee payment window open |
Jul 07 2027 | 6 months grace period start (w surcharge) |
Jan 07 2028 | patent expiry (for year 8) |
Jan 07 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 07 2031 | 12 years fee payment window open |
Jul 07 2031 | 6 months grace period start (w surcharge) |
Jan 07 2032 | patent expiry (for year 12) |
Jan 07 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |