A solderless filtered connector is formed by a first insulative housing which is selectively plated with conductive material and is profiled to receive therein a second insulative housing carrying a plurality of filtered terminals in a spaced array. Ground is established by a multi-apertured grounding member which receives the respective filter sleeves therein and is profiled to make wiping engagement with the plated portion of the first housing. A metal shell secured to the first housing defines a mating face for the connector and completes the ground path. Each terminal has a compliant intermediate portion which is received in the bore of a respective filter sleeve to make solderless engagement therewith.

Patent
   4519665
Priority
Dec 19 1983
Filed
Dec 19 1983
Issued
May 28 1985
Expiry
Dec 19 2003
Assg.orig
Entity
Large
143
2
EXPIRED
1. A solderless, filtered electrical connector comprising:
a first elongated housing of insulative material defining a forwardly directed mating face, a rearwardly directed cavity, a plurality of passages extending between said cavity and said mating face, and at least one lateral latching opening, said housing being plated with a conductive material except in and immediately adjacent said passages;
a second housing of insulative material dimensioned to be received in said cavity of said first housing and having a like plurality of passages extending between forward and rearwardly directed faces, at least one laterally directed latching lug positioned to engage a respective latching opening in said first housing;
a grounding member of conductive material interposed between said first and second housing members and having a plurality of apertures aligned with the respective passageways, each aperture being profiled by a plurality of inwardly directed tines; and
a plurality of filtered terminals each formed by a filter sleeve mounted on a compliant portion of a pin terminal.
2. A solderless, filtered electrical connector according to claim 1 further comprising:
a metal member mounted on said mating face of said first housing providing a ground path for said plating.
3. A solderless, filtered electrical connector according to claim 2 further comprising an integral shroud on said metal member, said shroud enclosing said mating face.
4. A solderless, filtered electrical connector according to claim 1 wherein said compliant portion of each said pin terminal comprises a pair of outwardly bowed legs integral at each end and defining a diamond shaped opening therebetween.

The present invention relates to a filtered electrical connector and, in particular, to a connector which obviates the requirement for the use of solder in assembly.

Filtered electrical connectors are quite well known, both in their individual components and in the general structural arrangement. However, most of the prior filtered connectors has had a requirement for the use of solder in at least some portion of the assembly. Either solder was required to make the inner connection between the pin terminal and the interior of the filter sleeve or between the exterior of the filter sleeve and a ground plane. This requirement caused a certain amount of difficulty both in assuring proper contact between the filter and its associated members and in the repair and/or replacement of a completed soldered filtered assembly.

Filter sleeves, filtered terminals, and filtered connectors are well known. A typical coated ferrite RF filter sleeve is disclosed in U.S. Pat. No. 3,743,978 and U.S. Pat. No. Re. 29,258. The typical use of such filter sleeves is with a pin terminal passing through and soldered to the bore with the sleeve terminal assembly soldered by the outer sleeve surface into a hole in a metal ground plane. Examples of this type of use can be found in U.S. Pat. Nos. 3,961,294; 4,215,326 and 4,265,506. While this is the most common type of mounting, it causes a number of manufacturing problems. First, it is labor intensive and not readily adaptable to automation, second, the soldering operation can generate sufficient heat to destroy the filters, third, it is substantially impossible to test the filters and/or the connector until after complete assembly, and finally, it is quite difficult to repair such an assembly. In the case of repair, the malfunctioning filter must first be identified, the solder reheated to remove the bad filter and reheated a second time to insert the replacement. While this type of repair is possible, it requires a highly skilled operator in order to prevent damage to surrounding filters during both solder reheating operations. Clearly this is both labor intensive and not readily adaptable to automation.

Attempts have been made to develop solderless ways in which to mount filter sleeves on pin terminals and in ground planes. These attempts have usually involved the use of inner and/or outer resilient members engaging the respective surfaces of the filter sleeve. Examples of this approach can be found in U.S. Pat. Nos. 3,753,168 and 3,961,295. The major drawback of these approaches has been the large number of parts that are involved and the care necessary for assembly. There is also the problem of the filter sleeves breaking from excessive spring and/or assembly forces.

The present invention overcomes many of the above discussed difficulties of the prior art by providing a completely solderless, filtered electrical connector. The subject connector has a grounding member and a metal shell. The first housing is an elongated member of insulative material defining a rearwardly opening cavity with a plurality of passages extending from the cavity to a forwardly directed mating face. The first housing is plated with a conductive material except for masked portions of the cavity, mating face and passages. The second housing member is also formed of insulative material and defines a like plurality of filter pin assembly passages therein and is profiled to be received in the cavity of the first housing member. The grounding member is formed of resilient conductive material and has a like plurality of apertures therein, each profiled to receive and engage an outer conductive surface of a respective filter sleeve. The metal shell has a shroud enclosing the mating face of the connector. The plurality of filtered terminals each comprises an elongated terminal having a first mating portion, a compliant filter mounting portion, a filter positioning shoulder portion, and a second mating portion, and a filter sleeve of known configuration with a tubular element having conductive inner and outer surfaces.

The present invention will now be described by way of example with reference to the accompanying drawings, in which:

FIG. 1 is an exploded perspective view of the subject invention;

FIG. 2 is a transverse section through the connector of FIG. 1; and

FIG. 3 is a horizontal section through one end of the connector according to the present invention.

FIG. 4 is a three dimensional fragmentary view of an alternative embodiment of the first mating portion of the terminal.

FIGS. 4A-4D are three dimensional fragmentary views of alternative embodiments of the second mating portion of the terminal.

The subject connector 10 has a first housing 12, a second housing 14, a grounding member 16, a metal shell 18 and a plurality of filtered terminals 20 each formed by a terminal 22 and a filter sleeve 24.

The first housing 12 is an elongated member of rigid insulative material defining a mating face 26, a rearwardly opening cavity 28, a patterned array of a plurality of passages 30 extending between the cavity 28 and the mating face 26, and latching openings 32, 34 extending outwardly from opposite sides of the cavity. The first housing 12 is plated with a conductive material 36 except for portions of the cavity 28 and mating face 26 which are masked so that the passages 30 are not plated. The second housing 14 is formed of rigid insulative material with a like patterned array of a plurality of filter passages 38 extending therethrough from a front face 40 to a rear face 42. The second housing 14 is profiled to be received in the cavity 28 of the first housing 12 and includes outwardly directed latching lugs 44, 46.

The grounding member 16 is an elongated piece of resilient conductive material having a like patterned array of a plurality of apertures 48 each profiled by inwardly directed tines 50. The grounding member is formed with a resilient flange 52, 54 at opposite ends thereof.

The shell member 18 is a stamped and formed conductive member having a peripheral mounting flange 56 and an integral shroud 58 which surrounds the mating face 26 of the first housing 12.

Each filtered terminal 20 includes an elongated pin terminal 22 and a filter sleeve 24. Each pin terminal 22 has a first mating end 60, an intermediate filter mounting portion 62 formed by a pair of legs 64, 66, the legs being joined at their ends and bowed in the middle to define a diamond shape opening therebetween, an abutment shoulder 68 and a second mating end 70.

The present invention is assembled by first placing the filter sleeves 24 on the respective terminals 22. As the sleeve 24 slides along the legs 64, 66 they are depressed inwardly and form a wiping contact with the inner conductive surface of the filter sleeve. The sleeve 24 is seated against the shoulder 68. The filtered terminals 20 are then passed through the respective apertures 48 in the grounding member 16 and seated in the passages 38 of the second housing 14. The assembly of the filtered terminals 20, second housing 17 and grounding member 16 is then inserted into the rearwardly directed cavity 28 of the first housing 12 until the lugs 44, 46 engage in the respective openings 32, 34. In this position it will be noted, from FIGS. 2 and 3, that the grounding member 16 assures a good electrical engagement between the plating 36 on the first housing 12 and the respective filter sleeves 24.

It will be appreciated that the mating portions 60, 70 of the terminals 20 can have any configuration including, but not limited to, pin, receptacle, crimp, and insulation piercing profiles. FIG. 4 shows a terminal having a receptacle 160 as the first mating portion. FIGS. 4A-D show terminals having a pin 170, a receptacle 270, a crimpable portion 370 and an insulation piercing portion, respectively for the second mating portion. The receptacles shown are of the type disclosed in U.S. Pat. No. 3,317,887. The crimpable and insulation piercing portions shown are of the types disclosed in U.S. Pat. Nos. 2,818,632 and 3,760,335 respectively. It is to be understood that these are only representative examples of the various mating portions that can be formed for the mating portions of the terminals. The shoulders 68 can be located on the terminal 20 to accommodate various lengths of filter sleeves. The terminal 20 is preferably stamped and formed from standard metal stock and can be plated if so desired.

The filter sleeves 24 are preferably of the type disclosed in U.S. Pat. No. Re. 29,258, the disclosure of which is incorporated herein by reference.

Hollyday, Robert D., Kling, John P., Althouse, Rickie M., Beamenderfer, Robert E., Durbin, Roger

Patent Priority Assignee Title
10122129, May 07 2010 Amphenol Corporation High performance cable connector
10205286, Oct 19 2016 Amphenol Corporation Compliant shield for very high speed, high density electrical interconnection
10243304, Aug 23 2016 Amphenol Corporation Connector configurable for high performance
10348040, Jan 22 2014 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
10381767, May 07 2010 Amphenol Corporation High performance cable connector
10511128, Aug 23 2016 Amphenol Corporation Connector configurable for high performance
10541482, Jul 07 2015 AMPHENOL FCI ASIA PTE LTD ; AMPHENOL FCI CONNECTORS SINGAPORE PTE LTD Electrical connector with cavity between terminals
10601181, Nov 30 2018 AMPHENOL EAST ASIA LTD Compact electrical connector
10651603, Jun 01 2016 AMPHENOL FCI CONNECTORS SINGAPORE PTE LTD High speed electrical connector
10720735, Oct 19 2016 Amphenol Corporation Compliant shield for very high speed, high density electrical interconnection
10777921, Dec 06 2017 AMPHENOL EAST ASIA LTD High speed card edge connector
10840622, Jul 07 2015 Amphenol FCI Asia Pte. Ltd.; Amphenol FCI Connectors Singapore Pte. Ltd. Electrical connector with cavity between terminals
10840649, Nov 12 2014 Amphenol Corporation Organizer for a very high speed, high density electrical interconnection system
10847937, Jan 22 2014 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
10855034, Nov 12 2014 Amphenol Corporation Very high speed, high density electrical interconnection system with impedance control in mating region
10879643, Jul 23 2015 Amphenol Corporation Extender module for modular connector
10916894, Aug 23 2016 Amphenol Corporation Connector configurable for high performance
10931050, Aug 22 2012 Amphenol Corporation High-frequency electrical connector
10931062, Nov 21 2018 Amphenol Corporation High-frequency electrical connector
10944189, Sep 26 2018 AMPHENOL EAST ASIA ELECTRONIC TECHNOLOGY SHENZHEN CO , LTD High speed electrical connector and printed circuit board thereof
10965064, Jun 20 2019 AMPHENOL EAST ASIA LTD SMT receptacle connector with side latching
11070006, Aug 03 2017 Amphenol Corporation Connector for low loss interconnection system
11101611, Jan 25 2019 FCI USA LLC I/O connector configured for cabled connection to the midboard
11146025, Dec 01 2017 Amphenol East Asia Ltd. Compact electrical connector
11189943, Jan 25 2019 FCI USA LLC I/O connector configured for cable connection to a midboard
11189971, Feb 14 2019 Amphenol East Asia Ltd. Robust, high-frequency electrical connector
11205877, Apr 02 2018 Ardent Concepts, Inc. Controlled-impedance compliant cable termination
11217942, Nov 15 2018 AMPHENOL EAST ASIA LTD Connector having metal shell with anti-displacement structure
11264755, Jun 20 2019 Amphenol East Asia Ltd. High reliability SMT receptacle connector
11381015, Dec 21 2018 Amphenol East Asia Ltd. Robust, miniaturized card edge connector
11387609, Oct 19 2016 Amphenol Corporation Compliant shield for very high speed, high density electrical interconnection
11437762, Feb 22 2019 Amphenol Corporation High performance cable connector assembly
11444397, Jul 07 2015 Amphenol FCI Asia Pte. Ltd.; Amphenol FCI Connectors Singapore Pte. Ltd. Electrical connector with cavity between terminals
11444398, Mar 22 2018 Amphenol Corporation High density electrical connector
11469553, Jan 27 2020 FCI USA LLC High speed connector
11469554, Jan 27 2020 FCI USA LLC High speed, high density direct mate orthogonal connector
11522310, Aug 22 2012 Amphenol Corporation High-frequency electrical connector
11539171, Aug 23 2016 Amphenol Corporation Connector configurable for high performance
11563292, Nov 21 2018 Amphenol Corporation High-frequency electrical connector
11569613, Apr 19 2021 AMPHENOL EAST ASIA LTD Electrical connector having symmetrical docking holes
11588277, Nov 06 2019 Amphenol East Asia Ltd. High-frequency electrical connector with lossy member
11637390, Jan 25 2019 FCI USA LLC I/O connector configured for cable connection to a midboard
11637391, Mar 13 2020 AMPHENOL COMMERCIAL PRODUCTS CHENGDU CO , LTD Card edge connector with strength member, and circuit board assembly
11637401, Aug 03 2017 Amphenol Corporation Cable connector for high speed in interconnects
11652307, Aug 20 2020 Amphenol East Asia Electronic Technology (Shenzhen) Co., Ltd. High speed connector
11670879, Jan 28 2020 FCI USA LLC High frequency midboard connector
11677188, Apr 02 2018 Ardent Concepts, Inc. Controlled-impedance compliant cable termination
11688980, Jan 22 2014 Amphenol Corporation Very high speed, high density electrical interconnection system with broadside subassemblies
11710917, Oct 30 2017 AMPHENOL FCI ASIA PTE LTD Low crosstalk card edge connector
11715914, Jan 22 2014 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
11715922, Jan 25 2019 FCI USA LLC I/O connector configured for cabled connection to the midboard
11721928, Jul 23 2015 Amphenol Corporation Extender module for modular connector
11728585, Jun 17 2020 Amphenol East Asia Ltd. Compact electrical connector with shell bounding spaces for receiving mating protrusions
11735852, Sep 19 2019 Amphenol Corporation High speed electronic system with midboard cable connector
11742601, May 20 2019 Amphenol Corporation High density, high speed electrical connector
11742620, Nov 21 2018 Amphenol Corporation High-frequency electrical connector
11757215, Sep 26 2018 Amphenol East Asia Electronic Technology (Shenzhen) Co., Ltd. High speed electrical connector and printed circuit board thereof
11757224, May 07 2010 Amphenol Corporation High performance cable connector
11764522, Apr 22 2019 Amphenol East Asia Ltd. SMT receptacle connector with side latching
11764523, Nov 12 2014 Amphenol Corporation Very high speed, high density electrical interconnection system with impedance control in mating region
11799230, Nov 06 2019 Amphenol East Asia Ltd. High-frequency electrical connector with in interlocking segments
11799246, Jan 27 2020 FCI USA LLC High speed connector
11817639, Aug 31 2020 AMPHENOL COMMERCIAL PRODUCTS CHENGDU CO , LTD Miniaturized electrical connector for compact electronic system
11817655, Sep 25 2020 AMPHENOL COMMERCIAL PRODUCTS CHENGDU CO , LTD Compact, high speed electrical connector
11817657, Jan 27 2020 FCI USA LLC High speed, high density direct mate orthogonal connector
11824311, Aug 03 2017 Amphenol Corporation Connector for low loss interconnection system
11831092, Jul 28 2020 Amphenol East Asia Ltd. Compact electrical connector
11831106, May 31 2016 Amphenol Corporation High performance cable termination
11837814, Jul 23 2015 Amphenol Corporation Extender module for modular connector
11870171, Oct 09 2018 AMPHENOL COMMERCIAL PRODUCTS CHENGDU CO , LTD High-density edge connector
11901663, Aug 22 2012 Amphenol Corporation High-frequency electrical connector
4580863, Feb 19 1985 AMP-DEUTSCHLAND GMBH; AMP Incorporated Electrical contact socket which is manufactured with simplified tooling
4618196, May 30 1985 ITT Corporation Gender reversal connector
4624515, Apr 17 1985 Thomas & Betts Corporation Electrical connector with grounding clip
4647122, Aug 16 1985 ITT Corporation Filter connector
4648681, Dec 20 1984 AMP Incorporated Filtered electrical plug
4659163, Jun 13 1984 AMP Incorporated Filtered shielded connector assembly
4679013, Dec 20 1985 AMP Incorporated Filtered electrical connector
4702538, Sep 20 1985 Amphenol Corporation Shielded modular connector for use with shielded twisted pair cable
4712849, Jul 10 1985 Siemens Aktiengesellschaft Device connecting the shielding of plugs to a subrack ground
4781604, Mar 23 1987 Thomas & Betts International, Inc Electrical connector including a metallic housing and integral ground contact
4786260, Jun 10 1986 Switchcraft, Inc. Electrical cable assembly
4808118, Nov 25 1987 ITT Corporation Retention and ground plane connector clip
4875865, Jul 15 1988 AMP Incorporated; AMP INCORPORATED P O BOX 3608, HARRISBURG, PA 17105 Coaxial printed circuit board connector
4897046, Oct 03 1986 OHIO ASSOCIATED ENTERPRISES, INC ; Minnesota Mining and Manufacturing Company Shielded connector system for coaxial cables
4906209, Oct 01 1987 Murata Manufacturing Co., Ltd. Feed-through capacitor having a compliant pin terminal
4930200, Jul 28 1989 Thomas & Betts International, Inc Method of making an electrical filter connector
4941831, May 12 1986 OHIO ASSOCIATED ENTERPRISES, INC ; Minnesota Mining and Manufacturing Company Coaxial cable termination system
4964814, Oct 03 1986 Minnesota Mining and Manufacturing Co. Shielded and grounded connector system for coaxial cables
4992061, Jul 28 1989 Thomas & Betts Corporation Electrical filter connector
5184965, May 04 1992 Minnesota Mining and Manufacturing Company Connector for coaxial cables
5257949, Jan 22 1992 ITT Corporation Connector with interchangeable contacts
5340334, Jul 19 1993 SPECTRUM CONTROL,INC Filtered electrical connector
5399099, Aug 12 1993 SPECTRUM CONTROL,INC EMI protected tap connector
5417591, Dec 04 1992 HOLGER DEMMLER Connection device for an electrical arrangement shielded by an electrically conductive wall of a housing
5531614, May 08 1991 Amphenol Corporation Composite canned data bus coupler connector
5586912, Nov 09 1992 Burndy Corporation High density filtered connector
5752839, Jun 30 1995 CINCH CONNECTORS, INC Coaxial connector for press fit mounting
5971770, Nov 05 1997 CINCH CONNECTORS, INC Coaxial connector with bellows spring portion or raised bump
6042424, Oct 16 1997 Smiths Group PLC Multi-contact connector for screened cables
6875060, Oct 21 2002 CommScope EMEA Limited; CommScope Technologies LLC High density patching system
7335063, Jun 30 2005 Amphenol Corporation High speed, high density electrical connector
7371117, Sep 30 2004 Amphenol Corporation High speed, high density electrical connector
7641516, Sep 19 2008 HARRIS GLOBAL COMMUNICATIONS, INC Electrical connector
7722401, Apr 04 2007 Amphenol Corporation Differential electrical connector with skew control
7753731, Jun 30 2005 Amphenol TCS High speed, high density electrical connector
7771233, Sep 30 2004 Amphenol Corporation High speed, high density electrical connector
7794240, Apr 04 2007 Amphenol Corporation Electrical connector with complementary conductive elements
7794278, Apr 04 2007 Amphenol Corporation Electrical connector lead frame
8172614, Feb 04 2009 Amphenol Corporation Differential electrical connector with improved skew control
8371875, Sep 30 2004 Amphenol Corporation High speed, high density electrical connector
8460032, Feb 04 2009 Amphenol Corporation Differential electrical connector with improved skew control
8491313, Feb 02 2011 Amphenol Corporation Mezzanine connector
8550861, Sep 09 2009 Amphenol Corporation Compressive contact for high speed electrical connector
8636543, Feb 02 2011 Amphenol Corporation Mezzanine connector
8657627, Feb 02 2011 Amphenol Corporation Mezzanine connector
8727791, Jan 17 2008 Amphenol Corporation Electrical connector assembly
8771016, Feb 24 2010 Amphenol Corporation High bandwidth connector
8801464, Feb 02 2011 Amphenol Corporation Mezzanine connector
8864521, Jun 30 2005 Amphenol Corporation High frequency electrical connector
8926377, Nov 13 2009 Amphenol Corporation High performance, small form factor connector with common mode impedance control
9004942, Oct 17 2011 Amphenol Corporation Electrical connector with hybrid shield
9017114, Sep 09 2009 Amphenol Corporation Mating contacts for high speed electrical connectors
9028281, Nov 13 2009 Amphenol Corporation High performance, small form factor connector
9190745, Jan 17 2008 Amphenol Corporation Electrical connector assembly
9219335, Jun 30 2005 Amphenol Corporation High frequency electrical connector
9225085, Jun 29 2012 Amphenol Corporation High performance connector contact structure
9300074, Sep 30 2004 Amphenol Corporation High speed, high density electrical connector
9450344, Jan 22 2014 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
9484674, Mar 14 2013 Amphenol Corporation Differential electrical connector with improved skew control
9509101, Jan 22 2014 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
9520689, Mar 13 2013 Amphenol Corporation Housing for a high speed electrical connector
9564696, Jan 17 2008 Amphenol Corporation Electrical connector assembly
9583853, Jun 29 2012 Amphenol Corporation Low cost, high performance RF connector
9660384, Oct 17 2011 Amphenol Corporation Electrical connector with hybrid shield
9705255, Jun 30 2005 Amphenol Corporation High frequency electrical connector
9774144, Jan 22 2014 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
9780493, Sep 09 2009 Amphenol Corporation Mating contacts for high speed electrical connectors
9831588, Aug 22 2012 Amphenol Corporation High-frequency electrical connector
9899774, Sep 30 2004 Amphenol Corporation High speed, high density electrical connector
D451476, Nov 23 2000 Hon Hai Precision Ind. Co., Ltd. Electrical connector
ER3384,
ER56,
Patent Priority Assignee Title
4260966, Dec 23 1977 AMPHENOL CORPORATION, A CORP OF DE High current filter connector with removable contact members
4276523, Aug 17 1979 AMPHENOL CORPORATION, A CORP OF DE High density filter connector
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 15 1983ALTHOUSE, RICKIE M AMP IncorporatedASSIGNMENT OF ASSIGNORS INTEREST 0042100915 pdf
Dec 15 1983BEAMENDERFER, ROBERT E AMP IncorporatedASSIGNMENT OF ASSIGNORS INTEREST 0042100915 pdf
Dec 15 1983KLING, JOHN P AMP IncorporatedASSIGNMENT OF ASSIGNORS INTEREST 0042100915 pdf
Dec 16 1983DURBIN, ROGERAMP IncorporatedASSIGNMENT OF ASSIGNORS INTEREST 0042100915 pdf
Dec 16 1983HOLLYDAY, ROBERT D AMP IncorporatedASSIGNMENT OF ASSIGNORS INTEREST 0042100915 pdf
Dec 19 1983AMP Incorporated(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 27 1988REM: Maintenance Fee Reminder Mailed.
Feb 27 1989M173: Payment of Maintenance Fee, 4th Year, PL 97-247.
Feb 27 1989M177: Surcharge for Late Payment, PL 97-247.
Mar 02 1989ASPN: Payor Number Assigned.
Dec 03 1992RMPN: Payer Number De-assigned.


Date Maintenance Schedule
May 28 19884 years fee payment window open
Nov 28 19886 months grace period start (w surcharge)
May 28 1989patent expiry (for year 4)
May 28 19912 years to revive unintentionally abandoned end. (for year 4)
May 28 19928 years fee payment window open
Nov 28 19926 months grace period start (w surcharge)
May 28 1993patent expiry (for year 8)
May 28 19952 years to revive unintentionally abandoned end. (for year 8)
May 28 199612 years fee payment window open
Nov 28 19966 months grace period start (w surcharge)
May 28 1997patent expiry (for year 12)
May 28 19992 years to revive unintentionally abandoned end. (for year 12)