A method of video processing includes determining, for a conversion between a current block of a video and a bitstream representation of the video, an operation associated with a list of motion candidates based on a condition related to a characteristic of the current block. The list of motion candidates is constructed for a coding technique or based on information from previously processed blocks of the video. The method also includes performing the conversion based on the determining.

Patent
   11653002
Priority
Jun 06 2019
Filed
Dec 02 2021
Issued
May 16 2023
Expiry
Jun 08 2040
Assg.orig
Entity
Large
0
101
currently ok
1. A method of video processing, comprising:
constructing, for a conversion between a first video block of a video and the bitstream of the video, a block vector candidate list;
determining, based on the block vector candidate list, a motion information for the first video block in a first prediction mode, wherein in the first prediction mode, prediction samples of the first video block are derived from blocks of sample values of a same video region including the first video block;
determining whether to update a first history-based predictor table with the motion information of the first video block based on a first condition that relates to a size of the first video block; and
performing the conversion based on the motion information of the first video block;
wherein the first history-based predictor table includes a set of block vector candidates, each of which is associated with corresponding motion information of a previous video block in a picture including the first video block, and arrangement of the motion candidates in the history-based predictor table is based on a sequence of addition of the motion candidates into the table,
wherein the first history-based predictor table is updated with the motion information of the first video block in response to the size of the first video block being greater than a threshold.
15. A non-transitory computer-readable storage medium storing instructions that cause a processor to:
construct, for a conversion between a first video block of a video and the bitstream of the video, a block vector candidate list;
determining, based on the block vector candidate list, a motion information for the first video block in a first prediction mode, wherein in the first prediction mode, prediction samples of the first video block are derived from blocks of sample values of a same video region including the first video block;
determine, whether to update a first history-based predictor table with the motion information of the first video block based on a first condition that relates to a size of the first video block; and
perform the conversion based on the motion information of the first video block;
wherein the first history-based predictor table includes a set of block vector candidates, each of which is associated with corresponding motion information of a previous video block in a picture including the first video block, and arrangement of the motion candidates in the history-based predictor table is based on a sequence of addition of the motion candidates into the table,
wherein the first history-based predictor table is updated with the motion information of the first video block in response to the size of the first video block being greater than a threshold.
12. An apparatus for processing video data comprising a processor and a non-transitory memory with instructions thereon, wherein the instructions upon execution by the processor, cause the processor to:
construct, for a conversion between a first video block of a video and the bitstream of the video, a block vector candidate list;
determining, based on the block vector candidate list, a motion information for the first video block in a first prediction mode, wherein in the first prediction mode, prediction samples of the first video block are derived from blocks of sample values of a same video region including the first video block;
determine, whether to update a first history-based predictor table with the motion information of the first video block based on a first that relates to a size of the first video block; and
perform the conversion based on the motion information of the first video block;
wherein the first history-based predictor table includes a set of block vector candidates, each of which is associated with corresponding motion information of a previous video block in a picture including the first video block, and arrangement of the motion candidates in the history-based predictor table is based on a sequence of addition of the motion candidates into the table,
wherein the first history-based predictor table is updated with the motion information of the first video block in response to the size of the first video block being greater than a threshold.
16. A non-transitory computer-readable recording medium storing a bitstream of a video which is generated by a method performed by a video processing apparatus, wherein the method comprises:
constructing, for a conversion between a first video block of a video and the bitstream of the video, a block vector candidate list;
determining, based on the block vector candidate list, a motion information for the first video block in a first prediction mode, wherein in the first prediction mode, prediction samples of the first video block are derived from blocks of sample values of a same video region including the first video block;
determining, whether to update a first history-based predictor table with the motion information of the first video block based on a first condition that relates to a size of the first video block; and
performing the conversion based on the motion information of the first video block;
generating the bitstream based on the motion information of the first video block;
wherein the first history-based predictor table includes a set of block vector candidates, each of which is associated with corresponding motion information of a previous video block in a picture including the first video block, and arrangement of the motion candidates in the history-based predictor table is based on a sequence of addition of the motion candidates into the table,
wherein the first history-based predictor table is updated with the motion information of the first video block in response to the size of the first video block being greater than a threshold.
2. The method of claim 1, wherein in the first prediction mode, constructing the block vector candidate list comprises inserting block vector candidates derived from spatial neighboring blocks of the first video block.
3. The method of claim 2, wherein block vector candidates derived from spatial neighboring blocks of the first video block are inserted to the block vector candidate list in response to the size of the video block being greater than the threshold.
4. The method of claim 2, wherein block vector candidates derived from spatial neighboring blocks of the first video block are inserted to the block vector candidate list in response to the prediction modes of the spatial neighboring blocks being same as the first prediction mode.
5. The method of claim 2, wherein in the first prediction mode, one or more pruning operations are performed when inserting the block vector candidates to the block vector candidate list, and the number of maximum pruning operations is reduced or set to 0 in response to the size of the first video block being no greater than the threshold.
6. The method of claim 2, wherein the block vector candidate list only includes motion candidates from the first history-based predictor table and/or default candidates in response to the size of the first video block being no greater than the threshold.
7. The method of claim 1, wherein the size of the first video block being greater than the threshold is W×H being greater than 16, wherein W is a width of the video block and H is a height of the first video block.
8. The method of claim 1, wherein a motion candidate list and a second history-based predictor table are applied in a second prediction mode for a second video block of the video,
wherein in the second prediction mode, prediction samples of the second video block are derived from blocks of sample values of a picture different from the picture comprising the second video block,
wherein the second history-based predictor table is updated in response to a second condition relating to relationship between size of the second video block and a threshold included in the bitstream being satisfied.
9. The method of claim 8, wherein a pruning operation among a motion candidate from the second history-based predictor table and other motion candidates which have existed in the motion candidate list is removed.
10. The method of claim 1, wherein the conversion includes encoding the current video block into the bitstream.
11. The method of claim 1, wherein the conversion includes decoding the current video block from the bitstream.
13. The apparatus of claim 12, wherein the size of the first video block being greater than the threshold is W×H being greater than 16, wherein W is a width of the first video block and H is a height of the first video block.
14. The apparatus of claim 12, wherein a second history-based predictor table is updated with a second motion information of the video block in response to a second condition relating to relationship between a size of the second video block and a threshold included in the bitstream being satisfied, and
wherein a motion candidate list and the second history-based predictor table are applied in a second prediction mode for a second video block of the video,
wherein in the second prediction mode, prediction samples of the video block are derived from blocks of sample values of a picture different from the picture comprising the second video block.
17. The non-transitory computer-readable storage medium of claim 15,
wherein a candidate list and a second history-based predictor table are applied in a second prediction mode for a second video block of the video,
wherein in the second prediction mode, prediction samples of the video block are derived from blocks of sample values of a picture different from the picture comprising the second video block,
wherein the second history-based predictor table is updated in response to a second condition relates to relationship between the size of the second video block and a threshold included in the bitstream being satisfied.
18. The non-transitory computer-readable storage medium of claim 15, wherein in the first prediction mode, constructing the first block vector candidate list comprises inserting block vector candidates derived from spatial neighboring blocks of the first video block.
19. The non-transitory computer-readable recording medium of claim 16,
wherein a motion candidate list and a second history-based predictor table are applied in a second prediction mode for a second video block of the video,
wherein in the second prediction mode, prediction samples of the video block are derived from blocks of sample values of a picture different from the picture comprising the second video block,
wherein the second history-based predictor table is updated in response to a second condition relates to relationship between the size of the second video block and a threshold included in the bitstream being satisfied.
20. The non-transitory computer-readable recording medium of claim 16, wherein in the first prediction mode, constructing the first block vector candidate list comprises inserting block vector candidates derived from spatial neighboring blocks of the first video block.

This application is a continuation of International Patent Application No. PCT/CN2020/094865, filed on Jun. 8, 2020, which claims the priority to and benefits of International Patent Application No. PCT/CN2019/090409 filed on Jun. 6, 2019, International Patent Application No. PCT/CN2019/092438 filed on Jun. 22, 2019, and International Patent Application No. PCT/CN2019/105180 filed on Sep. 10, 2019. All the aforementioned patent applications are hereby incorporated by reference in their entireties.

This document is related to video and image coding and decoding technologies.

Digital video accounts for the largest bandwidth use on the internet and other digital communication networks. As the number of connected user devices capable of receiving and displaying video increases, it is expected that the bandwidth demand for digital video usage will continue to grow.

The disclosed techniques may be used by video or image decoder or encoder embodiments to perform coding or decoding of video bitstreams intra block copy partitioning techniques at the sub-block level.

In one example aspect, a method of video processing is disclosed. The method includes determining, for a conversion between a current block of a video and a bitstream representation of the video, that the current block is split into multiple sub-blocks. At least one of the multiple blocks is coded using a modified intra-block copy (IBC) coding technique that uses reference samples from one or more video regions from a current picture of the current block. The method also includes performing the conversion based on the determining.

In another example aspect, a method of video processing is disclosed. The method includes determining, for a conversion between a current block of a video and a bitstream representation of the video, that the current block is split into multiple sub-blocks. Each of the multiple sub-blocks is coded in the coded representation using a corresponding coding technique according to a pattern. The method also includes performing the conversion based on the determining.

In another example aspect, a method of video processing is disclosed. The method includes determining, for a conversion between a current block of a video and a bitstream representation of the video, an operation associated with a list of motion candidates based on a condition related to a characteristic of the current block. The list of motion candidates is constructed for a coding technique or based on information from previously processed blocks of the video. The method also includes performing the conversion based on the determining.

In another example aspect, a method of video processing is disclosed. The method includes determining, for a conversion between a current block of a video and a bitstream representation of the video, that the current block coded using an inter coding technique based on temporal information is split into multiple sub-blocks. At least one of the multiple blocks is coded using a modified intra-block copy (IBC) coding technique that uses reference samples from one or more video regions from a current picture that includes the current block. The method also includes performing the conversion based on the determining.

In another example aspect, a method of video processing is disclosed. The method includes determining to use a sub-block intra block copy (sbIBC) coding mode in a conversion between a current video block in a video region and a bitstream representation of the current video block in which the current video block is split into multiple sub-blocks and each sub-block is coded based on reference samples from the video region, wherein sizes of the sub-blocks are based on a splitting rule and performing the conversion using the sbIBC coding mode for the multiple sub-blocks.

In another example aspect, a method of video processing is disclosed. The method includes determining to use a sub-block intra block copy (sbIBC) coding mode in a conversion between a current video block in a video region and a bitstream representation of the current video block in which the current video block is split into multiple sub-blocks and each sub-block is coded based on reference samples from the video region and performing the conversion using the sbIBC coding mode for the multiple sub-blocks, wherein the conversion includes determining an initialized motion vector (initMV) for a given sub-block, identifying a reference block from the initMV, and deriving motion vector (MV) information for the given sub-block using MV information for the reference block.

In another example aspect, a method of video processing is disclosed. The method includes determining to use a sub-block intra block copy (sbIBC) coding mode in a conversion between a current video block in a video region and a bitstream representation of the current video block in which the current video block is split into multiple sub-blocks and each sub-block is coded based on reference samples from the video region and performing the conversion using the sbIBC coding mode for the multiple sub-blocks, wherein the conversion includes generating a sub-block IBC candidate.

In another example aspect, a method of video processing is disclosed. The method includes performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a sub-block intra block coding (sbIBC) mode and a second sub-block of the multiple sub-blocks using an intra coding mode.

In another example aspect, a method of video processing is disclosed. The method includes performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing all sub-blocks of the multiple sub-blocks using an intra coding mode.

In another example aspect, a method of video processing is disclosed. The method includes performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing all of the multiple sub-blocks using a palette coding mode in which a palette of representative pixel values is used for coding each sub-block.

In another example aspect, a method of video processing is disclosed. The method includes performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a palette mode in which a palette of representative pixel values is used for coding the first sub-block and a second sub-block of the multiple sub-blocks using an intra block copy coding mode.

In another example aspect, a method of video processing is disclosed. The method includes performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a palette mode in which a palette of representative pixel values is used for coding the first sub-block and a second sub-block of the multiple sub-blocks using an intra coding mode.

In another example aspect, a method of video processing is disclosed. The method includes performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a sub-block intra block coding (sbIBC) mode and a second sub-block of the multiple sub-blocks using an inter coding mode.

In another example aspect, a method of video processing is disclosed. The method includes performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a sub-block intra coding mode and a second sub-block of the multiple sub-blocks using an inter coding mode.

In another example aspect, a method of video processing is disclosed. The method includes making a decision to use the method recited in any of above claims for encoding the current video block into the bitstream representation; and including information indicative of the decision in the bitstream representation at a decoder parameter set level or a sequence parameter set level or a video parameter set level or a picture parameter set level or a picture header level or a slice header level or a tile group header level or a largest coding unit level or a coding unit level or a largest coding unit row level or a group of LCU level or a transform unit level or a prediction unit level or a video coding unit level.

In another example aspect, a method of video processing is disclosed. The method includes making a decision to use the method recited in any of above claims for encoding the current video block into the bitstream representation based on an encoding condition; and performing the encoding using the method recited in any of the above claims, wherein the condition is based on one or more of: a position of coding unit, prediction unit, transform unit, the current video block or a video coding unit of the current video block.

In another example aspect, a method of video processing is disclosed. The method includes determining to use an intra block copy mode and an inter prediction mode for conversion between blocks in a video region and a bitstream representation of the video region; and performing the conversion using the intra block copy mode and the inter prediction mode for a block in the video region.

In another example aspect, a method of video processing is disclosed. The method includes performing, during a conversion between a current video block and a bitstream representation of the current video block, a motion candidate list construction process depending and/or a table update process for updating history-based motion vector predictor tables, based on a coding condition, and performing the conversion based on the motion candidate list construction process and/or the table update process.

In another example aspect, the above-described methods may be implemented by a video decoder apparatus that comprises a processor.

In another example aspect, the above-described methods may be implemented by a video encoder apparatus that comprises a processor.

In yet another example aspect, these methods may be embodied in the form of processor-executable instructions and stored on a computer-readable program medium.

These, and other, aspects are further described in the present document.

FIG. 1 shows a derivation process for merge candidate list construction.

FIG. 2 shows an example of positions of spatial merge candidates.

FIG. 3 shows an example of candidate pairs considered for redundancy check of spatial merge candidates.

FIG. 4 shows an example positions for the second PU of N×2N and 2N×N partitions.

FIG. 5 shows examples of illustration of motion vector scaling for temporal merge candidate.

FIG. 6 shows an example of candidate positions for temporal merge candidate, C0 and C1.

FIG. 7 shows example of combined bi-predictive merge candidate.

FIG. 8 shows examples of derivation process for motion vector prediction candidates.

FIG. 9 shows an example illustration of motion vector scaling for spatial motion vector candidate.

FIG. 10 shows an example simplified affine motion model for 4-parameter affine mode (left) and 6-parameter affine model (right).

FIG. 11 shows an example of affine motion vector field per sub-block.

FIG. 12 shows an example Candidates position for affine merge mode.

FIG. 13 shows an example of Modified merge list construction process.

FIG. 14 shows an example of triangle partition based inter prediction.

FIG. 15 shows an example of a CU applying the 1st weighting factor group.

FIG. 16 shows an example of motion vector storage.

FIG. 17 shows an example of ultimate motion vector expression (UMVE) search process.

FIG. 18 shows an example of UMVE search points.

FIG. 19 shows an example of MVD (0, 1) mirrored between list 0 and list 1 in DMVR

FIG. 20 shows MVs that may be checked in one iteration.

FIG. 21 is an example of intra block copy.

FIG. 22 is a block diagram of an example of a video processing apparatus.

FIG. 23 is a flowchart for an example of a video processing method.

FIG. 24 is a block diagram of an example video processing system in which disclosed techniques may be implemented.

FIG. 25 is a flowchart representation of a method for video processing in accordance with the present technology.

FIG. 26 is a flowchart representation of another method for video processing in accordance with the present technology.

FIG. 27 is a flowchart representation of another method for video processing in accordance with the present technology.

FIG. 28 is a flowchart representation of yet another method for video processing in accordance with the present technology.

The present document provides various techniques that can be used by a decoder of image or video bitstreams to improve the quality of decompressed or decoded digital video or images. For brevity, the term “video” is used herein to include both a sequence of pictures (traditionally called video) and individual images. Furthermore, a video encoder may also implement these techniques during the process of encoding in order to reconstruct decoded frames used for further encoding.

Section headings are used in the present document for ease of understanding and do not limit the embodiments and techniques to the corresponding sections. As such, embodiments from one section can be combined with embodiments from other sections.

This document is related to video coding technologies. Specifically, it is related to intra block copy (a.k.a current picture referencing, CPR) coding. It may be applied to the existing video coding standard like HEVC, or the standard (Versatile Video Coding) to be finalized. It may be also applicable to future video coding standards or video codec.

Video coding standards have evolved primarily through the development of the well-known ITU-T and ISO/IEC standards. The ITU-T produced H.261 and H.263, ISO/IEC produced MPEG-1 and MPEG-4 Visual, and the two organizations jointly produced the H.262/MPEG-2 Video and H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/HEVC standards. Since H.262, the video coding standards are based on the hybrid video coding structure wherein temporal prediction plus transform coding are utilized. To explore the future video coding technologies beyond HEVC, Joint Video Exploration Team (JVET) was founded by VCEG and MPEG jointly in 2015. Since then, many new methods have been adopted by JVET and put into the reference software named Joint Exploration Model (JEM) In April 2018, the Joint Video Expert Team (JVET) between VCEG (Q6/16) and ISO/IEC JTC1 SC29/WG11 (MPEG) was created to work on the VVC standard targeting at 50% bitrate reduction compared to HEVC.

2.1 Inter Prediction in HEVC/H.265

For inter-coded coding units (CUs), it may be coded with one prediction unit (PU), 2 PUs according to partition mode. Each inter-predicted PU has motion parameters for one or two reference picture lists. Motion parameters include a motion vector and a reference picture index. Usage of one of the two reference picture lists may also be signaled using inter_pred_idc. Motion vectors may be explicitly coded as deltas relative to predictors.

When a CU is coded with skip mode, one PU is associated with the CU, and there are no significant residual coefficients, no coded motion vector delta or reference picture index. A merge mode is specified whereby the motion parameters for the current PU are obtained from neighbouring PUs, including spatial and temporal candidates. The merge mode can be applied to any inter-predicted PU, not only for skip mode. The alternative to merge mode is the explicit transmission of motion parameters, where motion vector (to be more precise, motion vector differences (MVD) compared to a motion vector predictor), corresponding reference picture index for each reference picture list and reference picture list usage are signaled explicitly per each PU. Such a mode is named Advanced motion vector prediction (AMVP) in this disclosure.

When signaling indicates that one of the two reference picture lists is to be used, the PU is produced from one block of samples. This is referred to as ‘uni-prediction’. Uni-prediction is available both for P-slices and B-slices.

When signaling indicates that both of the reference picture lists are to be used, the PU is produced from two blocks of samples. This is referred to as ‘bi-prediction’. Bi-prediction is available for B-slices only.

2.1.1 Reference Picture List

In HEVC, the term inter prediction is used to denote prediction derived from data elements (e.g., sample values or motion vectors) of reference pictures other than the current decoded picture. Like in H.264/AVC, a picture can be predicted from multiple reference pictures. The reference pictures that are used for inter prediction are organized in one or more reference picture lists. The reference index identifies which of the reference pictures in the list should be used for creating the prediction signal.

A single reference picture list, List 0, is used for a P slice and two reference picture lists, List 0 and List 1 are used for B slices. It should be noted reference pictures included in List 0/1 can be from past and future pictures in terms of capturing/display order.

2.1.2 Merge Mode

2.1.2.1 Derivation of Candidates for Merge Mode

When a PU is predicted using merge mode, an index pointing to an entry in the merge candidates list is parsed from the bitstream and used to retrieve the motion information. The construction of this list is specified in the HEVC standard and can be summarized according to the following sequence of steps:

Step 1: Initial candidates derivation

Step 2: Additional candidates insertion

These steps are also schematically depicted in FIG. 1. For spatial merge candidate derivation, a maximum of four merge candidates are selected among candidates that are located in five different positions. For temporal merge candidate derivation, a maximum of one merge candidate is selected among two candidates. Since constant number of candidates for each PU is assumed at decoder, additional candidates are generated when the number of candidates obtained from step 1 does not reach the maximum number of merge candidate (MaxNumMergeCand) which is signalled in slice header. Since the number of candidates is constant, index of best merge candidate is encoded using truncated unary binarization (TU). If the size of CU is equal to 8, all the PUs of the current CU share a single merge candidate list, which is identical to the merge candidate list of the 2N×2N prediction unit.

In the following, the operations associated with the aforementioned steps are detailed.

2.1.2.2 Spatial Candidates Derivation

In the derivation of spatial merge candidates, a maximum of four merge candidates are selected among candidates located in the positions depicted in FIG. 2. The order of derivation is A1, B1, B0, A0 and B2. Position B2 is considered only when any PU of position A1, B1, B0, A0 is not available (e.g. because it belongs to another slice or tile) or is intra coded. After candidate at position A1 is added, the addition of the remaining candidates is subject to a redundancy check which ensures that candidates with same motion information are excluded from the list so that coding efficiency is improved. To reduce computational complexity, not all possible candidate pairs are considered in the mentioned redundancy check. Instead only the pairs linked with an arrow in FIG. 3 are considered and a candidate is only added to the list if the corresponding candidate used for redundancy check has not the same motion information. Another source of duplicate motion information is the “second PU” associated with partitions different from 2N×2N. As an example, FIG. 4 depicts the second PU for the case of N×2N and 2N×N, respectively. When the current PU is partitioned as N×2N, candidate at position A1 is not considered for list construction. In fact, by adding this candidate will lead to two prediction units having the same motion information, which is redundant to just have one PU in a coding unit. Similarly, position B1 is not considered when the current PU is partitioned as 2N×N.

2.1.2.3 Temporal Candidates Derivation

In this step, only one candidate is added to the list. Particularly, in the derivation of this temporal merge candidate, a scaled motion vector is derived based on co-located PU in a co-located picture. The scaled motion vector for temporal merge candidate is obtained as illustrated by the dotted line in FIG. 5, which is scaled from the motion vector of the co-located PU using the POC distances, tb and td, where tb is defined to be the POC difference between the reference picture of the current picture and the current picture and td is defined to be the POC difference between the reference picture of the co-located picture and the co-located picture. The reference picture index of temporal merge candidate is set equal to zero. A practical realization of the scaling process is described in the HEVC specification. For a B-slice, two motion vectors, one is for reference picture list 0 and the other is for reference picture list 1, are obtained and combined to make the bi-predictive merge candidate.

2.1.2.4 Co-Located Picture and Co-Located PU

When TMVP is enabled (e.g., slice_temporal_mvp_enabled_flag is equal to 1), the variable ColPic representing the col-located picture is derived as follows:

Here collocated_ref_idx and collocated_from_l0_flag are two syntax elements which may be signalled in slice header.

In the co-located PU (Y) belonging to the reference frame, the position for the temporal candidate is selected between candidates C0 and C1, as depicted in FIG. 6. If PU at position C0 is not available, is intra coded, or is outside of the current coding tree unit (CTU aka. LCU, largest coding unit) row, position C1 is used. Otherwise, position C0 is used in the derivation of the temporal merge candidate.

Related syntax elements are described as follows:

7.3.6.1 General Slice Segment Header Syntax

Descriptor
slice_segment_header( ) {
 first_slice_segment_in_pic_flag u(1)
...
  if( slice_type = = P ∥ slice_type = = B) {
   num_ref_idx_active_override_flag u(1)
   if( num_ref_idx_active_override_flag ) {
    num_ref_idx_l0_active_minus1 ue(v)
    if( slice_type = = B )
     num_ref idx_l1_active_minus1 ue(v)
   }
...
   if( slice_temporal_mvp_enabled_flag ) {
    if( slice type = = B )
     collocated_from_l0_flag u(1)
    if( ( collocated_from_l0_flag && num_
    ref_idx_l0_active_minus1 > 0 ) ∥
     ( !collocated_from_l0_flag && num_
     ref_idx_l1_active_minus1 > 0 ) )
     collocated ref idx ue(v)
   }
...
 byte_alignment( )
}

2.1.2.5 Derivation of MVs for the TMVP Candidate

More specifically, the following steps are performed in order to derive the TMVP candidate:

(1) set reference picture list X=0, target reference picture to be the reference picture with index equal to 0 (e.g., curr_ref) in list X. Invoke the derivation process for collocated motion vectors to get the MV for list X pointing to curr_ref.

(2) if current slice is B slice, set reference picture list X=1, target reference picture to be the reference picture with index equal to 0 (e.g., curr_ref) in list X. Invoke the derivation process for collocated motion vectors to get the MV for list X pointing to Curr_ref.

The derivation process for collocated motion vectors is described in the next sub-section.

2.1.2.5.1 Derivation Process for Collocated Motion Vectors

For the co-located block, it may be intra or inter coded with uni-prediction or bi-prediction. If it is intra coded, TMVP candidate is set to be unavailable.

If it is uni-prediction from list A, the motion vector of list A is scaled to the target reference picture list X.

If it is bi-prediction and the target reference picture list is X, the motion vector of list A is scaled to the target reference picture list X, and A is determined according to the following rules:

Some related descriptions are included as follows:

8.5.3.2.9 Derivation Process for Collocated Motion Vectors

Inputs to this process are:

2.1.2.6 Additional Candidates Insertion

Besides spatial and temporal merge candidates, there are two additional types of merge candidates: combined bi-predictive merge candidate and zero merge candidate. Combined bi-predictive merge candidates are generated by utilizing spatial and temporal merge candidates. Combined bi-predictive merge candidate is used for B-Slice only. The combined bi-predictive candidates are generated by combining the first reference picture list motion parameters of an initial candidate with the second reference picture list motion parameters of another. If these two tuples provide different motion hypotheses, they will form a new bi-predictive candidate. As an example, FIG. 7 depicts the case when two candidates in the original list (on the left), which have mvL0 and refIdxL0 or mvL1 and refIdxL1, are used to create a combined bi-predictive merge candidate added to the final list (on the right). There are numerous rules regarding the combinations which are considered to generate these additional merge candidates.

Zero motion candidates are inserted to fill the remaining entries in the merge candidates list and therefore hit the MaxNumMergeCand capacity. These candidates have zero spatial displacement and a reference picture index which starts from zero and increases every time a new zero motion candidate is added to the list. Finally, no redundancy check is performed on these candidates.

2.1.3 AMVP

AMVP exploits spatial-temporal correlation of motion vector with neighbouring PUs, which is used for explicit transmission of motion parameters. For each reference picture list, a motion vector candidate list is constructed by firstly checking availability of left, above temporally neighbouring PU positions, removing redundant candidates and adding zero vector to make the candidate list to be constant length. Then, the encoder can select the best predictor from the candidate list and transmit the corresponding index indicating the chosen candidate. Similarly with merge index signaling, the index of the best motion vector candidate is encoded using truncated unary. The maximum value to be encoded in this case is 2 (see FIG. 8). In the following sections, details about derivation process of motion vector prediction candidate are provided.

2.1.3.1 Derivation of AMVP Candidates

FIG. 8 summarizes derivation process for motion vector prediction candidate.

In motion vector prediction, two types of motion vector candidates are considered: spatial motion vector candidate and temporal motion vector candidate. For spatial motion vector candidate derivation, two motion vector candidates are eventually derived based on motion vectors of each PU located in five different positions as depicted in FIG. 2.

For temporal motion vector candidate derivation, one motion vector candidate is selected from two candidates, which are derived based on two different co-located positions. After the first list of spatio-temporal candidates is made, duplicated motion vector candidates in the list are removed. If the number of potential candidates is larger than two, motion vector candidates whose reference picture index within the associated reference picture list is larger than 1 are removed from the list. If the number of spatio-temporal motion vector candidates is smaller than two, additional zero motion vector candidates is added to the list.

2.1.3.2 Spatial Motion Vector Candidates

In the derivation of spatial motion vector candidates, a maximum of two candidates are considered among five potential candidates, which are derived from PUs located in positions as depicted in FIG. 2, those positions being the same as those of motion merge. The order of derivation for the left side of the current PU is defined as A0, A1, and scaled A0, scaled A1. The order of derivation for the above side of the current PU is defined as B0, B1, B2, scaled B0, scaled B1, scaled B2. For each side there are therefore four cases that can be used as motion vector candidate, with two cases not required to use spatial scaling, and two cases where spatial scaling is used. The four different cases are summarized as follows.

No Spatial Scaling

Spatial Scaling

The no-spatial-scaling cases are checked first followed by the spatial scaling. Spatial scaling is considered when the POC is different between the reference picture of the neighbouring PU and that of the current PU regardless of reference picture list. If all PUs of left candidates are not available or are intra coded, scaling for the above motion vector is allowed to help parallel derivation of left and above MV candidates. Otherwise, spatial scaling is not allowed for the above motion vector.

In a spatial scaling process, the motion vector of the neighbouring PU is scaled in a similar manner as for temporal scaling, as depicted as FIG. 9. The main difference is that the reference picture list and index of current PU is given as input; the actual scaling process is the same as that of temporal scaling.

2.1.3.3 Temporal Motion Vector Candidates

Apart for the reference picture index derivation, all processes for the derivation of temporal merge candidates are the same as for the derivation of spatial motion vector candidates (see FIG. 6). The reference picture index is signalled to the decoder.

2.2 Inter Prediction Methods in VVC

There are several new coding tools for inter prediction improvement, such as Adaptive Motion Vector difference Resolution (AMVR) for signaling MVD, Merge with Motion Vector Differences (MMVD), Triangular prediction mode (TPM), Combined intra-inter prediction (CIIP), Advanced TMVP (ATMVP, aka SbTMVP), affine prediction mode, Generalized Bi-Prediction (GBI), Decoder-side Motion Vector Refinement (DMVR) and Bi-directional Optical flow (BIO, a.k.a BDOF).

There are three different merge list construction processes supported in VVC:

(1) Sub-block merge candidate list: it includes ATMVP and affine merge candidates. One merge list construction process is shared for both affine modes and ATMVP mode. Here, the ATMVP and affine merge candidates may be added in order. Sub-block merge list size is signaled in slice header, and maximum value is 5.

(2) Regular merge list: For inter-coded blocks, one merge list construction process is shared. Here, the spatial/temporal merge candidates, HMVP, pairwise merge candidates and zero motion candidates may be inserted in order. Regular merge list size is signaled in slice header, and maximum value is 6. MMVD, TPM, CLIP rely on the regular merge list.

(3) IBC merge list: it is done in a similar way as the regular merge list.

Similarly, there are three AMVP lists supported in VVC:

(1) Affine AMVP candidate list

(2) Regular AMVP candidate list

(3) IBC AMVP candidate list: the same construction process as the IBC merge list.

2.2.1 Coding Block Structure in VVC

In VVC, a Quad-Tree/Binary Tree/Ternary-Tree (QT/BT/TT) structure is adopted to divide a picture into square or rectangle blocks.

Besides QT/BT/TT, separate tree (a.k.a. Dual coding tree) is also adopted in VVC for I-frames. With separate tree, the coding block structure are signaled separately for the luma and chroma components.

In addition, the CU is set equal to PU and TU, except for blocks coded with a couple of specific coding methods (such as intra sub-partition prediction wherein PU is equal to TU, but smaller than CU, and sub-block transform for inter-coded blocks wherein PU is equal to CU, but TU is smaller than PU).

2.2.2 Affine Prediction Mode

In HEVC, only translation motion model is applied for motion compensation prediction (MCP). While in the real world, there are many kinds of motion, e.g. zoom in/out, rotation, perspective motions and the other irregular motions. In VVC, a simplified affine transform motion compensation prediction is applied with 4-parameter affine model and 6-parameter affine model. As shown FIG. 10 the affine motion field of the block is described by two control point motion vectors (CPMVs) for the 4-parameter affine model and 3 CPMVs for the 6-parameter affine model.

The motion vector field (MVF) of a block is described by the following equations with the 4-parameter affine model (wherein the 4-parameter are defined as the variables a, b, e and f) in equation (1) and 6-parameter affine model (wherein the 4-parameter are defined as the variables a, b, c, d, e and j) in equation (2) respectively:

{ mv h ( x , y ) = ax - by + e = ( mv 1 h - mv 0 h ) w x - ( mv 1 v - mv 0 v ) w y + mv 0 h mv v ( x , y ) = bx + ay + f = ( mv 1 v - mv 0 v ) w x + ( mv 1 h - mv 0 h ) w y + mv 0 v ( 1 ) { mv h ( x , y ) = ax + cy + e = ( mv 1 h - mv 0 h ) w x + ( mv 2 h - mv 0 h ) h y + mv 0 h mv v ( x , y ) = bx + dy + f = ( mv 1 v - mv 0 v ) w x + ( mv 2 v - mv 0 v ) h y + mv 0 v ( 2 )

where (mvh0, mvh0) is motion vector of the top-left corner control point, and (mvh1, mvh1) is motion vector of the top-right corner control point and (mvh2, mvh2) is motion vector of the bottom-left corner control point, all of the three motion vectors are called control point motion vectors (CPMV), (x, y) represents the coordinate of a representative point relative to the top-left sample within current block and (mvh(x,y), mvv(x,y)) is the motion vector derived for a sample located at (x, y). The CP motion vectors may be signaled (like in the affine AMVP mode) or derived on-the-fly (like in the affine merge mode). w and h are the width and height of the current block. In practice, the division is implemented by right-shift with a rounding operation. In VTM, the representative point is defined to be the center position of a sub-block, e.g., when the coordinate of the left-top corner of a sub-block relative to the top-left sample within current block is (xs, ys), the coordinate of the representative point is defined to be (xs+2, ys+2). For each sub-block (e.g., 4×4 in VTM), the representative point is utilized to derive the motion vector for the whole sub-block.

In order to further simplify the motion compensation prediction, sub-block based affine transform prediction is applied. To derive motion vector of each M×N (both M and N are set to 4 in current VVC) sub-block, the motion vector of the center sample of each sub-block, as shown in FIG. 11, is calculated according to Equation (1) and (2), and rounded to 1/16 fraction accuracy. Then the motion compensation interpolation filters for 1/16-pel are applied to generate the prediction of each sub-block with derived motion vector. The interpolation filters for 1/16-pel are introduced by the affine mode.

After MCP, the high accuracy motion vector of each sub-block is rounded and saved as the same accuracy as the normal motion vector.

2.2.3 MERGE for Whole Block

2.2.3.1 Merge List Construction of Translational Regular Merge Mode

2.2.3.1.1 History-Based Motion Vector Prediction (HMVP)

Different from the merge list design, in VVC, the history-based motion vector prediction (HMVP) method is employed.

In HMVP, the previously coded motion information is stored. The motion information of a previously coded block is defined as an HMVP candidate. Multiple HMVP candidates are stored in a table, named as the HMVP table, and this table is maintained during the encoding/decoding process on-the-fly. The HMVP table is emptied when starting coding/decoding a new tile/LCU row/a slice. Whenever there is an inter-coded block and non-sub-block, non-TPM mode, the associated motion information is added to the last entry of the table as a new HMVP candidate. The overall coding flow is depicted in FIG. 12.

2.2.3.1.2 Regular Merge List Construction Process

The construction of the regular merge list (for translational motion) can be summarized according to the following sequence of steps:

Step 1: Derivation of spatial candidates

Step 2: Insertion of HMVP candidates

Step 3: Insertion of pairwise average candidates

Step 4: default motion candidates

HMVP candidates can be used in both AMVP and merge candidate list construction processes. FIG. 13 depicts the modified merge candidate list construction process. When the merge candidate list is not full after the TMVP candidate insertion, HMVP candidates stored in the HMVP table can be utilized to fill in the merge candidate list. Considering that one block usually has a higher correlation with the nearest neighbouring block in terms of motion information, the HMVP candidates in the table are inserted in a descending order of indices. The last entry in the table is firstly added to the list, while the first entry is added in the end. Similarly, redundancy removal is applied on the HMVP candidates. Once the total number of available merge candidates reaches the maximal number of merge candidates allowed to be signaled, the merge candidate list construction process is terminated.

It is noted that all the spatial/temporal/HMVP candidate shall be coded with non-IBC mode. Otherwise, it is not allowed to be added to the regular merge candidate list.

HMVP table contains up to 5 regular motion candidates and each of them is unique.

2.2.3.1.2.1 Pruning Processes

A candidate is only added to the list if the corresponding candidate used for redundancy check has not the same motion information. Such comparison process is called pruning process.

The pruning process among the spatial candidates is dependent on the usage of TPM for current block.

When current block is coded without TPM mode (e.g., regular merge, MMVD, CIIP), the HEVC pruning process (e.g., five pruning) for the spatial merge candidates is utilized.

2.2.4 Triangular Prediction Mode (TPM)

In VVC, a triangle partition mode is supported for inter prediction. The triangle partition mode is only applied to CUs that are 8×8 or larger and are coded in merge mode but not in MMVD or CIIP mode. For a CU satisfying these conditions, a CU-level flag is signalled to indicate whether the triangle partition mode is applied or not.

When this mode is used, a CU is split evenly into two triangle-shaped partitions, using either the diagonal split or the anti-diagonal split, as depicted in FIG. 14. Each triangle partition in the CU is inter-predicted using its own motion; only uni-prediction is allowed for each partition, that is, each partition has one motion vector and one reference index. The uni-prediction motion constraint is applied to ensure that same as the conventional bi-prediction, only two motion compensated prediction are needed for each CU.

If the CU-level flag indicates that the current CU is coded using the triangle partition mode, a flag indicating the direction of the triangle partition (diagonal or anti-diagonal), and two merge indices (one for each partition) are further signalled. After predicting each of the triangle partitions, the sample values along the diagonal or anti-diagonal edge are adjusted using a blending processing with adaptive weights. This is the prediction signal for the whole CU and transform and quantization process will be applied to the whole CU as in other prediction modes. Finally, the motion field of a CU predicted using the triangle partition mode is stored in 4×4 units.

The regular merge candidate list is re-used for triangle partition merge prediction with no extra motion vector pruning. For each merge candidate in the regular merge candidate list, one and only one of its L0 or L1 motion vector is used for triangle prediction. In addition, the order of selecting the L0 vs. L1 motion vector is based on its merge index parity. With this scheme, the regular merge list can be directly used.

2.2.4.1 Merge List Construction Process for TPM

In some embodiments, the regular merge list construction process can include the following modifications:

(1) How to do the pruning process is dependent on the usage of TPM for current block

(2) The condition on whether to check of motion information from B2 is dependent on the usage of TPM for current block

2.2.4.2 Adaptive Weighting Process

After predicting each triangular prediction unit, an adaptive weighting process is applied to the diagonal edge between the two triangular prediction units to derive the final prediction for the whole CU. Two weighting factor groups are defined as follows:

1st weighting factor group: {7/8, 6/8, 4/8, 2/8, 1/8} and {7/8, 4/8, 1/8} are used for the luminance and the chrominance samples, respectively;

2nd weighting factor group: {7/8, 6/8, 5/8, 4/8, 3/8, 2/8, 1/8} and {6/8, 4/8, 2/8} are used for the luminance and the chrominance samples, respectively.

Weighting factor group is selected based on the comparison of the motion vectors of two triangular prediction units. The 2nd weighting factor group is used when any one of the following condition is true:

Otherwise, the 1st weighting factor group is used. An example is shown in FIG. 15.

2.2.4.3 Motion Vector Storage

The motion vectors (Mv1 and Mv2 in FIG. 16) of the triangular prediction units are stored in 4×4 grids. For each 4×4 grid, either uni-prediction or bi-prediction motion vector is stored depending on the position of the 4×4 grid in the CU. As shown in FIG. 16, uni-prediction motion vector, either Mv1 or Mv2, is stored for the 4×4 grid located in the non-weighted area (that is, not located at the diagonal edge). On the other hand, a bi-prediction motion vector is stored for the 4×4 grid located in the weighted area. The bi-prediction motion vector is derived from Mv1 and Mv2 according to the following rules:

(1) In the case that Mv1 and Mv2 have motion vector from different directions (L0 or L1), Mv1 and Mv2 are simply combined to form the bi-prediction motion vector.

(2) In the case that both Mv1 and Mv2 are from the same L0 (or L1) direction,

2.2.4.4 Syntax Tables, Semantics and Decoding Process for Merge Mode

The added changes are highlighted in underlined bold faced italics. The deletions are marked with [[ ]].

7.3.5.1 General Slice Header Syntax

Descriptor
slice_header( ) {
 slice_pic_parameter_set_id ue(v)
 if( rect_slice_flag ∥ NumBricksInPic > 1 )
  slice_address u(v)
 if( !rect_slice_flag && !single_brick_per_slice_flag )
  num_bricks_in_slice_minus1 ue(v)
 slice_type ue(v)
...
  custom character   custom character   {
  if( sps_temporal_mvp_enabled_flag )
   slice_temporal_mvp_enabled_flag u(1)
  if( slice_type = = B )
   mvd_l1_zero_flag u(1)
  if( cabac_init_present_flag )
   cabac_init_flag u(1)
  if( slice_temporal_mvp_enabled_flag ) {
   if( slice_type = = B )
    collocated_from_l0_flag u(1)
  }
  if( ( weighted_pred_flag && slice_type = = P) ∥
   ( weighted_bipred_flag && slice_type = = B ) )
  pred_weight_table( )
custom character   custom character   custom character ue(v)
custom character   custom character   custom character
custom character   custom character   custom character   custom character custom character
custom character   custom character   custom character
custom character   custom character   custom character custom character
custom character   custom character   custom character
custom character
custom character   custom character   custom character custom character
custom charactercustom character   
custom character   custom character   custom character
custom character   custom character   custom character ue(v)
 slice_qp_delta se(v)
 if( pps_slice_chroma_qp_offsets_present_flag ) {
  slice_cb_qp_offset se(v)
  slice_cr_qp_offset se(v)
 }
...
 byte_alignment( )
}

7.3.7.5 Coding Unit Syntax

Descriptor
coding_unit( x0, y0, cbWidth, cbHeight, treeType ) {
 if( slice_type != I ∥ sps_ibc_enabled_flag ) {
  if( treeType != DUAL_TREE_CHROMA &&
   !( cbWidth = = 4 && cbHeight = = 4 && !sps_ibc_enabled_flag ) )
  cu_skip_flag[ x0 ][ y0 ] ae(v)
  if( cu_skip_flag[ x0 ][ y0 ]= = 0 && slice_type != I
   && !( cbWidth = = 4 && cbHeight = = 4 ) )
   pred_mode_flag ae(v)
  if( ( ( slice_type = = I && cu_skip_flag[ x0 ][ y0 ] = =0) ∥
   ( slice_type != I && ( CuPredMode[ x0 ][ y0 ] != MODE _INTRA ∥
   ( cbWidth = = 4 && cbHeight = = 4 && cu_skip_flag[ x0 ][ y0 ] = = 0 ) ) ) ) &&
   sps_ibc_enabled_flag && ( cbWidth != 128 ∥ cbHeight != 128 ) )
   pred_mode_ibc_flag ae(v)
 }
 if( CuPredMode[ x0 ][ y0 ] = = MODE_INTRA ) {
...
  }
 } else if( treeType != DUAL_TREE_CHROMA ) {/* MODE_INTER or MODE_IBC */
  if( cu_skip_flag[ x0 ][ y0 ] = = 0)
   general_merge_flag[ x0 ][ y0 ] ae(v)
  if( general_merge_flag[ x0 ][ y0 ] ) {
   merge_data( x0, y0, cbWidth, cbHeight )
custom character   custom character   custom character   custom character
custom character   custom character
custom character   custom character custom character
custom character   custom character   custom character
custom character   custom character   custom character   custom character
custom character   custom character   custom character custom character
custom character
  } else {
   if( slice_type = = B )
    inter_pred_idc[ x0 ][ y0 ] ae(v)
   if( sps_affine_enabled_flag && cbWidth >= 16 && cbHeight >= 16 ) {
    inter_affine_flag[ x0 ][ y0 ] ae(v)
    if( sps_affine_type_flag && inter_affine_flag[ x0 ][ y0 ] )
     cu_affine_type_flag[ x0 ][ y0 ] ae(v)
   }
   if( sps_smvd_enabled_flag && inter_pred_idc[ x0 ][ y0 ] = = PRED_BI &&
    !inter_affine_flag[ x0 ][ y0 ] && RefIdxSymL0 > −1 && RefIdxSymL1 > −1 )
    sym_mvd_flag[ x0 ][ y0 ] ae(v)
...
 }
}

7.3.7.7 Merge Data Syntax

Descriptor
merge_data( x0, y0, cbWidth, cbHeight) {
custom character   custom character   custom character
custom character   custom character
custom character   custom character custom character
custom character
  if( sps_mmvd_enabled_flag ∥ cbWidth * cbHeight != 32 )
   regular_merge_flag[ x0 ][ y0 ] ae(v)
  if ( regular_merge_flag[ x0 ][ y0 ] = = 1 ){
   if( MaxNumMergeCand > 1 )
    merge_idx[ x0 ][ y0 ] ae(v)
  } else {
   if( sps_mmvd_enabled_flag && cbWidth * cbHeight != 32 )
    mmvd_merge_flag[ x0 ][ y0 ] ae(v)
   if( mmvd_merge_flag[ x0 ][ y0 ] = = 1 ) {
    if( MaxNumMergeCand > 1 )
     mmvd_cand_flag[ x0 ][ y0 ] ae(v)
    mmvd_distance_idx[ x0 ][ y0 ] ae(v)
    mmvd_direction_idx[ x0 ][ y0 ] ae(v)
  } else {
    if( MaxNumSubblockMergeCand > 0 && cbWidth >= 8 && cbHeight >=
    8 )
     merge_subblock_flag[x0 ][ y0 ] ae(v)
    if( merge_subblock_flag[ x0 ][ y0 ] = = 1 ) {
     if( MaxNumSubblockMergeCand > 1 )
      merge_subblock_idx[ x0 ][ y0 ] ae(v)
    } else {
     if( sps_ciip_enabled_flag && cu_skip_flag[ x0 ][ y0 ] = = 0 &&
      ( cbWidth * cbHeight) >= 64 && cbWidth < 128 && cbHeight <
      128 ) {
      ciip_flag[ x0 ][ y0 ] ae(v)
     if( ciip_flag[ x0 ][ y0 ] && MaxNumMergeCand > 1 )
      merge_idx[ x0 ][ y0 ] ae(v)
     }
     if( MergeTriangleFlag[ x0 ][ y0 ] ) {
      merge_triangle_split_dir[ x0 ][ y0 ] ae(v)
      merge_triangle_idx0[ x0 ][ y0 ] ae(v)
      merge_triangle_idx1[ x0 ][ y0 ] ae(v)
     }
    }
   }
  }
 }
}

7.4.6.1 General Slice Header Semantics
six_minus_max_num_merge_cand specifies the maximum number of merging motion vector prediction (MW) candidates supported in the slice subtracted from 6. The maximum number of merging MW candidates, MaxNumMergeCand is derived as follows:
MaxNumMergeCand=6−six_minus_max_num_merge_cand  (7-57)
The value of MaxNumMergeCand shall be in the range of 1 to 6, inclusive.
five_minus_max_num_subblock_merge_cand specifies the maximum number of subblock-based merging motion vector prediction (MW) candidates supported in the slice subtracted from 5. When five_minus_max_num_subblock_merge_cand is not present, it is inferred to be equal to 5−sps_sbtmvp_enabled_flag. The maximum number of subblock-based merging MW candidates, MaxNumSubblockMergeCand is derived as follows:
MaxNumSubblockMergeCand=5−five_minus_max_num_subblock_merge_cand  (7-58)
The value of MaxNumSubblockMergeCand shall be in the range of 0 to 5, inclusive.
7.4.8.5 Coding Unit Semantics
pred_mode_flag equal to 0 specifies that the current coding unit is coded in inter prediction mode. pred_mode_flag equal to 1 specifies that the current coding unit is coded in intra prediction mode.
When pred_mode_flag is not present, it is inferred as follows:

TABLE 7-10
Name association to inter prediction mode
Name of inter_pred_idc
inter_ (cbWidth + (cbWidth + (cbWidth +
pred_idc cbHeight) > 12 cbHeight) == 12 cbHeight) == 8
0 PRED_L0 PRED_L0 n.a.
1 PRED_L1 PRED_L1 n.a.
2 PRED_BI n.a. n.a.

When inter_pred_idc[x0][y0] is not present, it is inferred to be equal to PRED_L0.
7.4.8.7 Merge Data Semantics
regular_merge_flag[x0][y0] equal to 1 specifies that regular merge mode is used to generate the inter prediction parameters of the current coding unit. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When regular_merge_flag[x0][y0] is not present, it is inferred as follows:

TABLE 7-12
Specification of MmvdDistance
[x0][y0] based on mmvd_distance_idx[x0][y0].
MmvdDistance[x0][y0]
mmvd distance slice_fpel_mmvd_ slice_fpel_mmvd_
idx[x0][y0] enabled_flag == 0 enabled_flag == 1
0 1 4
1 2 8
2 4 16
3 8 32
4 16 64
5 32 128
6 64 256
7 128 512

mmvd_direction_idx[x0][y0] specifies index used to derive MmvdSign[x0][y0] as specified in Table 7-13. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.

TABLE 7-13
Specification ofMmvdSign[x0][y0]
based on mmvd_direction_idx[x0][y0]
mmyd_direction_ MmvdSign MmvdSign
idx[x0 ][y0] [x0][y0][0] [x0][y0 ][1]
0 +1 0
1 −1 0
2 0 +1
3 0 −1

Both components of the merge plus MVD offset MmvdOffset[x0][y0] are derived as follows:
MmvdOffset[x0][y0][0]=(MmvdDistance[x0][y0]<<2)*MmvdSign[x0][y0][0](7-124)
MmvdOffset[x0][y0][1]=(MmvdDistance[x0][y0]<<2)*MmvdSign[x0][y0][1](7-125)
merge_subblock_flag[x0][y0] specifies whether the subblock-based inter prediction parameters for the current coding unit are inferred from neighbouring blocks. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture. When merge_subblock_flag[x0][y0] is not present, it is inferred to be equal to 0.
merge_subblock_idx[x0][y0] specifies the merging candidate index of the subblock-based merging candidate list where x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When merge_subblock_idx[x0][y0] is not present, it is inferred to be equal to 0.
ciip_flag[x0][y0] specifies whether the combined inter-picture merge and intra-picture prediction is applied for the current coding unit. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When ciip_flag[x0][y0] is not present, it is inferred to be equal to 0.
When ciip_flag[x0][y0] is equal to 1, the variable IntraPredModeY[x][y] with x=xCb . . . xCb+cbWidth−1 and y=yCb . . . yCb+cbHeight−1 is set to be equal to INTRA_PLANAR.
The variable MergeTriangleFlag[x0][y0], which specifies whether triangular shape based motion compensation is used to generate the prediction samples of the current coding unit, when decoding a B slice. is derived as follows:

2.2.4.4.1 Decoding Process

In some embodiments, the decoding process is defined as follows:

8.5.2.2 Derivation Process for Luma Motion Vectors for Merge Mode

This process is only invoked when general_merge_flag[xCb][yCb] is equal to 1, where (xCb, yCb) specify the top-left sample of the current luma coding block relative to the top-left luma sample of the current picture.

Inputs to this process are:

2.2.5 MMVD

In some embodiments, ultimate motion vector expression (UMVE, also known as MMVD) is presented. UMVE is used for either skip or merge modes with a motion vector expression method.

UMVE re-uses merge candidate as same as those included in the regular merge candidate list in VVC. Among the merge candidates, a base candidate can be selected, and is further expanded by the motion vector expression method.

UMVE provides a new motion vector difference (MVD) representation method, in which a starting point, a motion magnitude and a motion direction are used to represent a MVD.

In some embodiments, a merge candidate list is used as is. But only candidates which are default merge type (MRG_TYPE_DEFAULT_N) are considered for UMVE's expansion.

Base candidate index defines the starting point. Base candidate index indicates the best candidate among candidates in the list as follows.

TABLE 4
Base candidate IDX
Base candidate
IDX 0 1 2 3
Nth MVP 1st MVP 2nd MVP 3rd MVP 4th MVP

If the number of base candidate is equal to 1, Base candidate IDX is not signaled.

Distance index is motion magnitude information. Distance index indicates the pre-defined distance from the starting point information. Pre-defined distance is as follows:

TABLE 5
Distance IDX
Distance IDX 0 1 2 3 4 5 6 7
Pixel ¼- ½- 1- 2- 4- 8- 16- 32-
distance pel pel pel pel pel pel pel pel

Direction index represents the direction of the MVD relative to the starting point. The direction index can represent of the four directions as shown below.

TABLE 6
Direction IDX
Direction
IDX 00 01 10 11
x-axis + N/A N/A
y-axis N/A N/A +

UMVE flag is singnaled right after sending a skip flag or merge flag. If skip or merge flag is true, UMVE flag is parsed. If UMVE flage is equal to 1, UMVE syntaxes are parsed. But, if not 1, AFFINE flag is parsed. If AFFINE flag is equal to 1, that is AFFINE mode, But, if not 1, skip/merge index is parsed for VTM's skip/merge mode.

Additional line buffer due to UMVE candidates is not needed. Because a skip/merge candidate of software is directly used as a base candidate. Using input UMVE index, the supplement of MV is decided right before motion compensation. There is no need to hold long line buffer for this.

In current common test condition, either the first or the second merge candidate in the merge candidate list can be selected as the base candidate.

UMVE is also known as Merge with MV Differences (MMVD).

2.2.6 Combined Intra-Inter Prediction (CIIP)

In some embodiments, multi-hypothesis prediction is proposed, wherein combined intra and inter prediction is one way to generate multiple hypotheses.

When the multi-hypothesis prediction is applied to improve intra mode, multi-hypothesis prediction combines one intra prediction and one merge indexed prediction. In a merge CU, one flag is signaled for merge mode to select an intra mode from an intra candidate list when the flag is true. For luma component, the intra candidate list is derived from only one intra prediction mode, e.g., planar mode. The weights applied to the prediction block from intra and inter prediction are determined by the coded mode (intra or non-intra) of two neighboring blocks (A1 and B1).

2.2.7 MERGE for Sub-Block-Based Technologies

It is suggested that all the sub-block related motion candidates are put in a separate merge list in addition to the regular merge list for non-sub block merge candidates.

The sub-block related motion candidates are put in a separate merge list is named as ‘sub-block merge candidate list’.

In one example, the sub-block merge candidate list includes ATMVP candidate and affine merge candidates.

The sub-block merge candidate list is filled with candidates in the following order:

1. ATMVP candidate (maybe available or unavailable);

2. Affine merge lists (including Inherited Affine candidates; and Constructed Affine candidates)

3. Padding as zero MV 4-parameter affine model

2.2.7.1 ATMVP (Aka Sub-Block Temporal Motion Vector Predictor, SbTMVP)

Basic idea of ATMVP is to derive multiple sets of temporal motion vector predictors for one block. Each sub-block is assigned with one set of motion information. When an ATMVP merge candidate is generated, the motion compensation is done in 8×8 level instead of the whole block level.

In current design, ATMVP predicts the motion vectors of the sub-CUs within a CU in two steps which are described in the following two sub-sections respectively.

2.2.7.1.1 Derivation of Initialized Motion Vector

Denote the initialized motion vector by tempMv. When block A1 is available and non-intra coded (e.g., coded with inter or IBC mode), the following is applied to derive the initialized motion vector.

A corresponding block (with center position of current block plus the rounded MV, clipped to be in certain ranges in necessary) is identified in the collocated picture signaled at the slice header with the initialized motion vector.

If the block is inter-coded, then go to the 2nd step. Otherwise, the ATMVP candidate is set to be NOT available.

2.2.7.1.2 Sub-CU Motion Derivation

The second step is to split the current CU into sub-CUs and obtain the motion information of each sub-CU from the block corresponding to each sub-CU in the collocated picture.

If the corresponding block for a sub-CU is coded with inter mode, the motion information is utilized to derive the final motion information of current sub-CU by invoking the derivation process for collocated MVs which is not different with the process for conventional TMVP process. Basically, if the corresponding block is predicted from the target list X for uni-prediction or bi-prediction, the motion vector is utilized; otherwise, if it is predicted from list Y (Y=1−X) for uni or bi-prediction and NoBackwardPredFlag is equal to 1, MV for list Y is utilized. Otherwise, no motion candidate can be found.

If the block in the collocated picture identified by the initialized MV and location of current sub-CU is intra or IBC coded, or no motion candidate can be found as described above, the following further apply:

Denote the motion vector used to fetch the motion field in the collocated picture Rcol as MVcol. To minimize the impact due to MV scaling, the MV in the spatial candidate list used to derive MVcol is selected in the following way: if the reference picture of a candidate MV is the collocated picture, this MV is selected and used as MVcol without any scaling. Otherwise, the MV having a reference picture closest to the collocated picture is selected to derive MVcol with scaling.

The example decoding process for collocated motion vectors derivation process is described as follows:

8.5.2.12 Derivation Process for Collocated Motion Vectors

Inputs to this process are:

2.2.8 Refinement of Motion Information

2.2.8.1 Decoder-Side Motion Vector Refinement (DMVR)

In bi-prediction operation, for the prediction of one block region, two prediction blocks, formed using a motion vector (MV) of list0 and a MV of list1, respectively, are combined to form a single prediction signal. In the decoder-side motion vector refinement (DMVR) method, the two motion vectors of the bi-prediction are further refined.

For DMVR in VVC, MVD mirroring between list 0 and list 1 is assumed as shown in FIG. 19 and bilateral matching is performed to refine the MVs, e.g., to find the best MVD among several MVD candidates. Denote the MVs for two reference picture lists by MVL0(L0X, L0Y), and MVL1(L1X, L1Y). The MVD denoted by (MvdX, MvdY) for list 0 that can minimize the cost function (e.g., SAD) is defined as the best MVD. For the SAD function, it is defined as the SAD between the reference block of list 0 derived with a motion vector (L0X+MvdX, L0Y+MvdY) in the list 0 reference picture and the reference block of list 1 derived with a motion vector (L1X-MvdX, L1Y-MvdY) in the list 1 reference picture.

The motion vector refinement process may iterate twice. In each iteration, at most 6 MVDs (with integer-pel precision) may be checked in two steps, as shown in FIG. 20. In the first step, MVD (0, 0), (−1, 0), (1, 0), (0, −1), (0, 1) are checked. In the second step, one of the MVD (−1, −1), (−1, 1), (1, −1) or (1, 1) may be selected and further checked. Suppose function Sad(x, y) returns SAD value of the MVD (x, y). The MVD, denoted by (MvdX, MvdY), checked in the second step is decided as follows:

MvdX = −1;
MvdY = −1;
If (Sad(1, 0) < Sad(−1, 0))
MvdX = 1;
If (Sad(0, 1) < Sad(0, −1))
MvdY = 1;

In the first iteration, the starting point is the signaled MV, and in the second iteration, the starting point is the signaled MV plus the selected best MVD in the first iteration. DMVR applies only when one reference picture is a preceding picture and the other reference picture is a following picture, and the two reference pictures are with same picture order count distance from the current picture.

To further simplify the process of DMVR, in some embodiments, the adopted DMVR design has the following main features:

2.2.8.1.1 Usage of DMVR

When the following conditions are all true, DMVR may be enabled:

2.2.8.1.2 “Parametric Error Surface Equation” Based Sub-Pel Refinement

The method is summarized below:

1. The parametric error surface fit is computed only if the center position is the best cost position in a given iteration.

2. The center position cost and the costs at (−1,0), (0,−1), (1,0) and (0,1) positions from the center are used to fit a 2-D parabolic error surface equation of the form
E(x,y)=A(x−x0)2+B(y−y0)2+C

where (x0, y0) corresponds to the position with the least cost and C corresponds to the minimum cost value. By solving the 5 equations in 5 unknowns, (x0, y0) is computed as:
x0=(E(−1,0)−E(1,0))/(2(E(−1,0)+E(1,0)−2E(0,0)))
y0=(E(0,−1)−E(0,1))/(2((E(0,−1)+E(0,1)−2E(0,0)))

(x0, y0) can be computed to any required sub-pixel precision by adjusting the precision at which the division is performed (e.g. how many bits of quotient are computed). For 1/16th-pel accuracy, just 4-bits in the absolute value of the quotient needs to be computed, which lends itself to a fast-shifted subtraction-based implementation of the 2 divisions required per CU.

3. The computed (x0, y0) are added to the integer distance refinement MV to get the sub-pixel accurate refinement delta MV.

2.3 Intra Block Copy

Intra block copy (IBC), a.k.a. current picture referencing, has been adopted in HEVC Screen Content Coding extensions (HEVC-SCC) and the current VVC test model (VTM-4.0). IBC extends the concept of motion compensation from inter-frame coding to intra-frame coding. As demonstrated in FIG. 21, the current block is predicted by a reference block in the same picture when IBC is applied. The samples in the reference block must have been already reconstructed before the current block is coded or decoded. Although IBC is not so efficient for most camera-captured sequences, it shows significant coding gains for screen content. The reason is that there are lots of repeating patterns, such as icons and text characters in a screen content picture. IBC can remove the redundancy between these repeating patterns effectively. In HEVC-SCC, an inter-coded coding unit (CU) can apply IBC if it chooses the current picture as its reference picture. The MV is renamed as block vector (BV) in this case, and a BV always has an integer-pixel precision. To be compatible with main profile HEVC, the current picture is marked as a “long-term” reference picture in the Decoded Picture Buffer (DPB). It should be noted that similarly, in multiple view/3D video coding standards, the inter-view reference picture is also marked as a “long-term” reference picture.

Following a BV to find its reference block, the prediction can be generated by copying the reference block. The residual can be got by subtracting the reference pixels from the original signals. Then transform and quantization can be applied as in other coding modes.

However, when a reference block is outside of the picture, or overlaps with the current block, or outside of the reconstructed area, or outside of the valid area restricted by some constrains, part or all pixel values are not defined. Basically, there are two solutions to handle such a problem. One is to disallow such a situation, e.g. in bitstream conformance. The other is to apply padding for those undefined pixel values. The following sub-sessions describe the solutions in detail.

2.3.1 IBC in VVC Test Model (VTM4.0)

In the current VVC test model, e.g. VTM-4.0 design, the whole reference block should be with the current coding tree unit (CTU) and does not overlap with the current block. Thus, there is no need to pad the reference or prediction block. The IBC flag is coded as a prediction mode of the current CU. Thus, there are totally three prediction modes, MODE_INTRA, MODE_INTER and MODE_IBC for each CU.

2.3.1.1 IBC Merge Mode

In IBC merge mode, an index pointing to an entry in the IBC merge candidates list is parsed from the bitstream. The construction of the IBC merge list can be summarized according to the following sequence of steps:

Step 1: Derivation of spatial candidates

Step 2: Insertion of HMVP candidates

Step 3: Insertion of pairwise average candidates

In the derivation of spatial merge candidates, a maximum of four merge candidates are selected among candidates located in the positions depicted in A1, B1, B0, A0 and B2 as depicted in FIG. 2. The order of derivation is A1, B1, B0, A0 and B2. Position B2 is considered only when any PU of position A1, B1, B0, A0 is not available (e.g. because it belongs to another slice or tile) or is not coded with IBC mode. After candidate at position A1 is added, the insertion of the remaining candidates is subject to a redundancy check which ensures that candidates with same motion information are excluded from the list so that coding efficiency is improved.

After insertion of the spatial candidates, if the IBC merge list size is still smaller than the maximum IBC merge list size, IBC candidates from HMVP table may be inserted. Redundancy check are performed when inserting the HMVP candidates.

Finally, pairwise average candidates are inserted into the IBC merge list.

When a reference block identified by a merge candidate is outside of the picture, or overlaps with the current block, or outside of the reconstructed area, or outside of the valid area restricted by some constrains, the merge candidate is called invalid merge candidate.

It is noted that invalid merge candidates may be inserted into the IBC merge list.

2.3.1.2 IBC AMVP Mode

In IBC AMVP mode, an AMVP index point to an entry in the IBC AMVP list is parsed from the bitstream. The construction of the IBC AMVP list can be summarized according to the following sequence of steps:

Step 1: Derivation of spatial candidates

Step 2: Insertion of HMVP candidates

Step 3: Insertion of zero candidates

After insertion of the spatial candidates, if the IBC AMVP list size is still smaller than the maximum IBC AMVP list size, IBC candidates from HMVP table may be inserted.

Finally, zero candidates are inserted into the IBC AMVP list.

2.3.1.3 Chroma IBC Mode

In the current VVC, the motion compensation in the chroma IBC mode is performed at sub block level. The chroma block will be partitioned into several sub blocks. Each sub block determines whether the corresponding luma block has a block vector and the validity if it is present. There is encoder constrain in the current VTM, where the chroma IBC mode will be tested if all sub blocks in the current chroma CU have valid luma block vectors. For example, on a YUV 420 video, the chroma block is N×M and then the collocated luma region is 2N×2M. The sub block size of a chroma block is 2×2. There are several steps to perform the chroma my derivation then the block copy process.

(1) The chroma block will be first partitioned into (N>>1)*(M>>1) sub blocks.

(2) Each sub block with a top left sample coordinated at (x, y) fetches the corresponding luma block covering the same top-left sample which is coordinated at (2x, 2y).

(3) The encoder checks the block vector(bv) of the fetched luma block. If one of the following conditions is satisfied, the by is considered as invalid.

(4) The chroma motion vector of a sub block is set to the motion vector of the corresponding luma sub block.

The IBC mode is allowed at the encoder when all sub blocks find a valid by.

2.3.2 Recent Progress for IBC

2.3.2.1 Single BV List

In some embodiments, the BV predictors for merge mode and AMVP mode in IBC share a common predictor list, which consist of the following elements:

(1) 2 spatial neighboring positions (A1, B1 as in FIG. 2)

(2) 5 HMVP entries

(3) Zero vectors by default

The number of candidates in the list is controlled by a variable derived from the slice header. For merge mode, up to first 6 entries of this list can be used; for AMVP mode, the first 2 entries of this list can be used. And the list conforms with the shared merge list region requirement (shared the same list within the SMR).

In addition to the above-mentioned BV predictor candidate list, the pruning operations between HMVP candidates and the existing merge candidates (A1, B1) can be simplified. In the simplification there will be up to 2 pruning operations since it only compares the first HMVP candidate with spatial merge candidate(s).

2.3.2.2 Size Restriction of IBC

In some embodiments, syntax constraint for disabling 128×128 IBC mode can be explicitly used on top of the current bitstream constraint in the previous VTM and VVC versions, which makes presence of IBC flag dependent on CU size<128×128.

2.3.2.3 Shared Merge List for IBC

To reduce the decoder complexity and support parallel encoding, in some embodiments, the same merging candidate list for all leaf coding units (CUs) of one ancestor node in the CU split tree can be shared for enabling parallel processing of small skip/merge-coded CUs. The ancestor node is named merge sharing node. The shared merging candidate list is generated at the merge sharing node pretending the merge sharing node is a leaf CU.

More specifically, the following may apply:

Such a restriction is only applied to IBC merge mode.

One block may be coded with the IBC mode. However, different sub-regions within the block may be with different content. How to further explore the correlation to the previously coded blocks within current frame needs to be studied.

In this document, intra block copy (IBC) may not be limited to the current IBC technology, but may be interpreted as the technology that using the reference samples within the current slice/tile/brick/picture/other video unit (e.g., CTU row) excluding the conventional intra prediction methods.

To solve the problem mentioned above, sub-block-based IBC (sbIBC) coding method is proposed. In sbIBC, a current IBC-coded video block (e.g., CU/PU/CB/PB) is divided into a plurality of sub-blocks. Each of the sub-blocks may have a size smaller than a size of the video block. For each respective sub-block from the plurality of sub-blocks, the video coder may identify a reference block for the respective sub-block in current picture/slice/tile/brick/tile group. The video coder may use motion parameters of the identified reference block for the respective sub-block to determine motion parameters for the respective sub-block.

In addition, it is not restricted that IBC only is applied to uni-prediction coded blocks. Bi-prediction may be also supported with both two reference pictures are the current picture. Alternatively, bi-prediction with one from the current picture and the other one from a different picture may be supported as well. In yet another example, multiple hypothesis may be also applied.

The listing below should be considered as examples to explain general concepts. These techniques should not be interpreted in a narrow way. Furthermore, these techniques can be combined in any manner. Neighboring blocks A0, A1, B0, B1, and B2 are shown in FIG. 2.

The added changes are highlighted in underlined bold faced italics. The deletions are marked with [[ ]].

No update of HMVP tables when current block is under the shared node. And only use a single IBC HMVP table for blocks under the shared node.

7.4.8.5 Coding Unit Semantics

[[When all the following conditions are true, the history-based motion vector predictor list for the shared merging candidate list region is updated by setting NumHmvpSmrIbcCand equal to NumHmvpIbcCand, and setting HmvpSmrIbcCandList[i] equal to HmvpIbcCandList[i] for i=0 . . . . NumHmvpIbcCand−1:

Remove checking of spatial merge/AMVP candidates in the IBC motion list construction process when block size satisfies certain conditions, such as Width*Height<K. In the following description, the threshold K can be pre-defined, as such 16.

7.4.8.2 Coding Tree Unit Semantics

The CTU is the root node of the coding tree structure.

[[The array IsInSmr[x][y] specifying whether the sample at (x, y) is located inside a shared merging candidate list region, is initialized as follows for x=0 . . . CtbSizeY−1 and y=0 . . . CtbSizeY−1:
IsInSmr[x][y]=FALSE  (7-96)]]
7.4.8.4 Coding Tree Semantics
[[When all of the following conditions are true, IsInSmr[x][y] is set equal to TRUE for x=x0 . . . x0+cbWidth−1 and y=y0 . . . y0+cbHeight−1:

Remove checking of spatial merge/AMVP candidates in the IBC motion list construction process when block size satisfies certain conditions, such as current block is under the shared node, and no update of HMVP tables.

8.6.2.2 Derivation Process for IBC Luma Motion Vector Prediction

This process is only invoked when CuPredMode[xCb yCb] is equal to MODE_IBC, where (xCb, yCb) specify the top-left sample of the current luma coding block relative to the top-left luma sample of the current picture.

Inputs to this process are:

Remove checking of spatial merge/AMVP candidates in the IBC motion list construction process when block size satisfies certain conditions, such as Width*Height<=K or Width=N, Height=4 and left neighboring block is 4×4 and coded in IBC mode or Width=4, Height=N and above neighboring block is 4×4 and coded in IBC mode, and no update of HMVP tables. In the following description, the threshold K can be pre-defined, as such 16, N can be pre-defined, as such 8.

7.4.9.2 Coding Tree Unit Semantics

The CTU is the root node of the coding tree structure.

The array IsAvailable[cIdx][x][y] specifying whether the sample at (x, y) is available for use in the derivation process for neighbouring block availability as specified in clause 6.4.4 is initialized as follows for cIdx=0 . . . 2, x=0 . . . CtbSizeY−1, and y=0 . . . CtbSizeY−1:
IsAvailable[cIdx][x][y]=FALSE  (7-123)
[[The array IsInSmr[x][y] specifying whether the sample at (x, y) is located inside a shared merging candidate list region, is initialized as follows for x=0 . . . CtbSizeY−1 and y=0 . . . CtbSizeY−1:
IsInSmr[x][y]=FALSE  (7-124)]]
7.4.9.4 Coding Tree Semantics
[[When all of the following conditions are true, IsInSmr[x][y] is set equal to TRUE for x=x0 . . . x0+cbWidth−1 and y=y0 . . . y0+cbHeight−1:

custom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom character

custom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom charactercustom character

The luma block vector bvL is derived by the following ordered steps:

Remove checking of spatial merge/AMVP candidates in the IBC motion list construction process and remove updating of HMVP tables when block size satisfies certain conditions, such as Width=N, Height=4 and left neighboring block is 4×4 and coded in IBC mode or Width=4, Height=N and above neighboring block is 4×4 and coded in IBC mode. In the following description, N can be pre-defined, as such 4 or 8.

7.4.9.2 Coding Tree Unit Semantics

The CTU is the root node of the coding tree structure.

The array IsAvailable[cIdx][x][y] specifying whether the sample at (x, y) is available for use in the derivation process for neighbouring block availability as specified in clause 6.4.4 is initialized as follows for cIdx=0 . . . 2, x=0 . . . CtbSizeY−1, and y=0 . . . CtbSizeY−1:
IsAvailable[cIdx][x][y]=FALSE  (7-123)
[[The array IsInSmr[x][y] specifying whether the sample at (x, y) is located inside a shared merging candidate list region, is initialized as follows for x=0 . . . CtbSizeY−1 and y=0 . . . CtbSizeY−1:
IsInSmr[x][y]=FALSE  (7-124)]]
7.4.9.4 Coding Tree Semantics
[[When all of the following conditions are true, IsInSmr[x][y] is set equal to TRUE for x=x0 . . . x0+cbWidth−1 and y=y0 . . . y0+cbHeight−1:

Remove checking of spatial merge/AMVP candidates in the IBC motion list construction process and remove updating of HMVP tables when block size satisfies certain conditions, such as Width*Height<=K and left or above neighboring block is 4×4 and coded in IBC mode. In the following description, the threshold K can be pre-defined, as such 16 or 32.

7.4.9.2 Coding Tree Unit Semantics

The CTU is the root node of the coding tree structure.

The array IsAvailable[cIdx][x][y] specifying whether the sample at (x, y) is available for use in the derivation process for neighbouring block availability as specified in clause 6.4.4 is initialized as follows for cIdx=0 . . . 2, x=0 . . . CtbSizeY−1, and y=0 . . . CtbSizeY−1:
IsAvailable[cIdx][x][y]=FALSE  (7-123)
[[The array IsInSmr[x][y] specifying whether the sample at (x, y) is located inside a shared merging candidate list

FIG. 22 is a block diagram of a video processing apparatus 2200. The apparatus 2200 may be used to implement one or more of the methods described herein. The apparatus 2200 may be embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on. The apparatus 2200 may include one or more processors 2202, one or more memories 2204 and video processing hardware 2206. The processor(s) 2202 may be configured to implement one or more methods described in the present document. The memory (memories) 2204 may be used for storing data and code used for implementing the methods and techniques described herein. The video processing hardware 2206 may be used to implement, in hardware circuitry, some techniques described in the present document. The video processing hardware 2206 may be partially or completely includes within the processor(s) 2202 in the form of dedicated hardware, or graphical processor unit (GPU) or specialized signal processing blocks.

FIG. 23 is a flowchart for an example of a video processing method 2300. The method 2300 includes, at operation 2302, determining to use a sub-block intra block copy (sbIBC) coding mode. The method 2300 also includes, at operation 2304, performing the conversion using the sbIBC coding mode.

Some embodiments may be described using the following clause-based description.

The following clauses show example embodiments of techniques discussed in item 1 in the previous section.

1. A method of video processing, comprising: determining to use a sub-block intra block copy (sbIBC) coding mode in a conversion between a current video block in a video region and a bitstream representation of the current video block in which the current video block is split into multiple sub-blocks and each sub-block is coded based on reference samples from the video region, wherein sizes of the sub-blocks are based on a splitting rule; and performing the conversion using the sbIBC coding mode for the multiple sub-blocks.

2. The method of clause 1, wherein the current video block is an M×N block, where M and N are integers, and wherein the splitting rule specifies that each sub-block has a same size.

3. The method of clause 1, wherein the bitstream representation includes a syntax element indicative of the splitting rule or sizes of the sub-blocks.

4. The method of any of clauses 1-3, wherein the splitting rule specifies sizes of the sub-blocks depending on a color component of the current video block.

5. The method of any of clauses 1-4, wherein sub-blocks of a first color component may derive their motion vector information from sub-blocks of a second color component corresponding to the current video block.

The following clauses show example embodiments of techniques discussed in items 2 and 6 in the previous section.

1. A method of video processing, comprising: determining to use a sub-block intra block copy (sbIBC) coding mode in a conversion between a current video block in a video region and a bitstream representation of the current video block in which the current video block is split into multiple sub-blocks and each sub-block is coded based on reference samples from the video region; and performing the conversion using the sbIBC coding mode for the multiple sub-blocks, wherein the conversion includes: determining an initialized motion vector (initMV) for a given sub-block; identifying a reference block from the initMV; and deriving motion vector (MV) information for the given sub-block using MV information for the reference block.

2. The method of clause 1, wherein the determining the initMV includes determining the initMV from one or more neighboring blocks of the given sub-block.

3. The method of clause 2, wherein the one or more neighboring blocks are checked in an order.

4. The method of clause 1, wherein the determining the initMV includes deriving the initMV from a motion candidate list.

5. The method of any of clauses 1-4, wherein the identifying the reference block includes converting the initMV into one-pel precision and identifying the reference block based on the converted initMV.

6. The method of any of clauses 1-4, wherein the identifying the reference block includes applying the initMV to an offset location within the given block, wherein the offset location is denoted as being offset by (offsetX, offsetY) from a predetermined location of the given sub-block.

7. The method of any of clauses 1 to 6, wherein the deriving the MV for the given sub-block includes clipping the MV information for the reference block.

8. The method of any of clauses 1 to 7, wherein the reference block is in a different color component than that of the current video block.

The following clauses show example embodiments of techniques discussed in items 3, 4 and 5 in the previous section.

1. A method of video processing, comprising determining to use a sub-block intra block copy (sbIBC) coding mode in a conversion between a current video block in a video region and a bitstream representation of the current video block in which the current video block is split into multiple sub-blocks and each sub-block is coded based on reference samples from the video region; and performing the conversion using the sbIBC coding mode for the multiple sub-blocks, wherein the conversion includes generating a sub-block IBC candidate.

2. The method of clause 1, wherein the sub-block IBC candidate is added to a candidate list that includes alternative motion vector predictor candidates.

3. The method of clause 1, wherein the sub-block IBC candidate is added to a list that includes affine merge candidates.

The following clauses show example embodiments of techniques discussed in items 7, 8, 9, 10, 11, 12 and 13 in the previous section.

1. A method of video processing, comprising: performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a sub-block intra block coding (sbIBC) mode and a second sub-block of the multiple sub-blocks using an intra coding mode.

2. A method of video processing, comprising: performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing all sub-blocks of the multiple sub-blocks using an intra coding mode.

3. A method of video processing, comprising: performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing all of the multiple sub-blocks using a palette coding mode in which a palette of representative pixel values is used for coding each sub-block.

4. A method of video processing, comprising: performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a palette mode in which a palette of representative pixel values is used for coding the first sub-block and a second sub-block of the multiple sub-blocks using an intra block copy coding mode.

5. A method of video processing, comprising: performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a palette mode in which a palette of representative pixel values is used for coding the first sub-block and a second sub-block of the multiple sub-blocks using an intra coding mode.

6. A method of video processing, comprising: performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a sub-block intra block coding (sbIBC) mode and a second sub-block of the multiple sub-blocks using an inter coding mode.

7. A method of video processing, comprising: performing a conversion between a bitstream representation of a current video block and the current video block that is divided into multiple sub-blocks, wherein the conversion includes processing a first sub-block of the multiple sub-blocks using a sub-block intra coding mode and a second sub-block of the multiple sub-blocks using an inter coding mode.

The following clauses show example embodiments of techniques discussed in item 14 in the previous section.

8. The method of any of clauses 1-7, wherein the method further includes refraining from updating an IBC history-based motion vector predictor table after the conversion of the current video block.

The following clauses show example embodiments of techniques discussed in item 15 in the previous section.

9. The method of any one or more of clauses 1-7, further including refraining from updating a non-IBC history-based motion vector predictor table after the conversion of the current video block.

The following clauses show example embodiments of techniques discussed in item 16 in the previous section.

10. The method of any of clauses 1-7, wherein the conversion includes selective usage of an in-loop filter that is based on the processing.

The following clauses show example embodiments of techniques discussed in item 1 in the previous section.

17. The method of any of clauses 1-7, wherein the performing the conversion includes performing the conversion by disabling a certain coding mode for the current video block due to using the method, wherein the certain coding mode includes one or more of a sub-block transform, an affine motion prediction, a multiple reference line intra prediction, a matrix-based intra prediction, a symmetric motion vector difference (MVD) coding, a merge with MVD decoder side motion derivation/refinement, a bi-directional optimal flow, a reduced secondary transform, or a multiple transform set.

The following clauses show example embodiments of techniques discussed in item 18 in the previous section.

1. The method of any of above clauses, wherein an indicator in the bitstream representation includes information about how the method is applied to the current video block.

The following clauses show example embodiments of techniques discussed in item 19 in the previous section.

1. A method of video encoding, comprising: making a decision to use the method recited in any of above clauses for encoding the current video block into the bitstream representation; and including information indicative of the decision in the bitstream representation at a decoder parameter set level or a sequence parameter set level or a video parameter set level or a picture parameter set level or a picture header level or a slice header level or a tile group header level or a largest coding unit level or a coding unit level or a largest coding unit row level or a group of LCU level or a transform unit level or a prediction unit level or a video coding unit level.

2. A method of video encoding, comprising: making a decision to use the method recited in any of above clauses for encoding the current video block into the bitstream representation based on an encoding condition; and performing the encoding using the method recited in any of the above clauses, wherein the condition is based on one or more of: a position of coding unit, prediction unit, transform unit, the current video block or a video coding unit of the current video block,

a block dimension of the current vide block and/or its neighboring blocks,

a block shape of the current video block and/or its neighboring blocks,

an intra mode of the current video block and/or its neighboring blocks,

motion/block vectors of neighboring blocks of the current video block;

a color format of the current video block;

Coding tree structure;

a slice or a tile group type or a picture type of the current video block;

a color component of the current video block;

a temporal layer ID of the current video block;

a profile or level or a standard used for the bitstream representation.

The following clauses show example embodiments of techniques discussed in item 20 in the previous section.

1. A method of video processing, comprising: determining to use an intra block copy mode and an inter prediction mode for conversion between blocks in a video region and a bitstream representation of the video region; and performing the conversion using the intra block copy mode and the inter prediction mode for a block in the video region.

2. The method of clause 1, wherein the video region comprises a video picture or a video slice or a video tile group or a video tile.

3. The method of any of clauses 1-2, wherein the inter prediction mode uses an alternative motion vector predictor (AMVP) coding mode.

4. The method of any of clauses 1-3, wherein the performing the conversion includes deriving merge candidates for the intra block copy mode from neighboring blocks.

The following clauses show example embodiments of techniques discussed in item 21 in the previous section.

1. A method of video processing, comprising: performing, during a conversion between a current video block and a bitstream representation of the current video block, a motion candidate list construction process depending and/or a table update process for updating history-based motion vector predictor tables, based on a coding condition, and performing the conversion based on the motion candidate list construction process and/or the table update process.

2. The method of clause 1, different processes may be applied when the coding condition is satisfied or unsatisfied.

3. The method of clause 1, when the coding condition is satisfied, the updating of history-based motion vector predictor tables is not applied.

4. The method of clause 1, when the coding condition is satisfied, derivation of candidates from spatial neighboring (adjacent or non-adjacent) blocks is skipped.

5. The method of clause 1, when the coding condition is satisfied, derivation of HMVP candidates is skipped.

6. The method of clause 1, the coding condition comprises the block width times height is no greater than 16 or 32 or 64.

7. The method of clause 1, the coding condition comprises the block is coded with IBC mode.

8. The method of clause 1, wherein the coding condition is as described in item 21.b.s.iv in the previous section.

The method of any of above clauses, wherein the conversion includes generating the bitstream representation from the current video block.

The method of any of above clauses, wherein the conversion includes generating samples of the current video block from the bitstream representation.

A video processing apparatus comprising a processor configured to implement a method recited in any one or more of the above clauses.

A computer readable medium having code stored thereon, the code, upon execution, causing a processor to implement a method recited in any one or more of above clauses.

FIG. 24 is a block diagram showing an example video processing system 2400 in which various techniques disclosed herein may be implemented. Various implementations may include some or all of the components of the system 2400. The system 2400 may include input 2402 for receiving video content. The video content may be received in a raw or uncompressed format, e.g., 8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format. The input 2402 may represent a network interface, a peripheral bus interface, or a storage interface. Examples of network interface include wired interfaces such as Ethernet, passive optical network (PON), etc. and wireless interfaces such as Wi-Fi or cellular interfaces.

The system 2400 may include a coding component 2404 that may implement the various coding or encoding methods described in the present document. The coding component 2404 may reduce the average bitrate of video from the input 2402 to the output of the coding component 2404 to produce a coded representation of the video. The coding techniques are therefore sometimes called video compression or video transcoding techniques. The output of the coding component 2404 may be either stored, or transmitted via a communication connected, as represented by the component 2406. The stored or communicated bitstream (or coded) representation of the video received at the input 2402 may be used by the component 2408 for generating pixel values or displayable video that is sent to a display interface 2410. The process of generating user-viewable video from the bitstream representation is sometimes called video decompression. Furthermore, while certain video processing operations are referred to as “coding” operations or tools, it will be appreciated that the coding tools or operations are used at an encoder and corresponding decoding tools or operations that reverse the results of the coding will be performed by a decoder.

Examples of a peripheral bus interface or a display interface may include universal serial bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on. Examples of storage interfaces include SATA (serial advanced technology attachment), PCI, IDE interface, and the like. The techniques described in the present document may be embodied in various electronic devices such as mobile phones, laptops, smartphones or other devices that are capable of performing digital data processing and/or video display.

FIG. 25 is a flowchart representation of a method 2500 for video processing in accordance with the present technology. The method 2500 includes, at operation 2510, determining, for a conversion between a current block of a video and a bitstream representation of the video, that the current block is split into multiple sub-blocks. At least one of the multiple blocks is coded using a modified intra-block copy (IBC) coding technique that uses reference samples from one or more video regions from a current picture of the current block. The method 2500 includes, at operation 2520, performing the conversion based on the determining.

In some embodiments, the video region comprises the current picture, a slice, a tile, a brick, or a tile group. In some embodiments, the current block is split into the multiple sub-blocks in case the current block has a dimension of M×N, M and N being integers. In some embodiments, the multiple sub-blocks have a same size of L×K, L and K being integers. In some embodiments, L=K. In some embodiments, L=4 or K=4.

In some embodiments, the multiple sub-blocks have different sizes. In some embodiments, the multiple sub-blocks have a non-rectangular shape. In some embodiments, the multiple sub-blocks have a triangular or a wedgelet shape.

In some embodiments, a size of at least one of the multiple sub-blocks is determined based on a size of a minimum coding unit, a minimum prediction unit, a minimum transform unit, or a minimum unit for motion information storage. In some embodiments, the size of at least one sub-block is represented as (N1×minW)×(N2×minH), wherein minW×minH represents the size of the minimum coding unit, the prediction unit, the transform unit, or the unit for motion information storage, and wherein N1 and N2 are positive integers. In some embodiments, a size of at least one of the multiple sub-blocks is based on a coding mode in which the current block is coded in the bitstream representation. In some embodiments, the coding mode comprises at least an intra block copy (IBC) merge mode, or a sub-block temporal motion vector prediction mode. In some embodiments, wherein a size of at least one of the multiple sub-blocks is signaled in the bitstream representation.

In some embodiments, the method includes determining that a subsequent block of the video is split into multiple sub-blocks for the conversion, wherein a first sub-block in the current block has a different size than a second sub-block in the subsequent block. In some embodiments, a size of the first sub-block differs from a size of the second sub-block according a dimension of the current block and a dimension of the subsequent block. In some embodiments, a size of at least one of the multiple sub-blocks is based on a color format or a color component of the video. In some embodiments, a first sub-block is associated with a first color component of the video and a second sub-block is associated with a second color component of the video, the first sub-block and the second sub-block having different dimensions. In some embodiments, in case a color format of the video is 4:2:0, the first sub-block associated with a luma component has a dimension of 2L×2K and the second sub-block associated with a chroma component has a dimension of L×K. In some embodiments, in case a color format of the video is 4:2:2, the first sub-block associated with a luma component has a dimension of 2L×2K and the second sub-block associated with a chroma component has a dimension of 2L×K. In some embodiments, a first sub-block is associated with a first color component of the video and a second sub-block is associated with a second color component of the video, the first sub-block and the second sub-block having a same dimension. In some embodiments, the first sub-block associated with a luma component has a dimension of 2L×2K and the second sub-block associated with a chroma component has a dimension of 2L×2K in case the color format of the video is 4:2:0 or 4:4:4.

In some embodiments, a motion vector of a first sub-block associated with a first color component of the video is determined based on one or more sub-blocks associated with a second color component of the video. In some embodiments, the motion vector of the first sub-block is an average of motion vectors of the one or more sub-blocks associated with the second color component. In some embodiments, the current block is partitioned into the multiple sub-blocks based on a single tree partitioning structure. In some embodiments, the current block is associated with a chroma component of the video. In some embodiments, the current block has a size of 4×4.

In some embodiments, motion information of the at least one sub-block of the multiple sub-blocks is determined based on identifying a reference block based on an initial motion vector and determining the motion information of the sub-block based on the reference block. In some embodiments, the reference block is located within the current picture. In some embodiments, the reference block is located within a reference picture of one or more reference pictures. In some embodiments, at least one of the one or more reference pictures is the current picture. In some embodiments, the reference block is located within a collocated reference picture that is collocated with one of the one or more reference pictures according to temporal information. In some embodiments, the reference picture is determined based on motion information of a collated block or neighboring blocks of the collated block. The collocated block is collocated with the current block according to temporal information. In some embodiments, the initial motion vector of the reference block is determined based on one or more neighboring blocks of the current block or one or more neighboring blocks of the sub-block. In some embodiments, the one or more neighboring blocks comprises adjacent blocks and/or non-adjacent blocks of the current block or the sub-block. In some embodiments, at least one of the one or more neighboring blocks and the reference block are located within a same picture. In some embodiments, at least one of the one or more neighboring blocks is located within a reference picture of one or more reference pictures. In some embodiments, at least one of the one or more neighboring blocks is located within a collocated reference picture that is collocated with one of the one or more reference pictures according to temporal information. In some embodiments, the reference picture is determined based on motion information of a collated block or neighboring blocks of the collated block, wherein the collocated block is collocated with the current block according to temporal information.

In some embodiments, the initial motion vector is equal to a motion vector stored in one of the one or more neighboring blocks. In some embodiments, the initial motion vector is determined based on an order in which the one or more neighboring blocks are examined for the conversion. In some embodiments, the initial motion vector is a first identified motion vector associated with the current picture. In some embodiments, the initial motion vector of the reference block is determined based on a list of motion candidates. In some embodiments, the list of motion candidates comprises a list of intra-block copy (IBC) candidates, a list of merge candidates, a list of sub-block temporal motion vector prediction candidates, or a list of history-based motion candidates that is determined based on past motion prediction results. In some embodiments, the initial motion vector is determined based on a selected candidate in the list. In some embodiments, the selected candidate is a first candidate in the list. In some embodiments, the list of candidates is constructed based on a process that uses different spatial neighboring blocks than spatial neighboring blocks in a conventional construction process.

In some embodiments, the initial motion vector of the reference block is determined based on a location of the current block in the current picture. In some embodiments, the initial motion vector of the reference block is determined based on a dimension of the current block. In some embodiments, the initial motion vector is set to a default value. In some embodiments, the initial motion vector is indicated in the bitstream representation in a video unit level. In some embodiments, the video unit comprises a tile, a slice, a picture, a brick, a row of a coding tree unit (CTU), a CTU, a coding tree block (CTB), a coding unit (CU), a prediction unit (PU), or a transform unit (TU). In some embodiments, the initial motion vector for the sub-block is different than another initial motion block for a second sub-block of the current block. In some embodiments, initial motion vectors of the multiple sub-blocks of the current block are determined differently according to a video unit. In some embodiments, the video unit comprises a block, a tile, or a slice.

In some embodiments, prior to identifying the reference block, the initial motion vector is converted to a F-pel integer precision, F being a positive integer greater than or equal to 1. In some embodiments, F is 1, 2, or 4. In some embodiments, the initial motion vector is represented as (vx, vy), and wherein the converted motion vector (vx′, vy′) is represented as (vx×F, vy×F). In some embodiments, a top-left position of the sub-block is represented as (x,y) and the sub-block has a size of L×K, L being a width of the current sub-block and K being a height of the sub-block. The reference block is identified as an area covering (x+offsetX+vx′, y+offsetY+vy′), offsetX and offset being non-negative values. In some embodiments, offsetX is 0 and/or offsetY is 0. In some embodiments, offsetX is equal to L/2, L/2+1, or L/2−1. In some embodiments, offsetY is equal to K/2, K/2+1, or K/2−1. In some embodiments, offsetX and/or offsetY are clipped within a range, the range comprising a picture, a slice, a tile, a brick, or an intra-block copy reference area.

In some embodiments, the motion vector of the sub-block is determined further based on motion information of the reference block. In some embodiments, the motion vector of the sub-block is same as a motion vector of the reference block in case the motion vector of the reference block is directed to the current picture. In some embodiments, the motion vector of the sub-block is determined based on adding the initial motion vector to a motion vector of the reference block in case the motion vector of the reference block is directed to the current picture. In some embodiments, the motion vector of the sub-block is clipped within a range such that the motion vector of the sub-block is directed to an intra-block-copy reference area. In some embodiments, the motion vector of the sub-block is a valid motion vector of an intra-block-copy candidate of the sub-block.

In some embodiments, one or more intra-block copy candidates for the sub-block are determined for determining the motion information of the sub-block. In some embodiments, the one or more intra-block copy candidates are added to a list of motion candidates that comprises one of: a merge candidate for the sub-block, a sub-block temporal motion vector prediction candidate for the sub-block, or an affine merge candidate for the sub-block. In some embodiments, the one or more intra-block copy candidates are positioned before any merge candidate for the sub-block in the list. In some embodiments, the one or more intra-block copy candidates are positioned after any sub-block temporal motion vector prediction candidate for the sub-block in the list. In some embodiments, the one or more intra-block copy candidates are positioned after any inherited or constructed affine candidate for the sub-block in the list. In some embodiments, whether the one or more intra-block copy candidates are added to a list of motion candidates is based on a coding mode of the current block. In some embodiments, the one or more intra-block copy candidates are excluded from the list of motion candidates in case the current block is coded using an intra-block copy (IBC) sub-block temporal motion vector prediction mode.

In some embodiments, whether the one or more intra-block copy candidates are added to the list of motion candidates is based on partitioning structure of the current block. In some embodiments, the one or more intra-block copy candidates are added as a merge candidate of the sub-block in the list. In some embodiments, the one or more intra-block copy candidates are added to the list of motion candidates based on different initial motion vectors. In some embodiments, whether the one or more intra-block copy candidates are added to the list of motion candidates is indicated in the bitstream representation. In some embodiments, whether an index indicating the list of motion candidates is signaled in the bitstream representation is based on a coding mode of the current block. In some embodiments, the index indicating the list of motion candidates that comprises an intra-block copy merge candidate is signaled in the bitstream representation in case the current block is coded using an intra block copy merge mode. In some embodiments, the index indicating the list of motion candidates that comprises an intra-block copy sub-block temporal motion vector prediction candidate is signaled in the bitstream representation in case the current block is coded using an intra block copy sub-block temporal motion vector prediction mode. In some embodiments, a motion vector difference for the intra block copy sub-block temporal motion vector prediction mode is applied to the multiple sub-blocks.

In some embodiments, the reference block and the sub-block are associated with a same color component of the video. In some embodiments, whether the current block is split into the multiple sub-blocks is based on a coding characteristic associated with the current block. In some embodiments, the coding characteristic comprises a syntax flag in the bitstream representation in a decoder parameter set, a sequence parameter set, a video parameter set, a picture parameter set, APS, a picture header, a slice header, a tile group header, a Largest Coding Unit (LCU), a Coding Unit (CU), a row of a LCU, a group of LCUs, a transform unit, a prediction unit, a prediction unit block, or a video coding unit. In some embodiments, the coding characteristic comprises a position of a coding unit, a prediction unit, a transform unit, a block, or a video coding unit. In some embodiments, the coding characteristic comprises a dimension of the current block or a neighboring block of the current block. In some embodiments, the coding characteristic comprises a shape of the current block or a neighboring block of the current block. In some embodiments, the coding characteristic comprises an intra coding mode of the current block or a neighboring block of the current block. In some embodiments, the coding characteristic comprises a motion vector of a neighboring block of the current block. In some embodiments, the coding characteristic comprises an indication of a color format of the video. In some embodiments, the coding characteristic comprises a coding tree structure of the current block. In some embodiments, the coding characteristic comprises a slice type, a tile group type, or a picture type associated with the current block. In some embodiments, the coding characteristic comprises a color component associated with the current block. In some embodiments, the coding characteristic comprises a temporal layer identifier associated with the current block. In some embodiments, the coding characteristic comprises a profile, a level, or a tier of a standard for the bitstream representation.

FIG. 26 is a flowchart representation of a method 2600 for video processing in accordance with the present technology. The method 2600 includes, at operation 2610, determining, for a conversion between a current block of a video and a bitstream representation of the video, that the current block is split into multiple sub-blocks. Each of the multiple sub-blocks is coded in the coded representation using a corresponding coding technique according to a pattern. The method also includes, at operation 2620, performing the conversion based on the determining.

In some embodiments, the pattern specifies that a first sub-block of the multiple sub-blocks is coded using a modified intra-block copy (IBC) coding technique in which reference samples from a video region are used. In some embodiments, the pattern specifies that a second sub-block of the multiple sub-blocks is coded using an intra prediction coding technique in which samples from the same sub-block are used. In some embodiments, the pattern specifies that a second sub-block of the multiple sub-blocks is coded using a palette coding technique in which a palette of representative pixel values is used. In some embodiments, the pattern specifies that a second sub-block of the multiple sub-blocks is coded using an inter coding technique in which temporal information is used.

In some embodiments, the pattern specifies that a first sub-block of the multiple sub-blocks is coded using an intra prediction coding technique in which samples from the same sub-block are used. In some embodiments, the pattern specifies that a second sub-block of the multiple sub-blocks is coded using a palette coding technique in which a palette of representative pixel values is used. In some embodiments, the pattern specifies that a second sub-block of the multiple sub-blocks is coded using an inter coding technique in which temporal information is used.

In some embodiments, the pattern specifies that all of the multiple sub-blocks are coded using a single coding technique. In some embodiments, the single coding technique comprises an intra prediction coding technique in which samples from the same sub-block are used for coding the multiple sub-blocks. In some embodiments, the single coding technique comprises a palette coding technique in which a palette of representative pixel values is used for coding the multiple sub-blocks.

In some embodiments, a history-based table of motion candidates for a sub-block temporal motion vector prediction mode remains same for the conversion in case the pattern of one or more coding techniques applies to the current block, the history-based table of motion candidates determined based on motion information in past conversions. In some embodiments, the history-based table is for the IBC coding technique or a non-IBC coding technique.

In some embodiments, in case the pattern specifies that at least one sub-block of the multiple sub-blocks is coded using the IBC coding technique, one or more motion vectors for the at least one sub-block are used to update a history-based table of motion candidates for an IBC sub-block temporal motion vector prediction mode, the history-based table of motion candidates determined based on motion information in past conversions. In some embodiments, in case the pattern specifies that at least one sub-block of the multiple sub-blocks is coded using the inter coding technique, one or more motion vectors for the at least one sub-block are used to update a history-based table of motion candidates for a non-IBC sub-block temporal motion vector prediction mode, the history-based table of motion candidates determined based on motion information in past conversions.

In some embodiments, usage of a filtering process in which boundaries of the multiple sub-blocks are filtered is based on usage of the at least one coding technique according to the pattern. In some embodiments, the filtering process filtering boundaries of the multiple sub-blocks is applied in case the at least one coding technique is applied. In some embodiments, the filtering process filtering boundaries of the multiple sub-blocks is omitted in case the at least one coding technique is applied.

In some embodiments, a second coding technique is disabled for the current block for the conversion according to the pattern. In some embodiments, the second coding technique comprises at least one of: a sub-block transform coding technique, an affine motion prediction coding technique, a multiple-reference-line intra prediction coding technique, a matrix-based intra prediction coding technique, a symmetric motion vector difference (MVD) coding technique, a merge with a MVD decoder-side motion derivation or refinement coding technique, a bi-directional optimal flow coding technique, a secondary transform coding technique with a reduced dimension based on a dimension of the current block, or a multiple-transform-set coding technique.

In some embodiments, usage of the at least one coding technique according to the pattern is signaled in the bitstream representation. In some embodiments, the usage is signaled in at a sequence level, a picture level, a slice level, a tile group level, a tile level, a brick level, a coding tree unit (CTU) level, a coding tree block (CTB) level, a coding unit (CU) level, a prediction unit (PU) level, a transform unit (TU), or at another video unit level. In some embodiments, the at least one coding technique comprises the modified IBC coding technique, and the modified IBC coding technique is indicated in the bitstream representation based on an index value indicating a candidate in a motion candidate list. In some embodiments, a predefined value is assigned to the current block coded using modified IBC coding technique.

In some embodiments, usage of the at least one coding technique according to the pattern is determined during the conversion. In some embodiments, usage of an intra-block copy (IBC) coding technique for coding the current block in which reference samples from the current block are used is signaled in the bitstream. In some embodiments, usage of an intra-block copy (IBC) coding technique for coding the current block in which reference samples from the current block are used is determined during the conversion.

In some embodiments, motion information of the multiple sub-blocks of the current block is used as a motion vector predictor for a conversion between a subsequent block of the video and the bitstream representation. In some embodiments, motion information of the multiple sub-blocks of the current block is disallowed to be used for a conversion between a subsequent block of the video and the bitstream representation. In some embodiments, the determining that the current block is split into the multiple sub-blocks coded using the at least one coding technique is based on whether a motion candidate is a candidate is applicable for a block of video or a sub-block within the block.

FIG. 27 is a flowchart representation of a method 2700 for video processing in accordance with the present technology. The method 2700 includes, at operation 2710, determining, for a conversion between a current block of a video and a bitstream representation of the video, an operation associated with a list of motion candidates based on a condition related to a characteristic of the current block. The list of motion candidates is constructed for a coding technique or based on information from previously processed blocks of the video. The method 2700 also includes, at operation 2720, performing the conversion based on the determining.

In some embodiments, the coding technique comprises a merge coding technique, an intra block copy (IBC) sub-block temporal motion vector prediction coding technique, a sub-block merge coding technique, an IBC coding technique, or a modified IBC coding technique that uses reference samples from a video region of the current block for coding at least one sub-block of the current block.

In some embodiments, the current block has a dimension of W×H, W and H being positive integers. The condition is related to the dimension of the current block. In some embodiments, the condition is related to coded information of the current block or coded information of a neighboring block of the current block. In some embodiments, the condition is related to a merge sharing condition for sharing the list of motion candidates between the current block and another block.

In some embodiments, the operation comprises deriving a spatial merge candidate for the list of motion candidates using a merge coding technique. In some embodiments, the operation comprises deriving a motion candidate for the list of motion candidates based on a spatial neighboring block of the current block. In some embodiments, the spatial neighboring block comprises an adjacent block or a non-adjacent block of the current block.

In some embodiments, the operation comprises deriving a motion candidate for the list of motion candidates that is constructed based on the information from previously processed blocks of the video. In some embodiments, the operation comprises deriving a pairwise merge candidate for the list of motion candidates. In some embodiments, the operation comprises one or more pruning operations that remove redundant entries in the list of motion candidates. In some embodiments, the one or more pruning operations are for spatial merge candidates in the list of motion candidates.

In some embodiments, the operation comprises updating, after the conversion, the list of motion candidates that is constructed based on the information from previously processed blocks of the video. In some embodiments, the updating comprises adding a derived candidate into the list of motion candidates without a pruning operation that removes redundancy in the list of motion candidates. In some embodiments, the operation comprises adding a default motion candidate in the list of motion candidates. In some embodiments, the default motion candidate comprises a zero motion candidate using an IBC sub-block temporal motion vector prediction coding technique. In some embodiments, the operation is skipped in case the condition is satisfied.

In some embodiments, the operation comprises checking motion candidates in the list of motion candidates in a predefined order. In some embodiments, the operation comprises checking a predefined number of motion candidates in the list of motion candidates. In some embodiments, the condition is satisfied in case W×H is greater than or equal to a threshold. In some embodiments, the condition is satisfied in case W×H is greater than or equal to the threshold and the current block is coded using the IBC sub-block temporal motion vector prediction coding technique or the merge coding technique. In some embodiments, the threshold is 1024.

In some embodiments, the condition is satisfied in case W and/or H is greater than or equal to a threshold. In some embodiments, the threshold is 32. In some embodiments, the condition is satisfied in case W×H is smaller than or equal to a threshold and the current block is coded using the IBC sub-block temporal motion vector prediction coding technique or the merge coding technique. In some embodiments, the threshold is 16. In some embodiments, the threshold is 32 or 64. In some embodiments, in case the condition is satisfied, the operation that comprises inserting a candidate determined based on a spatial neighboring block into the list of motion candidates is skipped.

In some embodiments, the condition is satisfied in case W is equal to T2, H is equal to T3, and a neighboring block above the current block is available and is coded using a same coding technique as the current block, T2, and T3 being positive integers. In some embodiments, the condition is satisfied in case the neighboring block and the current block are in a same coding tree unit.

In some embodiments, the condition is satisfied in case W is equal to T2, H is equal to T3, and a neighboring block above the current block is not available or is outside of a current coding tree unit in which the current block is located, T2 and T3 being positive integers. In some embodiments, T2 is 4 and T3 is 8. In some embodiments, the condition is satisfied in case W is equal to T4, H is equal to T5, and a neighboring block to the left of the current block is available and is coded using a same coding technique as the current block, T4, and T5 being positive integers. In some embodiments, the condition is satisfied in case W is equal to T4, H is equal to T5, and a neighboring block to the left of the current block is unavailable, T4 and T5 being positive integers. In some embodiments, T4 is 8 and T5 is 4.

In some embodiments, the condition is satisfied in case W×H is smaller than or equal to a threshold, the current block is coded using the IBC sub-block temporal motion vector prediction coding technique or the merge coding technique, and both a first neighboring block above the current block and a second neighboring block to the left of the current block are coded using a same coding technique. In some embodiments, the first and second neighboring blocks are available and coded using the IBC coding technique, and wherein the second neighboring block is within a same coding tree unit as the current block. In some embodiments, the first neighboring block is unavailable, and wherein the second neighboring block is available and within a same coding tree unit as the current block. In some embodiments, the first and second neighboring blocks are unavailable. In some embodiments, the first neighboring block is available, and the second neighboring block is unavailable. In some embodiments, the first neighboring block is unavailable, and the second neighboring block is outside a coding tree unit in which the current block is located. In some embodiments, the first neighboring block is available, and the second neighboring block is outside a coding tree unit in which the current block is located. In some embodiments, the threshold is 32. In some embodiments, the first and second neighboring blocks are used for deriving a spatial merge candidate. In some embodiments, a top-left sample of the current block is positioned at (x, y), and wherein the second neighboring block covers a sample positioned at (x−1, y+H−1). In some embodiments, a top-left sample of the current block is positioned at (x, y), and wherein the second neighboring block covers a sample positioned at (x+W−1, y−1).

In some embodiments, the same coding technique comprises an IBC coding technique. In some embodiments, the same coding technique comprises an inter coding technique. In some embodiments, the neighboring block of the current block has a dimension equal to A×B. In some embodiments, the neighboring block of the current block has a dimension greater than A×B. In some embodiments, the neighboring block of the current block has a dimension smaller than A×B. In some embodiments, A×B is equal to 4×4. In some embodiments, the threshold is predefined. In some embodiments, the threshold is signaled in the bitstream representation. In some embodiments, the threshold is based on a coding characteristic of the current block, the coding characteristic comprising a coding mode in which the current block is coded.

In some embodiments, the condition is satisfied in case the current block has a parent node that shares the list of motion candidates and the current block is coded using the IBC sub-block temporal motion vector prediction coding technique or the merge coding technique. In some embodiments, the condition adaptively changes according to a coding characteristic of the current block.

FIG. 28 is a flowchart representation of a method 2800 for video processing in accordance with the present technology. The method 2800 includes, at operation 2810, determining, for a conversion between a current block of a video and a bitstream representation of the video, that the current block coded using an inter coding technique based on temporal information is split into multiple sub-blocks. At least one of the multiple blocks is coded using a modified intra-block copy (IBC) coding technique that uses reference samples from one or more video regions from a current picture that includes the current block. The method 2800 includes, at operation 2820, performing the conversion based on the determining.

In some embodiments, a video region comprises the current picture, a slice, a tile, a brick, or a tile group. In some embodiments, the inter coding technique comprises a sub-block temporal motion vector coding technique, and wherein one or more syntax elements indicating whether the current block is coded based on both the current picture and a reference picture different than the current picture are included in the bitstream representation. In some embodiments, the one or more syntax elements indicate the reference picture used for coding the current block in case the current block is coded based on both the current picture and the reference picture. In some embodiments, the one or more syntax elements further indicate motion information associated with the reference picture, the motion information comprising at least a motion vector prediction index, a motion vector difference, or a motion vector precision. In some embodiments, a first reference picture list includes only the current picture and a second reference picture list includes only the reference picture. In some embodiments, the inter coding technique comprises a temporal merge coding technique, and motion information is determined based on a neighboring block of the current block, the motion information comprising at least a motion vector or a reference picture. In some embodiments, the motion information is only applicable to the current picture in case the neighboring block is determined based on the current picture only. In some embodiments, the motion information is applicable to both the current picture and the reference picture in case the neighboring block is determined based on both the current picture and the reference picture. In some embodiments, the motion information is applicable to the current picture only in case the neighboring block is determined based on both the current picture and the reference picture. In some embodiments, the neighboring block is discarded for determining a merge candidate in case the neighboring block is determined based only the reference picture.

In some embodiments, a fixed weighting factor is assigned to reference blocks from the current picture and reference blocks from the reference picture. In some embodiments, the fixed weighting factor is signaled in the bitstream representation.

In some embodiments, performing the conversion includes generating the bitstream representation based on the block of the video. In some embodiments, performing the conversion includes generating the block of the video from the bitstream representation.

It will be appreciated that techniques for video encoding or video decoding are disclosed. These techniques may be adopted by video encoders or decoders for using intra block copy and sub-block based video processing together to achieve greater coding efficiency and performance.

Some embodiments of the disclosed technology include making a decision or determination to enable a video processing tool or mode. In an example, when the video processing tool or mode is enabled, the encoder will use or implement the tool or mode in the processing of a block of video, but may not necessarily modify the resulting bitstream based on the usage of the tool or mode. That is, a conversion from the block of video to the bitstream representation of the video will use the video processing tool or mode when it is enabled based on the decision or determination. In another example, when the video processing tool or mode is enabled, the decoder will process the bitstream with the knowledge that the bitstream has been modified based on the video processing tool or mode. That is, a conversion from the bitstream representation of the video to the block of video will be performed using the video processing tool or mode that was enabled based on the decision or determination.

Some embodiments of the disclosed technology include making a decision or determination to disable a video processing tool or mode. In an example, when the video processing tool or mode is disabled, the encoder will not use the tool or mode in the conversion of the block of video to the bitstream representation of the video. In another example, when the video processing tool or mode is disabled, the decoder will process the bitstream with the knowledge that the bitstream has not been modified using the video processing tool or mode that was enabled based on the decision or determination.

The disclosed and other solutions, examples, embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, e.g., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.

A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.

The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random-access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

While this patent document contains many specifics, these should not be construed as limitations on the scope of any subject matter or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular techniques. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a sub combination.

Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.

Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.

Wang, Yang, Zhang, Kai, Wang, Yue, Zhang, Li, Liu, Hongbin

Patent Priority Assignee Title
Patent Priority Assignee Title
10045014, Jul 15 2013 XUESHAN TECHNOLOGIES INC Method of disparity derived depth coding in 3D video coding
10057574, Feb 11 2015 Qualcomm Incorporated Coding tree unit (CTU) level adaptive loop filter (ALF)
10057594, Apr 02 2013 InterDigital Madison Patent Holdings, SAS Enhanced temporal motion vector prediction for scalable video coding
10165252, Jul 12 2013 HFI INNOVATION INC Method of sub-prediction unit inter-view motion prediction in 3D video coding
10326986, Aug 15 2016 Qualcomm Incorporated Intra video coding using a decoupled tree structure
10362330, Jul 30 2018 TENCENT AMERICA LLC Combining history-based motion vector prediction and non-adjacent merge prediction
10440378, Jul 17 2018 TENCENT AMERICA LLC Method and apparatus for history-based motion vector prediction with parallel processing
10448010, Oct 05 2016 Qualcomm Incorporated Motion vector prediction for affine motion models in video coding
10462439, Oct 02 2015 InterDigital Madison Patent Holdings, SAS Color correction with a lookup table
10560718, May 13 2016 Qualcomm Incorporated Merge candidates for motion vector prediction for video coding
10567789, Jun 16 2014 Qualcomm Incorporated Simplified shifting merge candidate and merge list derivation in 3D-HEVC
10567799, Mar 07 2014 Qualcomm Incorporated Simplified sub-prediction unit (sub-PU) motion parameter inheritance (MPI)
10721489, Sep 06 2016 Qualcomm Incorporated Geometry-based priority for the construction of candidate lists
10743016, Jul 06 2018 HFI INNOVATION INC Inherited motion information for decoding a current coding unit in a video coding system
10785494, Oct 11 2017 Qualcomm Incorporated Low-complexity design for FRUC
10841607, Aug 13 2018 LG Electronics Inc. Inter prediction method and apparatus based on history-based motion vector
10958934, Jul 27 2018 TENCENT AMERICA LLC History-based affine merge and motion vector prediction
11051034, Oct 08 2018 Qualcomm Incorporated History-based motion vector predictor
11128884, Nov 17 2018 BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD.; BYTEDANCE INC. Construction of merge with motion vector difference candidates
11245892, Jun 29 2018 BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD.; BYTEDANCE INC. Checking order of motion candidates in LUT
11277624, Nov 12 2018 BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD.; BYTEDANCE INC. Bandwidth control methods for inter prediction
11284088, Nov 12 2018 BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD.; BYTEDANCE INC. Using combined inter intra prediction in video processing
11381832, Jan 17 2019 TENCENT AMERICA LLC Method and apparatus for video coding
9357214, Dec 07 2012 Qualcomm Incorporated Advanced merge/skip mode and advanced motion vector prediction (AMVP) mode for 3D video
9432685, Dec 06 2013 Qualcomm Incorporated Scalable implementation for parallel motion estimation regions
9491461, Sep 27 2012 Qualcomm Incorporated Scalable extensions to HEVC and temporal motion vector prediction
9538180, Dec 17 2012 Qualcomm Incorporated Motion vector prediction in video coding
9549180, Apr 20 2012 Qualcomm Incorporated Disparity vector generation for inter-view prediction for video coding
9609347, Apr 04 2013 Qualcomm Incorporated Advanced merge mode for three-dimensional (3D) video coding
9699450, Oct 04 2012 Qualcomm Incorporated Inter-view predicted motion vector for 3D video
9716899, Jun 27 2013 Qualcomm Incorporated Depth oriented inter-view motion vector prediction
9800895, Jun 27 2013 Qualcomm Incorporated Depth oriented inter-view motion vector prediction
9924168, Oct 05 2012 HFI INNOVATION INC Method and apparatus of motion vector derivation 3D video coding
20130329007,
20130336406,
20140071235,
20140376634,
20160100189,
20160105670,
20160219278,
20160330471,
20160373756,
20170195677,
20170289566,
20180205946,
20180343463,
20190014325,
20190104303,
20190116374,
20200014948,
20200186820,
20200195959,
20200374542,
20200413044,
20210006787,
20210006788,
20210006790,
20210021811,
20210021856,
20210029373,
20210029374,
20210051324,
20210076029,
20210092379,
20210092436,
20210105482,
20210127129,
20210152846,
20210160529,
20210160532,
20210185342,
20210195234,
20210211647,
20210235073,
20210235108,
20210250602,
20210258575,
20210266537,
20210266562,
20210281859,
20210281875,
20210281877,
20210297659,
20210321092,
20210329227,
20210337232,
20210352312,
20210385451,
20210409684,
20210409720,
20220007053,
20220094917,
20220094927,
20220116592,
CN104754343,
CN106576152,
CN106797476,
CN107211144,
WO2015176678,
WO2016138513,
WO2016165623,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 25 2020LIU, HONGBINBEIJING BYTEDANCE NETWORK TECHNOLOGY CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0582750576 pdf
May 25 2020WANG, YANGBEIJING BYTEDANCE NETWORK TECHNOLOGY CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0582750576 pdf
May 25 2020WANG, YUEBEIJING BYTEDANCE NETWORK TECHNOLOGY CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0582750576 pdf
May 25 2020ZHANG, LIBYTEDANCE INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0582750547 pdf
May 25 2020ZHANG, KAIBYTEDANCE INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0582750547 pdf
Dec 02 2021BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD.(assignment on the face of the patent)
Dec 02 2021BYTEDANCE INC.(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 02 2021BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
May 16 20264 years fee payment window open
Nov 16 20266 months grace period start (w surcharge)
May 16 2027patent expiry (for year 4)
May 16 20292 years to revive unintentionally abandoned end. (for year 4)
May 16 20308 years fee payment window open
Nov 16 20306 months grace period start (w surcharge)
May 16 2031patent expiry (for year 8)
May 16 20332 years to revive unintentionally abandoned end. (for year 8)
May 16 203412 years fee payment window open
Nov 16 20346 months grace period start (w surcharge)
May 16 2035patent expiry (for year 12)
May 16 20372 years to revive unintentionally abandoned end. (for year 12)