A disposable prepackaged fluid processing module includes an integral housing wherein fluid containers, tubing segments, and other components required in processing a fluid are contained. fluid communication between the containers, components and tubing segments is provided by a fluid circuit formed by a panel of the housing, and an overlying fluid-impermeable flexible sheet member. The fluid circuit includes pump and valve elements which operate in response to pressures applied to the sheet member. Upon installation of the system in a related actuator apparatus pneumatic actuator ports apply pressures to the pump and valve elements to circulate fluid through the fluid circuit.
|
1. A fluid module for use in a fluid procedure, comprising:
a housing open at one end, including a removable cover overlying said open end; and a relatively flexible fluid impervious sheet member within said housing forming in conjunction with said housing a fluid circuit including at least one pump element actuable in response to an applied pressure.
36. A fluid module for use in a fluid procedure comprising
a housing comprising a base panel and at least one side panel forming an open ended tray-like enclosure, and a relatively flexible fluid impervious sheet member within said housing forming in conjunction with said base panel a fluid circuit including at least one pump element actuable in response to an applied pressure.
15. A modular fluid processing system for use in a fluid procedure, comprising:
a housing have a base panel and at least one side panel; at least one system element contained within said housing for use in conjunction with the procedure; and a fluid-impermeable sheet member within said housing overlying said base panel, and forming in conjunction with said base panel a fluid circuit in fluid communication with said component.
25. A fluid module for fractionating a desired fluid component from a whole fluid, said module comprising, in combination
a housing having a base panel and at least one side panel; a filter element for separating the desired component from the whole component; and a fluid-impervious sheet member within said housing overlying said bottom panel, said bottom panel including a depressed portion forming in conjunction with said overlying sheet member a fluid circuit serially including said filter element.
32. A modular fluid system for performing a fluid procedure, comprising:
a housing open at one end and including a base panel and at least one side panel formed of a relatively inflexible fluid-impermeable plastic material; a system component contained within said housing for use in conjunction with said fluid procedure; a relatively flexible fluid-impermeable sheet member overlying said base panel, said base panel including an outwardly depressed portion thereon forming in conjunction with said sheet member a fluid-sealed fluid circuit including a circuit element actuable by force applied to said sheet member; and removable cover means overlying the open end of said housing.
3. A fluid module as defined in
4. A fluid module as defined in
6. A fluid module as defined in
7. A fluid module as defined in
wherein said housing includes a panel member formed of a relatively inflexible fluid-impermeable material and including a generally outwardly depressed portion therein; and wherein said relatively flexible fluid impervious sheet member overlies said panel member in fluid-sealed engagement therewith, said sheet member forming in conjunction with said depressed portion said fluid circuit which serially includes a fluid passageway and said at least one pump element responsive to said pressure applied to said flexible sheet member for controlling fluid flow in said passageway.
8. A fluid module as defined in
9. A fluid circuit as defined in
10. A fluid module as defined in
wherein said housing includes a relatively stiff fluid-impermeable base member including a raised portion thereon forming said one pump element having an inlet valve stop, an outlet valve stop, and a fluid displacement chamber being generally arranged for continuous fluid flow therethrough; wherein said relatively flexible fluid impervious sheet member overlies said base member in fluid-sealed arrangement therewith, and forms in conjunction with said raised portion of said base member said fluid circuit which serially includes a fluid passageway and said pump element; and wherein said flexible sheet member is displaceable against said inlet and outlet valve stops by pressure applied to said sheet member for closing said valve stops, and is displaceable into said fluid displacement chamber for forcing fluid along said passageway.
11. A fluid module as defined in
12. A fluid module as defined in
13. A fluid module as defined in
14. A fluid module as defined in
16. A fluid module as defined in
17. A fluid module as defined in
18. A fluid module as defined in
20. A fluid module as defined in
21. A fluid module as defined in
22. A fluid module as defined in
24. A fluid module as defined in
26. A fluid module as defined in
27. A fluid module as defined in
28. A fluid module as defined in
29. A fluid module as defined in
30. A fluid module as defined in
31. A fluid module as defined in
33. A fluid module as defined in
34. A fluid module as defined in
35. A fluid module as defined in
37. A fluid module as defined in
38. A fluid module as defined in
39. A fluid module as defined in
40. A fluid module as defined in
wherein said base panel is formed of a relatively inflexible fluid-impermeable material and includes a generally outwardly depressed portion therein; and wherein said relatively flexible fluid impervious sheet member overlies said base panel in fluid-sealed engagement therewith, said sheet member forming in conjunction with said depressed portion said fluid circuit which serially includes a fluid passageway and said at least one pump element responsive to said pressure applied to said flexible sheet member for controlling fluid flow in said passageway.
41. A fluid module as defined in
wherein said one pump element is actuable by a pneumatic pressure force applied to said sheet member.
42. A fluid module as defined in
wherein said base panel includes a raised portion thereon forming said one pump element having an inlet valve stop, an outlet valve stop, and a fluid displacement chamber being generally arranged for continuous fluid flow therethrough; wherein said relatively flexible fluid impervious sheet member overlies said base panel in fluid-sealed arrangement therewith, and forms in conjunction with said depressed portion of said base panel said fluid circuit which serially includes a fluid passageway and said pump element; and wherein said flexible sheet member is displaceable against said inlet and outlet valve stops by pressure applied to said sheet member for closing said valve stops, and is displaceable into said fluid displacement chamber for forcing fluid along said passageway.
43. A fluid module as defined in
wherein at least one of said valve stops extends in close proximity to said flexible sheet member to form a normally partially closed valve requiring outward deflection of said flexible sheet member to fully open said valve enabling fluid passage along said passageway.
44. A fluid module as defined in
wherein both of said valve stops extend in close proximity to said flexible sheet member to form normally partially closed valves each requiring outward deflection of said flexible sheet member to fully open said valves enabling fluid passage along said passageway.
45. A fluid module as defined in
wherein at least one of said valve stops is spaced away from said flexible sheet member in the undeflected position to form a normally open valve requiring inward deflection of said flexible sheet member to close said valve.
46. A fluid module as defined in
wherein both of said valve stops are spaced away from said flexible sheet member in the undeflected position to form normally open valves requiring inward deflection of said flexible sheet member to close said valves.
|
The present invention relates generally to fluid processing systems, and more specifically to a self-contained prepackaged fluid processing module which can be conveniently stored, set-up and operated.
Various methods and apparatus have been developed which utilize disposable single-use processing systems formed of plastics such as vinyl for accomplishing fluid processing procedures. In the medical field, for example, processing systems have been developed for blood fractionation procedures, such as plasmapheresis, leukopheresis and plateletpheresis, wherein whole blood is separated into one or more fractions by means of either a filter element or by means of centrifugation, and for hemodialysis procedures, wherein diffusion exchange occurs through a membrane between whole blood and a dialysis solution.
In these, and in other medical procedures employing disposable fluid processing systems, it is typically necessary for an attendant to first select and locate an appropriate filter or membrane element and one or more flow sets. The packaging of these items must then be opened and the items must be connected together to form a fluid circuit, which is then installed on the particular processor apparatus with which the procedure is to be performed.
Typically, the processor apparatus includes multiple pump, detector and clamping elements on which particular components and tubing segments of the fluid circuit must be individually installed. Consequently, the set-up procedure may be undesirably complex so as to require a specially trained operator, and may require an undesirably long time period to complete. Furthermore, even with the use of a specially trained technician, the potential remains for error, as where the wrong tubing segment is installed on a particular element of the apparatus.
Accordingly, the need has developed in the medical field for a modular fluid processing system which contains in a single storable package all of the components required for a particular procedure, and wherein the connections between system components are clearly identified and pre-established so that the system can be quickly set-up and installed on an associated processor apparatus. Preferably, such a system and the associated apparatus should be constructed so as to avoid the need for installing individual tubing segments and components of the system on individual pump, monitor and clamp elements of the apparatus. Furthermore, such a fluid processing system should contain all fluid containers necessary for fluids dispensed and collected in the procedure, so that the operator need only install the system in the actuator apparatus and connect input and output tubing segments to the donor prior to beginning a procedure.
Previous attempts at reducing the complexity of fluid processing systems for medical procedures have centered on arranging a portion of the fluid circuit in a block or manifold so as to interface with a complementarily configured actuator station on a processor apparatus. Typically, such systems did not provide containers for storing fluids, such as saline or ACD, and components required in the procedures. Consequently, it was necessary for the operator to separately assemble these component and make the necessary connections, with attendant delays and potential for error.
The present invention is directed to a prepackaged fluid processing module which satisfies the above requirements in a form which is economical to produce and convenient to store. The system is particularly advantageous in medical procedures where a relatively complex fluid circuit is required in conjunction with a multiple pump, sensing and control elements.
The invention is particularly useful in continuous-flow blood fractionation procedures, such as plasmapheresis, wherein plasma (or other blood component) is removed by means of a hollow-fiber filter, and wherein a relatively complex and exacting valving and pumping regimen is required to control blood flow to and from the patient. Accordingly, the invention is illustrated herein in conjunction with a blood fractionation circuit, although it will be appreciated that the invention can be configured to provide other fluid circuits for other medical and non-medical procedures.
Accordingly, it is a general object of the present invention to provide a new and improved disposable fluid processing system.
It is a further object of the present invention to provide a fluid processing system which is modular in construction and wherein the components and interconnections required therein are contained within a single disposable housing.
It is a further object of the present invention to provide a disposable fluid processing module which includes an integral housing for storing the principal components thereof, and wherein a panel of the housing forms, in conjunction with an overlying fluid impermeable plastic sheet member, a low-volume fluid circuit for interconnecting the various components and tubing segments of the system.
It is a further object of the present invention to provide a fluid processing system which is modular for storage, and which can be readily configured for installation on an associated fluid processor apparatus.
It is a further object of the present invention to provide a modular fluid processing system wherein fluid flow is controlled to minimize damage to cellular material processed therein.
The invention is directed to a disposable fluid circuit which comprises a relatively rigid fluid-impermeable panel member including an outwardly depressed portion thereon. A fluid-impermeable flexible sheet member overlies the panel member to form in conjunction with the depressed portions a fluid-sealed fluid circuit. The invention is further directed to a fluid module for performing a fluid processing procedure having a housing including a base panel and a side panel, the base panel comprising an element of a fluid circuit as described above, wherein a component required in the procedure is contained within the housing.
The invention is further directed to a fluid processing circuit, as described above, wherein the fluid circuit includes pump elements actuable by externally applied forces to establish a controlled flow of fluid through the fluid circuit.
The invention is further directed to a fluid processing circuit, as described above, wherein the fluid circuit includes fluid absence, pressure or hemolysis detectors formed in conjunction with the housing panel and the flexible sheet member.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with the further objects and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify like elements, and in which:
FIG. 1 is a perspective view of a modular fluid processing system constructed in accordance with the invention for continuous-flow plasmapheresis, showing the cover thereof in place and the system configured for long term storage.
FIG. 2 is a perspective view of the modular processing system with the cover substantially removed to show the placement of the principal components of the system therein.
FIG. 3 is a perspective view of the bottom of the modular fluid processing system showing the fluid circuit formed on the bottom panel thereof.
FIG. 4 is a cross-sectional view of the modular processing module taken along line 4--4 of FIG. 1.
FIG. 5 is an exploded perspective view of the processing module showing the principal components and interconnections thereof.
FIG. 6 is a perspective view of the processing module, disassembled and positioned for installation in the actuator station of an associated processor apparatus providing a continuous flow separation of plasma from whole blood.
FIG. 7 is a perspective view of the processing module showing the system installed in the actuator station of the processor apparatus of FIG. 6.
FIG. 8 is a cross-sectional view of the processing module and the actuator station of the processor apparatus taken along line 8--8 of FIG. 7.
FIG. 9 is a front elevational view of the back plate provided in the actuator station for engaging the rear surface of the housing of the processing module.
FIG. 10 is a front elevational view of the movable actuator head assembly provided in the actuator station of the processor apparatus.
FIG. 11 is a side elevational view, partially cross-sectional and partially diagrammatic, of the processor apparatus showing the movable actuator head and actuating mechanism thereof, and the principal control circuits incorporated therein.
FIG. 12 is a side elevational view, similar to FIG. 11, showing the movable actuator head in a closed position engaging the processing module.
FIG. 13 is a front elevational view of the bottom panel and overlying fluid-impervious flexible sheet member of the processing module partially fragmented to show the fluid circuit formed in the underlying bottom panel.
FIG. 14 is a transverse cross-sectional view of the hollow-fiber filter element of the fluid circuit taken along line 14--14 of FIG. 13.
FIG. 15 is a longitudinal cross-sectional view of the filter element taken along line 15--15 of FIG. 13.
FIG. 16 is a cross-sectional view of a connector fitting of the fluid circuit taken along line 16--16 of FIG. 13.
FIG. 17 is a cross-sectional view of the fluid absence detector incorporated in the fluid circuit taken along line 17--17 of FIG. 13.
FIG. 18 is a cross-sectional view similar to FIG. 17 showing an alternative construction for a fluid absence detector.
FIGS. 19A-19C are enlarged cross-sectional views of a normally closed pump element of the fluid circuit showing the element in at rest, fill and pump conditions, respectively.
FIGS. 20A-20C are enlarged cross-sectional views of a normally-open pump element of the fluid circuit showing the element in at rest, fill and pump conditions, respectively.
FIGS. 21A-21E are enlarged cross-sectional views of a bidirectional pump element of the fluid circuit showing the element in at rest, fill and pump conditions in one direction, and in fill and pump conditions in the other direction, respectively.
FIG. 22 is a cross-sectional view of a pressure regulator element of the fluid circuit taken along line 22--22 of FIG. 13.
FIG. 23 is a cross-sectional view of a pressure sensor element of the fluid circuit taken along line 23--23 of FIG. 13.
FIG. 24 is a cross-sectional view of a hemolysis detector element of the fluid circuit taken along line 24--24 of FIG. 13.
Referring to the drawings, and particularly to FIGS. 1-7, a prepackaged fluid processing module 20 is shown constructed in accordance with the invention for performing a fluid processing procedure in conjunction with an associated actuator apparatus 21. The module 20 includes a compact, normally closed housing 22 in which the fluid circuit and all the associated components required in the procedure are carried in a prearranged and, preferably, preattached condition. The housing 22 thus serves, in part, as a compact storage container to protect the fluid circuit and components prior to use.
At the time of use, as shown in FIGS. 6 and 7, the housing by reason of its unique construction, can be opened and conveniently placed in operative association with an actuator station 24 of the actuator apparatus 21, which provides pumping and valving actions necessary in the fluid circuit of the module for accomplishing the desired procedure. To this end, the actuator station may include an actuator head assembly 25 for engaging the housing, and a control panel 26 by which operating parameters for the procedure may be set by the operator.
The prepackaged, easily handled module 20, along with the associated actuator apparatus 21, are suited for use with virtually any fluid system. As will soon become apparent, the module 20 significantly simplifies the handling of fluid circuits, both prior to and during use, and all but eliminates the possibilities of an incorrectly arranged flow system or an incorrectly connected pump.
These inherent advantages of the modular flow system of the invention particularly lend the invention to use in fluid processing systems in the medical field, and particularly for fractionating or otherwise processing blood. For this reason, use of the module 20 in this context will be described.
While the specific blood processing procedure performed by the module 20 may vary, in the illustrated embodiment a fluid circuit for performing a continuous flow membrane plasmapheresis procedure is shown. During this plasmapheresis procedure, whole blood is drawn from a donor through a tubing segment 27 and separated into a plasma component and a red blood cell component. The red blood cell component is returned to the donor through a tubing segment 28. The plasma component is delivered to a container 30 through a tubing segment 31 for fractionation into various therapeutic components, such as albumin or Clotting Factor VIII.
Referring now to FIGS. 1-5, the housing 22 is seen to comprise four side panels 32-35 and a bottom panel 36 formed of a relatively rigid, fluid-impervious material, preferably translucent, clear or colored, and not opaque to light, such as molded plastic. The housing 22 is normally closed and sealed for long term storage by means of a cover 37, which is sealed over the open end of the housing. The cover may be formed of a flexible, fluid-impervious material such as metallic foil or vinyl, and may be secured by means of a layer 38 of adhesive or other appropriate means to the edge of the housing, as shown in FIG. 2. The housing side panels 32-35 preferably include an outwardly projecting rim portion to facilitate this attachment. A pull tab 39 may be provided to assist the operator in removing the cover at time of use.
To facilitate the desired operative interface between the module 20 and the actuator station 24 of processor apparatus 21, an elongated aperture 40 (see, in particular, FIG. 2) is provided in side panel 32. This aperture 40 is normally closed and sealed during storage by means of a cover 41, which extends over the aperture and is secured to side panel 32 by a layer of adhesive or other appropriate means. A pull tab 42 may be provided to facilitate removal of cover 41 from side panel 32 when preparing the processing system for use.
In accordance with one aspect of the invention, the fluid circuit and all the components required to perform the particular desired procedure can be conveniently carried within the confines of the housing 22. In the context of a continuous flow plasmapheresis procedure, containers are required for storing an anticoagulant solution (such as ACD or CPDA), a saline solution, and the collected plasma. Accordingly, the fluid processing system located within the housing in the illustrated embodiment includes a prefilled ACD container 43, a prefilled saline container 44 and the empty plasma collection container 30.
The prefilled ACD container 43 and saline container 44 are preferably formed of flexible vinyl material. To prevent the contents of the containers 43 and 44 from evaporating through the vinyl walls of the containers, a suitable over-wrap (not shown) is preferably provided to form a vapor barrier around the containers.
The containers 43 and 44 may be stored within housing 22 in an unconnected condition with the associated fluid circuit. In this arrangement, at the time of use, containers 43 and 44 are removed from the housing 22, the overwraps are removed, and the containers are then connected by the operator in flow communication with the circuit. In making the connection in an open or aseptic system, a conventional blood "spike" carried on tubing connected to the fluid circuit can be used to pierce a membrane associated with the inlet port of the end container. Alternately, in making the connection in a closed or sterile system, a sterile connector device can be used to interconnect the containers 43 and 44 with the fluid system, such as disclosed in Granzow, U.S. Pat. No. 4,157,723.
Preferably, the containers 43 and 44 are stored within the housing in a preattached condition with the fluid circuit. The containers 43 and 44, along with the associated overwraps may be integrally connected with the circuit using a port block, such as disclosed in Boggs et al, U.S. patent application Ser. No. 282,894, filed July 13, 1981 and entitled "Port Block Assembly For Interconnecting a Fluid Container with a Fluid Conduit". In this arrangement, the containers 43 and 44 are preferably permanently secured within housing 22 by adhesive attachment to the interior surface of the adjacent side panel 34.
When in a preattached condition, the ACD container 43 is integrally connected to the fluid circuit of the processing system by a tubing segment 56, which includes a frangible in-line cannula 57 (see FIG. 5), such as disclosed in Bayham et al, U.S. Pat. No. 4,294,247. This cannula 57 is preferably arranged so as to be readily accessible to the operator upon removing cover 37, and preferably also includes a pull tab 58 containing indicia and/or color coding to draw the operator's attention to the cannula 57 during the set-up procedure.
Similarly, when preattached, the saline container 44 is integrally connected to the fluid circuit by means of a tubing segment 60 which includes another frangible in-line cannula 61. This cannula 61 is also preferably positioned for ready access to the operator upon removing cover 27, and also includes a pull tab 62 containing indicia and/or color coding to assist the operator in locating and fracturing the cannula during set-up.
Plasma container 30, which may be in the form of an unbreakable bottle of the type which conforms to standards established for long term plasma storage, is preferably not permanently secured and can be removed by the system operator at time of use. As is best shown in FIG. 5, tubing segment 31 is preferably prearranged in a compact bundle in housing 22 and secured by an adhesive strip 47 or other appropriate means to an adjacent side panel 32 (see FIG. 2) so as to be readily accessible when preparing the processing system for use. A pull tab 48 bearing appropriate indicia and/or color coding may be provided at one end of adhesive strip 47 to facilitate removing the strip from the tubing bundle.
Tubing segments 27 and 28 are each connected at one end to the processing circuit, and at their other end to respective ports of a conventional dual lumen phlebotomy needle 50 to accommodate a "single needle" plasmapheresis procedure. Alternately, each tubing segment 27 and 28 could individually communicate with a separate phlebotomy needle to accommodate a "two needle" plasmapheresis procedure.
Tubing segments 27 and 28 are also each preferably prearranged in a compact coil within housing 22 and secured by respective adhesive strips 52 and 53 in this form. Pull tabs 54 and 55 identified by appropriate indicia and/or color coding may be provided to assist the operator in locating and removing the adhesive strips from these tubing segment coils.
As shown in FIG. 4, the ACD and saline containers 43 and 44 can be generally wide and relatively flat so as to accommodate their compact stacking one-above-the-other within the housing 22. The plasma container 30, which, as previously described, is preferably in the form of a standard plasma collection bottle, can then be conveniently positioned to one side of the stacked saline and ACD containers 43 and 44 so as to allow room for tubing coils 27, 28, and 31.
Additional ancillary components and items required during the plasmapheresis process may be contained within a small rectangular miscellaneous supplies container 63, disposed within housing 22 (see FIG. 2). This container 63 may include hypodermic needles, bandages, surgical tape, antiseptic solution, and other items incidental to the procedure.
As shown in FIGS. 3 and 4, the bottom panel 36 of the housing 22 is molded or vacuum formed to include portions 70 which project or bow outwardly from the housing interior. Together, these portions 70 define in the interior surface of the bottom panel the fluid flow pattern required to perform the plasmapheresis procedure. This preformed fluid circuit also includes a plurality of chambers which provide necessary valving, pumping, filtering and fluid detection capabilities when the system is installed in actuator station 24.
As is best shown in FIG. 5, the preformed fluid circuit defined in the interior portion of bottom panel 36 is sealed by means of a fluid-impermeable flexible plastic sheet member 71 which fits over the interior surface of the bottom panel 36. This flexible sheet member 71 is preferably dimensioned to correspond to the inside peripheral dimensions of bottom panel 36 and is secured over the panel 56 by RF welding, or other appropriate means. Together, the portions 70 and the overlying flexible sheet member 71 form the entire fluid-sealed fluid circuit within the module.
Fluid communication is selectively established with the fluid circuit by means of five connector fittings 73-77 which extend through respective apertures in flexible sheet member 71. When sheet 71 is sealed in position against the inside surface of bottom panel 36, the connector fittings align and engage respective ones of five inlet/outlet port locations preformed on the interior surface of the back panel 36. Tubing segment 56 is connected to connector 73 at one end and to the ACD container 43 at its other end. Tubing segment 27 is connected at one end to connector 73 and at its other end to the needle 50. Tubing segment 28 is connected to connector 74 at one end and to the needle 50 at its other end. Tubing segment 60 is connected between connector 76 and saline container 44. Tubing segment 31 is connected between connector 77 and plasma collection container 30. Fluid flow into and out of the fluid circuit is thus provided.
By virtue of this above-described construction, each of the components contained within housing 22 is interconnected in a preattached condition for storage and eventual use in a plasmapheresis procedure. No additional interconnections need be made by the operator during set-up
Referring to FIG. 6, prior to use of the processing module 20, the cover 37 is removed and the plasma collection container 30, tubing segments 27, 28 and 31, and the accessories container 63 are removed from housing 22. The cover 41 is then removed, and the system is installed in the actuator station 24 of processor apparatus 21, which provides the fluid pumping, valving and monitoring functions necessary in accomplishing the plasmapheresis procedure. Significantly, and in accordance with another aspect of the invention, all of these functions are accomplished without the necessity of individually installing tubing segments and other components of the system in separate pumping, valving and sensing elements of the apparatus. Instead, upon installation of the module 20 in the actuator station 24 of the processor apparatus, all such functions are realized automatically without individual attention by the operator and without interrupting the integrity of the fluid circuit of the processing system.
In accordance with the invention, fluid pumping and valving functions are achieved by application of pressure forces to the flexible sheet member 71 which overlies the bottom panel 36 of housing 22. To this end, actuator apparatus 21, which is described in the copending application of the present inventors, entitled "Actuator Apparatus for a Prepackaged Fluid Processing Module Having Pump and Valve Elements Operable In Response to Applied Pressures" Ser. No. 453,920, filed concurrently herewith, includes a housing 81 having a generally vertical portion within which the actuator station 24 is provided for receiving housing 22, and a lower base portion on which control panel 26 is provided. A hanger arm 84 is provided on the left (as viewed in FIG. 6) side of the upper housing portion to support the plasma collection container 30, and three tubing retention blocks 85-87 are provided for supporting respective ones of tubing segments 31, 27 and 28 when housing 22 is seated in station 24.
Actuator station 24, which is dimensioned to receive housing 22 in sliding engagement, may include a pair of slots 88 for engaging ribs 89 molded into the side of the housing to maintain the housing in accurate alignment. In operation, pressure communication with the processing system is established by means of the movable actuator head 25 within actuator station 24. When housing 22 is installed in station 24, the actuator head extends through aperture 40 in side panel 32 so as to overlie a portion 90 (FIGS. 9 and 13) of sheet member 71 and the underlying portion of bottom panel 36. To enable pressure forces to be applied to the flexible sheet member 71, the actuator head is brought into engagement with the sheet member by reciprocative movement toward the rear of actuator station 24. This causes the bottom panel and sheet member to be compressed between the head and a back plate 91 at the rear of the station.
As shown in FIG. 9, the back plate 91 may include a series of depressions, collectively identified as 92, arranged to receive the raised portions 70 of bottom panel 36. The back plate 91 may be secured to the housing 81 of processor 21 by means of a plurality of machine screws 93, or other appropriate fastening means. By removing back plate 91 and substituting a different back plate having a different pattern of depressions 92, apparatus 21 can be reconfigured for other fluid processing procedures. A pair of retaining clamps 95 may be provided for holding the module 20 in actuator station 24.
As shown in FIGS. 8-12, the actuator head assembly 25 includes an actuator plate 94 which is brought into engagement with sheet member 71. As shown in FIG. 10, this actuator plate includes eight pneumatic pump actuator elements 100-107 which apply a vacuum and/or pressure control effect to appropriate portions of sheet member 71 associated with corresponding pump elements in the fluid circuit defined by the sheet member and bottom panel 36 to obtain necessary pumping and valving functions. The actuator plate 94 is preferably mounted within actuator head assembly 25 by means of a plurality of machine screws 108, or other appropriate fastening means, so that the actuator plate can be removed and a different actuator plate having a different arrangement of vacuum actuator ports can be substituted when reconfiguring the processor apparatus for a different fluid processing procedure.
Referring to FIGS. 10-12, the actuator head 25 is mounted on a pair of parallel-spaced guide rods 110 and 111 for reciprocative movement toward and away from back plate 91. The head assembly is positioned along the guide rods by means of a jackscrew 112, drive gear assembly 113 and motor 114. Upon rotation of motor 114, the jackscrew 112 is turned and the actuator head is caused to move. An actuator head control circuit 115 functions in conjunction with limit switches 116 and 117 to limit actuator head travel between open and closed positions.
Within actuator head 25 the individual pneumatic actuator elements 100-107 are connected by respective tubing segments collectively identified as 120 to actuator circuits 121. These actuator circuits respond to electrical command signals issued by a processor control circuit 122 within processor apparatus 21 to selectively apply either a vacuum or pressure differential at the actuator ports, as required in performing the fluid processing procedure. Also, one or more sensing elements such as an ultrasonic detector 123 may be provided in the actuator head assembly to sense the occurrence of a fluid absence in the fluid circuit. This detector may be connected by conductors 124 to appropriate sensing circuits 125 within the apparatus, which provide an appropriate output signal to control circuit 122 upon the occurrence of a fluid absence. In addition, control circuit 122 may receive operator-initiated command signals from control panel 26.
In the open position of actuator head 25, as shown in FIG. 11, the housing 22 of the processing system is received with the bottom panel 36 thereof interposed between actuator plate 94 and back plate 91. Then, upon issuance of an appropriate operator-initiated signal on control panel 26, control circuits 122 condition platen actuator circuit 115 to cause motor 114 to close the actuator head. This brings the pressure actuator ports of actuator plate 94 into tight engagement with back panel 36, as shown in FIG. 12. Upon completion of the procedure, the process is reversed to enable housing 22 to be removed and the processing system to be disposed of.
The fluid circuit formed between the bottom panel 36 of housing 22 and the overlying fluid-impermeable sheet member 71, which is collectively identified by the number 129 in FIG. 13, includes eight preformed pump elements 130-137 for establishing flow through the fluid circuit. These pump elements, which are actuated by respective ones of actuator elements 100-108 in actuator plate 94, operate in pairs, each pair member being alternately actuated to establish a continuous flow of fluid. Pump elements 130 and 131 are paired to pump whole blood, as received from a donor through tubing segment 27 and connector 74, through a conduit segment 140 to a filter element 141. Pump elements 132 and 133 are paired to pump anticoagulant (ACD) fluid from tubing segment 56 and connector 73 through a conduit segment 142 into conduit segment 140, wherein it is combined with whole blood. Within filter element 141 plasma is separated, and separately supplied to port 77 through a conduit segment 143. Pump components 134 and 135 pump plasma-deficient whole blood from filter element 141 through a conduit segment 144 to a fluid absence detector element 145. Pump elements 136 and 137 operate to combine saline from tubing segment 60 and connector 76 through a conduit segment 146 to the plasma-deficient blood in conduit segment 144. Plasma-deficient blood from fluid absence detector element 145 is supplied through a conduit segment 147 to connector 75 and tubing segment 28 for return to the donor.
Referring to FIGS. 14 and 15, the plasma filter element 141 comprises a chamber 150 preformed within bottom panel 36 within which a plurality of hollow fiber filter elements 151 are arranged side-by-side in a longitudinal bundle to convey fluid received from conduit segment 140 to conduit segment 144. Adjacent each end of the filter bundle layers 152 and 153 of a fluid-impermeable material such as polyurethane are deposited to form liquid barriers which prevent fluid flow except through the hollow fibers of the filter. Plasma collected in the space surrounding the hollow fiber filter elements is conveyed through conduit segment 143 to connector 77 and tubing segment 46 for ultimate collection in the plasma collection container 30. While a hollow-fiber type filter membrane is shown, it will be appreciated that other forms of filter membranes, such as a flat sheet, may be provided within chamber 150 instead.
The connector element 77, which is identical in construction to connector elements 73-76, is seen in FIG. 16 to comprise a short conduit segment 154 having an outside diameter corresponding to the inside diameter of tubing segment 31. The tubing segment is forced over one end of the conduit segment, and the other end is received within a projecting flange portion 155 of the flexible sheet member 71. A bonding material is applied between the ends of the conduit segment and the sheet member and tubing segment to provide a durable fluid seal.
Referring to FIG. 17, the fluid absence detector 145 comprises a vertically-orientated chamber 156 through which plasma-deficient whole blood flows prior to being reinfused into the patient. When processing module 20 is installed in actuator 21 chamber 156 is vertically aligned, so that should a fluid absence develop, as a result of a pump malfunction, an occlusion, or any other reason, a fluid void will develop at the upper end of the chamber. A fluid detector system comprising the ultrasonic transmitter 123 on actuator plate 94 and a receiver 157 on back plate 91 sense the presence or absence of whole blood at a predetermined level 158 within chamber 156. Upon the detector sensing a fluid absence at this location, operation of the plasmapheresis processing system is terminated and an alarm is sounded, in accordance with conventional practice. The fluid detector, and its associated circuitry may be similar to that described in U.S. Pat. No. 4,341,116 of Arnold C. Bilstad and Michael Wisnienski, entitled "Liquid Absence Detector".
An alternate construction for the ultrasonic fluid absence detector is shown in FIG. 18. In this construction a combined transmitter-receiver transducer element 159 is situated on the movable actuator plate 94. The transmitter portion of the transducer introduces ultrasonic energy into chamber 156 and the detector portion of the transducer responds to reflected energy to produce an output signal indicative of the presence or absence of fluid in the chamber. In this way the detector system does not rely on the transparency of the bottom panel 36 of housing 22, thereby avoiding the possibility of the detector being rendered inoperative by tape or other material adhering to the outside surface of the bottom panel.
As shown in FIG. 13, each of the eight pump elements 130-137 in fluid circuit 129 includes a central displacement chamber (a), an upline valve stop (b), and a downline valve stop (c). As shown in FIG. 10, the eight pump actuator elements 100-107 on actuator plate 94 each include a central pumping port (a), an upline valving port (b), and a downline valving port (c), which interact with the central displacement chamber, upline valve stop, and downline valve stop of their counterpart pump elements in the fluid circuit. In addition, each of the eight pump actuator elements includes an annular hold-down port (d) which encircles the pump actuator port (a).
The operation of pump element 134 is illustrated in FIGS. 19A-19C. As shown in the Figures, the inlet valve consists of an actuator port 104b formed in the actuator plate 94 of the movable actuator head assembly 25, and a valve stop 134b formed in the rigid bottom panel 36 of housing 22. Similarly, the outlet valve consists of an actuator port 104c and a valve stop 134c. Each pump chamber is formed by a pump port 104a in the actuator plate and a displacement chamber 134a in the bottom panel.
At rest, as shown in FIG. 19A, processor apparatus 21 provides no vacuum at either the upline valving chamber 104b or the downline valving chamber 104c. Consequently, sheet member 71 rests in close proximity to the inlet and outlet valve seats 134b and 134c, providing a normally partially closed position.
During operation of the module, a pump fill stroke is initiated by processor apparatus 21 by drawing a vacuum in inlet valving chamber 104b to draw sheet member 71 into the valving chamber. This fully opens the inlet valve and allows fluid to flow through the valving chamber and into the displacement chamber 134a. At this time a vacuum is slowly drawn at the pumping port 104a so as to draw the sheet member 71 to the bottom (as viewed in FIG. 19B) of the displacement chamber to cause fluid to enter the chamber. At this time the downline valve is fully closed by reason of a positive pressure being applied at valving port 104c, causing sheet member 71 to be displaced against the valve stop 134c.
Upon completion of the fill stroke a pump stroke is initiated by processor apparatus 21. Inlet valving port 104b is pressurized to displace sheet member 71 against valving shoulder 134b. At the same time, a vacuum is drawn at outlet valving port 104c to draw sheet member 71 into the valving port thereby fully opening the outlet valve. A positive pressure is next slowly introduced into pumping port 104a to force sheet member 71 upwardly (as viewed in FIG. 19C) to displace fluid within the fluid displacement chamber 134a.
An alternate construction for the pump elements is shown in FIGS. 20A-20C, which depict the construction and operation of the ACD pump element 133. Instead of a normally partially closed inlet valve stop 134b provided in pump element 134, valve 133 utilizes a normally fully open valve stop 133b which is closed only during the pump stroke upon application of positive pressure to the inlet valve control port 103b, as shown in FIG. 20c. By avoiding the need to draw a vacuum in inlet valve control port 103b during rest and fill strokes valve element 133 conserves energy within the apparatus and simplifies the associated valve actuator apparatus.
The pump chamber 133a and outlet valve 133c of valve 133 are identical in construction and operation to those of valve 134. Outlet valve 133c is fully closed by positive pressure during the fill stroke, and fully opened by negative pressure and/or fluid pressure during the pump stroke. The pump element actuator ports 103a-103d are identical to those of valve 134.
Another alternate construction for the pump elements is shown in FIGS. 21A-21E, which depict the construction and operation of the bidirectional saline pump element 136. This pump element ultilizes two normally fully open valve elements 136b and 136c, which can be actuated to a fully closed position by appropriate positive pressures through pressure ports 106b and 106c respectively. As shown in FIG. 20A, at rest both valves are open and fluid can flow through the pump element.
For left-to-right flow, as illustrated in FIG. 21B and 21C, valve 136b is open during each fill stroke, and closed by positive pressure at port 106b during each pump stroke. At the same time, valve 136c is closed by pressure applied through port 106c during each fill stroke, and allowed to remain open during each pump stroke. For right-to-left flow, as illustrated in FIGS. 21D and 21E, valve 136b is closed during each fill stroke, and valve 136c is closed during each pump stroke.
Thus, valve element 136 is able to pump fluid in either direction, with a minimal pressure requirement for valve actuation. This makes the valve construction well suited for use in the saline conduit 146, where flow may take place into the system during normal replacement procedures, and out of the system during prime and purge procedures.
For optimum efficiency in separating plasma it is desirable that the transmembrane pressure (TMP) present in the hollow-fiber filter element 141 be controlled and regulated. To this end, the fluid circuit 129 includes in-line in conduit segment 144 a pressure regulator element 160. Referring to FIG. 22, this regulator comprises a valve stop 161 in the rigid bottom panel 36 and an underlying pressure port 162 in actuator plate 94. With this arrangement it is necessary that the flexible sheet member 71 be deflected downwardly into pressure port 162 and away from valve stop 161 before fluid can flow through conduit 144. Pressure regulation is provided by introducing a predetermined metering pressure in chamber 162 in opposition to deflection of sheet member 71, so that the valve opens only when the desired pressure level has been reached in conduit 144, and modulates to maintain the desired pressure once flow has been initiated. By maintaining the metering pressure constant, the desired upline pressure is maintained in conduit 144 and filter element 141.
In some applications it may be possible to avoid the need for pressure regulator element 160 by appropriately biasing the normally-closed inlet valve chambers 134b and 135b so that pump elements 134 and 135 function as pressure regulating elements. The outlet valves 134c and 135c would then remain unbiased by pneumatic pressure so as to open in response to applied fluid pressure upon the opening of inlet valves 134b and 135c.
To permit the monitoring of system operating pressures, fluid circuit 129 includes three pressure monitor elements 163-165. Pressure monitoring element 163 is located in conduit segment 140 and monitors negative pressure to detect the occurrence of a collapsed vein. Monitor 164 is located in conduit segment 144 and monitors positive pressure to detect the occurrence of an occlusion in the output circuit. Monitor 165 is located in the input conduit 140 to the filter element 141 to monitor filter inlet pressure, and hence TMP.
Referring to FIG. 23, monitor element 165, which may be identical to elements 163 and 164, is seen to comprise an in-line chamber 166 formed in conduit segment 140, and a conventional pressure transducer 167 mounted within actuator plate 94 and positioned to operatively engage the flexible sheet member as it overlies the chamber. Pressure variations in the fluid, which necessarily exist in the chamber, are reflected in changes in the electrical output signal produced by transducer 167. These signals are utilized by appropriate control circuitry in actuator apparatus 21 to provide readouts of system parameters and to control the operation of the fluid circuit.
To prevent red blood cells from being inadvertantly collected in plasma collection container 30, the fluid circuit 129 includes a hemolysis detector 168 in conduit segment 143. Basically, this detector includes an in-line chamber 169 through which collected plasma is caused to flow. The presence of red blood cells in this chamber is detected by a detector 170, which may include two monchromatic light sources of different wavelengths, a light detector responsive to reflection of light from within the chamber at the two wavelengths, and circuitry responsive to the light detector for providing an alarm. The detector system may be as described in U.S. Pat. No. 4,305,659 to Arnold C. Bilstad et al., entitled "Photometric Apparatus and Method", and assigned to the present assignee.
To maintain a continuous non-pulsating flow through the fluid circuit, the paired fluid pump elements are operated in alternation. That is, when one pump component is operated in a fill stroke, its pair is operating in a pump stroke. In this way, an uninterrupted non-pulsating flow of fluid is maintained through the fluid circuit.
Specifically, elements 132 and 133 are paired and operated to introduce ACD into the main fluid conduit 140 at an operator-designated rate to prevent blood clotting. Pump elements 130 and 131 advance the whole blood obtained from the donor together with the ACD to the hollow fiber filter element 141. Within this element the whole blood is fractionated and the derived plasma component is discharged through conduit segment 143 to the plasma collection container 30.
The plasma-deficient output from filter 141 is advanced along conduit segment 144 by pump elements 134 and 135, which operate in alternation to maintain a smooth non-pulsating flow at this point. Pump elements 136 and 137 introduce saline into the main flow conduit 144 at an operator-designated rate as a plasma replacement fluid, or pump fluid and/or trapped air into saline container 44 during prime and purge procedures.
By controlling the rate at which pressure differentials are established in the pump actuator ports 100a-107a a gentle and natural pumping action is obtained which provides minimal damage to processed blood cells. The pumping rates of the individual pump elements may be set by the operator, or by automatic means within the processor apparatus responsive to measured system parameters, such as the volume and rate of plasma collection. To this end, control panel 26 (FIGS. 6 and 7) of apparatus 21 includes a selector switch 171 by which the operating speed of the anticoagulant pump element is set, a potentiometer control 172 and digital readout 173 by which the operating speed of whole blood pump elements 130, 131 and 134, 135 is controlled, and a potentiometer 174 and digital readout 175 by which the operating speed of the replacement fluid pump element 136, 137 is controlled. A plurality of push button switches 176 are provided to establish the operating mode of the apparatus, and a plurality of status-indicating lights 177 provide indications of malfunctions in the system. A digital readout 178 indicates the total volume of plasma collected, and a digital readout 179 indicates plasma collection rate. A selector switch 180 enables the replacement fluid rate to be set as a ratio of the actual plasma collection rate.
Since the displacement chambers 130a-137a of the pump elements 130-137 have a fixed and constant volume, fluid flow within the fluid circuit 129 can be controlled with great accuracy by controlling the number of pump actuations. Since each pump pulse may be treated as an aliquot, processing, proportioning and timing operations are easily accomplished in the course of the procedure.
In many procedure, such as continuous flow blood fractionation, or hemodialysis, it is desirable that the fluid being processed in fluid module 20 be maintained at a constant predetermined temperature, such as 98° F. To this end, processor apparatus 21 may, as shown in FIG. 8, include a resistance heating element 81 in back plate 91, and a resistance heating element 182 in actuator plate 94, in addition to appropriate thermal insulation for these components. These elements are powered by suitable circuitry within the processor apparatus in accordance with the temperature sensed by a temperature sensing element 183 on back plate 91 to maintain the desired temperature. Because of the minimal fluid volume in process at any one time, and the intimate contact between the fluid circuit 129 and the relatively massive actuator plate 94 and back plate 91, efficient thermal transfer is realized and fluid temperature is accurately maintained.
Alternatively, where it is desired that the fluid in process be cooled, as in cryoagulation procedures, or in the secondary treatment of plasma, cooling elements may be substituted for heating elements 181 and 182, and a secondary amount of cooling provided as sensed by temperature sensor 183.
Furthermore, while the ACD and saline containers 43 and 44 have been shown as discrete containers, it will be appreciated that with appropriate modifications to fluid circuit 129, such as the provision of valves inline with the containers, these containers as well as containers for any other fluid, stored or collected in a procedure, could be formed directly within the fluid circuit, with a construction similar to that of chamber 150 of filter element 141.
Also, while the filter element 141 has been shown as formed within the fluid circuit, it will be appreciated that if desired this element can be provided as a discrete element, apart from the fluid circuit. Connections to the element would then be made by tubing segments, as with containers 43 and 44.
Reference is made to the previously-identified copending application of the present inventors, entitled "Actuator Apparatus for a Prepackaged Fluid Processing Module Having Pump and Valve Elements Operable in Response to Applied Pressures", filed concurrently herewith, for a further explanation of processor apparatus 21.
By reason of the compact fluid circuit made possible by the integrated housing and fluid circuit, fluid connections between components of the processing system of the invention are short and direct, so that, in the case of plasmapheresis, a minimal quantity of blood is removed at any one time from the donor during processing. This minimizes trauma to the donor.
Furthermore, by reason of the pumping and valving connections to the processor being automatically established upon installation of the system housing in associated processor apparatus, set-up time is minimized to the benefit of both the operator and the donor in the plasmapheresis procedure illustrated.
While a particular embodiment of the invention has been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and, therefore the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Brown, Richard I., Bilstad, Arnold C., Kruger, Robert J.
Patent | Priority | Assignee | Title |
10010831, | Oct 15 2010 | GLOBAL LIFE SCIENCES SOLUTIONS USA LLC | Large volume disposable ultrafiltration systems and methods |
10058694, | Jun 05 2014 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
10070934, | Apr 20 2007 | DOHENY EYE INSTITUTE | Sterile surgical tray |
10077766, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
10086124, | Nov 01 2011 | Fresenius Medical Care Holdings, Inc. | Dialysis machine support assemblies and related systems and methods |
10098996, | Jul 07 2010 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
10117985, | Aug 21 2013 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Determining a volume of medical fluid pumped into or out of a medical fluid cassette |
10117986, | Oct 28 2003 | Baxter International Inc.; Baxter Healthcare S.A. | Peritoneal dialysis machine |
10118018, | Jul 23 2013 | Hollister Incorporated | Urinary catheter deployment cassettes |
10137235, | May 24 2002 | Baxter International Inc; BAXTER HEALTHCARE SA | Automated peritoneal dialysis system using stepper motor |
10143791, | Apr 21 2011 | Fresenius Medical Care Holdings, Inc. | Medical fluid pumping systems and related devices and methods |
10159778, | Mar 24 2014 | Fenwal, Inc.; Fenwal, Inc | Biological fluid filters having flexible walls and methods for making such filters |
10166326, | Nov 24 2004 | Bayer HealthCare LLC | Devices, systems and methods for determining parameters of one or more phases of an injection procedure |
10172988, | Jan 23 2008 | DEKA Products Limited Partnership | Disposable components for fluid line autoconnect systems and methods |
10183475, | Mar 24 2014 | Fenwal, Inc. | Flexible biological fluid filters |
10195330, | Jan 23 2008 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
10201650, | Oct 30 2009 | DEKA Products Limited Partnership | Apparatus and method for detecting disconnection of an intravascular access device |
10265451, | Jan 23 2008 | DEKA Products Limited Partnership | Pump cassette and methods for use in medical treatment system using a plurality of fluid lines |
10294450, | Oct 09 2015 | DEKA Products Limited Partnership | Fluid pumping and bioreactor system |
10322224, | Feb 10 2000 | Baxter International Inc. | Apparatus and method for monitoring and controlling a peritoneal dialysis therapy |
10343093, | Mar 24 2014 | Fenwal, Inc. | Biological fluid filters having flexible walls and methods for making such filters |
10363165, | Apr 20 2007 | DOHENY EYE INSTITUTE | Independent surgical center |
10376627, | Mar 24 2014 | Fenwal, Inc.; Fenwal, Inc | Flexible biological fluid filters |
10434237, | Jul 05 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | Hybrid blood and peritoneal dialysis treatment systems and methods |
10441697, | Feb 27 2007 | DEKA Products Limited Partnership | Modular assembly for a portable hemodialysis system |
10441703, | Jul 05 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | Weight controlled and/or sorbent hybrid blood and peritoneal dialysis treatment systems and methods |
10449280, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
10463774, | Feb 27 2007 | DEKA Products Limited Partnership | Control systems and methods for blood or fluid handling medical devices |
10463777, | Jun 08 2012 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
10463782, | Dec 29 2006 | Bayer HealthCare LLC | Patient-based parameter generation systems for medical injection procedures |
10471192, | Oct 30 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | Pressure manifold system for dialysis |
10471194, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Dialysis systems and related methods |
10485914, | Jul 07 2010 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
10500327, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
10507276, | Jul 15 2009 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
10507319, | Jan 09 2015 | Bayer HealthCare LLC | Multiple fluid delivery system with multi-use disposable set and features thereof |
10509018, | Nov 16 2000 | California Institute of Technology | Apparatus and methods for conducting assays and high throughput screening |
10525184, | Jul 19 2002 | Baxter International Inc.; BAXTER HEALTHCARE SA | Dialysis system and method for pumping and valving according to flow schedule |
10537472, | Nov 28 2013 | Alcon Inc | Ophthalmic surgical systems, methods, and devices |
10537671, | Apr 14 2006 | DEKA Products Limited Partnership | Automated control mechanisms in a hemodialysis apparatus |
10539481, | Mar 14 2013 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassette leak detection methods and devices |
10556055, | Mar 04 2002 | MALLINCKRODT CRITICAL CARE FINANCE INC ; MALLINCKRODT PHARMA IP TRADING D A C ; MALLINCKRODT IP; Mallinckrodt Hospital Products IP Limited | Method for collecting a desired blood component and performing a photopheresis treatment |
10561780, | Jul 09 2008 | Baxter International Inc.; BAXTER HEALTHCARE SA | Dialysis system having inventory management including online dextrose mixing |
10578098, | Jul 13 2005 | Baxter International Inc.; BAXTER HEALTHCARE SA | Medical fluid delivery device actuated via motive fluid |
10590924, | Jul 13 2005 | Baxter International Inc.; BAXTER HEALTHCARE SA | Medical fluid pumping system including pump and machine chassis mounting regime |
10632243, | Mar 14 2013 | Baxter International Inc.; BAXTER HEALTHCARE SA | System and method for performing alternative and sequential blood and peritoneal dialysis modalities |
10653345, | Aug 29 2014 | Fresenius Kabi Deutschland GmbH | Blood processing apparatus comprising a holder device for a measurement device |
10670005, | Jul 13 2005 | Baxter International Inc; BAXTER HEALTHCARE SA | Diaphragm pumps and pumping systems |
10682450, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
10751457, | May 24 2002 | Baxter International Inc.; BAXTER HEALTHCARE SA | Systems with disposable pumping unit |
10780210, | Feb 27 2007 | DEKA Products Limited Partnership | Enclosure for a portable hemodialysis system |
10780213, | May 24 2011 | DEKA Products Limited Partnership | Hemodialysis system |
10808218, | Oct 09 2015 | DEKA Products Limited Partnership | Fluid pumping and bioreactor system |
10820846, | Oct 06 2015 | Nikkiso Company Limited | Storage tray |
10850020, | Nov 01 2011 | Fresenius Medical Care Holdings, Inc. | Dialysis machine support assemblies and related systems and methods |
10850089, | May 24 2012 | DEKA Products Limited Partnership | Flexible tubing occlusion assembly |
10851769, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
10857286, | Mar 03 2016 | Bayer HealthCare LLC | System and method for improved fluid delivery in multi-fluid injector systems |
10871157, | Apr 14 2006 | DEKA Products Limited Partnership | Fluid pumping systems, devices and methods |
10874473, | Apr 28 2016 | DAIKYO SEIKO LTD | Container |
10898638, | Mar 03 2016 | Bayer HealthCare LLC | System and method for improved fluid delivery in multi-fluid injector systems |
10974038, | Mar 14 2014 | Fresenius Medical Care Deutschland GmbH | Medical functional device with a valve seat for a remanent check valve |
10987183, | Nov 28 2013 | Alcon Inc | Ophthalmic surgical systems, methods, and devices |
11007311, | Jul 07 2010 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11013847, | Apr 23 2009 | Fresenius Medical Care Deutschland GmbH | External functional means, blood treatment apparatus for receiving an external functional means in accordance with the invention, and method |
11020519, | Jul 19 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Systems and methods for performing peritoneal dialysis |
11033670, | Jul 07 2010 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11033671, | May 24 2011 | DEKA Products Limited Partnership | Systems and methods for detecting vascular access disconnection |
11045595, | Jul 05 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | System for peritoneal dialysis and extracorporeal blood treatments |
11110212, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
11141535, | Aug 31 2017 | Bayer HealthCare LLC | Fluid path impedance assessment for improving fluid delivery performance |
11179516, | Jun 22 2017 | Baxter International Inc.; BAXTER HEALTHCARE SA | Systems and methods for incorporating patient pressure into medical fluid delivery |
11191501, | May 14 2012 | Bayer HealthCare LLC | Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage |
11253636, | Jan 23 2008 | DEKA Products Limited Partnership | Disposable components for fluid line autoconnect systems and methods |
11262270, | Mar 14 2013 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassette leak detection methods and devices |
11278853, | Mar 13 2013 | Bayer HealthCare LLC | Method for controlling fluid accuracy and backflow compensation |
11291753, | Aug 21 2013 | Fresenius Medical Care Holdings, Inc. | Determining a volume of medical fluid pumped into or out of a medical fluid cassette |
11299705, | Nov 07 2016 | DEKA Products Limited Partnership | System and method for creating tissue |
11306709, | Dec 21 2016 | Fresenius Medical Care Deutschland GmbH | Diaphragm pump device and diaphragm pump having a diaphragm pump device and an actuation device |
11364329, | Jan 23 2008 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11384748, | Jul 13 2005 | Baxter International Inc.; BAXTER HEALTHCARE SA | Blood treatment system having pulsatile blood intake |
11400272, | Jun 05 2014 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11441554, | Dec 21 2016 | Fresenius Medical Care Deutschland GmbH | Operating device, method for operating an operating device, diaphragm pump having an operating device and a diaphragm pump device, and a blood treatment apparatus having a diaphragm pump |
11458234, | Mar 14 2014 | Fresenius Medical Care Deutschland GmbH | Fluid cassette with alignment latching having an improved tilt-tolerance as well as a blood treatment apparatus |
11478577, | Jan 23 2008 | DEKA Products Limited Partnership | Pump cassette and methods for use in medical treatment system using a plurality of fluid lines |
11478578, | Jun 08 2012 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
11478581, | Aug 31 2017 | Bayer HealthCare LLC | Fluid injector system volume compensation system and method |
11491318, | Jan 09 2015 | Bayer HealthCare LLC | Multiple fluid delivery system with multi-use disposable set and features thereof |
11491321, | Oct 30 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | Pneumatic system having noise reduction features for a medical fluid machine |
11498024, | Dec 27 2019 | CYTIVA US LLC | Method and system for recovering fluid |
11511024, | Jan 23 2008 | DEKA Products Limited Partnership | Pump cassette and methods for use in medical treatment system using a plurality of fluid lines |
11529444, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
11536631, | Jul 07 2017 | ResuSciTec GmbH | Fluid analysis module and fluid analyzer |
11540893, | Apr 28 2016 | DAIKYO SEIKO LTD. | Container |
11568043, | Feb 27 2007 | DEKA Products Limited Partnership | Control systems and methods for blood or fluid handling medical devices |
11598329, | Mar 30 2018 | DEKA Products Limited Partnership | Liquid pumping cassettes and associated pressure distribution manifold and related methods |
11598664, | Aug 31 2017 | Bayer HealthCare LLC | Injector pressure calibration system and method |
11666690, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
11672895, | Jul 05 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | Method for peritoneal dialysis and extracorporeal blood treatments |
11672902, | Mar 03 2016 | Bayer HealthCare LLC | System and method for improved fluid delivery in multi-fluid injector systems |
11752244, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
11752248, | Nov 04 2011 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11754064, | Apr 14 2006 | DEKA Products Limited Partnership | Fluid pumping systems, devices and methods |
11766554, | May 24 2012 | DEKA Products Limited Partnership | Flexible tubing occlusion assembly |
11779702, | Aug 31 2017 | Bayer HealthCare LLC | Method for dynamic pressure control in a fluid injector system |
11786652, | Aug 31 2017 | Bayer HealthCare LLC | System and method for drive member position and fluid injector system mechanical calibration |
11793915, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
11826553, | Aug 31 2017 | Bayer HealthCare LLC | Fluid path impedance assessment for improving fluid delivery performance |
11833281, | Jan 23 2008 | DEKA Products Limited Partnership | Pump cassette and methods for use in medical treatment system using a plurality of fluid lines |
11885758, | Feb 27 2007 | DEKA Products Limited Partnership | Sensor apparatus systems, devices and methods |
11890403, | May 24 2011 | DEKA Products Limited Partnership | Hemodialysis system |
11939566, | Nov 07 2016 | DEKA Products Limited Partnership | System and method for creating tissue |
11964086, | Jul 07 2010 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
11975128, | Jan 23 2008 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
12059516, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
12061135, | Mar 14 2013 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassette leak detection methods and devices |
12064540, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
12171922, | Aug 27 2008 | DEKA Products Limited Partnership | Blood treatment systems and methods |
4842576, | Oct 15 1986 | BAXTER INTERNATIONAL INC , DEERFIELD, ILLINOIS, A DE CORP | System for generating substantially constant fluid pressure |
4911703, | Oct 15 1986 | Fenwal, Inc | Mobile, self-contained blood collection system and method |
4964976, | Oct 15 1986 | Fenwal, Inc | Optimized filter and method |
4976162, | Mar 04 1986 | DEKA PRODUCTS LIMITED PARTNERSHIP, A LIMITED PARTNERSHIP OF NH | Enhanced pressure measurement flow control system |
5088515, | Mar 04 1986 | Valve system with removable fluid interface | |
5174894, | Jun 25 1987 | Terumo Kabushiki Kaisha | Blood component separation apparatus |
5178267, | Dec 20 1990 | ABBOTT LABORATORIES, ABBOTT PARK, LAKE, IL A CORP OF IL | Packaging system for a sterilizable calbratable medical device |
5232437, | Oct 15 1986 | Fenwal, Inc | Mobile, self-contained blood collection system and method |
5273517, | Jul 09 1991 | HAEMONETICS CORPORQATION | Blood processing method and apparatus with disposable cassette |
5324422, | Mar 03 1993 | Baxter International Inc | User interface for automated peritoneal dialysis systems |
5350357, | Mar 03 1993 | DEKA Products Limited Partnership | Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow |
5421823, | Mar 03 1993 | DEKA Products Limited Partnership | Peritoneal dialysis methods that emulate gravity flow |
5431626, | Mar 03 1993 | DEKA Products Limited Partnership | Liquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure |
5438510, | Mar 03 1993 | DEKA Products Limited Partnership | User interface and monitoring functions for automated peritoneal dialysis systems |
5474683, | Mar 03 1993 | DEKA Products Limited Partnership | Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements |
5514335, | Oct 25 1993 | Terumo Cardiovascular Systems Corporation | Blood oxygenation system and reservoir and method of manufacture |
5542444, | Nov 07 1994 | Abbott Laboratories | Valve and method of using |
5569181, | Oct 28 1993 | MEDRAD, INC | Sterility assurance for contrast delivery system |
5628908, | Mar 03 1993 | DEKA Products Limited Partnership | Peritoneal dialysis systems and methods employing a liquid distribution and pump cassette with self-contained air isolation and removal |
5739508, | Jul 12 1994 | Medrad, Inc. | Closed loop information path for medical fluid delivery systems |
5743295, | Jul 20 1995 | Abbott Laboratories | Valve construction and method of use |
5775371, | Mar 08 1995 | Abbott Laboratories | Valve control |
5791375, | Mar 08 1995 | Abbott Laboratories | Valve control |
5794641, | Mar 08 1995 | Abbott Laboratories | Valve control |
5806519, | Oct 28 1993 | Bayer Medical Care Inc | Total system for contrast delivery |
5834314, | Nov 07 1994 | Abbott Laboratories | Method and apparatus for metering a fluid |
5840026, | Sep 21 1994 | Bayer HealthCare LLC | Patient specific dosing contrast delivery systems and methods |
5843037, | Oct 28 1993 | Bayer Medical Care Inc | Multipatient fluid dispensing |
5871462, | Jun 07 1995 | HYDROCISION, INC | Method for using a fluid jet cutting system |
5900211, | Oct 26 1995 | TESLA, INC | Deactivation of organisms using high-intensity pulsed polychromatic light |
5920054, | Jul 12 1994 | Bayer HealthCare LLC | Closed loop information path for medical fluid delivery systems |
5967163, | Jan 30 1996 | Abbott Laboratories | Actuator and method |
6063052, | Oct 28 1993 | MEDRAD, INC | Injection system and pumping system for use therein |
6216573, | Jun 07 1995 | HYDROCISION, INC | Fluid jet cutting system |
6228332, | Oct 26 1995 | PurePulse Technologies | Deactivation of organisms using high-intensity pulsed polychromatic light |
6270673, | Sep 03 1999 | Baxter International Inc | Door latching assembly for holding a fluid pressure actuated cassette during use |
6302653, | Jul 20 1999 | DEKA Products Limited Partnership | Methods and systems for detecting the presence of a gas in a pump and preventing a gas from being pumped from a pump |
6306117, | Oct 28 1993 | Bayer Medical Care Inc | Multi-patient fluid dispensing |
6306346, | Feb 10 1999 | Terumo Cardiovascular Systems Corporation | Self-contained pack assembly for an extracorporeal blood circuit |
6325775, | Sep 03 1999 | Fenwal, Inc | Self-contained, transportable blood processsing device |
6358023, | Aug 23 2000 | Moment pump | |
6382923, | Jul 20 1999 | DEKA Products Limited Partnership | Pump chamber having at least one spacer for inhibiting the pumping of a gas |
6385483, | Sep 21 1994 | Bayer HealthCare LLC | Patient specific dosing contrast delivery systems and methods |
6416293, | Jul 20 1999 | DEKA Products Limited Partnership | Pumping cartridge including a bypass valve and method for directing flow in a pumping cartridge |
6442418, | Oct 28 1993 | Bayer Medical Care Inc | Total system for contrast delivery |
6468473, | Feb 10 1999 | Terumo Cardiovascular Systems Corporation | Self-contained pack assembly for an extracorporeal blood circuit |
6471855, | Nov 22 2000 | Baxter International Inc | Cassette with integral separation device |
6481980, | Sep 03 1999 | Fenwal, Inc | Fluid flow cassette with pressure actuated pump and valve stations |
6485263, | Jul 01 1998 | DEKA Products Limited Partnership | Systems for determining the volume of a volumetric chamber and pumping a fluid with a pump chamber |
6554789, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Layered fluid circuit assemblies and methods for making them |
6557704, | Sep 08 1999 | Huntleigh Technology Limited | Arrangement for portable pumping unit |
6565803, | May 13 1998 | Calgon Carbon Corporation | Method for the inactivation of cryptosporidium parvum using ultraviolet light |
6571956, | Dec 28 2000 | COOKSON GROUP, PLC | Ear piercing cartridge and clutch holder kit |
6579253, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge |
6582386, | Mar 06 2001 | Baxter International Inc | Multi-purpose, automated blood and fluid processing systems and methods |
6585499, | Mar 04 1999 | Baxter International Inc. | Fluid delivery mechanism having a flush-back operation |
6589482, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Extracorporeal circuits for performing hemofiltration employing pressure sensing without an air interface |
6595943, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Systems and methods for controlling blood flow and waste fluid removal during hemofiltration |
6604908, | Jul 20 1999 | DEKA Products Limited Partnership | Methods and systems for pulsed delivery of fluids from a pump |
6626355, | Feb 07 2000 | W O M WORLD OF MEDICINE GMBH | Medical device |
6632189, | Sep 18 1998 | FALLEN, DAVID M ; Edwards Lifesciences Corporation | Support device for surgical systems |
6638477, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Fluid replacement systems and methods for use in hemofiltration |
6638478, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Synchronized volumetric fluid balancing systems and methods |
6663359, | Jul 20 1999 | DEKA Products Limited Partnership | Pump chamber having at least one spacer for inhibiting the pumping of a gas |
6666665, | Mar 04 1999 | Baxter International Inc. | Fluid delivery mechanism having a plurality of plungers for compressing a metering chamber |
6673314, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Interactive systems and methods for supporting hemofiltration therapies |
6706008, | Mar 06 2001 | Baxter International Inc | Automated system and method for withdrawing compounds from blood |
6709412, | Sep 03 1999 | Baxter International Inc | Blood processing systems and methods that employ an in-line leukofilter mounted in a restraining fixture |
6716004, | Sep 03 1999 | Fenwal, Inc | Blood processing systems with fluid flow cassette with a pressure actuated pump chamber and in-line air trap |
6723062, | Sep 03 1999 | Fenwal, Inc | Fluid pressure actuated blood pumping systems and methods with continuous inflow and pulsatile outflow conditions |
6731971, | Oct 28 1993 | Bayer Medical Care Inc | Fluid delivery system including a reusable flow path and a per-patient disposable fluid path |
6749403, | Jul 20 1999 | DEKA Products Limited Partnership | Methods for controlling a pump's flow rate by pulsed discharge |
6759007, | Sep 03 1999 | Fenwal, Inc | Blood processing systems and methods employing fluid pressure actuated pumps and valves |
6764761, | May 24 2002 | BAXTER INTERNATIONAL, INC ; BAXTER HEALTHCARE S A | Membrane material for automated dialysis system |
6808503, | Mar 06 2001 | Baxter International Inc | Automated system and method for pre-surgical blood donation and fluid replacement |
6811749, | Feb 10 1999 | Terumo Cardiovascular Systems Corporation | Self-contained pack assembly for an extracorporeal blood circuit |
6814547, | May 24 2002 | BAXTER INTERNATIONAL, INC ; BAXTER HEALTHCARE S A | Medical fluid pump |
6830553, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Blood treatment systems and methods that maintain sterile extracorporeal processing conditions |
6846161, | Oct 24 2002 | Fenwal, Inc | Blood component processing systems and methods using fluid-actuated pumping elements that are integrity tested prior to use |
6875191, | Sep 03 1999 | Fenwal, Inc | Blood processing systems and methods that alternate flow of blood component and additive solution through an in-line leukofilter |
6877713, | Jul 20 1999 | DEKA Products Limited Partnership | Tube occluder and method for occluding collapsible tubes |
6884228, | Mar 06 2001 | BAXTER INTERNATIONAL, INC | Automated system adaptable for use with different fluid circuits |
6889074, | Sep 21 1994 | Bayer HealthCare LLC | Patient specific dosing contrast delivery systems and methods |
6901283, | Oct 28 1993 | Bayer Medical Care Inc | Adjusting a condition of a fluid medium to produce an image of a patient |
6905479, | Jul 20 1999 | DEKA Products Limited Partnership | Pumping cartridge having an integrated filter and method for filtering a fluid with the cartridge |
6939111, | May 24 2002 | BAXTER INTERNATIONAL, INC ; BAXTER HEALTHCARE S A | Method and apparatus for controlling medical fluid pressure |
6949079, | Sep 03 1999 | Fenwal, Inc | Programmable, fluid pressure actuated blood processing systems and methods |
6953323, | May 24 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Medical fluid pump |
6955655, | Feb 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Hemofiltration system |
7004727, | Oct 24 2002 | Fenwal, Inc | Blood component processing systems and methods using fluid-actuated pumping elements that are integrity tested prior to use |
7007824, | Jan 24 2003 | Baxter International Inc | Liquid dispenser and flexible bag therefor |
7041076, | Sep 03 1999 | Fenwal, Inc | Blood separation systems and methods using a multiple function pump station to perform different on-line processing tasks |
7087036, | May 24 2002 | BAXTER INTERNATIONAL, INC ; BAXTER HEALTHCARE S A | Fail safe system for operating medical fluid valves |
7112273, | Sep 27 2002 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Volumetric fluid balance control for extracorporeal blood treatment |
7147613, | Feb 25 2000 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Measurement of fluid pressure in a blood treatment device |
7153286, | May 24 2002 | BAXTER INTERNATIONAL, INC ; BAXTER HEALTHCARE S A | Automated dialysis system |
7175606, | May 24 2002 | BAXTER INTERNATIONAL, INC ; BAXTER HEALTHCARE S A | Disposable medical fluid unit having rigid frame |
7186230, | Mar 04 2002 | MALLINCKRODT CRITICAL CARE FINANCE INC ; MALLINCKRODT PHARMA IP TRADING D A C ; MALLINCKRODT IP; Mallinckrodt Hospital Products IP Limited | Method and apparatus for the continuous separation of biological fluids into components |
7189352, | Jan 14 2003 | Medtronic, Inc | Extracorporeal blood circuit priming system and method |
7195607, | Sep 03 1999 | Fenwal, Inc | Programmable, fluid pressure actuated blood processing systems and methods |
7198751, | Jan 14 2003 | Medtronic, Inc | Disposable, integrated, extracorporeal blood circuit |
7201870, | Jan 14 2003 | Medtronic, Inc | Active air removal system operating modes of an extracorporeal blood circuit |
7204958, | Jan 14 2003 | Medtronic INC | Extracorporeal blood circuit air removal system and method |
7211037, | Mar 04 2002 | MALLINCKRODT CRITICAL CARE FINANCE INC ; MALLINCKRODT PHARMA IP TRADING D A C ; MALLINCKRODT IP; Mallinckrodt Hospital Products IP Limited | Apparatus for the continuous separation of biological fluids into components and method of using same |
7214312, | Jul 12 2001 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Fluid circuits, systems, and processes for extracorporeal blood processing |
7237691, | Jan 24 2003 | Baxter International Inc. | Flexible bag for fluent material dispenser |
7238164, | Jul 19 2002 | BAXTER INTERNATIONAL, INC ; BAXTER HEALTHCARE S A ; Baxter International Inc | Systems, methods and apparatuses for pumping cassette-based therapies |
7278981, | Sep 26 2001 | SORIN GROUP USA, INC | Disposable cartridge for a blood perfusion system |
7300413, | Feb 25 2000 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Blood processing machine and system using fluid circuit cartridge |
7313431, | Sep 21 1994 | Bayer Medical Care Inc | System and method for inflating a balloon catheter and delivering fluid media to a patient |
7335334, | Jan 14 2003 | Medtronic, Inc | Active air removal from an extracorporeal blood circuit |
7338460, | Feb 25 2000 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Blood processing machine fluid circuit cartridge |
7347849, | May 24 2001 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Modular medical treatment replaceable component |
7354190, | Oct 30 2003 | DEKA Products Limited Partnership | Two-stage mixing system, apparatus, and method |
7357897, | Sep 03 1999 | Fenwal, Inc | Blood processing systems and methods that alternate flow of blood component and additive solution through an in-line leukofilter |
7427281, | Oct 28 1993 | Medrad, Inc. | Method of delivering fluid mixtures to multiple patients |
7461968, | Oct 30 2003 | DEKA Products Limited Partnership | System, device, and method for mixing liquids |
7473238, | Nov 29 1999 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Hemofiltration systems and methods that maintain sterile extracorporeal processing conditions |
7479123, | Mar 04 2002 | MALLINCKRODT PHARMACEUTICALS IRELAND LIMITED | Method for collecting a desired blood component and performing a photopheresis treatment |
7500962, | May 24 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Medical fluid machine with air purging pump |
7503889, | Mar 04 2002 | MALLINCKRODT CRITICAL CARE FINANCE INC ; MALLINCKRODT PHARMA IP TRADING D A C ; MALLINCKRODT IP; Mallinckrodt Hospital Products IP Limited | Apparatus for the continuous separation of biological fluids into components and method of using same |
7517333, | Sep 03 1999 | Baxter International Inc | Blood processing systems and methods that employ an in-line, flexible leukofilter |
7559524, | Jul 20 1999 | DEKA Products Limited Partnership | Tube occluder for occluding collapsible tubes |
7632078, | Oct 30 2003 | DEKA Products Limited Partnership | Pump cassette bank |
7632080, | Oct 30 2003 | DEKA Products Limited Partnership | Bezel assembly for pneumatic control |
7648627, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Device for treating a medical liquid |
7662139, | Oct 30 2003 | DEKA Products Limited Partnership | Pump cassette with spiking assembly |
7686778, | Jan 15 2003 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Waste balancing for extracorporeal blood treatment systems |
7704455, | Jan 14 2003 | Medtronic, Inc. | Active air removal system operating modes of an extracorporeal blood circuit |
7717685, | Apr 27 2001 | Hydrocision, Inc. | High pressure pumping cartridges for medical and surgical pumping and infusion applications |
7731689, | Feb 15 2007 | Baxter International Inc; BAXTER HEALTHCARE S A | Dialysis system having inductive heating |
7740800, | Jan 14 2003 | Medtronic, Inc. | Extracorporeal blood circuit air removal system and method |
7744554, | Dec 31 2002 | Baxter International Inc; BAXTER HEALTHCARE S A | Cassette alignment and integrity testing for dialysis systems |
7766301, | Jul 20 1999 | DEKA Products Limited Partnership | Tube occluder and method for occluding collapsible tubes |
7776001, | Nov 29 1999 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Registration of fluid circuit components in a blood treatment device |
7776006, | Nov 05 2003 | BAXTER HEALTHCARE S A | Medical fluid pumping system having real time volume determination |
7780619, | Nov 29 1999 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Blood treatment apparatus |
7789849, | May 24 2002 | BAXTER HEALTHCARE S A | Automated dialysis pumping system using stepper motor |
7815595, | May 24 2002 | Baxter International Inc. | Automated dialysis pumping system |
7829018, | Jan 14 2003 | Medtronic, Inc. | Active air removal from an extracorporeal blood circuit |
7837035, | Jan 21 2005 | Gambro Lundia AB | Packaging device for medical apparatus |
7850634, | Mar 04 2002 | MALLINCKRODT PHARMACEUTICALS IRELAND LIMITED | Method for collecting a desired blood component and performing a photopheresis treatment |
7901376, | Jul 05 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Dialysis cassette having multiple outlet valve |
7905853, | Oct 30 2007 | Baxter International Inc; BAXTER HEALTHCARE S A | Dialysis system having integrated pneumatic manifold |
7909795, | Jul 05 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Dialysis system having disposable cassette and interface therefore |
7914477, | Mar 04 2002 | MALLINCKRODT PHARMACEUTICALS IRELAND LIMITED | Apparatus for the continuous separation of biological fluids into components and method of using same |
7925330, | Nov 24 2004 | Bayer HealthCare LLC | Devices, systems and methods for determining parameters of one or more phases of an injection procedure |
7935074, | Feb 28 2005 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Cassette system for peritoneal dialysis machine |
7942168, | May 16 2007 | Koninklijke Philips Electronics N V | Pneumatic and/or fluidic module, pneumatic and/or fluidic system and method of manufacturing a pneumatic and/or fluidic module |
7998115, | Feb 15 2007 | Baxter International Inc; BAXTER HEALTHCARE S A | Dialysis system having optical flowrate detection |
8042563, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8048209, | Nov 24 2003 | Gambro Lundia AB | Degassing device and end-cap assembly for a filter including such a degassing device |
8066671, | May 24 2002 | Baxter International Inc. | Automated dialysis system including a piston and stepper motor |
8070709, | Oct 28 2003 | Baxter International Inc.; Baxter Healthcare S.A. | Peritoneal dialysis machine |
8075526, | May 24 2002 | Baxter International Inc. | Automated dialysis system including a piston and vacuum source |
8142383, | Nov 07 2003 | Gambro Lundia AB | Fluid distribution module and extracorporeal blood circuit including such a module |
8142653, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Medical fluid cassettes and related systems |
8158102, | Oct 30 2003 | DEKA Products Limited Partnership | System, device, and method for mixing a substance with a liquid |
8172789, | Feb 10 2000 | Baxter International Inc. | Peritoneal dialysis system having cassette-based-pressure-controlled pumping |
8192401, | Mar 20 2009 | Fresenius Medical Care Holdings, Inc. | Medical fluid pump systems and related components and methods |
8206338, | Dec 31 2002 | Baxter International Inc; BAXTER HEALTHCARE S A | Pumping systems for cassette-based dialysis |
8206339, | Feb 10 2000 | Baxter International Inc. | System for monitoring and controlling peritoneal dialysis |
8206580, | Nov 07 2003 | Gambro Lundia AB | Integrated blood treatment module |
8211047, | May 19 2005 | COREQUEST SAGL | Blood filtering device |
8235931, | Jan 15 2003 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Waste balancing for extracorporeal blood treatment systems |
8246826, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8273049, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
8292594, | Apr 14 2006 | DEKA Products Limited Partnership | Fluid pumping systems, devices and methods |
8317492, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
8323231, | Feb 10 2000 | Baxter International, Inc. | Method and apparatus for monitoring and controlling peritoneal dialysis therapy |
8323271, | Apr 20 2007 | DOHENY EYE INSTITUTE | Sterile surgical tray |
8323492, | Oct 24 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Hemodialysis system having clamping mechanism for peristaltic pumping |
8328758, | Jul 05 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Dialysis systems and methods having disposable cassette and interface therefore |
8357298, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8361023, | Feb 15 2007 | Baxter International Inc; BAXTER HEALTHCARE S A | Dialysis system with efficient battery back-up |
8366921, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Dialysis systems and related methods |
8376999, | May 24 2002 | Baxter International Inc. | Automated dialysis system including touch screen controlled mechanically and pneumatically actuated pumping |
8377293, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Dialysis fluid cassettes and related systems and methods |
8393690, | Feb 27 2007 | DEKA Products Limited Partnership | Enclosure for a portable hemodialysis system |
8403150, | Nov 07 2003 | Gambro Lundia AB | End-cap assembly with pump hose for a filter and filter comprising such an end-cap assembly |
8403880, | May 24 2002 | Baxter International Inc; BAXTER HEALTHCARE S A | Peritoneal dialysis machine with variable voltage input control scheme |
8409441, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
8420397, | Oct 13 2006 | Rhodia Operations; CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE C N R S | Fluid flow device and assembly employing a temperature gadient for determining at least one characteristic of a physico-chemical system therewith |
8425471, | Feb 27 2007 | DEKA Products Limited Partnership | Reagent supply for a hemodialysis system |
8425780, | Mar 11 2010 | Fresenius Medical Care Holdings, Inc. | Dialysis system venting devices and related systems and methods |
8435408, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Medical fluid cassettes and related systems |
8459292, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8465446, | Oct 30 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Noise-reducing dialysis systems and methods of reducing noise in dialysis systems |
8491184, | Feb 27 2007 | DEKA Products Limited Partnership | Sensor apparatus systems, devices and methods |
8499780, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8506522, | May 24 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Peritoneal dialysis machine touch screen user interface |
8512553, | Jul 05 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Extracorporeal dialysis ready peritoneal dialysis machine |
8529496, | May 24 2002 | Baxter International Inc; BAXTER HEALTHCARE S A | Peritoneal dialysis machine touch screen user interface |
8545435, | Jan 03 2002 | Baxter International, Inc. | Method and apparatus for providing medical treatment therapy based on calculated demand |
8545698, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8556225, | Jul 20 1999 | DEKA Products Limited Partnership | Pump chamber configured to contain a residual fluid volume for inhibiting the pumping of a gas |
8558964, | Feb 15 2007 | Baxter International Inc; BAXTER HEALTHCARE S A | Dialysis system having display with electromagnetic compliance (“EMC”) seal |
8562834, | Feb 27 2007 | DEKA Products Limited Partnership | Modular assembly for a portable hemodialysis system |
8568391, | Apr 20 2007 | DOHENY EYE INSTITUTE | Sterile surgical tray |
8623000, | Apr 20 2007 | DOHENY EYE INSTITUTE | Independent surgical center |
8679054, | Jul 19 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Pumping systems for cassette-based dialysis |
8684971, | May 24 2002 | Baxter International Inc. | Automated dialysis system using piston and negative pressure |
8692167, | Dec 09 2010 | Fresenius Medical Care Deutschland GmbH | Medical device heaters and methods |
8715235, | Jul 05 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Dialysis system having disposable cassette and heated cassette interface |
8720913, | Aug 11 2009 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Portable peritoneal dialysis carts and related systems |
8721879, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8721883, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Medical fluid cassettes and related systems |
8721884, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
8740836, | Jul 19 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Pumping systems for cassette-based dialysis |
8740837, | Jul 19 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Pumping systems for cassette-based dialysis |
8771508, | Aug 27 2008 | DEKA Products Limited Partnership | Dialyzer cartridge mounting arrangement for a hemodialysis system |
8784359, | Feb 28 2005 | Fresenius Medical Care Holdings, Inc. | Cassette system for peritoneal dialysis machine |
8851866, | Apr 27 2001 | Hydrocision, Inc. | Methods and apparatuses for joining a pumping cartridge to a pump drive |
8863772, | Aug 27 2008 | DEKA Products Limited Partnership | Occluder for a medical infusion system |
8870549, | Apr 14 2006 | DEKA Products Limited Partnership | Fluid pumping systems, devices and methods |
8870812, | Feb 15 2007 | Baxter International Inc; BAXTER HEALTHCARE S A | Dialysis system having video display with ambient light adjustment |
8875893, | Feb 05 2010 | Fenwal, Inc.; FENWAL, INC , A DELAWARE CORPORATION | Medical containers for use in blood collection and processing and medical systems, methods and apparatus for use in blood collection and processing |
8888470, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
8900174, | Oct 28 2003 | Baxter International Inc.; Baxter Healthcare S.A. | Peritoneal dialysis machine |
8926294, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
8926835, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Dialysis systems and related methods |
8932032, | Jul 13 2005 | Baxter International Inc; BAXTER HEALTHCARE SA | Diaphragm pump and pumping systems |
8961444, | Oct 30 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Pressure manifold system for dialysis |
8985133, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8986254, | Mar 20 2009 | Fresenius Medical Care Holdings, Inc. | Medical fluid pump systems and related components and methods |
8992075, | Feb 27 2007 | DEKA Products Limited Partnership | Sensor apparatus systems, devices and methods |
8992189, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8992462, | Jul 19 2008 | Baxter International Inc.; Baxter Healthcare S.A. | Systems and methods for performing peritoneal dialysis |
8998836, | Oct 30 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Noise-reducing dialysis systems and methods of reducing noise in dialysis systems |
9008759, | Jul 17 2007 | Bayer HealthCare LLC | Devices and systems for determination of parameters for a procedure, for estimation of cardiopulmonary function and for fluid delivery |
9011114, | Mar 09 2011 | Fresenius Medical Care Holdings, Inc. | Medical fluid delivery sets and related systems and methods |
9028440, | Jan 23 2008 | DEKA Products Limited Partnership | Fluid flow occluder and methods of use for medical treatment systems |
9028691, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
9039395, | Jul 20 1999 | DEKA Products Limited Partnership | System, method, and apparatus for utilizing a pumping cassette |
9101709, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Dialysis fluid cassettes and related systems and methods |
9115708, | Feb 27 2007 | DEKA Products Limited Partnership | Fluid balancing systems and methods |
9115709, | Jul 20 1999 | DEKA Products Limited Partnership | Fluid pumping apparatus for use with a removable fluid pumping cartridge |
9180240, | Apr 21 2011 | Fresenius Medical Care Holdings, Inc. | Medical fluid pumping systems and related devices and methods |
9186449, | Nov 01 2011 | Fresenius Medical Care Holdings, Inc. | Dialysis machine support assemblies and related systems and methods |
9222472, | Jul 20 1999 | DEKA Products Limited Partnership | System, method, and apparatus for utilizing a pumping cassette |
9227003, | Jul 05 2007 | Baxter International Inc.; Baxter Healthcare S.A. | Hybrid blood and peritoneal dialysis treatment systems and methods |
9238097, | Mar 04 2002 | MALLINCKRODT CRITICAL CARE FINANCE INC ; MALLINCKRODT PHARMA IP TRADING D A C ; MALLINCKRODT IP; Mallinckrodt Hospital Products IP Limited | Method for collecting a desired blood component and performing a photopheresis treatment |
9238099, | Nov 24 2004 | Bayer HealthCare LLC | System and apparatus for modeling pressures generated during an injection procedure |
9272082, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
9283312, | Jul 19 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Dialysis system and method for cassette-based pumping and valving |
9302037, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
9302044, | Dec 29 2006 | Bayer HealthCare LLC | Patient-based parameter generation systems for medical injection procedures |
9364655, | May 24 2012 | DEKA Products Limited Partnership | Flexible tubing occlusion assembly |
9393357, | Sep 27 2000 | SORIN GROUP USA, INC | Blood perfusion system |
9421314, | Jul 15 2009 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
9421330, | Nov 03 2008 | Bayer HealthCare LLC | Mitigation of contrast-induced nephropathy |
9440017, | Mar 14 2013 | Baxter International Inc; BAXTER HEALTHCARE S A | System and method for performing alternative and sequential blood and peritoneal dialysis modalities |
9463070, | Apr 20 2007 | DOHENY EYE INSTITUTE | Sterile surgical tray |
9474842, | Feb 10 2000 | Baxter International Inc. | Method and apparatus for monitoring and controlling peritoneal dialysis therapy |
9488167, | Jul 20 1999 | DEKA Products Limited Partnership | System, method, and apparatus for utilizing a pumping cassette |
9494150, | Jul 20 1999 | DEKA Products Limited Partnership | Pump chamber configured to contain a residual fluid volume for inhibiting the pumping of a gas |
9494151, | Jul 20 1999 | DEKA Products Limited Partnership | System, method, and apparatus for utilizing a pumping cassette |
9500188, | Jun 11 2012 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Medical fluid cassettes and related systems and methods |
9504778, | May 24 2002 | Baxter International Inc.; Baxter S.A. | Dialysis machine with electrical insulation for variable voltage input |
9511180, | May 24 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Stepper motor driven peritoneal dialysis machine |
9514283, | Jul 09 2008 | Baxter International Inc; BAXTER HEALTHCARE S A | Dialysis system having inventory management including online dextrose mixing |
9517295, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
9526580, | Apr 20 2007 | DOHENY EYE INSTITUTE | Sterile surgical tray |
9535021, | Feb 27 2007 | DEKA Products Limited Partnership | Sensor apparatus systems, devices and methods |
9539379, | Feb 27 2007 | DEKA Products Limited Partnership | Enclosure for a portable hemodialysis system |
9555179, | Feb 27 2007 | DEKA Products Limited Partnership | Hemodialysis systems and methods |
9555181, | Dec 09 2010 | Fresenius Medical Care Deutschland GmbH | Medical device heaters and methods |
9561323, | Mar 14 2013 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Medical fluid cassette leak detection methods and devices |
9582645, | Jul 09 2008 | Baxter International Inc.; BAXTER HEALTHCARE SA | Networked dialysis system |
9593678, | Jul 20 1999 | DEKA Products Limited Partnership | System, method, and apparatus for utilizing a pumping cassette |
9593679, | Jul 20 1999 | DEKA Products Limited Partnership | Fluid pumping apparatus for use with a removable fluid pumping cartridge |
9597442, | Feb 27 2007 | DEKA Products Limited Partnership | Air trap for a medical infusion device |
9603985, | Feb 27 2007 | DEKA Products Limited Partnership | Blood treatment systems and methods |
9610392, | Jun 08 2012 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Medical fluid cassettes and related systems and methods |
9616166, | Nov 16 2005 | Bayer HealthCare LLC | Systems and methods of determining injection protocols for diagnostic imaging procedures |
9623168, | Oct 30 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | Pressure manifold system for dialysis |
9624915, | Mar 09 2011 | Fresenius Medical Care Holdings, Inc. | Medical fluid delivery sets and related systems and methods |
9649418, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
9675744, | May 24 2002 | Baxter International Inc.; Baxter Healthcare S.A. | Method of operating a disposable pumping unit |
9675745, | Nov 05 2003 | Baxter International Inc.; BAXTER HEALTHCARE SA | Dialysis systems including therapy prescription entries |
9677554, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
9682014, | Feb 05 2010 | Fenwal, Inc. | Medical containers for use in blood collection and processing and medical systems, methods and apparatus for use in blood collection and processing |
9690905, | Jul 09 2008 | Baxter International Inc.; BAXTER HEALTHCARE SA | Dialysis treatment prescription system and method |
9694125, | Dec 20 2010 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Medical fluid cassettes and related systems and methods |
9697334, | Jul 09 2008 | Baxter International Inc.; Baxter Healthcare S.A. | Dialysis system having approved therapy prescriptions presented for selection |
9700660, | Feb 27 2007 | DEKA Products Limited Partnership | Pumping cassette |
9700672, | Sep 21 2011 | Bayer HealthCare LLC | Continuous multi-fluid pump device, drive and actuating system and method |
9700711, | May 24 2012 | DEKA Products Limited Partnership | Flexible tubing occlusion assembly |
9724458, | May 24 2011 | DEKA Products Limited Partnership | Hemodialysis system |
9730833, | Apr 20 2007 | DOHENY EYE INSTITUTE | Independent surgical center |
9744283, | May 24 2002 | Baxter International Inc. | Automated dialysis system using piston and negative pressure |
9744284, | Jul 05 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | Hybrid blood and peritoneal dialysis treatment systems and methods |
9775939, | May 24 2002 | Baxter International Inc.; BAXTER HEALTHCARE SA | Peritoneal dialysis systems and methods having graphical user interface |
9782707, | Mar 24 2014 | Fenwal, Inc | Biological fluid filters having flexible walls and methods for making such filters |
9795729, | Jul 19 2002 | Baxter International Inc.; BAXTER HEALTHCARE SA | Pumping systems for cassette-based dialysis |
9796166, | Mar 24 2014 | Fenwal, Inc | Flexible biological fluid filters |
9799274, | Feb 15 2007 | Baxter International Inc.; BAXTER HEALTHCARE SA | Method of controlling medical fluid therapy machine brightness |
9808566, | Apr 23 2009 | Fresenius Medical Care Deutschland GmbH | External functional means, blood treatment apparatus for receiving an external functional means in accordance with the invention, and method |
9827359, | Jun 04 2002 | Fresenius Medical Care Deutschland GmbH | Dialysis systems and related methods |
9839775, | Jan 23 2008 | DEKA Products Limited Partnership | Disposable components for fluid line autoconnect systems and methods |
9839776, | Jan 23 2008 | DEKA Products Limited Partnership | Fluid flow occluder and methods of use for medical treatment systems |
9861732, | Nov 04 2011 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
9867921, | Dec 09 2010 | Fresenius Medical Care Deutschland GmbH | Medical device heaters and methods |
9949704, | May 14 2012 | Bayer HealthCare LLC | Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage |
9950107, | Nov 24 2004 | Bayer HealthCare LLC | Systems and methods for managing workflow for injection procedures |
9951768, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
9957960, | Oct 30 2003 | DEKA Products Limited Partnership | System for sealing a pump cassette against a cassette control assembly |
9959389, | Jun 24 2010 | Bayer HealthCare LLC | Modeling of pharmaceutical propagation and parameter generation for injection protocols |
9962226, | Nov 28 2013 | Alcon Inc | Ophthalmic surgical systems, methods, and devices |
9968738, | Mar 24 2014 | Fenwal, Inc | Biological fluid filters with molded frame and methods for making such filters |
9981079, | Nov 04 2011 | DEKA Products Limited Partnership | Medical treatment system and methods using a plurality of fluid lines |
9987407, | Feb 27 2007 | DEKA Products Limited Partnership | Blood circuit assembly for a hemodialysis system |
D606197, | Aug 27 2008 | DEKA Products Limited Partnership | Blood pump cassette, air trap and front panel assembly for a portable hemodialysis system |
D606198, | Aug 27 2008 | DEKA Products Limited Partnership | Blood circuit assembly |
D633619, | Aug 27 2008 | DEKA Products Limited Partnership | Front panel assembly for a portable hemodialysis system |
D646392, | Aug 27 2008 | DEKA Products Limited Partnership | Front panel assembly for a portable hemodialysis system |
D650896, | Aug 28 2009 | DEKA Products Limited Partnership | Disposable fluid handling cassette |
ER285, | |||
ER9113, |
Patent | Priority | Assignee | Title |
2308974, | |||
2356738, | |||
2980032, | |||
3007416, | |||
3148624, | |||
3154021, | |||
3250224, | |||
3298320, | |||
3518033, | |||
3656873, | |||
3689204, | |||
3709222, | |||
3741687, | |||
3771174, | |||
3774762, | |||
3912455, | |||
3946731, | Jan 20 1971 | Apparatus for extracorporeal treatment of blood | |
4042153, | Mar 14 1973 | Standard Oil Company | Liquid dropping device |
4047844, | Dec 08 1975 | Crocker National Bank | Blood pumping system |
4121236, | Jul 04 1975 | Microbox Dr. Welp GmbH & Co. | Aperture card camera with device for spraying the exposed film |
4158530, | Jul 01 1974 | Pumping apparatus comprising two collapsible chambers | |
4160505, | Dec 19 1977 | SHERWOOD MEDICAL COMPANY, A CORP OF DE | Catheterization tray |
4199307, | Jul 05 1977 | TRITON ASSOCIATES, 681 MARKET ST , SUITE 981, SAN FRANCISCO, CA , A LIMITED PARTNERSHIP | Medical infusion system |
4211597, | Jun 10 1977 | Cordis Dow Corp. | Method for making artificial kidney |
4236880, | Mar 09 1979 | Graseby Medical Limited | Nonpulsating IV pump and disposable pump chamber |
4250872, | Jan 21 1977 | Blood pulsating and/or pumping device | |
4273121, | Jul 05 1977 | TRITON ASSOCIATES, 681 MARKET ST , SUITE 981, SAN FRANCISCO, CA , A LIMITED PARTNERSHIP | Medical infusion system |
4276004, | Jun 14 1978 | Dornier Medizintechnik GmbH | Infusion pump |
4277226, | Mar 09 1979 | Graseby Medical Limited | IV Pump with empty supply reservoir and occlusion detector |
4290346, | Apr 30 1979 | Abbott Laboratories | Intravenous pump chamber |
4303376, | Jul 09 1979 | Baxter Travenol Laboratories, Inc. | Flow metering cassette and controller |
4364716, | Feb 23 1981 | SCHNEIDER U S A INC , A PFIZER COMPANY | Surgical pumping operation |
4379452, | Oct 18 1977 | Baxter Travenol Laboratories, Inc. | Prepackaged, self-contained fluid circuit module |
4411866, | Mar 28 1979 | Terumo Corporation | Steam sterilization method for artificial organ assemblies and resultant sterilized product |
4412553, | Jun 25 1981 | Baxter Travenol Laboratories, Inc. | Device to control the transmembrane pressure in a plasmapheresis system |
CA982874, | |||
D271801, | May 26 1981 | Cordis Dow Corp. | Artificial kidney assembly package with attached blood pump and multifunctional subassembly |
D271802, | May 26 1981 | Cordis Dow Corp. | Artificial kidney assembly package with attached blood pump and multifunctional subassembly |
DE2723197, | |||
GB2093800, | |||
27849, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 22 1982 | BILSTAD, ARNOLD C | BAXTER TRAVENOL LABORATORIES, INC , A CORP OF DE | ASSIGNMENT OF ASSIGNORS INTEREST | 004081 | /0997 | |
Dec 22 1982 | BROWN, RICHARD I | BAXTER TRAVENOL LABORATORIES, INC , A CORP OF DE | ASSIGNMENT OF ASSIGNORS INTEREST | 004081 | /0997 | |
Dec 22 1982 | KRUGER, ROBERT J | BAXTER TRAVENOL LABORATORIES, INC , A CORP OF DE | ASSIGNMENT OF ASSIGNORS INTEREST | 004081 | /0997 | |
Dec 28 1982 | Baxter Travenol Laboratories, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 29 1988 | M173: Payment of Maintenance Fee, 4th Year, PL 97-247. |
Mar 30 1992 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 02 1996 | M185: Payment of Maintenance Fee, 12th Year, Large Entity. |
May 16 1996 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Oct 30 1987 | 4 years fee payment window open |
Apr 30 1988 | 6 months grace period start (w surcharge) |
Oct 30 1988 | patent expiry (for year 4) |
Oct 30 1990 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 30 1991 | 8 years fee payment window open |
Apr 30 1992 | 6 months grace period start (w surcharge) |
Oct 30 1992 | patent expiry (for year 8) |
Oct 30 1994 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 30 1995 | 12 years fee payment window open |
Apr 30 1996 | 6 months grace period start (w surcharge) |
Oct 30 1996 | patent expiry (for year 12) |
Oct 30 1998 | 2 years to revive unintentionally abandoned end. (for year 12) |