A humidity sensing element of the capacitance sensing type having two sets of interdigitated fingers of thin film platinum deposited on a glass substrate, all covered by a coating of water absorbing material such as cellulose acetate butyrate or a silicone rubber. The coating is of thickness such that it is substantially equal to or greater than the period of the fingers of the interdigitated electrodes.

Patent
   4429343
Priority
Dec 03 1981
Filed
Dec 03 1981
Issued
Jan 31 1984
Expiry
Dec 03 2001
Assg.orig
Entity
Large
67
4
all paid
1. A fast, precise capacitance humidity sensing element comprising:
a planar non-conducting substrate;
two separate closely spaced interdigitated thin metal film electrodes deposited on said substrate with fingers having a certain period; and a thin water absorbing coating covering said interdigitated electrodes, said coating being of thickness substantially equal to or greater than the period of the fingers of said interdigitated electrodes to place the surface of the coating far enough from the surface of the fingers so that the influence of contaminants on the coating surface is negligible.
2. A capacitance humidity sensing element as set forth in claim 1 in which said coating is a polymer.
3. A capacitance humidity sensing element as set forth in claim 2 in which said polymer is solvent cast cellulose acetate butyrate.
4. A capacitance humidity sensing element as set forth in claim 1 in which said coating is a silicone rubber.

This invention relates to an improved capacitance humidity sensing element for use in humidity measuring and control systems.

Humidity can be measured by a number of techniques which are based upon the reversible water absorption characteristics of polymeric materials. The absorption of water causes a number of physical changes in the polymer. These physical changes can be transduced into electrical signals which are related to the water concentration in the polymer and which in turn are related to the relative humidity in the air surrounding the polymer. Two of the most common physical changes are the change in resistivity and the change in dielectric constant which can be respectively translated into a resistance change and a capacitance change. Arrangements utilizing the resistance change may, for example, be constructed in accordance with U.S. Pat. No. 3,559,456 issued on Feb. 2, 1971, to F. Lomker et al. It has been found, however, that elements utilized as resistive components suffer from the disadvantage that there is an inherent dissipation effect caused by the dissipation of heat due to the current flow in the elements necessary to make a resistance measurement. The result is erroneous readings.

Elements constructed to approximate a pure capacitance avoid the disadvantages of the resistive elements. However, it is important in the construction of capacitive elements to avoid the problems which can arise with certain constructions for such elements. Exemplary of the capacitive type element is that shown in U.S. Pat. No. 3,802,268 issued to Paul E. Thoma on Apr. 9, 1974. In that patent a sheet of cellulose acetate butyrate is sandwiched between two planar electrodes, one of which is porous to allow water molecules to equilibrate with the bulk of the film. Among the problems which are encountered with this type of construction is the slow response due to the thickness required to support the structure. There is also a difficulty in fabricating a conductive yet porous electrode. In addition, there is also inaccuracy incurred at high relative humidity values in that the high water content causes problems due to excessive stress and the resulting mechanical shifts in the components of the element.

By making the component parts of the element thin, the above mentioned problems can be avoided and the capacitance type element can provide a fast, precise measurement of the relative humidity content of air over an extreme range of humidity as well as over an extreme range of temperature and pressure and other environmental variables.

Humidity sensing elements of the capacitance sensing type usually include a moisture insensitive, non-conducting structure with appropriate electrode elements mounted or deposited on the structure along with a layer or coating of dielectric, highly moisture sensitive material overlaying the electrodes and positioned so as to be capable of absorbing water from the surrounding atmosphere and reaching equilibrium in a short period of time.

This invention discloses a capacitive sensing element in which all of the difficulties of the above mentioned element of U.S. Pat. No. 3,802,268 are avoided. This improved structure utilizes a planar interdigitated electrode structure to form the capacitor. The electrode structure is advantageously made of thin film metal deposited on a suitable non-conducting substrate and patterned to form two sets of interdigitated fingers. Each set of the interdigitated fingers is connected in parallel to a separate bus and a contact. The capacitance between the two sets of fingers is, of course, determined by the spacing between the fingers, the width and length of the fingers, the number of fingers, and the dielectric constant of the material applied over the fingers to coat the surface of the element. The humidity sensitivity of course arises from the humidity-related dielectric constant changes which occur in the coating over the fingers, for all other parameters remain constant. In the present invention, a polymer such as cellulose acetate butyrate is utilized to provide the humidity-related dielectric. This polymer coating must, of course, be made as thin as possible in order to have a short response time to changes in the relative humidity of the surrounding atmosphere. It has been found that one of the difficulties which arises with such a structure is the contamination of the outer surface of the polymer which can lead to a condensation on the surface at high humidities and which therefore leads to very non-linear and non-repeatable outputs from the elements. It is therefore an object of this invention to avoid such difficulties with contamination while maintaining a minimum response time for the elements.

In carrying out the present invention, there is provided a capacitance humidity sensing element which comprises a non-conducting substrate material which carries two separate interdigitated thin metal film electrodes deposited thereon, and which has a coating over these electrodes of a water absorbing polymer with the coating being of a thickness substantially equal to or greater than the period of the fingers of the interdigitated electrodes. With such a coating thickness, problems with contamination on the boundary can be avoided.

In the Figures,

FIG. 1 is a perspective view of a humidity sensing element of the invention in one form wherein the electrodes are mounted on a thin planar substrate.

FIG. 2 is a plane view of an enlarged section of that element.

FIG. 3 is a cross-section of the element of FIG. 2 taken along the line A--A.

In FIG. 1 there is shown a planar non-conducting substrate 10 which may, for example, be constructed of borosilicate glass. On the surface of the substrate 10 there is deposited a thin metal film electrode system which is made up of a first set of fingers 12 which are located in an interdigitated configuration with a second set of fingers 14. The fingers 12 are all connected in parallel to a common bus 16 which is in turn connected to the contact structure 18 at which point electrical contact is made with the measuring instruments to be used.

The other set of fingers 14 are connected in parallel to the bus 19 which is in turn connected to the contact 20, for which electrical connection is provided to the measuring instrument. The interdigitated fingers are more clearly shown in the enlarged portion of the element shown in FIG. 2 where it is shown that the distance from the center of a finger of one set to the center of the next finger of that set is identified as the period P.

The structure of the element of FIG. 1 and its relationship to the polymer coating which overlays the fingers is shown in more detail in FIG. 3 where the polymer 22 is shown overlaying fingers 12 and 14 which are shown as being deposited on the non-conducting substrate 10. As shown in FIG. 3, the thickness of the polymer coating is, in accordance with this invention, greater than the period of the fingers so that there will be negligible effects resulting from the surface of the polymer coating such as might occur as the result of contamination. Since the capacitance between the sets of interdigitated fingers is determined by the weighted average of the dielectric constant of the polymer coating, that portion of the coating closest to the surface of the fingers must be weighted the most and that portion furthest from the fingers the least. Thus, it will be seen that if the coating is thick enough there will be portions of the coating, at its surface and away from the fingers, which will be a sufficient distance from the surface of the fingers so as to have a negligible effect on the average dielectric constant. Thus, if the coating is maintained thick enough to place the surface far enough from the finger surface, the influence of contaminants on the surface is negligible and an improved function can be obtained from the sensing element.

Devices of the type described above have been utilized to measure the relative humidity to an accuracy of 1% and a stability at 95% relative humidity of better than 1% in one month. The structure has been shown to be independent of surface conditions to better than 1% relative humidity when a coating 50 microns thick was placed over an interdigitated electrode structure having a period of 50 microns. The structure consisted of 12 micron wide fingers with 12 micron wide spaces between them resulting in a period of approximately 50 microns. The coating used was solvent cast cellulose acetate butyrate 50 microns thick. The capacitance of the 4mm×4 mm pattern was 30 picofarads with a 3 picofarad capacitance change in going from zero to 100% relative humidity.

It is also possible to use other water absorbing coatings such as silicone rubbers in place of the cellulose acetate butyrate.

Freud, Paul J.

Patent Priority Assignee Title
10127790, Mar 22 2016 Watts Regulator Co. Leak detector
10240604, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Pumping system with housing and user interface
10240606, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Drives A/S Pumping system with two way communication
10241524, Dec 08 2003 Pentair Water Pool and Spa, Inc. Pump controller system and method
10289129, Dec 08 2003 Pentair Water Pool and Spa, Inc. Pump controller system and method
10373471, Mar 22 2016 Watts Regulator Co. Leak detector
10409299, Dec 08 2003 Pentair Water Pool and Spa, Inc. Pump controller system and method
10415569, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Flow control
10416690, Dec 08 2003 Pentair Water Pool and Spa, Inc. Pump controller system and method
10465676, Nov 01 2011 PENTAIR WATER POOL AND SPA, INC Flow locking system and method
10480516, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electrics A/S Anti-entrapment and anti-deadhead function
10502203, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Speed control
10527042, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Speed control
10585058, May 13 2016 Honeywell International Inc. FET based humidity sensor with barrier layer protecting gate dielectric
10590926, Jun 09 2009 Pentair Flow Technologies, LLC Method of controlling a pump and motor
10642287, Dec 08 2003 Pentair Water Pool and Spa, Inc. Pump controller system and method
10677747, Feb 17 2015 HONEYWELL INTERNATIONAL INC , A DELAWARE CORPORATION Humidity sensor
10724263, Oct 06 2008 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Safety vacuum release system
10731655, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Priming protection
10871001, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Filter loading
10871163, Aug 26 2004 DANFOSS POWER ELECTRONICS A S Pumping system and method having an independent controller
10883489, Nov 01 2011 Pentair Water Pool and Spa, Inc. Flow locking system and method
10947981, Aug 26 2004 Pentair Water Pool and Spa, Inc. Variable speed pumping system and method
11073155, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Pumping system with power optimization
11131644, Apr 30 2018 Industrial Technology Research Institute Biosensor and biological detection method
11391281, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Power Electronics A/S Priming protection
11493034, Jun 09 2009 Pentair Flow Technologies, LLC Method of controlling a pump and motor
11703364, Nov 05 2018 WATTS REGULATOR CO Fluid discharge event detector
11719662, Sep 04 2018 Infineon Technologies AG Moisture sensor
11754522, Sep 04 2018 Infineon Technologies AG Moisture sensor
4496931, Mar 23 1983 Sharp Kabushiki Kaisha Moisture permeable electrode in a moisture sensor
4514278, Jan 14 1983 The United States of America as represented by the Administrator of the Trace water sensor
4639831, Feb 15 1985 Toyota Jidosha Kabushiki Kaisha Sensor for detecting an amount of rain
4805070, Oct 22 1987 PPG Industries Ohio, Inc Capacitive coupled moisture sensor
5040411, Dec 27 1989 PPG Industries Ohio, Inc Windshield moisture sensor
5522980, Mar 24 1994 Pima Sensors, Inc. Gas sensor and sensing device
6094981, Sep 25 1998 ITT Automotive Electrical Systems, Inc.; ITT AUTOMOTIVE ELECTRICAL SYSTEMS, INC Capacitive rain sensor for windshield
6134953, Feb 16 1998 Process and device for controlling the water content in products stored in an enclosure
6222376, Jan 16 1999 Honeywell International Inc. Capacitive moisture detector and method of making the same
6323659, Apr 29 1998 General Electric Company Material for improved sensitivity of stray field electrodes
6596978, Jun 28 2001 Valeo Electrical Systems, Inc. Stereo imaging rain sensor
6690569, Dec 08 1999 Sensirion Holding AG Capacitive sensor
6724612, Jul 09 2002 Honeywell International Inc. Relative humidity sensor with integrated signal conditioning
6742387, Nov 19 2001 Denso Corporation Capacitive humidity sensor
6988405, Jan 18 2002 Robert Bosch GmbH Device for measuring levels
7213462, Aug 20 2004 Denso Corporation Humidity sensor and composite sensor having humidity detecting function
7427844, Mar 16 2005 RBC Manufacturing Corporation; Regal Beloit America, Inc Switch assembly, electric machine having the switch assembly, and method of controlling the same
8633047, Sep 02 2011 Sensirion AG Method for manufacturing a sensor chip
8707781, Sep 11 2008 MORGAN STANLEY SENIOR FUNDING, INC Sensor has combined in-plane and parallel-plane configuration
8963563, Dec 16 2009 MORGAN STANLEY SENIOR FUNDING, INC Capacitive sensor for detecting the presence of a substance
9140740, Sep 02 2011 Sensirion AG Sensor chip and method for manufacturing a sensor chip
9328727, Dec 08 2003 Pentair Flow Technologies, LLC Pump controller system and method
9371829, Dec 08 2003 Pentair Flow Technologies, LLC Pump controller system and method
9399992, Dec 08 2003 Pentair Water Pool and Spa, Inc. Pump controller system and method
9404500, Aug 26 2004 DANFOSS POWER ELECTRONICS A S Control algorithm of variable speed pumping system
9513242, Sep 12 2014 Honeywell International Inc. Humidity sensor
9523651, Sep 10 2013 SCIOSENSE B V Integrated circuit comprising a gas sensor
9551344, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Drives A/S Anti-entrapment and anti-dead head function
9556874, Jun 09 2009 Pentair Flow Technologies, LLC Method of controlling a pump and motor
9568005, Dec 08 2010 Pentair Water Pool and Spa, Inc. Discharge vacuum relief valve for safety vacuum release system
9605680, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Drives A/S Control algorithm of variable speed pumping system
9683099, Sep 26 2013 SCIOSENSE B V Integrated circuit with CO2 sensor, composition and manufacturing method of such an IC
9726184, Oct 06 2008 Pentair Water Pool and Spa, Inc.; Danfoss Drives A/S Safety vacuum release system
9777733, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Drives A/S Flow control
9885360, Oct 25 2012 Pentair Flow Technologies, LLC Battery backup sump pump systems and methods
9932984, Aug 26 2004 Pentair Water Pool and Spa, Inc.; Danfoss Drives A/S Pumping system with power optimization
9933384, Oct 08 2013 Honeywell International Inc Chemical sensor system
Patent Priority Assignee Title
2707880,
2828454,
3802268,
AU707930,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 30 1981FREUD, PAUL J LEEDS & NORTHRUP COMPANY, A CORP OF DEASSIGNMENT OF ASSIGNORS INTEREST 0039630741 pdf
Dec 03 1981Leeds & Northrup Company(assignment on the face of the patent)
Date Maintenance Fee Events
May 14 1987M170: Payment of Maintenance Fee, 4th Year, PL 96-517.
May 22 1987ASPN: Payor Number Assigned.
Feb 04 1991M171: Payment of Maintenance Fee, 8th Year, PL 96-517.
Jun 30 1995M185: Payment of Maintenance Fee, 12th Year, Large Entity.
Mar 20 1996ASPN: Payor Number Assigned.
Mar 20 1996RMPN: Payer Number De-assigned.


Date Maintenance Schedule
Jan 31 19874 years fee payment window open
Jul 31 19876 months grace period start (w surcharge)
Jan 31 1988patent expiry (for year 4)
Jan 31 19902 years to revive unintentionally abandoned end. (for year 4)
Jan 31 19918 years fee payment window open
Jul 31 19916 months grace period start (w surcharge)
Jan 31 1992patent expiry (for year 8)
Jan 31 19942 years to revive unintentionally abandoned end. (for year 8)
Jan 31 199512 years fee payment window open
Jul 31 19956 months grace period start (w surcharge)
Jan 31 1996patent expiry (for year 12)
Jan 31 19982 years to revive unintentionally abandoned end. (for year 12)