A modular electrical connector facilitates low loss connections to components on a printed circuit board. A portion is of the connector is formed of one or more first type units with conductive elements designed to be attached to a printed circuit board. Signals passing through those units may be routed to components on the printed circuit board through traces in the board. One or more second type units may be integrated with the connector. Those units may be designed for attachment to a cable, which may provide signal paths to a location on the printed circuit board near relatively distant components.
|
20. A connector, comprising:
a plurality of connector modules comprising at least one first type connector module and at least one second type connector module, each connector module comprising a module housing and at least one signal conductor held by the module housing, the at least one signal conductor having a contact tail, a mating contact portion, and an intermediate portion connecting the contact tail and the mating contact portion; and
a monolithic support member holding the plurality of connector modules such that the plurality of connector modules are aligned in at least one row, wherein:
the contact tail of the signal conductor of the at least one first type connector module is configured for attachment to a printed circuit board,
the contact tail of the signal conductor of the at least one second type connector module is configured for attachment to a cable, and
the plurality of connector modules have a same type of mating interface with a same type of mating contact portions.
1. A connector, comprising:
a plurality of connector units comprising at least one first type connector unit and at least one second type connector unit, each of the plurality of connector units comprising two columns of signal conductors, the signal conductors each comprising a contact tail, a mating contact portion, and an intermediate portion connecting the contact tail and the mating contact portion, wherein:
the contact tails of the signal conductors of the at least one first type connector unit are configured for attachment to a printed circuit board,
the contact tails of the signal conductors of the at least one second type connector unit are configured for attachment to a cable,
the at least one first type connector unit and the at least one second type connector unit have a same type of mating interface with a same type of mating contact portions, and
for each of the at least one first type connector unit, the two columns of signal conductors are aligned in a row direction perpendicular to a direction that the columns extend, and two signal conductors aligned in the row direction form a differential pair; and
a rectangular-shaped front housing holding the mating contact portions of the at least one first type connector unit and the at least one second type connector unit with the mating contact portions forming an array.
11. A connector, comprising:
a plurality of connector units comprising at least one first type connector unit and at least one second type connector unit, each of the plurality of connector units comprising at least one column of signal conductors, the signal conductors each comprising a contact tail, a mating contact portion, and an intermediate portion connecting the contact tail and the mating contact portion, wherein the contact tails of the signal conductors of the at least one first type connector unit are configured for attachment to a printed circuit board and the contact tails of the signal conductors of the at least one second type connector unit are configured for attachment to a cable; and
a plurality of extender modules, each of the plurality of extender modules comprising at least one signal conductor, each of the at least one signal conductor comprising a first mating contact portion, complementary to the mating contact portions of the at least one first type connector unit, and a second mating contact portion, wherein:
the first mating contact portions engage the mating contact portions of the signal conductors of the at least one first type connector unit, and
for each of the plurality of extender modules:
the at least one signal conductor is a pair of signal conductors;
the first mating contact portions of the signal conductors of the pair are aligned in a first line; and
the second mating contact portions of the signal conductors of the pair are aligned in a second line, the second line being orthogonal to the first line.
16. An electronic system, comprising:
a first printed circuit board;
a plurality of cables, each cable comprising first ends and second ends opposite the first ends; and
a first connector mounted to the first printed circuit board, the first connector comprising:
a plurality of connector units comprising at least one first type connector unit and at least one second type connector unit, each of the plurality of connector units comprising a unit housing and at least one column of signal conductors held by the unit housing, each of the signal conductors comprising a contact tail, a mating contact portion, and an intermediate portion connecting the contact tail and the mating contact portion, and
a front housing having a plurality of separate spaces, each space of the plurality of spaces configured to receive either one of the at least one first type connector unit or one of the at least one second type connector unit, wherein:
the contact tails of the signal conductors of the at least one first type connector unit are attached to the first printed circuit board,
the contact tails of the signal conductors of the at least one second type connector unit are attached to the first ends of the cables,
the plurality of cables comprise pairs of differential signals,
the second ends of the cables are routed to a second connector mounted to the first printed circuit board,
the second connector is configured to pass differential signals,
the first ends of the cables are disposed in a first array, and
the second ends of the cables are disposed in a second array different from the first array.
15. A connector, comprising:
a plurality of connector units comprising at least one first type connector unit and at least one second type connector unit, each of the plurality of connector units comprising at least one column of signal conductors, the signal conductors each comprising a contact tail, a mating contact portion, and an intermediate portion connecting the contact tail and the mating contact portion, wherein the contact tails of the signal conductors of the at least one first type connector unit are configured for attachment to a printed circuit board and the contact tails of the signal conductors of the at least one second type connector unit are configured for attachment to a cable; and
a plurality of extender modules, each of the plurality of extender modules comprising at least one signal conductor, each of the at least one signal conductor comprising a first mating contact portion, complementary to the mating contact portions of the at least one first type connector unit, and a second mating contact portion, wherein:
the at least one first type connector unit are positioned to form a plurality of first columns of mating contact portions, with adjacent mating contact portions in the same first column defining pairs;
for the plurality of extender modules, the at least one signal conductor is a pair of signal conductors, the second mating contact portions of the pairs of signal conductors are positioned to form second columns, the second columns being orthogonal to the first columns; and
for each of the plurality of extender modules, the second mating contact portions of the pair of signal conductors are positioned in the same second column, the first mating contact portions of the pair of signal conductors are positioned in the same first column and engage a respective pair of mating contact portions of the at least one first type connector unit.
2. The connector of
4. The connector of
5. The connector of
each connector unit of the at least one second type connector unit comprises a housing; and
the plurality of modules are held in the housing aligned in a column with the pair of signal conductors in each of the plurality of modules separated in a direction perpendicular to the column.
6. The connector of
the at least one second type connector unit comprises a plurality of modules, each module comprising a pair of signal conductors; and
the connector further comprises a plurality of twin-ax cables, each twin-ax cable attached to one of the plurality of modules of the at least one second type connector unit, each of the plurality of twin-ax cables having a pair of wires, each wire attached to a contact tail of a signal conductor of a module.
7. The connector of
8. The connector of
each of the at least one first type connector unit comprises two wafers each comprising one of the two columns of signal conductors and being held by a housing portion.
9. The connector of
10. The connector of
the connector further comprises a plurality of extender modules, the plurality of extender modules comprising the mating contact portions of the at least one first type connector unit; and
the one or more support members engage the plurality of extender modules.
12. The connector of
14. The connector of
the one or more support members comprise a housing portion receiving at least the at least one first type connector unit and a shell attached to the housing portion, and
the shell holds the plurality of extender modules and the at least one second type connector unit with the second mating contact portions of the plurality of extender modules, the mating contact portions of the at least one second type connector unit forming a mating interface.
17. The electronic system of
18. The electronic system of
19. The electronic system of
a second printed circuit board, the second printed circuit board being orthogonal to the first printed circuit board;
a second connector mounted to the second printed circuit board, the second connector comprising:
a plurality of connector modules, each connector module comprising a plurality of signal conductors, each of the plurality of signal conductors comprising a mating contact, wherein the plurality of connector modules are held with the mating contacts of the plurality of signal conductors forming a fifth array, the fifth array being configured to mate with the third and fourth arrays.
21. The connector of
connector modules each comprises a pair of signal conductors separated in a direction perpendicular to the row.
22. The connector of
at least one twin-ax cable, each twin-ax cable attached to the at least one second type connector module and having a pair of wires, each wire attached to a contact tail of a signal conductor of a second type connector module.
|
This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/541,017, filed on Aug. 3, 2017 and entitled “CONNECTOR FOR LOW LOSS ORTHOGONAL INTERCONNECTION SYSTEM,” which is hereby incorporated herein by reference in its entirety.
This patent application relates generally to interconnection systems, such as those including electrical connectors, used to interconnect electronic assemblies.
Electrical connectors are used in many electronic systems. It is generally easier and more cost effective to manufacture a system as separate electronic assemblies, such as printed circuit boards (“PCBs”), which may be joined together with electrical connectors. A known arrangement for joining several printed circuit boards is to have one printed circuit board serve as a backplane. Other printed circuit boards, called “daughterboards” or “daughtercards,” may be connected through the backplane.
A backplane is a printed circuit board onto which many connectors may be mounted. Conducting traces in the backplane may be electrically connected to signal conductors in the connectors so that signals may be routed between the connectors. Daughtercards may also have connectors mounted thereon. The daughtercard connectors may be plugged into the connectors mounted on the backplane. In this way, signals may be routed among the daughtercards through the backplane. The daughtercards may plug into the backplane at a right angle. The connectors used for these applications may therefore include a right angle bend and are often called “right angle connectors.”
Connectors may also be used in other configurations for interconnecting printed circuit boards. Some systems use a midplane configuration. Similar to a backplane, a midplane has connectors mounted on one surface that are interconnected by conductive traces within the midplane. The midplane additionally has connectors mounted on a second side so that daughtercards are inserted into both sides of the midplane.
The daughtercards inserted from opposite sides of the midplane often have orthogonal orientations. This orientation positions one edge of each printed circuit board adjacent the edge of every board inserted into the opposite side of the midplane. The traces within the midplane connecting the boards on one side of the miplane to boards on the other side of the midplane can be short, leading to desirable signal integrity properties.
A variation on the midplane configuration is called “direct attach.” In this configuration, daughtercards are inserted from opposite sides of a rack enclosing printed circuit boards of a system. These boards likewise are oriented orthogonally so that the edge of a board inserted from one side of the rack is adjacent to the edges of the boards inserted from the opposite side of the system. These daughtercards also have connectors. However, rather than plugging into connectors on a midplane, the connectors on each daughtercard plug directly into connectors on printed circuit boards inserted from the opposite side of the system.
Connectors for this configuration are sometimes called orthogonal connectors. Examples of orthogonal connectors are shown in U.S. Pat. Nos. 7,354,274, 7,331,830, 8,678,860, 8,057,267 and 8,251,745.
Other connector configurations are also known. For example, a RAM connector is sometimes included in a connector product family in which a daughtercard connector has a mating interface with receptacles. The RAM connector might have conductive elements that bend through a right angel as in a daughtercard connector. However, unlike a conventional daughtercard connector, a RAM may have a mating interface with mating contact elements that are complementary to and mate with receptacles. For example, a RAM might have mating interface with pins or blades or other mating contacts that might be used in a backplane connector. A RAM connector might be mounted near an edge of a daughtercard and receive a daughtercard connector mounted to another daughtercard. Alternatively, a cable connector might be plugged into the RAM connector.
Aspects of the present disclosure related to a low loss interconnection system.
In one aspect, some embodiments may relate to a connector having a plurality of connector units and one or more support members holding the plurality of connector units. The plurality of connector units may include at least one first type connector unit and at least one second type connector unit. Each of the plurality of connector units may include at least one column of signal conductors. Each of the signal conductors may have a contact tail, a mating contact portion, and an intermediate portion connecting the contact tail and the mating contact portion. The mating contact portions of the signal conductors may form an array. The contact tails of the signal conductors of the at least one first type connector unit may be configured for attachment to a printed circuit board. The contact tails of the signal conductors of the at least one second type connector unit may be configured for attachment to a cable.
In another aspect, some embodiments may relate to an electronic system having a first printed circuit board, a second printed circuit board, a first connector mounted to the first printed circuit board, a second connector mounted to the second printed circuit board, and a cable comprising first and second ends. The second printed circuit board may be orthogonal to the first printed circuit board. The first connector may include a plurality of connector units having at least one first type connector unit and at least one second type connector unit. Each of the plurality of connector units may have at least one column of signal conductors. Each of the signal conductors may have a contact tail, a mating contact portion, and an intermediate portion connecting the contact tail and the mating contact portion. The contact tails of the signal conductors of the at least one first type connector unit may be attached to the first printed circuit board. The contact tails of the signal conductors of the at least one second type connector unit are attached to the first end of the cable. The second end of the cable may be coupled to the first printed circuit board. A support structure may hold the plurality of connector units with the columns aligned in parallel. The mating contact portions of the at least one first type connector unit may form a first array. The mating contact portions of the at least one second type connector unit may form a second array. The second connector may include a plurality of connector modules. Each connector module may include a plurality of signal conductors. Each of the plurality of signal conductors may have a mating contact. The plurality of connector modules may be held with the mating contacts of the plurality of signal conductors forming a third array. The third array may be configured to mate with the first and second arrays.
Some embodiments may relate to a connector comprising a plurality of connector modules. The plurality of connector modules may include at least one first type connector module and at least one second type connector module. Each connector module may include at least one signal conductor having a contact tail, a mating contact portion, and an intermediate portion connecting the contact tail and the mating contact portion. The connector may comprise one or more support members holding the plurality of connector modules such that the plurality of connector modules are aligned in at least one column. The contact tail of the signal conductor of the at least one first type connector module may be configured for attachment to a printed circuit board. The contact tail of the signal conductor of the at least one second type connector module may be configured for attachment to a cable.
The foregoing is provided by way of illustration and is not intended to be limiting.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
The inventors have recognized and appreciated that a low loss interconnection system may be constructed through integrating disparate types of connector units in a connector. For example, traces routed through a printed circuit board may generally be low loss for relatively short distances. One type of connector unit may therefore be configured for attaching to traces in the printed circuit board at the footprint where the connector is mounted to the board. For routing signals to components on a printed circuit board that are separated from the connector by a longer distances, the loss of routing a signal through a trace on the printed circuited may be undesirably large. A second type of connector unit, configured to attach to a cable, may be used to couple to signals to be routed over a longer distance. The cable may then route the signal to a location near the component, providing a lower loss connection than conventional designs in which all connections to components on the printed circuit board are made through traces within the board.
Moreover, the inventors have recognized and appreciated techniques for attaching cables to conductive elements in the second type of connector unit. In some embodiments, the cables may be attached at opposed edges of conductive elements configured to carry a differential pair signal. Such a configuration may orient signal conductors in the cable in the same plane as the mating contact portions of the conductive elements. The edges may be configured such that the conductors of the cables are aligned with the mating contact portions of the conductive elements. With such an arrangement, changes of geometry at the cable attachment interface, which might otherwise cause changes of impedance that could impact signal integrity, may be reduced. Alternatively or additionally, such an attachment interface may reduce the amount of metal at the attachment interface, reducing the change of inductance relative to a convention design in which a cable is soldered on a broadside of a signal conductor, which also reduces changes of impedance.
Further, the inventors have recognized and appreciated connector designs to ease the density of the routing breakouts at a connector footprint on a printed circuit board. In particular, the inventors have recognized and appreciated that the footprints of high density connectors result in increased density of routing breakouts at the board level, a problem which could be exacerbated by the increased circuit density on the boards. The inventors have also recognized and appreciated that retention forces between connectors and boards may need be enhanced by, for example, hold-down screws, which consume extra real estates on the boards.
In some embodiments, a connector may be manufactured with multiple types of connector units held by one or more support members. For example, a connector may include first type connector units and second type connector units. Each connector unit may include at least one column of signal conductors. Each signal conductor may include a contact tail, a mating contact portion, and an intermediate portion that extends between the contact tail and the mating contact portion. The contact tails of the signal conductors of the first type connector units may be configured for attachment to a circuit board while the contact tails of the signal conductors of the second type connector units may be configured for attachment to a cable. In some embodiments, the connector may further include a plurality of cables. Each cable may include one or more wires. Each wire may be attached to a contact tail of a signal conductor of a module of the second type units.
In some embodiments, the connector units may be subassemblies formed from a plurality of modules. The plurality of modules may be held in a housing and aligned in a column. In some embodiments, each module may include a pair of signal conductors. At a mating interface, the pair of signal conductors in each module may be separated in a direction perpendicular to the column.
In some embodiments, each of the pair of signal conductors of a second type connector unit may include broadsides and edges joining the broadsides. The pair of signal conductors may be formed by stamping a metal piece, with one or more tie bars connecting two opposing edges of the pair such that the separation between the pair is controlled by the size of the tie bar. The size of the tie bar may be selected based on the size of a wire in a cable to be attached, e.g., AWG 28, AWG 30, etc. The tie bar may set a spacing between opposing edges of the contact tails of the signal conductors such that, when the wire is attached to each edge, the separation between the wires yields a desired impedance, such as an impedance matching that of the cable or other parts of the interconnect.
Either before or after the wires are attached to the signal conductors, a housing may be molded around the pair of signal conductors such that the contact tails of the pair of signal conductors may be held in the housing in an edge-to-edge configuration. The tie bar then may be severed in order to isolate the pair of signal conductors. The inventors have recognized and appreciated that, compared with the conventional method of terminating cable wires on surfaces thus forming big bumps, attaching the cable wires to the edges would allow precisely controlling the spacing between cable wires and reduce impedance mismatch. Impedance control may also be provided by an attachment that has a small impact on inductance at the conductor to wire interface.
In some embodiments, the first type connector units may have signal conductors with right-angled intermediate portions. The first type connector units may be in a direct attach, orthogonal, RAM or other desired configuration. In some embodiments, a connector may have given a desired configuration at the mating interface through attaching extender modules to its mating contact portions. Each extender module may include a signal conducting pair with surrounding shielding. To form an orthogonal connector, the orientation of the signal pair at one end of the extender module may be orthogonal to the orientation at the other end of the module. Both ends of the signal conductors of the pair may be terminated with mating contact portions that are adapted to mate with mating contact portions of another connector. The extender modules may be held in place by a shell or other suitable retention structure mechanically coupled to the connector units.
In some embodiments, each first type connector unit may include two columns of signal conductors. Mating contact portions of two adjacent signal conductors in a same column may define a pair, which is complementary to a signal conducting pair of an extender module. Thus, attaching extender modules to a first type connector unit would result in a mating interface with the orientation of the signal conducting pairs being orthogonal to the orientation of the pairs of the mating contact portions of the first type connector unit.
In some embodiments, mating contact portions of first type connector units may form a first array and mating contact portions of second type units may form a second array. In some embodiments, the first and second arrays may collectively form a mating interface of a connector. In other embodiments, mating contact portions of first type connector units may mate with mating contact portions of extender modules. Mating contact portions at the end of the extender modules opposite the end attached to the first type connector units may form a third array. In this embodiment, the second and third array collectively may form a mating interface of a connector.
The foregoing principles are illustrated with an example, such as the interconnection system shown in
A modular connector, as shown in
As can be seen in
Each of the connectors also has a mating interface where that connector can mate—or be separated from—the other connector. Daughtercard connector 600 includes a mating interface 620. Backplane connector 200 includes a mating interface 220. Though not fully visible in the view shown in
Each of these conductive elements includes an intermediate portion that connects a contact tail to a mating contact portion. The intermediate portions may be held within a connector housing, at least a portion of which may be dielectric so as to provide electrical isolation between conductive elements. Additionally, the connector housings may include conductive or lossy portions, which in some embodiments may provide conductive or partially conductive paths between some of the conductive elements. In some embodiments, the conductive portions may provide shielding. The lossy portions may also provide shielding in some instances and/or may provide desirable electrical properties within the connectors.
In various embodiments, dielectric members may be molded or over-molded from a dielectric material such as plastic or nylon. Examples of suitable materials include, but are not limited to, liquid crystal polymer (LCP), polyphenyline sulfide (PPS), high temperature nylon or polyphenylenoxide (PPO) or polypropylene (PP). Other suitable materials may be employed, as aspects of the present disclosure are not limited in this regard.
All of the above-described materials are suitable for use as binder material in manufacturing connectors. In accordance some embodiments, one or more fillers may be included in some or all of the binder material. As a non-limiting example, thermoplastic PPS filled to 30% by volume with glass fiber may be used to form the entire connector housing or dielectric portions of the housings.
Alternatively or additionally, portions of the housings may be formed of conductive materials, such as machined metal or pressed metal powder. In some embodiments, portions of the housing may be formed of metal or other conductive material with dielectric members spacing signal conductors from the conductive portions. In the embodiment illustrated, for example, a housing of backplane connector 200 may have regions formed of a conductive material with insulative members separating the intermediate portions of signal conductors from the conductive portions of the housing.
The housing of daughtercard connector 600 may also be formed in any suitable way. In the embodiment illustrated, daughtercard connector 600 may be formed from multiple units, which may be subassemblies, which may include one or more “wafers” and, in some embodiments, one or more extender modules, and one or more support members to hold the components together. Each of the wafers (700,
Other members that may form a portion of the connector housing may provide mechanical integrity for daughtercard connector 600 and/or hold the wafers in a desired position. For example, a front housing portion 640 (
In some embodiments, each wafer may hold a column of conductive elements forming signal conductors. These signal conductors may be shaped and spaced to form single ended signal conductors. However, in the embodiment illustrated in
Conductive elements may be made of metal or any other material that is conductive and provides suitable mechanical properties for conductive elements in an electrical connector. Phosphor-bronze, beryllium copper and other copper alloys are non-limiting examples of materials that may be used. The conductive elements may be formed from such materials in any suitable way, including by stamping and/or forming.
The spacing between adjacent columns of conductors may be within a range that provides a desirable density and desirable signal integrity. As a non-limiting example, the conductors may be stamped from 0.4 mm thick copper alloy, and the conductors within each column may be spaced apart by 2.25 mm and the columns of conductors may be spaced apart by 2.4 mm. However, a higher density may be achieved by placing the conductors closer together. In other embodiments, for example, smaller dimensions may be used to provide higher density, such as a thickness between 0.2 and 0.4 mm or spacing of 0.7 to 1.85 mm between columns or between conductors within a column. Moreover, each column may include four pairs of signal conductors, such that a density of 60 or more pairs per linear inch is achieved for the interconnection system illustrated in
The wafers may be formed in any suitable way. In some embodiments, the wafers may be formed by stamping columns of conductive elements from a sheet of metal and over molding dielectric portions on the intermediate portions of the conductive elements. In other embodiments, wafers may be assembled from modules each of which includes a single, single-ended signal conductor, a single pair of differential signal conductors or any suitable number of single ended or differential pairs.
The inventors have recognized and appreciated that assembling wafers from modules may aid in reducing “skew” in signal pairs at higher frequencies, such as between about 25 GHz and 40 GHz, or higher. Skew, in this context, refers to the difference in electrical propagation time between signals of a pair that operates as a differential signal. Modular construction that reduces skew is designed described, for example in U.S. Pat. Nos. 9,509,101 and 9,450,344, which are incorporated herein by reference.
In accordance with techniques described in those patents incorporated by reference, in some embodiments, connectors may be formed of modules, each carrying a signal pair. The modules may be individually shielded, such as by attaching shield members to the modules and/or inserting the modules into an organizer or other structure that may provide electrical shielding between pairs and/or ground structures around the conductive elements carrying signals.
In some embodiments, signal conductor pairs within each module may be broadside coupled over substantial portions of their lengths. Broadside coupling enables the signal conductors in a pair to have the same physical length. To facilitate routing of signal traces within the connector footprint of a printed circuit board to which a connector is attached and/or constructing of mating interfaces of the connectors, the signal conductors may be aligned with edge to edge coupling in one or both of these regions. As a result, the signal conductors may include transition regions in which coupling changes from edge-to-edge to broadside or vice versa. As described below, these transition regions may be designed to prevent mode conversion or suppress undesired propagation modes that can interfere with signal integrity of the interconnection system.
The modules may be assembled into wafers or other connector structures. In some embodiments, a different module may be formed for each row position at which a pair is to be assembled into a right angle connector. These modules may be made to be used together to build up a connector with as many rows as desired. For example, a module of one shape may be formed for a pair to be positioned at the shortest rows of the connector, sometimes called the a-b rows. A separate module may be formed for conductive elements in the next longest rows, sometimes called the c-d rows. The inner portion of the module with the c-d rows may be designed to conform to the outer portion of the module with the a-b rows.
This pattern may be repeated for any number of pairs. Each module may be shaped to be used with modules that carry pairs for shorter and/or longer rows. To make a connector of any suitable size, a connector manufacturer may assemble into a wafer a number of modules to provide a desired number of pairs in the wafer. In this way, a connector manufacturer may introduce a connector family for a widely used connector size—such as 2 pairs. As customer requirements change, the connector manufacturer may procure tools for each additional pair, or, for modules that contain multiple pairs, group of pairs to produce connectors of larger sizes. The tooling used to produce modules for smaller connectors can be used to produce modules for the shorter rows even of the larger connectors. Such a modular connector is illustrated in
Further details of the construction of the interconnection system of
In the embodiment illustrated, backplane connector 200 also has a modular construction. Multiple pin modules 300 are organized to form an array of conductive elements. Each of the pin modules 300 may be designed to mate with a module of daughtercard connector 600.
In the embodiment illustrated, four rows and eight columns of pin modules 300 are shown. With each pin module having two signal conductors, the four rows 230A, 230B, 230C and 230D of pin modules create columns with four pairs or eight signal conductors, in total. It should be appreciated, however, that the number of signal conductors per row or column is not a limitation of the application. A greater or lesser number of rows of pin modules may be include within housing 222. Likewise, a greater or lesser number of columns may be included within housing 222. Alternatively or additionally, housing 222 may be regarded as a module of a backplane connector, and multiple such modules may be aligned side to side to extend the length of a backplane connector.
In the embodiment illustrated in
In some embodiments, housing 222 may contain both conductive and lossy portions. For example, a shroud including walls 226 and a floor 228 may be pressed from a powdered metal or formed from conductive material in any other suitable way. Pin modules 300 may be inserted into openings within floor 228.
Lossy or conductive members may be positioned adjacent rows 230A, 230B, 230C and 230D of pin modules 300. In the embodiment of
In some embodiments, other lossy or conductive members may extend into mating interface 220, perpendicular to floor 228. Members 240 are shown adjacent to end-most rows 230A and 230D. In contrast to separators 224A, 224B and 224C, which extend across the mating interface 220, separator members 240, approximately the same width as one column, are positioned in rows adjacent row 230A and row 230D. Daughtercard connector 600 may include, in its mating interface 620, slots to receive separators 224A, 224B and 224C. Daughtercard connector 600 may include openings that similarly receive members 240. Members 240 may have a similar electrical effect to separators 224A, 224B and 224C, in that both may suppress resonances, crosstalk or other undesired electrical effects. Members 240, because they fit into smaller openings within daughtercard connector 600 than separators 224A, 224B and 224C, may enable greater mechanical integrity of housing portions of daughtercard connector 600 at the sides where members 240 are received.
As shown in
Conductive elements serving as reference conductors 320A and 320B are attached at opposing exterior surfaces of pin module 300. Each of the reference conductors has contact tails 328, shaped for making electrical connections to vias within a printed circuit board. The reference conductors also have mating contact portions. In the embodiment illustrated, two types of mating contact portions are illustrated. Compliant member 322 may serve as a mating contact portion, pressing against a reference conductor in daughtercard connector 600. In some embodiments, surfaces 324 and 326 alternatively or additionally may serve as mating contact portions, where reference conductors from the mating conductor may press against reference conductors 320A or 320B. However, in the embodiment illustrated, the reference conductors may be shaped such that electrical contact is made only at compliant member 322.
Turning to
As shown, connector 600 includes multiple wafers 700A held together in a side-by-side configuration. Here, eight wafers, corresponding to the eight columns of pin modules in backplane connector 200, are shown. However, as with backplane connector 200, the size of the connector assembly may be configured by incorporating more rows per wafer, more wafers per connector or more connectors per interconnection system.
Conductive elements within the wafers 700A may include mating contact portions and contact tails. Contact tails 610 are shown extending from a surface of connector 600 adapted for mounting against a printed circuit board. In some embodiments, contact tails 610 may pass through a member 630. Member 630 may include insulative, lossy and/or conductive portions. In some embodiments, contact tails associated with signal conductors may pass through insulative portions of member 630. Contact tails associated with reference conductors may pass through lossy or conductive portions.
In some embodiments, the conductive or lossy portions may be compliant, such as may result from a conductive elastomer or other material that may be known in the art for forming a gasket. The compliant material may be thicker than the insulative portions of member 630. Such compliant material may be positioned to align with pads on a surface of a daughtercard to which connector 600 is to be attached. Those pads may be connected to reference structures within the printed circuit board such that, when connector 600 is attached to the printed circuit board, the compliant material makes contact with the reference pads on the surface of the printed circuit board.
The conductive or lossy portions of member 630 may be positioned to make electrical connection to reference conductors within connector 600. Such connections may be formed, for example, by contact tails of the reference conductors passing through the lossy of conductive portions. Alternatively or additionally, in embodiments in which the lossy or conductive portions are compliant, those portions may be positioned to press against the mating reference conductors when the connector is attached to a printed circuit board.
Mating contact portions of the wafers 700A are held in a front housing portion 640. The front housing portion may be made of any suitable material, which may be insulative, lossy and/or conductive or may include any suitable combination or such materials. For example the front housing portion may be molded from a filled, lossy material or may be formed from a conductive material, using materials and techniques similar to those described above for the housing walls 226. As shown, the wafers are assembled from modules 810A, 810B, 810C and 810D (
Front housing 640, in the embodiment illustrated, is shaped to fit within walls 226 of a backplane connector 200. However, in some embodiments, as described in more detail below, the front housing may be configured to connect to an extender shell.
In the embodiment illustrated, each of the modules includes reference conductors that at least partially enclose the signal conductors. The reference conductors may similarly have mating contact portions and contact tails.
The modules may be held together in any suitable way. For example, the modules may be held within a housing, which in the embodiment illustrated is formed with members 900A and 900B. Members 900A and 900B may be formed separately and then secured together, capturing modules 810A . . . 810D between them. Members 900A and 900B may be held together in any suitable way, such as by attachment members that form an interference fit or a snap fit. Alternatively or additionally, adhesive, welding or other attachment techniques may be used.
Members 900A and 900B may be formed of any suitable material. That material may be an insulative material. Alternatively or additionally, that material may be or may include portions that are lossy or conductive. Members 900A and 900B may be formed, for example, by molding such materials into a desired shape. Alternatively, members 900A and 900B may be formed in place around modules 810A . . . 810D, such as via an insert molding operation. In such an embodiment, it is not necessary that members 900A and 900B be formed separately. Rather, a housing portion to hold modules 810A . . . 810D may be formed in one operation.
The transition regions 822 and 842 in the reference conductors may correspond to transition regions in signal conductors, as described below. In the illustrated embodiment, reference conductors form an enclosure around the signal conductors. A transition region in the reference conductors, in some embodiments, may keep the spacing between the signal conductors and reference conductors generally uniform over the length of the signal conductors. Thus, the enclosure formed by the reference conductors may have different widths in different regions.
The reference conductors provide shielding coverage along the length of the signal conductors. As shown, coverage is provided over substantially all of the length of the signal conductors, including coverage in the mating contact portion and the intermediate portions of the signal conductors. The contact tails are shown exposed so that they can make contact with the printed circuit board. However, in use, these mating contact portions will be adjacent ground structures within a printed circuit board such that being exposed as shown in
In the embodiment illustrated, a waveguide-like structure formed by the reference conductors has a wider dimension in the column direction of the connector in the contact tail regions 820 and the mating contact region 840 to accommodate for the wider dimension of the signal conductors being side-by-side in the column direction in these regions. In the embodiment illustrated, contact tail regions 820 and the mating contact region 840 of the signal conductors are separated by a distance that aligns them with the mating contacts of a mating connector or contact structures on a printed circuit board to which the connector is to be attached.
These spacing requirements mean that the waveguide will be wider in the column dimension than it is in the transverse direction, providing an aspect ratio of the waveguide in these regions that may be at least 2:1, and in some embodiments may be on the order of at least 3:1. Conversely, in the intermediate region 830, the signal conductors are oriented with the wide dimension of the signal conductors overlaid in the column dimension, leading to an aspect ratio of the waveguide that may be less than 2:1, and in some embodiments may be less than 1.5:1 or on the order of 1:1.
With this smaller aspect ratio, the largest dimension of the waveguide in the intermediate region 830 will be smaller than the largest dimension of the waveguide in regions 830 and 840. Because the lowest frequency propagated by a waveguide is inversely proportional to the length of its shortest dimension, the lowest frequency mode of propagation that can be excited in intermediate region 830 is higher than can be excited in contact tail regions 820 and the mating contact region 840. The lowest frequency mode that can be excited in the transition regions will be intermediate between the two. Because the transition from edge coupled to broadside coupling has the potential to excite undesired modes in the waveguides, signal integrity may be improved if these modes are at higher frequencies than the intended operating range of the connector, or at least are as high as possible.
These regions may be configured to avoid mode conversion upon transition between coupling orientations, which would excite propagation of undesired signals through the waveguides. For example, as shown below, the signal conductors may be shaped such that the transition occurs in the intermediate region 830 or the transition regions 822 and 842, or partially within both. Additionally or alternatively, the modules may be structured to suppress undesired modes excited in the waveguide formed by the reference conductors, as described in greater detail below.
Though the reference conductors may substantially enclose each pair, it is not a requirement that the enclosure be without openings. Accordingly, in embodiments shaped to provide rectangular shielding, the reference conductors in the intermediate regions may be aligned with at least portions of all four sides of the signal conductors. The reference conductors may combine for example to provide 360 degree coverage around the pair of signal conductors. Such coverage may be provided, for example, by overlapping or physically contact reference conductors. In the illustrated embodiment, the reference conductors are U-shaped shells and come together to form an enclosure.
Three hundred sixty degree coverage may be provided regardless of the shape of the reference conductors. For example, such coverage may be provided with circular, elliptical or reference conductors of any other suitable shape. However, it is not a requirement that the coverage be complete. The coverage, for example, may have an angular extent in the range between about 270 and 365 degrees. In some embodiments, the coverage may be in the range of about 340 to 360 degrees. Such coverage may be achieved for example, by slots or other openings in the reference conductors.
In some embodiments, the shielding coverage may be different in different regions. In the transition regions, the shielding coverage may be greater than in the intermediate regions. In some embodiments, the shielding coverage may have an angular extent of greater than 355 degrees, or even in some embodiments 360 degrees, resulting from direct contact, or even overlap, in reference conductors in the transition regions even if less shielding coverage is provided in the transition regions.
The inventors have recognized and appreciated that, in some sense, fully enclosing a signal pair in reference conductors in the intermediate regions may create effects that undesirably impact signal integrity, particularly when used in connection with a transition between edge coupling and broadside coupling within a module. The reference conductors surrounding the signal pair may form a waveguide. Signals on the pair, and particularly within a transition region between edge coupling and broadside coupling, may cause energy from the differential mode of propagation between the edges to excite signals that can propagate within the waveguide. In accordance with some embodiments, one or more techniques to avoid exciting these undesired modes, or to suppress them if they are excited, may be used.
Some techniques that may be used increase the frequency that will excite the undesired modes. In the embodiment illustrated, the reference conductors may be shaped to leave openings 832. These openings may be in the narrower wall of the enclosure. However, in embodiments in which there is a wider wall, the openings may be in the wider wall. In the embodiment illustrated, openings 832 run parallel to the intermediate portions of the signal conductors and are between the signal conductors that form a pair. These slots lower the angular extent of the shielding, such that, adjacent the broadside coupled intermediate portions of the signal conductors, the angular extent of the shielding may be less than 360 degrees. It may, for example, be in the range of 355 of less. In embodiments in which members 900A and 900B are formed by over molding lossy material on the modules, lossy material may be allowed to fill openings 832, with or without extending into the inside of the waveguide, which may suppress propagation of undesired modes of signal propagation, that can decrease signal integrity.
In the embodiment illustrated in
In region 830, the signal conductors of a pair are broadside coupled and the openings 832, with or without lossy material in them, may suppress TEM common modes of propagation. While not being bound by any particular theory of operation, the inventors theorize that openings 832, in combination with an edge coupled to broadside coupled transition, aids in providing a balanced connector suitable for high frequency operation.
Members 900A and 900B may be molded from or include a lossy material. Any suitable lossy material may be used for these and other structures that are “lossy.” Materials that conduct, but with some loss, or material which by another physical mechanism absorbs electromagnetic energy over the frequency range of interest are referred to herein generally as “lossy” materials. Electrically lossy materials can be formed from lossy dielectric and/or poorly conductive and/or lossy magnetic materials. Magnetically lossy material can be formed, for example, from materials traditionally regarded as ferromagnetic materials, such as those that have a magnetic loss tangent greater than approximately 0.05 in the frequency range of interest. The “magnetic loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permeability of the material. Practical lossy magnetic materials or mixtures containing lossy magnetic materials may also exhibit useful amounts of dielectric loss or conductive loss effects over portions of the frequency range of interest. Electrically lossy material can be formed from material traditionally regarded as dielectric materials, such as those that have an electric loss tangent greater than approximately 0.05 in the frequency range of interest. The “electric loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permittivity of the material. Electrically lossy materials can also be formed from materials that are generally thought of as conductors, but are either relatively poor conductors over the frequency range of interest, contain conductive particles or regions that are sufficiently dispersed that they do not provide high conductivity or otherwise are prepared with properties that lead to a relatively weak bulk conductivity compared to a good conductor such as copper over the frequency range of interest.
Electrically lossy materials typically have a bulk conductivity of about 1 siemen/meter to about 100,000 siemens/meter and preferably about 1 siemen/meter to about 10,000 siemens/meter. In some embodiments material with a bulk conductivity of between about 10 siemens/meter and about 200 siemens/meter may be used. As a specific example, material with a conductivity of about 50 siemens/meter may be used. However, it should be appreciated that the conductivity of the material may be selected empirically or through electrical simulation using known simulation tools to determine a suitable conductivity that provides both a suitably low crosstalk with a suitably low signal path attenuation or insertion loss.
Electrically lossy materials may be partially conductive materials, such as those that have a surface resistivity between 1Ω/square and 100,000Ω/square. In some embodiments, the electrically lossy material has a surface resistivity between 10Ω/square and 1000Ω/square. As a specific example, the material may have a surface resistivity of between about 20Ω/square and 80Ω/square.
In some embodiments, electrically lossy material is formed by adding to a binder a filler that contains conductive particles. In such an embodiment, a lossy member may be formed by molding or otherwise shaping the binder with filler into a desired form. Examples of conductive particles that may be used as a filler to form an electrically lossy material include carbon or graphite formed as fibers, flakes, nanoparticles, or other types of particles. Metal in the form of powder, flakes, fibers or other particles may also be used to provide suitable electrically lossy properties. Alternatively, combinations of fillers may be used. For example, metal plated carbon particles may be used. Silver and nickel are suitable metal plating for fibers. Coated particles may be used alone or in combination with other fillers, such as carbon flake. The binder or matrix may be any material that will set, cure, or can otherwise be used to position the filler material. In some embodiments, the binder may be a thermoplastic material traditionally used in the manufacture of electrical connectors to facilitate the molding of the electrically lossy material into the desired shapes and locations as part of the manufacture of the electrical connector. Examples of such materials include liquid crystal polymer (LCP) and nylon. However, many alternative forms of binder materials may be used. Curable materials, such as epoxies, may serve as a binder. Alternatively, materials such as thermosetting resins or adhesives may be used.
Also, while the above described binder materials may be used to create an electrically lossy material by forming a binder around conducting particle fillers, the application is not so limited. For example, conducting particles may be impregnated into a formed matrix material or may be coated onto a formed matrix material, such as by applying a conductive coating to a plastic component or a metal component. As used herein, the term “binder” encompasses a material that encapsulates the filler, is impregnated with the filler or otherwise serves as a substrate to hold the filler.
Preferably, the fillers will be present in a sufficient volume percentage to allow conducting paths to be created from particle to particle. For example, when metal fiber is used, the fiber may be present in about 3% to 40% by volume. The amount of filler may impact the conducting properties of the material.
Filled materials may be purchased commercially, such as materials sold under the trade name Celestran® by Celanese Corporation which can be filled with carbon fibers or stainless steel filaments. A lossy material, such as lossy conductive carbon filled adhesive preform, such as those sold by Techfilm of Billerica, Mass., US may also be used. This preform can include an epoxy binder filled with carbon fibers and/or other carbon particles. The binder surrounds carbon particles, which act as a reinforcement for the preform. Such a preform may be inserted in a connector wafer to form all or part of the housing. In some embodiments, the preform may adhere through the adhesive in the preform, which may be cured in a heat treating process. In some embodiments, the adhesive may take the form of a separate conductive or non-conductive adhesive layer. In some embodiments, the adhesive in the preform alternatively or additionally may be used to secure one or more conductive elements, such as foil strips, to the lossy material.
Various forms of reinforcing fiber, in woven or non-woven form, coated or non-coated may be used. Non-woven carbon fiber is one suitable material. Other suitable materials, such as custom blends as sold by RTP Company, can be employed, as the present invention is not limited in this respect.
In some embodiments, a lossy member may be manufactured by stamping a preform or sheet of lossy material. For example, an insert may be formed by stamping a preform as described above with an appropriate pattern of openings. However, other materials may be used instead of or in addition to such a preform. A sheet of ferromagnetic material, for example, may be used.
However, lossy members also may be formed in other ways. In some embodiments, a lossy member may be formed by interleaving layers of lossy and conductive material such as metal foil. These layers may be rigidly attached to one another, such as through the use of epoxy or other adhesive, or may be held together in any other suitable way. The layers may be of the desired shape before being secured to one another or may be stamped or otherwise shaped after they are held together.
In the embodiment illustrated, module 100 includes a pair of signal conductors 1310A and 1310B (
In the embodiments illustrated in
These components also may be sized and may have material properties that provide impedance control as a function of separation of modules 300 and 1000. Impedance control may be achieved by providing approximately the same impedance through subregions 342 and 1042, even if those subregions do not fully overlap, or by providing gradual impedance transitions, regardless of separation of the modules.
In the illustrated embodiment, this impedance control is provided in part by projecting insulative members 1042A and 1042B, which fully or partially overlap module 300, depending on separation between modules 300 and 1000. These projecting insulative members can reduce the magnitude of changes in relative dielectric constant of material surrounding pins from pin module 300. Impedance control is also provided by projections 1020A and 1022A and 1020B and 1022B in the reference conductors 1010A and 1010B. These projections impact the separation, in a direction perpendicular to the axis of the signal conductor pair, between portions of the signal conductor pair and the reference conductors 1010A and 1010B. This separation, in combination with other characteristics, such as the width of the signal conductors in those portions, may control the impedance in those portions such that it approximates the nominal impedance of the connector or does not change abruptly in a way that may cause signal reflections. Other parameters of either or both mating modules may be configured for such impedance control.
Turning to
Covers 1112 and 1114 may be attached to opposing sides of central member 1110. Covers 1112 and 1114 may aid in holding conductive elements 1310A and 1310B within grooves 1212A and 1212B and with a controlled separation from reference conductors 1010A and 1010B. In the embodiment illustrated, covers 1112 and 1114 may be formed of the same material as central member 1110. However, it is not a requirement that the materials be the same, and in some embodiments, different materials may be used, such as to provide different relative dielectric constants in different regions to provide a desired impedance of the signal conductors.
In the embodiment illustrated, grooves 1212A and 1212B are configured to hold a pair of signal conductors for edge coupling at the contact tails and mating contact portions. Over a substantial portion of the intermediate portions of the signal conductors, the pair is held for broadside coupling. To transition between edge coupling at the ends of the signal conductors to broadside coupling in the intermediate portions, a transition region may be included in the signal conductors. Grooves in central member 1110 may be shaped to provide the transition region in the signal conductors. Projections 1122, 1124, 1126 and 1128 on covers 1112 and 1114 may press the conductive elements against central portion 1110 in these transition regions.
In the embodiment illustrated in
Region 1150 includes the transition region, such as 822 or 842 where the waveguide formed by the reference conductor transitions from its widest dimension to the narrower dimension of the intermediate portion, plus a portion of the narrower intermediate region 830. As a result, at least a portion of the waveguide formed by the reference conductors in this region 1150 has a widest dimension of W, the same as in the intermediate region 830. Having at least a portion of the physical transition in a narrower part of the waveguide reduces undesired coupling of energy into waveguide modes of propagation.
Having full 360 degree shielding of the signal conductors in region 1150 may also reduce coupling of energy into undesired waveguide modes of propagation. Accordingly, openings 832 do not extend into region 1150 in the embodiment illustrated.
In the embodiment illustrated, conductive members 1310A and 1310B each have edges and broader sides between those edges. Contact tails 1330A and 1330B are aligned in a column 1340. With this alignment, edges of conductive elements 1310A and 1310B face each other at the contact tails 1330A and 1330B. Other modules in the same wafer will similarly have contact tails aligned along column 1340. Contact tails from adjacent wafers will be aligned in parallel columns. The space between the parallel columns creates routing channels on the printed circuit board to which the connector is attached. Mating contact portions 1318A and 1318B are aligned along column 1344.
In the example of
The mating contact portions 1318A and 1318B may be formed from the same sheet of metal as the conductive elements. However, it should be appreciated that, in some embodiments, conductive elements may be formed by attaching separate mating contact portions to other conductors to form the intermediate portions. For example, in some embodiments, intermediate portions may be cables such that the conductive elements are formed by terminating the cables with mating contact portions.
In the embodiment illustrated, the mating contact portions are tubular. Such a shape may be formed by stamping the conductive element from a sheet of metal and then forming to roll the mating contact portions into a tubular shape. The circumference of the tube may be large enough to accommodate a pin from a mating pin module, but may conform to the pin. The tube may be split into two or more segments, forming compliant beams. Two such beams are shown in
When conductive elements 1310A and 1310B are mounted in central member 1110, mating contact portions 1318A and 1318B fit within openings 1220A 1220B. The mating contact portions are separated by wall 1230. The distal ends 1320A and 1320B of mating contact portions 1318A and 1318B may be aligned with openings, such as opening 1222B, in platform 1232. These openings may be positioned to receive pins from the mating pin module 300. Wall 1230, platform 1232 and insulative projecting members 1042A and 1042B may be formed as part of portion 1110, such as in one molding operation. However, any suitable technique may be used to form these members.
Though illustrated as a lossy region 1215, a similarly positioned conductive region may also reduce coupling of energy into undesired waveguide modes that reduce signal integrity. Such a conductive region, with surfaces that twist through region 1150, may be connected to the reference conductors in some embodiments. While not being bound by any particular theory of operation, a conductor, acting as a wall separating the signal conductors and as such twists to follow the twists of the signal conductors in the transition region, may couple ground current to the waveguide in such a way as to reduce undesired modes. For example, the current may be coupled to flow in a differential mode through the walls of the reference conductors parallel to the broadside coupled signal conductors, rather than excite common modes.
Referring now to
In the illustrated embodiment, the conductive shield elements 1520A and 1520B include mating contact portions formed as four compliant beams 1538A . . . 1538D. When assembled (
In some embodiments, the conductive shield elements 1520A and 1520B may have the same construction at each end, such that shield elements 1520A and 1520B may have the same shape, but a different orientation. However, in the embodiment illustrated shield elements 1520A and 1520B have a different construction at the first end 1502 and second end, respectively, such that shield elements 1520A and 1520B have different shapes. For example, as illustrated in
Referring now to
Referring now to
An orthogonal configuration, as illustrated in
Cables 2806 may have first ends 2808 attached to the second type connector units 2904 and second ends 2810 attached to connector 2802, through which the cables are coupled to PCB 2801. The second ends of the cables may be coupled to PCB 2801 at a location spaced from the first ends of the cables with a distance D. Any suitable value may be selected for the distance D. In some embodiments, D may be at least 6 inches, in the range of 1 to 20 inches, or any value within the range, such as between 6 and 20 inches. However, the upper limit of the range may depend on the size of PCB 2801, and the distance from connector 2900 that components (not shown) are mounted to PCB 2801, as connector 2802 may be mounted near components that receive or generate signals that pass through cables 2806. As a specific example, connector 2802 may be mounted within 6 inches of those components, and in some embodiments, will be mounted within 4 inches of those components or within 2 inches of those components.
The inventors also have recognized and appreciated that the footprint of connector 2900 on PCB 2801 is a combination of the footprint of the first type connector units and the footprint of the second type connector units. At the mounting location of the first type connector units, the connector footprint occupies less real estate on the board than the combined footprint, which frees layout areas for circuit traces and/or placing hold-down screws to enhance the retention forces. Alternatively or additionally, PCB 2801 may have fewer layers than would be required for routing out of the connector footprint all of the signals passing through the first type and the second type units. Further, there may be fewer restrictions on traces routed out of the footprint from the second type connector units. The footprint of the second type connector units on PCB 2801 is defined by the mounting end 2812 of connector 2802. The mounting end of connector 2802 may be configured for ease of routing with high signal integrity. For example, the footprint associated with mounting end 2812 may be spaced from the edge of the PCB 2801 such that traces may be routed out of that portion of the footprint in all directions. Further, the illustrative second connector unit 2904 in
Connector 2900 may be mated to any suitable type of connector. In some embodiments, mating connector 2804 may be an orthogonal connector, configured similarly to connector 600 illustrated in
In this example, the first type connector units 2902 include wafers 3008, which may be configured similar to a wafer 700 illustrated in
As illustrated, for example in
A plurality of wafers and a plurality of extender modules may be held by one or more support members 3004. In the embodiment illustrated, support members 3004 are implemented as at least two separate components 2902A and 2902B. However, any suitable number and shape of components may be used to form a support member. Additional components, for example, may hold the wafers at an opposing surface and/or at the sides of the structure shown. Alternatively or additionally, support member 3004 may be a housing, having an opening receiving and securing the wafers.
In the embodiment of
However, it should be appreciated that each first type connector unit may be a subassembly of any suitable number of components to implement any suitable number of columns of conductive elements or may be implemented as a single component or in any other suitable way. Using wafers and extender modules as illustrated, each first type connector unit may be formed from a multiple of two wafers, such as two, four, six or eight wafers and a multiple of that number of extender modules, the multiple being equal to the number of signal conductors in one wafer, but the application is not limited in this regard.
If multiple units are used, the connector units may be held together by a support member. In the embodiment illustrated, extender shell 2906 acts as a support member. The support member 3004 may include retaining features 2950 to engage with corresponding features 2960 on the extender shell 2906. It should be appreciated, however, that support members 3004 may, in some embodiments, may be omitted, if wafers are attached directly to extender shell 2906 or, if other supporting structures are used to hold the components of the connector together.
In
In the illustrated example, there is one second type unit 2904. To be complementary with the first type units, the illustrative second type unit 2904 includes 12 cables 2806 aligned in a direction of column 3002. Each second type unit 2904 may include a plurality of modules 3100 held by a unit housing 3102. The plurality of modules in a second type unit may be aligned in the direction of column 3002. Each module 3100 may include a module housing 3112 holding a pair of signal conductors 3104A, 3104B. The pair of signal conductors are separated in the direction of column 3006. The mating contact portions of the second type units may form an array 3204. The arrays 3202 and 3204 together may form the mating interface 2920 of the connector 2900.
The mating contact portions of the signal conductors are illustrated as pins. However, other configurations may be adopted, e.g., receptacles. The contact tails (not shown) of the signal conductors are attached with cables 2806. The attachment interface between the contact tails and the cables are protected by at least the unit housing. Each cable may include a pair of wires, each of which is attached to a respective contact tail of a pair of signal conductors of a module. In some embodiments, the cables may be twin-ax cables. A shield surrounding the conductors of the twin-ax cable may be attached to a shield surrounding the conductive elements in a respective module 3100. The unit housing 3102 may extend farther in the direction of cable length than support members 3004 such that the attachment interface between the modules 3100 and the cables 2806 are covered.
The housing 3402 and the modules 3420 may form a second type connector unit. In the embodiment illustrated, each of the modules 3420 has a pair of signal conductors, and the modules 3420 are arranged such that the second type connector unit has two columns of signal conductors.
Conductors of the cables may be attached to signal conductors within modules 3408 in any suitable way. However, in accordance with some embodiments, the cable conductors may be attached to edges of the signal conductors so as to provide a conducting structure of substantially uniform thickness and/or substantially uniform spacing between the conductive elements. For example, the thickness, including both the thickness of the conductor of the cable, the signal conductor and any weld, solder or other material to fuse the two may be no more than 10% greater than the thickness of the stock used to form the signal conductor. In some embodiments, the variation in thickness between the cable attachment and the stock thickness may be less than 25% or less than 50%. More generally, the variation in thickness may be less than the variation that might result from a conventional approach of attaching the cable conductor at the broadside to connector signal conductor, which might increase the thickness of the conducting path by 100% or more. Likewise, the separation at the attachment location may be relatively small, such as differing from the separation at the mating interface by no more than 10%.
Such a connection is illustrated in
Portions of the pair of conductive elements may be exposed out of the dielectric portion. The exposed portion of the conductive element 3510A may be attached to the edge 3504A of the signal conductor 3410A. The exposed portion of the conductive element 3510B may be attached to the edge 3504B of the signal conductor 3410B. The attachment may be made in any suitable way, such as by welding or brazing. For example, laser welding may be used. For example, a laser welding operation may be performed in which a laser is aimed in a path along the edge of the conductive element, fusing the wire in the cable to the edge of the conductive element as the laser's point of focus changes.
In some embodiments, the laser may be controlled to form a running fillet joint between each conductive element of the cable and the edge of the signal conductor in the connector. The inventors have found that such a joint may be more reliable and more repeatable than a weld through a wire. A suitable weld may be formed with a commercially available green laser, but any suitable welding equipment may be used.
Operations such as welding or brazing resulting in directly fusing the conductive elements of the cable to the conductive elements of the connector may avoid the bulk of conductive material that might be present if other attachment techniques, such as soldering, were used. Reducing the bulk of conductive material used for attachment may reduce changes in impedance, which can contribute to desirable electrical properties. However, in some embodiments, solder or other fusible material may be added to facilitate attachment.
Cable conductors may be attached to edges of conductive elements of any suitable shape in a connector.
The cable 3606 may include a pair of conductive elements 3620A, 3620B, each of which is attached to one of opposing edges of the signal conductors 3610A, 3610B. The pair of signal conductors 3610A and 3610B is spaced from each other by a distance d1 to accommodate the cable 3606. The distance d1 may be controlled by a width W of the tie bar 3602 and/or the degree of slopes in the transition regions 3614. This distance may be accurately controlled by the stamping.
With tie bar 3602 severed, mating contacts 3604A and 3604B on conductive elements 3610A and 3610B may be formed to provide any suitable shape. Any suitable metal forming technique may be used. For example, the edges may be coined to provide mating contacts that are blades. Alternatively or additionally, the mating contacts may be rolled to provide mating contacts that are pins. As yet a further variation, the mating contacts may be shaped as single beam contacts, dual-beam contacts or multi-beam contacts. As a further alternative, separate components may be attached to conductive elements 3610A and 3610B, such as to form a multi-beam structure or to provide a receptacle.
The forming operations may leave mating contacts 3604A and 3604B spaced from each other by a distance d2, measured edge-to-edge. In the embodiment illustrated, d2 may approximate d1. For example, d2 may differ from d1 by 10% or less, or in some embodiments, 25% or 50% or less.
However, it is not a requirement that the separation between edges be uniform over the entire length of the contacts. The edges of the contacts at the attachment region may taper towards each other or may taper away from each other in a direction along the elongated axis of mating contacts 3604A and 3604B. Such a configuration may provide a gradual impedance transition from the cable the mating interface of the connector. Alternatively or additionally, the shape of the conductive elements 3610A and 3610B may vary over the length, such as to provide a wider or narrower width inside the housing relative to outside. As an example of a further variation, even if the opposing edges of conductive elements 3610A and 3610B are shaped to provide a uniform spacing d2 along the length of the conductive elements, the width of the conductive elements in the attachment may be controlled, even varying along the length of the conductive elements, by changing in the profile of the outer edges of conductive elements 3610A and 3610B. The outer edges, for example, may taper toward or away from each other.
Having thus described several embodiments, it is to be appreciated various alterations, modifications, and improvements may readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the application.
Accordingly, the foregoing description and drawings are by way of example only. Various changes may be made to the illustrative structures shown and described herein. For example, a method of manufacturing a module for a cable connector was described in connection with
As another example, techniques are described for improving signal quality at the mating interface of an electrical interconnection system. These techniques may be used alone or in any suitable combination. Furthermore, the size of a connector may be increased or decreased from what is shown. Also, it is possible that materials other than those expressly mentioned may be used to construct the connector. As another example, connectors with four differential signal pairs in a column are used for illustrative purposes only. Any desired number of signal conductors may be used in a connector.
As another example, an embodiment was described in which a different front housing portion is used to hold connector modules in a daughtercard connector configuration versus an orthogonal configuration. It should be appreciated that, in some embodiments, a front housing portion may be configured to support either use.
Manufacturing techniques may also be varied. For example, embodiments are described in which the daughtercard connector 600 is formed by organizing a plurality of wafers onto a stiffener. It may be possible that an equivalent structure may be formed by inserting a plurality of shield pieces and signal receptacles into a molded housing.
As another example, connectors are described that are formed of modules, each of which contains one pair of signal conductors. It is not necessary that each module contain exactly one pair or that the number of signal pairs be the same in all modules in a connector. For example, a 2-pair or 3-pair module may be formed. Moreover, in some embodiments, a core module may be formed that has two, three, four, five, six, or some greater number of rows in a single-ended or differential pair configuration. Each connector, or each wafer in embodiments in which the connector is waferized, may include such a core module. To make a connector with more rows than are included in the base module, additional modules (e.g., each with a smaller number of pairs such as a single pair per module) may be coupled to the core module.
As a further variation,
Furthermore, although many inventive aspects are shown and described with reference to a orthogonal connector having a right angle configuration, it should be appreciated that aspects of the present disclosure is not limited in this regard, as any of the inventive concepts, whether alone or in combination with one or more other inventive concepts, may be used in other types of electrical connectors, such as backplane connectors, daughterboard connectors, midplane connectors, cable connectors, stacking connectors, mezzanine connectors, I/O connectors, chip sockets, etc.
In some embodiments, contact tails were illustrated as press fit “eye of the needle” compliant sections that are designed to fit within vias of printed circuit boards. However, other configurations may also be used, such as surface mount elements, spring contacts, solderable pins, etc., as aspects of the present disclosure are not limited to the use of any particular mechanism for attaching connectors to printed circuit boards.
Further, signal and ground conductors are illustrated as having specific shapes. In the embodiments above, the signal conductors were routed in pairs, with each conductive element of the pair having approximately the same shape so as to provide a balanced signal path. The signal conductors of the pair are positioned closer to each other than to other conductive structures. One of skill in the art will understand that other shapes may be used, and that a signal conductor or a ground conductor may be recognized by its shape or measurable characteristics. A signal conductor in many embodiments may be narrow relative to other conductive elements that may serve as reference conductors to provide low inductance. Alternatively or additionally, the signal conductor may have a shape and position relative to a broader conductive element that can serve as a reference to provide a characteristic impedance suitable for use in an electronic system, such as in the range of 50-120 Ohms. Alternatively or additionally, in some embodiments, the signal conductors may be recognized based on the relative positioning of conductive structures that serve as shielding. The signal conductors, for example, may be substantially surrounded by conductive structures that can serve as shield members.
Further, the configuration of connector modules and extender modules as described above provides shielding of signal paths through the interconnection system formed by connector modules and extender modules in a first connector and connector modules in a second connector. In some embodiments, minor gaps in shield members or spacing between shield members may be present without materially impacting the effectiveness of this shielding. It may be impractical, for example, in some embodiments, to extend shielding to the surface of a printed circuit board such that there is a gap on the order of 1 mm. Despite such separation or gaps, these configurations may nonetheless be regarded as fully shielded.
Moreover, examples of an extender are module are pictured with an orthogonal configuration. It should be appreciated that, without a 90 degree twist, the extender modules may be used to form a RAM, if the extender module has pins or blades at its second end. Other types of connectors may alternatively be formed with modules with receptacles or mating contacts of other configurations at the second end.
Moreover, the extender modules are illustrated as forming a separable interface with connector modules. Such an interface may include gold plating or plating with some other metal or other material that may prevent oxide formation. Such a configuration, for example, may enable modules identical to those used in a daughtercard connector to be used with the extender modules. However, it is not a requirement that the interface between the connector modules and the extender modules be separable. In some embodiments, for example, mating contacts of either the connector module or extender module may generate sufficient force to scrape oxide from the mating contact and form a hermetic seal when mated. In such an embodiment, gold and other platings might be omitted.
Connectors configured as described herein may provide desirable signal integrity properties across a frequency range of interest. The frequency range of interest may depend on the operating parameters of the system in which such a connector is used, but may generally have an upper limit between about 15 GHz and 50 GHz, such as 25 GHz, 30 or 40 GHz, although higher frequencies or lower frequencies may be of interest in some applications. Some connector designs may have frequency ranges of interest that span only a portion of this range, such as 1 to 10 GHz or 3 to 15 GHz or 5 to 35 GHz.
The operating frequency range for an interconnection system may be determined based on the range of frequencies that can pass through the interconnection with acceptable signal integrity. Signal integrity may be measured in terms of a number of criteria that depend on the application for which an interconnection system is designed. Some of these criteria may relate to the propagation of the signal along a single-ended signal path, a differential signal path, a hollow waveguide, or any other type of signal path. Two examples of such criteria are the attenuation of a signal along a signal path or the reflection of a signal from a signal path.
Other criteria may relate to interaction of multiple distinct signal paths. Such criteria may include, for example, near end cross talk, defined as the portion of a signal injected on one signal path at one end of the interconnection system that is measurable at any other signal path on the same end of the interconnection system. Another such criterion may be far end cross talk, defined as the portion of a signal injected on one signal path at one end of the interconnection system that is measurable at any other signal path on the other end of the interconnection system.
As specific examples, it could be required that signal path attenuation be no more than 3 dB power loss, reflected power ratio be no greater than −20 dB, and individual signal path to signal path crosstalk contributions be no greater than −50 dB. Because these characteristics are frequency dependent, the operating range of an interconnection system is defined as the range of frequencies over which the specified criteria are met.
Designs of an electrical connector are described herein that may provide desirable signal integrity for high frequency signals, such as at frequencies in the GHz range, including up to about 25 GHz or up to about 40 GHz or higher, while maintaining high density, such as with a spacing between adjacent mating contacts on the order of 3 mm or less, including center-to-center spacing between adjacent contacts in a column of between 1 mm and 2.5 mm or between 2 mm and 2.5 mm, for example. Spacing between columns of mating contact portions may be similar, although there is no requirement that the spacing between all mating contacts in a connector be the same.
Accordingly, the present disclosure is not limited to the details of construction or the arrangements of components set forth in the following description and/or the drawings. Various embodiments are provided solely for purposes of illustration, and the concepts described herein are capable of being practiced or carried out in other ways. Also, the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” or “involving,” and variations thereof herein, is meant to encompass the items listed thereafter (or equivalents thereof) and/or as additional items.
Dunham, John Robert, Cartier, Jr., Marc B., Gailus, Mark W., Astbury, Allan, Sivarajan, Vysakh, Manter, David
Patent | Priority | Assignee | Title |
11462845, | Sep 29 2016 | 3M Innovative Properties Company | Connector assembly for solderless mounting to a circuit board |
11516905, | Apr 14 2020 | Dell Products L.P. | Method to improve PCB trace conductivity and system therefor |
11637390, | Jan 25 2019 | FCI USA LLC | I/O connector configured for cable connection to a midboard |
11637401, | Aug 03 2017 | Amphenol Corporation | Cable connector for high speed in interconnects |
11650383, | Sep 10 2015 | SAMTEC, INC. | Rack-mountable equipment with a high-heat-dissipation module, and transceiver receptacle with increased cooling |
11670879, | Jan 28 2020 | FCI USA LLC | High frequency midboard connector |
11677188, | Apr 02 2018 | Ardent Concepts, Inc. | Controlled-impedance compliant cable termination |
11699881, | Jun 19 2020 | DONGGUAN LUXSHARE TECHNOLOGIES CO., LTD | Terminal module and backplane connector having the terminal module |
11699883, | Mar 23 2018 | Amphenol Corporation | Insulative support for very high speed electrical interconnection |
11710930, | Jun 19 2020 | DONGGUAN LUXSHARE TECHNOLOGIES CO., LTD | Terminal module and backplane connector having the terminal module |
11715922, | Jan 25 2019 | FCI USA LLC | I/O connector configured for cabled connection to the midboard |
11735852, | Sep 19 2019 | Amphenol Corporation | High speed electronic system with midboard cable connector |
11824311, | Aug 03 2017 | Amphenol Corporation | Connector for low loss interconnection system |
11831106, | May 31 2016 | Amphenol Corporation | High performance cable termination |
11984678, | Jan 25 2019 | FCI USA LLC | I/O connector configured for cable connection to a midboard |
11996654, | Apr 02 2018 | Ardent Concepts, Inc. | Controlled-impedance compliant cable termination |
12166304, | Sep 19 2019 | Amphenol Corporation | High speed electronic system with midboard cable connector |
Patent | Priority | Assignee | Title |
10020614, | Apr 14 2017 | TE Connectivity Solutions GmbH | Pluggable module having a latch |
10056706, | Feb 27 2013 | Molex, LLC | High speed bypass cable for use with backplanes |
10062984, | Sep 04 2013 | Molex, LLC | Connector system with cable by-pass |
10069225, | Feb 27 2013 | Molex, LLC | High speed bypass cable for use with backplanes |
10096945, | Mar 13 2013 | Amphenol Corporation | Method of manufacturing a high speed electrical connector |
10109937, | Oct 25 2013 | FCI USA LLC | Electrical cable connector |
10109968, | Dec 30 2016 | Mellanox Technologies, LTD | Adaptive datacenter connector |
10128627, | Jun 28 2017 | Mellanox Technologies, LTD | Cable adapter |
10170869, | Nov 12 2014 | Amphenol Corporation | Very high speed, high density electrical interconnection system with impedance control in mating region |
10181663, | Sep 04 2013 | Molex, LLC | Connector system with cable by-pass |
10205286, | Oct 19 2016 | Amphenol Corporation | Compliant shield for very high speed, high density electrical interconnection |
10276995, | Jan 23 2017 | FOXCONN INTERCONNECT TECHNOLOGY LIMITED | Electrical adaptor for different plug module and electrical assembly having the same |
10305224, | May 18 2016 | Amphenol Corporation | Controlled impedance edged coupled connectors |
10312638, | May 31 2016 | Amphenol Corporation | High performance cable termination |
10374355, | Jul 07 2017 | Amphenol Corporation | Asymmetric latches for pluggable transceivers |
10651606, | Nov 11 2017 | FOXCONN (KUNSHAN) COMPUTER CONNECTOR CO., LTD.; FOXCONN INTERCONNECT TECHNOLOGY LIMITED | Receptacle connector equipped with cable instead of mounting to PCB |
2124207, | |||
2996710, | |||
3002162, | |||
3007131, | |||
3134950, | |||
3229240, | |||
3322885, | |||
3594613, | |||
3715706, | |||
3786372, | |||
3825874, | |||
3863181, | |||
4067039, | Mar 17 1975 | Motorola, Inc. | Ultrasonic bonding head |
4083615, | Jan 27 1977 | AMP Incorporated | Connector for terminating a flat multi-wire cable |
4155613, | Jan 03 1977 | Akzona, Incorporated | Multi-pair flat telephone cable with improved characteristics |
4157612, | Dec 27 1977 | Bell Telephone Laboratories, Incorporated | Method for improving the transmission properties of a connectorized flat cable interconnection assembly |
4195272, | Feb 06 1978 | AMPHENOL CORPORATION, A CORP OF DE | Filter connector having contact strain relief means and an improved ground plate structure and method of fabricating same |
4276523, | Aug 17 1979 | AMPHENOL CORPORATION, A CORP OF DE | High density filter connector |
4307926, | Apr 20 1979 | AMP Inc. | Triaxial connector assembly |
4371742, | Dec 20 1977 | Vistatech Corporation | EMI-Suppression from transmission lines |
4397516, | May 26 1981 | AMPHENOL CORPORATION, A CORP OF DE | Cable termination apparatus |
4408255, | Jan 12 1981 | Absorptive electromagnetic shielding for high speed computer applications | |
4447105, | May 10 1982 | Illinois Tool Works Inc. | Terminal bridging adapter |
4471015, | Jul 01 1980 | Bayer Aktiengesellschaft | Composite material for shielding against electromagnetic radiation |
4484159, | Mar 22 1982 | AMPHENOL CORPORATION, A CORP OF DE | Filter connector with discrete particle dielectric |
4490283, | Feb 27 1981 | MITECH CORPORATION A CORP OF OHIO | Flame retardant thermoplastic molding compounds of high electroconductivity |
4518651, | Feb 16 1983 | E. I. du Pont de Nemours and Company | Microwave absorber |
4519664, | Feb 16 1983 | Elco Corporation | Multipin connector and method of reducing EMI by use thereof |
4519665, | Dec 19 1983 | AMP Incorporated | Solderless mounted filtered connector |
4615578, | Dec 05 1984 | TYCO ELECTRONICS CORPORATION, A CORPORATION OF PENNSYLVANIA | Mass termination device and connection assembly |
4632476, | Aug 30 1985 | Berg Technology, Inc | Terminal grounding unit |
4636752, | Jun 08 1984 | Murata Manufacturing Co., Ltd. | Noise filter |
4639054, | Apr 08 1985 | INTELLISTOR, INC | Cable terminal connector |
4682129, | Mar 30 1983 | Berg Technology, Inc | Thick film planar filter connector having separate ground plane shield |
4697862, | May 29 1985 | Berg Technology, Inc | Insulation displacement coaxial cable termination and method |
4708660, | Jun 23 1986 | GENERAL DYNAMICS INFORMATION SYSTEMS, INC | Connector for orthogonally mounting circuit boards |
4724409, | Jul 31 1986 | Raytheon Company | Microwave circuit package connector |
4728762, | Mar 22 1984 | MICROWAVE CONCEPTS, INC | Microwave heating apparatus and method |
4751479, | Sep 18 1985 | Smiths Industries Public Limited Company | Reducing electromagnetic interference |
4761147, | Feb 02 1987 | I.G.G. Electronics Canada Inc. | Multipin connector with filtering |
4795375, | Mar 16 1981 | DELLAWILL, INC | Compression and torque load bearing connector |
4806107, | Oct 16 1987 | Berg Technology, Inc | High frequency connector |
4826443, | Nov 17 1982 | AMP Incorporated | Contact subassembly for an electrical connector and method of making same |
4846724, | Nov 29 1986 | NEC Tokin Corporation | Shielded cable assembly comprising means capable of effectively reducing undesirable radiation of a signal transmitted through the assembly |
4846727, | Apr 11 1988 | AMP Incorporated | Reference conductor for improving signal integrity in electrical connectors |
4871316, | Oct 17 1988 | Stovokor Technology LLC | Printed wire connector |
4878155, | Sep 25 1987 | STANDARD LOGIC, INC , A CA CORP | High speed discrete wire pin panel assembly with embedded capacitors |
4889500, | May 23 1988 | Burndy Corporation | Controlled impedance connector assembly |
4913667, | Mar 09 1988 | Nicolay GmbH | Connector system with replaceable plugs |
4924179, | Apr 30 1976 | Method and apparatus for testing electronic devices | |
4948922, | Sep 15 1988 | LAIRD TECHNOLOGIES, INC | Electromagnetic shielding and absorptive materials |
4949379, | May 05 1989 | Process for encrypted information transmission | |
4970354, | Feb 21 1988 | Asahi Chemical Research Laboratory Co., Ltd. | Electromagnetic wave shielding circuit and production method thereof |
4975084, | Oct 17 1988 | AMP INCORPORATED, P O BOX 3608, HARRISBURG, PA 17105 | Electrical connector system |
4990099, | Sep 18 1989 | Ideal Industries | Keyed electrical connector with main and auxiliary electrical contacts |
4992060, | Jun 28 1989 | GreenTree Technologies, Inc. | Apparataus and method for reducing radio frequency noise |
5000700, | Jun 14 1989 | Daiichi Denshi Kogyo Kabushiki Kaisha | Interface cable connection |
5037330, | Nov 30 1990 | AMP Corporated; AMP Incorporated | Stacked circular DIN connector |
5066236, | Oct 10 1989 | AMP Incorporated | Impedance matched backplane connector |
5091606, | Jan 11 1990 | BAL SEAL ENGINEERING COMPANY, INC | Gasket for sealing electromagnetic waves filled with a conductive material |
5141454, | Nov 22 1991 | General Motors Corporation | Filtered electrical connector and method of making same |
5150086, | Jul 20 1990 | AMP INVESTMENTS; WHITAKER CORPORATION, THE | Filter and electrical connector with filter |
5168252, | Apr 02 1990 | Mitsubishi Denki Kabushiki Kaisha | Line filter having a magnetic compound with a plurality of filter elements sealed therein |
5168432, | Nov 07 1987 | ADVANCED INTERCONNECTIONS CORPORATION, A CORP OF RHODE ISLAND | Adapter for connection of an integrated circuit package to a circuit board |
5176538, | Dec 13 1991 | W L GORE & ASSOCIATES, INC | Signal interconnector module and assembly thereof |
5190473, | May 18 1992 | AMP Incorporated | Microcoaxial cable connector |
5197893, | Mar 14 1990 | FCI USA LLC | Connector assembly for printed circuit boards |
5203079, | Nov 13 1991 | Molex Incorporated | Method of terminating miniature coaxial electrical connector |
5266055, | Oct 11 1988 | Mitsubishi Denki Kabushiki Kaisha | Connector |
5280191, | Dec 26 1989 | AT&T Bell Laboratories | Lightwave packaging for pairs of optical devices having thermal dissipation means |
5280257, | Jun 30 1992 | AMP Incorporated | Filter insert for connectors and cable |
5281150, | Jan 05 1993 | International Business Machines Corporation | Method and apparatus for connecting cable to the surface of printed circuit boards or the like |
5281762, | Jun 19 1992 | WHITAKER CORPORATION, THE; AMP INVESTMENTS | Multi-conductor cable grounding connection and method therefor |
5287076, | May 29 1991 | Amphenol Corporation | Discoidal array for filter connectors |
5306171, | Aug 07 1992 | Elco Corporation | Bowtie connector with additional leaf contacts |
5332397, | Jan 15 1993 | INDEPENDENT TECHNOLOGIES, INC | Test cord apparatus |
5332979, | Feb 11 1991 | Compact radio-frequency power-generator system | |
5334050, | Feb 14 1992 | Berg Technology, Inc | Coaxial connector module for mounting on a printed circuit board |
5340334, | Jul 19 1993 | SPECTRUM CONTROL,INC | Filtered electrical connector |
5342211, | Mar 09 1992 | AMP-HOLLAND B V | Shielded back plane connector |
5346410, | Jun 14 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Filtered connector/adaptor for unshielded twisted pair wiring |
5387130, | Mar 29 1994 | The Whitaker Corporation | Shielded electrical cable assembly with shielding back shell |
5402088, | Dec 03 1992 | AIL Systems, Inc. | Apparatus for the interconnection of radio frequency (RF) monolithic microwave integrated circuits |
5429520, | Jun 04 1993 | Framatome Connectors International | Connector assembly |
5429521, | Jun 04 1993 | Framatome Connectors International | Connector assembly for printed circuit boards |
5433617, | Jun 04 1993 | Framatome Connectors International | Connector assembly for printed circuit boards |
5433618, | Jun 04 1993 | Framatome Connectors International | Connector assembly |
5435757, | Jul 27 1993 | The Whitaker Corporation | Contact and alignment feature |
5441424, | Apr 15 1993 | Framatome Connectors International | Connector for coaxial and/or twinaxial cables |
5453026, | Jun 25 1993 | The Whitaker Corporation; WHITAKER CORPORATION, THE | Plug assembly and connector |
5456619, | Aug 31 1994 | BERG TECHNOLGOY, INC | Filtered modular jack assembly and method of use |
5461392, | Apr 25 1994 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Transverse probe antenna element embedded in a flared notch array |
5480327, | May 24 1994 | The Whitaker Corporation | Electrical connector for cable |
5483020, | Apr 12 1994 | W L GORE & ASSOCIATES, INC | Twin-ax cable |
5484310, | Apr 05 1993 | Amphenol Corporation | Shielded electrical connector |
5487673, | Dec 13 1993 | MULTI-TECH SYSTEMS, INC | Package, socket, and connector for integrated circuit |
5495075, | Jan 09 1991 | FCI USA LLC | Coaxial connector |
5496183, | Apr 06 1993 | The Whitaker Corporation | Prestressed shielding plates for electrical connectors |
5499935, | Dec 30 1993 | AT&T Corp. | RF shielded I/O connector |
5509827, | Nov 21 1994 | MEDALLION TEHNOLOGY, LLC | High density, high bandwidth, coaxial cable, flexible circuit and circuit board connection assembly |
5551893, | May 10 1994 | Osram Sylvania Inc. | Electrical connector with grommet and filter |
5554038, | Nov 19 1993 | Framatome Connectors International | Connector for shielded cables |
5562497, | May 25 1994 | Molex Incorporated | Shielded plug assembly |
5580264, | Aug 09 1994 | Sumitomo Wiring Systems, Ltd. | Waterproofed connector |
5597328, | Jan 13 1994 | Filtec-Filtertechnologie GmbH | Multi-pole connector with filter configuration |
5598627, | Oct 29 1991 | Sumitomo Wiring Systems, Ltd. | Method of making a wire harness |
5632634, | Aug 18 1992 | The Whitaker Corporation | High frequency cable connector |
5637015, | Aug 31 1995 | HON HAI PRECISION IND CO , LTD | Shielded electrical connector |
5651702, | Oct 31 1994 | Weidmuller Interface GmbH & Co. | Terminal block assembly with terminal bridging member |
5669789, | Mar 14 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Electromagnetic interference suppressing connector array |
5691506, | Sep 27 1994 | Sumitomo Wiring Systems Ltd. | Ground structure for shield wire and method for grounding wire |
5702258, | Mar 28 1996 | Amphenol Corporation | Electrical connector assembled from wafers |
5733148, | Apr 04 1996 | The Whitaker Corporation | Electrical connector with programmable keying system |
5743765, | Jul 17 1995 | FCI Americas Technology, Inc | Selectively metallized connector with at least one coaxial or twin-axial terminal |
5781759, | Jan 31 1995 | Renesas Electronics Corporation | Emulator probe mountable to a target board at different orientation angles |
5785555, | Mar 01 1996 | Molex Incorporated | System for terminating the shield of a high speed cable |
5796323, | Sep 02 1994 | TDK Corporation | Connector using a material with microwave absorbing properties |
5797770, | Aug 21 1996 | The Whitaker Corporation | Shielded electrical connector |
5808236, | Apr 10 1997 | International Business Machines Corporation | High density heatsink attachment |
5831491, | Aug 23 1996 | Google Technology Holdings LLC | High power broadband termination for k-band amplifier combiners |
5865646, | Mar 07 1997 | FCI Americas Technology, Inc | Connector shield with integral latching and ground structure |
5924890, | Aug 30 1996 | TYCO ELECTRONICS SERVICES GmbH | Electrical connector having a virtual indicator |
5924899, | Nov 19 1997 | FCI Americas Technology, Inc | Modular connectors |
5961348, | Mar 01 1996 | Molex Incorporated | System for terminating the shield of a high speed cable |
5981869, | Aug 28 1996 | The Research Foundation of State University of New York | Reduction of switching noise in high-speed circuit boards |
5982253, | Aug 27 1997 | UUSI, LLC | In-line module for attenuating electrical noise with male and female blade terminals |
6019616, | Mar 01 1996 | Molex Incorporated | Electrical connector with enhanced grounding characteristics |
6022239, | Sep 18 1997 | Osram Sylvania Inc. | Cable connector assembly |
6053770, | Jul 13 1998 | TYCO ELECTRONICS SERVICES GmbH | Cable assembly adapted with a circuit board |
6083046, | Dec 31 1998 | Hon Hai Precision Ind. Co., Ltd. | Receptacle connector |
6095825, | Aug 09 1997 | Hon Hai Precision Ind. Co., Ltd. | Power adapter for interconnecting different types of power connectors |
6095872, | Oct 21 1998 | Molex Incorporated | Connector having terminals with improved soldier tails |
6116926, | Apr 21 1999 | FCI Americas Technology, Inc | Connector for electrical isolation in a condensed area |
6144559, | Apr 08 1999 | Agilent Technologies Inc | Process for assembling an interposer to probe dense pad arrays |
6146202, | Aug 12 1998 | 3M Innovative Properties Company | Connector apparatus |
6152747, | Nov 24 1998 | Amphenol Corporation | Electrical connector |
6156975, | Aug 04 1993 | The United States of America as represented by United States Department | End moldings for cable dielectrics |
6168466, | Aug 27 1998 | Hon Hai Precision Ind. Co., Ltd. | Shielded electrical connector |
6168469, | Oct 12 1999 | Hon Hai Precision Ind. Co., Ltd. | Electrical connector assembly and method for making the same |
6174203, | Jul 03 1998 | Sumitomo Wiring Sysytems, Ltd. | Connector with housing insert molded to a magnetic element |
6174944, | May 20 1998 | IDEMITSU KOSAN CO ,LTD | Polycarbonate resin composition, and instrument housing made of it |
6203376, | Dec 15 1999 | Molex Incorporated | Cable wafer connector with integrated strain relief |
6215666, | Oct 08 1998 | Sun Microsystems, Inc. | Giga-bit interface convertor bracket with enhanced grounding |
6217372, | Oct 08 1999 | CARLISLE INTERCONNECT TECHNOLOGIES, INC | Cable structure with improved grounding termination in the connector |
6238241, | Dec 27 1999 | Hon Hai Precision Ind. Co., Ltd. | Stacked electrical connector assembly |
6273753, | Oct 19 2000 | Hon Hai Precision Ind. Co., Ltd. | Twinax coaxial flat cable connector assembly |
6273758, | May 19 2000 | Molex Incorporated | Wafer connector with improved grounding shield |
6283786, | Dec 18 1998 | Molex Incorporated | Electrical connector assembly with light transmission means |
6285542, | Apr 16 1999 | AVX Corporation | Ultra-small resistor-capacitor thin film network for inverted mounting to a surface |
6293827, | Feb 03 2000 | Amphenol Corporation | Differential signal electrical connector |
6299438, | Sep 30 1997 | Implant Sciences Corporation | Orthodontic articles having a low-friction coating |
6299483, | Feb 07 1997 | Amphenol Corporation | High speed high density electrical connector |
6322379, | Apr 21 1999 | FCI Americas Technology, Inc | Connector for electrical isolation in a condensed area |
6328601, | Jan 15 1998 | SIEMON COMPANY, THE | Enhanced performance telecommunications connector |
6347962, | Jan 30 2001 | TE Connectivity Corporation | Connector assembly with multi-contact ground shields |
6350134, | Jul 25 2000 | TE Connectivity Corporation | Electrical connector having triad contact groups arranged in an alternating inverted sequence |
6364711, | Oct 20 2000 | Molex Incorporated | Filtered electrical connector |
6364718, | Feb 02 2001 | Molex Incorporated | Keying system for electrical connector assemblies |
6366471, | Jun 30 2000 | Cisco Technology Inc | Holder for closely-positioned multiple GBIC connectors |
6371788, | May 19 2000 | Molex Incorporated | Wafer connection latching assembly |
6375510, | Mar 29 2000 | Sumitomo Wiring Systems, Ltd. | Electrical noise-reducing assembly and member |
6379188, | Feb 07 1997 | Amphenol Corporation | Differential signal electrical connectors |
6380485, | Aug 08 2000 | International Business Machines Corporation | Enhanced wire termination for twinax wires |
6398588, | Dec 30 1999 | Intel Corporation | Method and apparatus to reduce EMI leakage through an isolated connector housing using capacitive coupling |
6409543, | Jan 25 2001 | Amphenol Corporation | Connector molding method and shielded waferized connector made therefrom |
6447337, | Feb 23 1999 | Smiths Industries Public Limited Company | Electrical connector assembly with removable filter block |
6452789, | Apr 29 2000 | Hewlett Packard Enterprise Development LP | Packaging architecture for 32 processor server |
6482017, | Feb 10 2000 | CSI TECHNOLOGIES, INC | EMI-shielding strain relief cable boot and dust cover |
6489563, | Oct 02 2001 | Hon Hai Precision Ind. Co., Ltd. | Electrical cable with grounding sleeve |
6503103, | Feb 07 1997 | Amphenol Corporation | Differential signal electrical connectors |
6506076, | Feb 03 2000 | Amphenol Corporation | Connector with egg-crate shielding |
6517360, | Feb 03 2000 | Amphenol Corporation | High speed pressure mount connector |
6517382, | Dec 01 1999 | TE Connectivity Corporation | Pluggable module and receptacle |
6530790, | Nov 24 1998 | Amphenol Corporation | Electrical connector |
6535367, | Jun 13 2000 | Bittree Incorporated | Electrical patching system |
6537086, | Oct 15 2001 | Hon Hai Precision Ind. Co., Ltd. | High speed transmission electrical connector with improved conductive contact |
6537087, | Nov 24 1998 | Amphenol Corporation | Electrical connector |
6551140, | May 09 2001 | Hon Hai Precision Ind. Co., Ltd. | Electrical connector having differential pair terminals with equal length |
6554647, | Feb 07 1997 | Amphenol Corporation | Differential signal electrical connectors |
6565387, | Jun 30 1999 | Amphenol Corporation | Modular electrical connector and connector system |
6574115, | Oct 26 2000 | Lenovo PC International | Computer system, electronic circuit board, and card |
6575772, | Apr 09 2002 | The Ludlow Company LP | Shielded cable terminal with contact pins mounted to printed circuit board |
6579116, | Mar 12 2001 | SENTINEL HOLDING INC | High speed modular connector |
6582244, | Jan 29 2001 | TE Connectivity Solutions GmbH | Connector interface and retention system for high-density connector |
6592390, | Apr 30 2002 | TE Connectivity Solutions GmbH | HMZD cable connector latch assembly |
6592401, | Feb 22 2002 | Molex Incorporated | Combination connector |
6595802, | Apr 04 2000 | NEC Tokin Corporation | Connector capable of considerably suppressing a high-frequency current |
6602095, | Jan 25 2001 | Amphenol Corporation | Shielded waferized connector |
6607402, | Feb 07 1997 | Amphenol Corporation | Printed circuit board for differential signal electrical connectors |
6616864, | Jan 13 1998 | Round Rock Research, LLC | Z-axis electrical contact for microelectronic devices |
6648676, | Dec 24 2002 | Hon Hai Precision Ind. Co., Ltd. | Cable end connector assembly |
6652296, | Aug 24 2001 | J.S.T. Mfg. Co., Ltd. | Electric connector for shielded cable, a connector body thereof and a method of producing the electric connector |
6652318, | May 24 2002 | FCI Americas Technology, Inc | Cross-talk canceling technique for high speed electrical connectors |
6655966, | Mar 19 2002 | TE Connectivity Solutions GmbH | Modular connector with grounding interconnect |
6685501, | Oct 03 2002 | Hon Hai Precision Ind. Co., Ltd. | Cable connector having improved cross-talk suppressing feature |
6692262, | Aug 12 2002 | HUBER & SUHNER, INC | Connector assembly for coupling a plurality of coaxial cables to a substrate while maintaining high signal throughput and providing long-term serviceability |
6705893, | Sep 04 2002 | Hon Hai Precision Ind. Co., Ltd. | Low profile cable connector assembly with multi-pitch contacts |
6709294, | Dec 17 2002 | Amphenol Corporation | Electrical connector with conductive plastic features |
6713672, | Dec 07 2001 | LAIRD TECHNOLOGIES, INC | Compliant shaped EMI shield |
6743057, | Mar 27 2002 | TE Connectivity Solutions GmbH | Electrical connector tie bar |
6749448, | Mar 06 2002 | TE Connectivity Solutions GmbH | Transceiver module assembly ejector mechanism |
6776649, | Feb 05 2001 | HARTING ELECTRONICS GMBH & CO KG | Contact assembly for a plug connector, in particular for a PCB plug connector |
6776659, | Jun 26 2003 | Amphenol Corporation | High speed, high density electrical connector |
6786771, | Dec 20 2002 | Amphenol Corporation | Interconnection system with improved high frequency performance |
6797891, | Mar 18 2002 | Qualcomm Incorporated | Flexible interconnect cable with high frequency electrical transmission line |
6814619, | Jun 26 2003 | Amphenol Corporation | High speed, high density electrical connector and connector assembly |
6816376, | Mar 06 2002 | TE Connectivity Solutions GmbH | Pluggable electronic module and receptacle with heat sink |
6824426, | Feb 10 2004 | Hon Hai Precision Ind. Co., Ltd. | High speed electrical cable assembly |
6830489, | Jan 29 2002 | Sumitomo Wiring Systems, Ltd. | Wire holding construction for a joint connector and joint connector provided therewith |
6843657, | Jan 12 2001 | WINCHESTER INTERCONNECT CORPORATION | High speed, high density interconnect system for differential and single-ended transmission applications |
6846115, | Jan 29 2001 | Lumentum Operations LLC | Methods, apparatus, and systems of fiber optic modules, elastomeric connections, and retention mechanisms therefor |
6872085, | Sep 30 2003 | Amphenol Corporation | High speed, high density electrical connector assembly |
6896549, | May 04 2001 | XIEON NETWORKS S A R L | Device for connecting coaxial conductors to a plug-in connector |
6896556, | Jan 26 2004 | Hon Hai Precision Ind. Co., Ltd. | Cable assembly with power adapter |
6902688, | Apr 06 2001 | WORLD PROPERTIES, INC | Electrically conductive silicones and method of manufacture thereof |
6903934, | Sep 06 2002 | STRATOS INTERNATIONAL, INC | Circuit board construction for use in small form factor fiber optic communication system transponders |
6916183, | Mar 04 2003 | Intel Corporation | Array socket with a dedicated power/ground conductor bus |
6932649, | Mar 19 2004 | TE Connectivity Solutions GmbH | Active wafer for improved gigabit signal recovery, in a serial point-to-point architecture |
6955565, | Dec 30 2002 | Molex Incorporated | Cable connector with shielded termination area |
6962499, | Mar 11 2003 | Yazaki Corporation | Electronic unit by which connector can be securely coupled with mating connector |
6971887, | Jun 24 2004 | Intel Corporation | Multi-portion socket and related apparatuses |
6979226, | Jul 10 2003 | J S T MFG, CO LTD | Connector |
7025634, | May 16 2005 | OSRAM SYLVANIA Inc | Lamp socket |
7044794, | Jul 14 2004 | TE Connectivity Solutions GmbH | Electrical connector with ESD protection |
7056128, | Jan 12 2001 | Winchester Electronics Corporation | High speed, high density interconnect system for differential and single-ended transmission systems |
7057570, | Oct 27 2003 | Raytheon Company | Method and apparatus for obtaining wideband performance in a tapered slot antenna |
7070446, | Aug 27 2003 | TE Connectivity Solutions GmbH | Stacked SFP connector and cage assembly |
7074086, | Sep 03 2003 | Amphenol Corporation | High speed, high density electrical connector |
7077658, | Jan 05 2005 | AVX Corporation | Angled compliant pin interconnector |
7094102, | Jul 01 2004 | Amphenol Corporation | Differential electrical connector assembly |
7108556, | Jul 01 2004 | Amphenol Corporation | Midplane especially applicable to an orthogonal architecture electronic system |
7148428, | Sep 27 2004 | Intel Corporation | Flexible cable for high-speed interconnect |
7158376, | Nov 19 2001 | Otter Products, LLC | Protective enclosure for an interactive flat-panel controlled device |
7163421, | Jun 30 2005 | Amphenol Corporation | High speed high density electrical connector |
7175444, | Feb 23 2005 | Molex, LLC | Plug connector and construction therefor |
7198519, | Jul 07 2004 | Molex, LLC | Edge card connector assembly with keying means for ensuring proper connection |
7214097, | Mar 16 2004 | ING, SHANG-LUN | Electrical connector with grounding effect |
7223915, | Dec 20 2004 | TE Connectivity Solutions GmbH | Cable assembly with opposed inverse wire management configurations |
7234944, | Aug 26 2005 | Panduit Corp | Patch field documentation and revision systems |
7244137, | Jun 26 2003 | Intel Corporation | Integrated socket and cable connector |
7267515, | Dec 31 2005 | ERNI PRODUCTION GMBH & CO KG | Plug-and-socket connector |
7280372, | Nov 13 2003 | SAMSUNG ELECTRONICS CO , LTD | Stair step printed circuit board structures for high speed signal transmissions |
7285018, | Jun 23 2004 | Amphenol Corporation | Electrical connector incorporating passive circuit elements |
7303438, | Dec 17 2004 | Molex, LLC | Plug connector with mating protection and alignment means |
7307293, | Apr 29 2002 | SAMSUNG ELECTRONICS CO , LTD | Direct-connect integrated circuit signaling system for bypassing intra-substrate printed circuit signal paths |
7331816, | Mar 09 2006 | MICROSEMI STORAGE SOLUTIONS, INC | High-speed data interface for connecting network devices |
7331830, | Mar 03 2006 | FCI Americas Technology, Inc.; FCI Americas Technology, Inc | High-density orthogonal connector |
7335063, | Jun 30 2005 | Amphenol Corporation | High speed, high density electrical connector |
7354274, | Feb 07 2006 | FCI Americas Technology, Inc | Connector assembly for interconnecting printed circuit boards |
7371117, | Sep 30 2004 | Amphenol Corporation | High speed, high density electrical connector |
7384275, | Aug 13 2004 | FCI Americas Technology, Inc. | High speed, high signal integrity electrical connectors |
7402048, | Mar 30 2006 | Intel Corporation | Technique for blind-mating daughtercard to mainboard |
7422483, | Feb 22 2005 | Molex, LLC | Differential signal connector with wafer-style construction |
7431608, | Feb 20 2006 | Yazaki Corporation | Shielded cable connecting structure |
7445471, | Jul 13 2007 | 3M Innovative Properties Company | Electrical connector assembly with carrier |
7448897, | Dec 17 2004 | Molex, LLC | Plug connector with mating protection |
7462942, | Oct 09 2003 | Advanpack Solutions Pte Ltd | Die pillar structures and a method of their formation |
7485012, | Jun 28 2007 | Aptiv Technologies AG | Electrical connection system having wafer connectors |
7494383, | Jul 23 2007 | Amphenol Corporation | Adapter for interconnecting electrical assemblies |
7510439, | Jun 10 2004 | CommScope, Inc. of North Carolina | Shielded jack assemblies and methods for forming a cable termination |
7534142, | Feb 22 2005 | Molex, LLC | Differential signal connector with wafer-style construction |
7540747, | Apr 29 2005 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Molded lead frame connector with one or more passive components |
7540781, | Jun 23 2004 | Amphenol Corporation | Electrical connector incorporating passive circuit elements |
7549897, | Aug 02 2006 | TE Connectivity Solutions GmbH | Electrical connector having improved terminal configuration |
7575471, | May 14 2004 | Molex, LLC | Dual stacked connector |
7581990, | Apr 04 2007 | Amphenol Corporation | High speed, high density electrical connector with selective positioning of lossy regions |
7585188, | Jul 07 2004 | Molex Incorporated | Edge card connector assembly with high-speed terminals |
7588464, | Feb 23 2007 | KIM, MI KYONG; KIM, YONG-GAK | Signal cable of electronic machine |
7613011, | Apr 01 2004 | SAMSUNG ELECTRONICS CO , LTD | Signal-segregating connector system |
7621779, | Mar 31 2005 | Molex, LLC | High-density, robust connector for stacking applications |
7652381, | Nov 13 2003 | SAMSUNG ELECTRONICS CO , LTD | Interconnect system without through-holes |
7654831, | Jul 18 2008 | Hon Hai Precision Ind. Co., Ltd. | Cable assembly having improved configuration for suppressing cross-talk |
7658654, | Dec 05 2007 | Yazaki Corporation | Female terminal fitting |
7686659, | Jul 02 2005 | Hon Hai Precision Ind. Co., Ltd. | Battery connector assembly |
7690930, | Oct 17 2007 | Electrical connection between cable and printed circuit board for high data speed and high signal frequency | |
7713077, | Feb 26 2009 | Molex, LLC | Interposer connector |
7719843, | Jul 17 2007 | NetApp, Inc | Multiple drive plug-in cable |
7722401, | Apr 04 2007 | Amphenol Corporation | Differential electrical connector with skew control |
7731537, | Jun 20 2007 | Molex, LLC | Impedance control in connector mounting areas |
7744414, | Jul 08 2008 | 3M Innovative Properties Company | Carrier assembly and system configured to commonly ground a header |
7753731, | Jun 30 2005 | Amphenol TCS | High speed, high density electrical connector |
7771233, | Sep 30 2004 | Amphenol Corporation | High speed, high density electrical connector |
7775802, | Dec 05 2008 | TE Connectivity Solutions GmbH | Electrical connector system |
7781294, | Jul 31 2006 | Infineon Technologies Austria AG | Method for producing an integrated circuit including a semiconductor |
7789676, | Aug 19 2008 | TE Connectivity Solutions GmbH | Electrical connector with electrically shielded terminals |
7794240, | Apr 04 2007 | Amphenol Corporation | Electrical connector with complementary conductive elements |
7794278, | Apr 04 2007 | Amphenol Corporation | Electrical connector lead frame |
7806698, | Jul 07 2004 | Molex Incorporated | Edge card connector assembly with high-speed terminals |
7811129, | Dec 05 2008 | TE Connectivity Solutions GmbH | Electrical connector system |
7819675, | Feb 01 2008 | Hon Hai Precision Ind. Co., Ltd. | Grounding member for cable assembly |
7824197, | Oct 09 2009 | Tyco Electronics Corporation | Modular connector system |
7857630, | Apr 21 2006 | Axon Cable | Printed circuit board mounted connector housing shielded cables |
7862344, | Aug 08 2008 | TE Connectivity Solutions GmbH | Electrical connector having reversed differential pairs |
7871294, | May 14 2004 | Molex, LLC | Dual stacked connector |
7871296, | Dec 05 2008 | TE Connectivity Solutions GmbH | High-speed backplane electrical connector system |
7874873, | Sep 06 2005 | Amphenol Corporation | Connector with reference conductor contact |
7887371, | Jun 23 2004 | Amphenol Corporation | Electrical connector incorporating passive circuit elements |
7906730, | Sep 29 2008 | Amphenol Corporation | Ground sleeve having improved impedance control and high frequency performance |
7914304, | Jun 30 2005 | Amphenol Corporation | Electrical connector with conductors having diverging portions |
7976318, | Dec 05 2008 | TE Connectivity Solutions GmbH | Electrical connector system |
7985097, | Dec 20 2006 | Amphenol Corporation | Electrical connector assembly |
7993147, | Feb 16 2009 | TE Connectivity Solutions GmbH | Card edge module connector assembly |
8002581, | May 28 2010 | TE Connectivity Solutions GmbH | Ground interface for a connector system |
8016616, | Dec 05 2008 | TE Connectivity Solutions GmbH | Electrical connector system |
8018733, | Apr 30 2007 | Huawei Technologies Co., Ltd. | Circuit board interconnection system, connector assembly, circuit board and method for manufacturing a circuit board |
8036500, | May 29 2009 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Mid-plane mounted optical communications system and method for providing high-density mid-plane mounting of parallel optical communications modules |
8057267, | Feb 28 2007 | FCI Americas Technology, Inc | Orthogonal header |
8083553, | Jun 30 2005 | Amphenol Corporation | Connector with improved shielding in mating contact region |
8100699, | Jul 22 2010 | Tyco Electronics Corporation | Connector assembly having a connector extender module |
8157573, | Jan 29 2008 | Japan Aviation Electronics Industry Limited | Connector |
8162675, | Sep 09 2008 | Molex, LLC | Connector shield with integrated fastening arrangement |
8167651, | Dec 05 2008 | TE Connectivity Solutions GmbH | Electrical connector system |
8182289, | Sep 23 2008 | Amphenol Corporation | High density electrical connector with variable insertion and retention force |
8192222, | Jul 22 2008 | Yazaki Corporation | Electrical connector with an electrical wire holding member |
8197285, | Jun 25 2009 | Raytheon Company | Methods and apparatus for a grounding gasket |
8210877, | Dec 28 2007 | FCI ASIA PTE LTD | Modular connector |
8215968, | Jun 30 2005 | Amphenol Corporation | Electrical connector with signal conductor pairs having offset contact portions |
8226441, | Sep 09 2008 | Molex, LLC | Connector with improved manufacturability |
8251745, | Nov 07 2007 | FCI Americas Technology, Inc | Electrical connector system with orthogonal contact tails |
8253021, | Jul 13 2009 | Yazaki Corporation | Motor cable device |
8272877, | Sep 23 2008 | Amphenol Corporation | High density electrical connector and PCB footprint |
8308491, | Apr 06 2011 | TE Connectivity Corporation | Connector assembly having a cable |
8308512, | Jan 17 2011 | TE Connectivity Corporation | Connector assembly |
8337243, | Feb 18 2009 | Cinch Connectors, Inc. | Cable assembly with a material at an edge of a substrate |
8338713, | Nov 16 2002 | SAMSUNG ELECTRONICS CO , LTD | Cabled signaling system and components thereof |
8360805, | Apr 08 2008 | Huber+Suhner AG | Connector banks arranged in parallel and floating manner |
8371875, | Sep 30 2004 | Amphenol Corporation | High speed, high density electrical connector |
8371876, | Feb 24 2010 | TE Connectivity Corporation | Increased density connector system |
8382524, | May 21 2010 | Amphenol Corporation | Electrical connector having thick film layers |
8398433, | Sep 13 2011 | All Best Electronics Co., Ltd. | Connector structure |
8419472, | Jan 30 2012 | TE Connectivity Corporation | Grounding structures for header and receptacle assemblies |
8439704, | Sep 09 2008 | Molex, LLC | Horizontally configured connector with edge card mounting structure |
8449312, | Sep 09 2008 | Molex, LLC | Housing with a plurality of wafers and having a nose portion with engagement members |
8449330, | Dec 08 2011 | TE Connectivity Solutions GmbH | Cable header connector |
8465302, | Sep 09 2008 | Molex, LLC | Connector with impedance tuned terminal arrangement |
8465320, | May 14 2004 | Molex, LLC | Dual stacked connector |
8469738, | May 14 2004 | Molex Incorporated | Dual stacked connector |
8469745, | Nov 19 2010 | TE Connectivity Corporation | Electrical connector system |
8475210, | Aug 16 2011 | Hon Hai Precision Industry Co., Ltd. | Electrical connector assembly with high signal density |
8535065, | Jan 09 2012 | TE Connectivity Corporation | Connector assembly for interconnecting electrical connectors having different orientations |
8540525, | Dec 12 2008 | Molex Incorporated | Resonance modifying connector |
8550861, | Sep 09 2009 | Amphenol Corporation | Compressive contact for high speed electrical connector |
8553102, | Feb 10 2009 | Canon Kabushiki Kaisha | Electronic apparatus including multiple differential signal lines |
8556657, | May 25 2012 | TE Connectivity Solutions GmbH | Electrical connector having split footprint |
8588561, | Jul 01 2011 | SAMTEC, INC.; SAMTEC, INC | Transceiver and interface for IC package |
8588562, | Jul 01 2011 | SAMTEC, INC. | Transceiver and interface for IC package |
8597045, | Mar 28 2012 | HON HAI PREICISION INDUSTRY CO., LTD. | Transceiver connector having improved collar clip |
8597055, | Sep 09 2008 | Molex, LLC | Electrical connector |
8657627, | Feb 02 2011 | Amphenol Corporation | Mezzanine connector |
8672707, | Feb 22 2012 | TE Connectivity Solutions GmbH | Connector assembly configured to align communication connectors during a mating operation |
8678860, | Dec 19 2006 | FCI | Shieldless, high-speed, low-cross-talk electrical connector |
8690604, | Oct 19 2011 | TE Connectivity Solutions GmbH | Receptacle assembly |
8696378, | Feb 24 2012 | TE Connectivity Solutions GmbH | Electrical connector assembly and printed circuit board configured to electrically couple to a communication cable |
8715003, | Dec 30 2009 | FCI | Electrical connector having impedance tuning ribs |
8740644, | May 14 2004 | Molex, LLC | Dual stacked connector |
8753145, | Sep 09 2008 | Molex, LLC | Guide frame with two columns connected by cross pieces defining an opening with retention members |
8758051, | Nov 05 2010 | Hitachi Metals, Ltd | Connection structure and a connection method for connecting a differential signal transmission cable to a circuit board |
8771016, | Feb 24 2010 | Amphenol Corporation | High bandwidth connector |
8772636, | Jun 25 2008 | RIDALL, MARK | Wire harness installation structure and wire harness-flattening band |
8787711, | Jul 01 2011 | SAMTEC, INC. | Transceiver and interface for IC package |
8804342, | Feb 22 2012 | TE Connectivity Solutions GmbH | Communication modules having connectors on a leading end and systems including the same |
8814595, | Feb 18 2011 | Amphenol Corporation | High speed, high density electrical connector |
8845364, | Feb 27 2013 | Molex, LLC | High speed bypass cable for use with backplanes |
8864521, | Jun 30 2005 | Amphenol Corporation | High frequency electrical connector |
8870471, | Aug 31 2011 | Yamaichi Electronics Co., Ltd. | Receptacle cage, receptacle assembly, and transceiver module assembly |
8870597, | Feb 15 2012 | Hosiden Corporation | Connector |
8888531, | Oct 11 2011 | TE Connectivity Solutions GmbH | Electrical connector and circuit board assembly including the same |
8888533, | Aug 15 2012 | TE Connectivity Solutions GmbH | Cable header connector |
8911255, | Oct 13 2010 | 3M Innovative Properties Company | Electrical connector assembly and system |
8926377, | Nov 13 2009 | Amphenol Corporation | High performance, small form factor connector with common mode impedance control |
8944831, | Apr 13 2012 | FCI Americas Technology LLC | Electrical connector having ribbed ground plate with engagement members |
8992236, | Mar 03 2011 | WUERTH ELEKTRONIK ICS GMBH & CO KG | Tandem multi-fork push-in pin |
8992237, | Dec 12 2008 | Molex Incorporated | Resonance modifying connector |
8998642, | Jun 29 2006 | Amphenol Corporation | Connector with improved shielding in mating contact region |
9004942, | Oct 17 2011 | Amphenol Corporation | Electrical connector with hybrid shield |
9011177, | Jan 30 2009 | Molex, LLC | High speed bypass cable assembly |
9022806, | Jun 29 2012 | Amphenol Corporation | Printed circuit board for RF connector mounting |
9028201, | Dec 07 2011 | GM Global Technology Operations, LLC | Off axis pump with integrated chain and sprocket assembly |
9028281, | Nov 13 2009 | Amphenol Corporation | High performance, small form factor connector |
9035183, | Dec 27 2011 | Hitachi Metals, Ltd | Connection structure, connection method and differential signal transmission cable |
9035200, | Dec 27 2010 | Yazaki Corporation | Shielding structure for wire harness |
9040824, | May 24 2012 | SAMTEC, INC | Twinaxial cable and twinaxial cable ribbon |
9071001, | Feb 01 2010 | 3M Innovative Properties Company | Electrical connector and assembly |
9118151, | Apr 25 2013 | Intel Corporation | Interconnect cable with edge finger connector |
9119292, | Aug 31 2010 | 3M Innovative Properties Company | Shielded electrical cable in twinaxial configuration |
9124009, | Sep 29 2008 | Amphenol Corporation | Ground sleeve having improved impedance control and high frequency performance |
9142921, | Feb 27 2013 | Molex, LLC | High speed bypass cable for use with backplanes |
9203171, | Aug 01 2013 | Hon Hai Precision Industry Co., Ltd. | Cable connector assembly having simple wiring arrangement between two end connectors |
9210817, | Feb 03 2014 | TE Connectivity Solutions GmbH | Pluggable module |
9214768, | Dec 17 2013 | SUZHOU CHIEF HSIN ELECTRONIC CO , LTD | Communication connector and transmission module thereof |
9219335, | Jun 30 2005 | Amphenol Corporation | High frequency electrical connector |
9225085, | Jun 29 2012 | Amphenol Corporation | High performance connector contact structure |
9232676, | Jun 06 2013 | TE Connectivity Solutions GmbH | Spacers for a cable backplane system |
9246251, | May 03 2012 | Molex, LLC | High density connector |
9246262, | Aug 06 2012 | FCI Americas Technology LLC | Electrical connector including latch assembly with pull tab |
9246278, | Aug 04 2014 | TE Connectivity Solutions GmbH | Connector module with cable exit region gasket |
9246280, | Jun 15 2010 | Molex, LLC | Cage, receptacle and system for use therewith |
9257778, | Apr 13 2012 | FCI Americas Technology LLC | High speed electrical connector |
9257794, | Feb 27 2013 | Molex, LLC | High speed bypass cable for use with backplanes |
9276358, | May 28 2014 | FOURTE DESIGN & DEVELOPMENT | Transceiver module release mechanism |
9281636, | Jan 29 2015 | TE Connectivity Corporation | Cable assembly having a flexible light pipe |
9312618, | Aug 08 2011 | Molex, LLC | Connector with tuned channel |
9350108, | May 14 2004 | Molex, LLC | Connector with frames |
9356401, | Dec 25 2014 | TE Connectivity Solutions GmbH | Electrical connector with ground frame |
9362678, | Feb 27 2013 | Molex, LLC | Connection system for use with a chip |
9373917, | Sep 04 2014 | TE Connectivity Solutions GmbH | Electrical connector having a grounding lattice |
9374165, | Jul 01 2011 | SAMTEC, INC. | Transceiver and interface for IC package |
9385455, | May 03 2012 | Molex, LLC | High density connector |
9389368, | Apr 07 2015 | TE Connectivity Solutions GmbH | Receptacle assembly and set of receptacle assemblies for a communication system |
9391407, | Jun 12 2015 | TE Connectivity Solutions GmbH | Electrical connector assembly having stepped surface |
9413112, | Aug 07 2014 | TE Connectivity Solutions GmbH | Electrical connector having contact modules |
9450344, | Jan 22 2014 | Amphenol Corporation | High speed, high density electrical connector with shielded signal paths |
9490558, | Feb 27 2013 | Molex, LLC | Connection system for use with a chip |
9509101, | Jan 22 2014 | Amphenol Corporation | High speed, high density electrical connector with shielded signal paths |
9509102, | Jan 16 2015 | TE Connectivity Solutions GmbH | Pluggable module for a communication system |
9520689, | Mar 13 2013 | Amphenol Corporation | Housing for a high speed electrical connector |
9531133, | Dec 14 2015 | TE Connectivity Solutions GmbH | Electrical connector having lossy spacers |
9553381, | Sep 04 2013 | Molex, LLC | Connector system with cable by-pass |
9559446, | Jan 12 2016 | TE Connectivity Solutions GmbH | Electrical connector having a signal contact section and a power contact section |
9564696, | Jan 17 2008 | Amphenol Corporation | Electrical connector assembly |
9608348, | Feb 27 2013 | Molex, LLC | High speed bypass cable for use with backplanes |
9651752, | Jul 01 2011 | SAMTEC, INC. | Transceiver and interface for IC package |
9653829, | Jan 16 2015 | TE Connectivity Solutions GmbH | Pluggable module for a communication system |
9660364, | Oct 17 2012 | Intel Corporation | System interconnect for integrated circuits |
9666961, | Sep 03 2015 | TE Connectivity Solutions GmbH | Electrical connector |
9671582, | Dec 31 2013 | Applied Optoelectronics, Inc. | Pluggable optical transceiver module |
9685736, | Nov 12 2014 | Amphenol Corporation | Very high speed, high density electrical interconnection system with impedance control in mating region |
9711901, | Sep 18 2013 | FCI Americas Technology LLC; FCI USA LLC | Electrical connector assembly including polarization member |
9735484, | Mar 25 2013 | FCI Americas Technology LLC | Electrical connector system including electrical cable connector assembly |
9735495, | Mar 25 2013 | FCI Americas Technology LLC | Electrical cable assembly |
9741465, | Dec 31 2012 | FCI Americas Technology LLC | Electrical cable assembly |
9774144, | Jan 22 2014 | Amphenol Corporation | High speed, high density electrical connector with shielded signal paths |
9801301, | May 23 2016 | TE Connectivity Solutions GmbH | Cable backplane system having individually removable cable connector assemblies |
9829662, | Jan 27 2016 | Sumitomo Electric Industries, Ltd. | Optical transceiver having pull-tab |
9841572, | Jul 01 2011 | SAMTEC, INC. | Transceiver and interface for IC package |
9843135, | Jul 31 2015 | SAMTEC, INC | Configurable, high-bandwidth connector |
9929500, | Mar 09 2017 | PINJACK INTERNATIONAL LLC | Pluggable transceiver module with integrated release mechanism |
9929512, | Sep 22 2016 | TE Connectivity Solutions GmbH | Electrical connector having shielding at the interface with the circuit board |
9966165, | Dec 31 2012 | FCI Americas Technology LLC | Electrical cable assembly |
9985367, | Feb 27 2013 | Molex, LLC | High speed bypass cable for use with backplanes |
9985389, | Apr 07 2017 | TE Connectivity Solutions GmbH | Connector assembly having a pin organizer |
20010012730, | |||
20010031579, | |||
20010042632, | |||
20010046810, | |||
20020042223, | |||
20020088628, | |||
20020089464, | |||
20020098738, | |||
20020111068, | |||
20020111069, | |||
20020136519, | |||
20020157865, | |||
20020187688, | |||
20020197043, | |||
20030045140, | |||
20030073331, | |||
20030119362, | |||
20030186580, | |||
20040002262, | |||
20040005815, | |||
20040018757, | |||
20040020674, | |||
20040092164, | |||
20040094328, | |||
20040110421, | |||
20040115968, | |||
20040121633, | |||
20040121652, | |||
20040127078, | |||
20040155328, | |||
20040185708, | |||
20040196112, | |||
20040224559, | |||
20040229510, | |||
20040259419, | |||
20040264894, | |||
20050006126, | |||
20050032430, | |||
20050070160, | |||
20050087359, | |||
20050093127, | |||
20050118869, | |||
20050133245, | |||
20050142944, | |||
20050153584, | |||
20050176835, | |||
20050233610, | |||
20050239339, | |||
20050283974, | |||
20050287869, | |||
20060001163, | |||
20060068640, | |||
20060079119, | |||
20060091507, | |||
20060160429, | |||
20060216969, | |||
20060228922, | |||
20060249820, | |||
20070004282, | |||
20070021001, | |||
20070021002, | |||
20070032104, | |||
20070037419, | |||
20070042639, | |||
20070054554, | |||
20070059961, | |||
20070099486, | |||
20070155241, | |||
20070197095, | |||
20070207641, | |||
20070218765, | |||
20070238358, | |||
20070243741, | |||
20070254517, | |||
20070287332, | |||
20080026638, | |||
20080194146, | |||
20080200955, | |||
20080207023, | |||
20080246555, | |||
20080248658, | |||
20080248659, | |||
20080248660, | |||
20080264673, | |||
20080267620, | |||
20080297988, | |||
20080305689, | |||
20090011641, | |||
20090011645, | |||
20090011664, | |||
20090017682, | |||
20090023330, | |||
20090051558, | |||
20090098767, | |||
20090117386, | |||
20090130913, | |||
20090130918, | |||
20090166082, | |||
20090176400, | |||
20090188716, | |||
20090205194, | |||
20090215309, | |||
20090227141, | |||
20090239395, | |||
20090247012, | |||
20090291593, | |||
20090305533, | |||
20090311908, | |||
20100009571, | |||
20100018738, | |||
20100078738, | |||
20100081302, | |||
20100099299, | |||
20100112850, | |||
20100144167, | |||
20100144168, | |||
20100144175, | |||
20100144201, | |||
20100144203, | |||
20100177489, | |||
20100183141, | |||
20100203768, | |||
20100221951, | |||
20100248544, | |||
20100291806, | |||
20100294530, | |||
20110003509, | |||
20110034075, | |||
20110059643, | |||
20110074213, | |||
20110081114, | |||
20110104948, | |||
20110130038, | |||
20110177699, | |||
20110212632, | |||
20110212633, | |||
20110212649, | |||
20110212650, | |||
20110223807, | |||
20110230095, | |||
20110230096, | |||
20110230104, | |||
20110263156, | |||
20110287663, | |||
20110300757, | |||
20120003848, | |||
20120034798, | |||
20120034820, | |||
20120052712, | |||
20120058665, | |||
20120064762, | |||
20120064779, | |||
20120077369, | |||
20120077380, | |||
20120094531, | |||
20120094536, | |||
20120135643, | |||
20120145429, | |||
20120156929, | |||
20120164860, | |||
20120184136, | |||
20120202363, | |||
20120202386, | |||
20120214344, | |||
20120252266, | |||
20120329294, | |||
20130012038, | |||
20130017712, | |||
20130017715, | |||
20130017733, | |||
20130034977, | |||
20130034999, | |||
20130078870, | |||
20130092429, | |||
20130109232, | |||
20130130547, | |||
20130143442, | |||
20130149899, | |||
20130188325, | |||
20130196553, | |||
20130210246, | |||
20130223036, | |||
20130225006, | |||
20130270000, | |||
20130273781, | |||
20130288521, | |||
20130288525, | |||
20130288539, | |||
20130340251, | |||
20140004724, | |||
20140004726, | |||
20140004746, | |||
20140017944, | |||
20140030905, | |||
20140035755, | |||
20140041937, | |||
20140057493, | |||
20140057494, | |||
20140057498, | |||
20140065883, | |||
20140073174, | |||
20140073181, | |||
20140099844, | |||
20140154927, | |||
20140182885, | |||
20140182890, | |||
20140193993, | |||
20140199885, | |||
20140206230, | |||
20140242844, | |||
20140273551, | |||
20140273557, | |||
20140273627, | |||
20140287627, | |||
20140308852, | |||
20140335707, | |||
20140335736, | |||
20150056856, | |||
20150072561, | |||
20150079829, | |||
20150079845, | |||
20150093083, | |||
20150180578, | |||
20150194751, | |||
20150200483, | |||
20150200496, | |||
20150207247, | |||
20150214666, | |||
20150236450, | |||
20150236451, | |||
20150236452, | |||
20150255926, | |||
20150280351, | |||
20150288108, | |||
20150288110, | |||
20150303608, | |||
20150357736, | |||
20150357761, | |||
20160004022, | |||
20160013594, | |||
20160013596, | |||
20160018606, | |||
20160028189, | |||
20160049746, | |||
20160054527, | |||
20160056553, | |||
20160104948, | |||
20160104956, | |||
20160111825, | |||
20160118745, | |||
20160131859, | |||
20160141807, | |||
20160149343, | |||
20160149362, | |||
20160150633, | |||
20160150639, | |||
20160150645, | |||
20160181713, | |||
20160181732, | |||
20160190747, | |||
20160197423, | |||
20160218455, | |||
20160233598, | |||
20160268714, | |||
20160268739, | |||
20160274316, | |||
20160308296, | |||
20160322770, | |||
20160344141, | |||
20170025783, | |||
20170033478, | |||
20170042070, | |||
20170047692, | |||
20170054250, | |||
20170077643, | |||
20170093093, | |||
20170098901, | |||
20170162960, | |||
20170294743, | |||
20170302011, | |||
20170302030, | |||
20170338595, | |||
20170346234, | |||
20170365942, | |||
20170365943, | |||
20180006416, | |||
20180034175, | |||
20180034190, | |||
20180040989, | |||
20180062323, | |||
20180089966, | |||
20180109043, | |||
20180145438, | |||
20180212385, | |||
20180219331, | |||
20180219332, | |||
20180278000, | |||
20180287280, | |||
20180309214, | |||
20180366880, | |||
20190013617, | |||
20190013625, | |||
20190020155, | |||
20190157812, | |||
20190173236, | |||
20190252832, | |||
20190260147, | |||
20190337472, | |||
20200244025, | |||
20200274267, | |||
20200274301, | |||
20210021085, | |||
CN101164204, | |||
CN101222781, | |||
CN101312275, | |||
CN101330172, | |||
CN101395768, | |||
CN101752700, | |||
CN101841107, | |||
CN102598430, | |||
CN103178408, | |||
CN104011937, | |||
CN105051978, | |||
CN105390857, | |||
CN105406286, | |||
CN106030925, | |||
CN106104933, | |||
CN1127783, | |||
CN1168547, | |||
CN201562814, | |||
CN201781115, | |||
CN202678544, | |||
CN2519434, | |||
CN2682599, | |||
D718253, | Apr 13 2012 | FCI Americas Technology LLC | Electrical cable connector |
D720698, | Mar 15 2013 | FCI Americas Technology LLC | Electrical cable connector |
D750030, | Apr 13 2012 | FCI Americas Technology LLC | Electrical cable connector |
D816044, | Apr 13 2012 | FCI Americas Technology LLC | Electrical cable connector |
DE3447556, | |||
EP997756, | |||
EP1207587, | |||
EP1779472, | |||
EP2169770, | |||
GB1272347, | |||
JP2000311749, | |||
JP2003109708, | |||
JP2003208928, | |||
JP2004031257, | |||
JP2004071404, | |||
JP2006108115, | |||
JP2006260850, | |||
JP2010153191, | |||
JP2010211937, | |||
JP2010266729, | |||
JP2011018651, | |||
JP2012516021, | |||
JP2013021600, | |||
JP2014229597, | |||
JP2016528688, | |||
JP2079571, | |||
JP7302649, | |||
KR1019890007458, | |||
KR1020150067010, | |||
KR1020150101020, | |||
KR1020160038192, | |||
KR1020160076334, | |||
RE33611, | Apr 26 1990 | Molex Incorporated | Environmentally sealed grounding backshell with strain relief |
RE43427, | Dec 17 2004 | Molex, LLC | Plug connector with mating protection |
TW201334318, | |||
TW357771, | |||
TW441942, | |||
WO2004059794, | |||
WO2004059801, | |||
WO2006002356, | |||
WO2006039277, | |||
WO2007005597, | |||
WO2007005599, | |||
WO2008072322, | |||
WO2008124057, | |||
WO2010039188, | |||
WO2011073259, | |||
WO2012078434, | |||
WO2013006592, | |||
WO2015013430, | |||
WO2015112717, | |||
WO2017015470, | |||
WO2019195319, | |||
WO8805218, | |||
WO9712428, | |||
WO9956352, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 03 2018 | Amphenol Corporation | (assignment on the face of the patent) | / | |||
Aug 07 2018 | DUNHAM, JOHN ROBERT | Amphenol Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048883 | /0051 | |
Apr 05 2019 | GAILUS, MARK W | Amphenol Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048883 | /0051 | |
Apr 05 2019 | ASTBURY, ALLAN | Amphenol Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048883 | /0051 | |
Apr 05 2019 | MANTER, DAVID | Amphenol Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048883 | /0051 | |
Apr 05 2019 | CARTIER, MARC B , JR | Amphenol Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048883 | /0051 | |
Apr 05 2019 | SIVARAJAN, VYSAKH | Amphenol Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048883 | /0051 |
Date | Maintenance Fee Events |
Aug 03 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jan 06 2025 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 20 2024 | 4 years fee payment window open |
Jan 20 2025 | 6 months grace period start (w surcharge) |
Jul 20 2025 | patent expiry (for year 4) |
Jul 20 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 20 2028 | 8 years fee payment window open |
Jan 20 2029 | 6 months grace period start (w surcharge) |
Jul 20 2029 | patent expiry (for year 8) |
Jul 20 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 20 2032 | 12 years fee payment window open |
Jan 20 2033 | 6 months grace period start (w surcharge) |
Jul 20 2033 | patent expiry (for year 12) |
Jul 20 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |