The present invention involves, in some embodiments, systems and methods for performing an integrity test on a medical grade cassette that is configured to be used on a medical fluid handling system, wherein the cassette may be disposable and may comprise a membrane therein. The test may be configured to determine an error condition, such as detection of membrane leakage above a threshold value, and may in certain cases be implemented by a medical computer system. In certain cases the integrity test is a dry integrity test and in certain cases, the test is configured to determine a leakage rate of fluid through the membrane.
|
16. A method for performing a dry integrity test on a disposable cassette that is configured to be used on a medical fluid handling system, the method comprising:
receiving a pressure on a membrane of the cassette;
measuring a first pressure associated with the membrane;
allowing a predetermined amount of time to pass;
measuring a second pressure associated with the membrane;
determining a difference between the first and second pressures; and
determining whether the difference is above a predetermined threshold.
48. A method for performing a dry integrity test on a medical-grade cassette, the method comprising:
adjusting a pressure of a pressure tank;
adjusting a valve connecting the pressure tank to a membrane of a cassette to a first position;
measuring a first pressure of the pressure tank after the valve has been in the first position;
adjusting the valve to a second position;
measuring a second pressure of the pressure tank after the valve has been in the second position;
determining a difference between the first and second pressures; and
determining whether the membrane is leaking above a threshold using the difference.
53. A method for performing a dry integrity test on a medical-grade cassette, the method comprising:
adjusting a pressure of a pressure tank;
adjusting a valve connecting the pressure tank to a membrane of a cassette to a first position;
measuring a first pressure of the pressure tank after the valve has been in the first position;
adjusting the valve to a second position;
measuring a second pressure of the pressure tank after the valve has been in the second position;
determining a difference between the first and second pressures; and
determining whether there is a leak in the membrane based on the difference between the first and second pressures.
1. A method for performing a dry integrity test on a medical-grade cassette, the medical-grade cassette being a single-use disposable cassette that can removably mate with a reusable portion of a dialysis machine, the method comprising:
adjusting a pressure of a pressure tank in the reusable portion;
closing a valve in the reusable portion of the dialysis machine connecting the pressure tank to a membrane of a medical-grade disposable cassette;
measuring a first pressure of the pressure tank within the reusable portion;
opening the valve in the reusable portion;
measuring a second pressure of the pressure tank;
determining a difference between the first and second pressures; and
determining whether the membrane of the medical-grade disposable cassette is leaking above a threshold using the difference.
35. A method for detecting a leakage rate of fluid through a membrane in a fluid flow control system having a first chamber and a second chamber, the membrane being disposed between the first chamber and the second chamber, the second chamber having a connection to a pressure tank, the pressure tank having a fluid with a pressure, the connection defining a fluid path, the method comprising:
blocking the fluid path;
adjusting the pressure of the fluid in the pressure tank;
taking a first measurement of the pressure within the pressure tank after the pressure tank is adjusted and the fluid path is blocked;
unblocking the fluid path;
taking a second measurement of the pressure within the pressure tank after the fluid path is unblocked;
taking the difference between the first and second measurements; and
determining whether the difference is above a threshold.
19. A method for detecting a leakage rate of fluid through a medical grade membrane in a fluid flow control system having a first chamber and a second chamber, the membrane being disposed between the first chamber and the second chamber, the second chamber having a connection to a pressure tank, the pressure tank having a fluid with a pressure, the connection defining a fluid path, the method comprising:
blocking the fluid path;
adjusting the pressure of the fluid in the pressure tank;
measuring a first pressure in the pressure tank to generate a first pressure value while the fluid path is blocked and after the pressure in the pressure tank is adjusted;
unblocking the fluid path;
measuring a second pressure in the pressure tank to generate a second pressure value after the fluid path is unblocked; and
determining whether there is a leak in the membrane based on a difference between the first pressure and the second pressure.
20. A method for detecting a leakage rate of fluid through a medical membrane in a fluid flow control medical system having a first chamber and a second chamber, the membrane being disposed between the first chamber and the second chamber, the second chamber having a medical-grade connection to a pressure tank, the pressure tank having a fluid with a pressure, the connection defining a medical-grade fluid path, the method comprising:
blocking the fluid path;
adjusting the pressure of the fluid in the pressure tank;
measuring a first pressure in the pressure tank to generate a first pressure value while the fluid path is blocked and after the pressure in the pressure tank is adjusted;
unblocking the fluid path;
measuring a second pressure in the pressure tank to generate a second pressure value after the fluid path is unblocked; and
determining a leakage of fluid through the membrane based on the first and second pressure values.
30. A method implemented by a medical computer system for detecting a leakage rate of fluid through a membrane in a fluid flow control system having a first chamber and a second chamber, the membrane disposed between the first chamber and the second chamber, the second chamber having a connection to a pressure tank, the pressure tank having a fluid with a pressure, the connection defining a fluid path, the method implemented by executing a set of instructions on the medical computer, the method performing the acts of:
activating, using the medical computer, a valve controller for blocking the fluid path;
adjusting, using the medical computer, the pressure of the fluid in the pressure tank;
reading, using the medical computer, the pressure in the pressure tank while the fluid path is blocked;
creating, using the medical computer, a pressure measurement at each of a first set of multiple timed intervals while the fluid path is blocked and after the pressure is adjusted;
calculating, using the medical computer, a blocked pressure value based on the pressure measurements in the pressure tank at the first set of multiple timed intervals;
activating, using the medical computer, the valve controller unblocking the fluid path;
reading, using the medical computer, the pressure within the pressure tank while the fluid path is unblocked;
creating, using the medical computer, a pressure measurement at each of a second set of multiple timed intervals after the fluid path is unblocked;
calculating, using the medical computer, an unblocked pressure value based on the pressure measurements in the pressure tank at the second set of multiple timed intervals; and
calculating, using the medical computer, a leakage rate based on the blocked pressure value and the unblocked pressure value.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
6. The method according to
7. The method according to
8. The method according to
9. The method according to
10. The method according to
11. The method according to
12. The method according to
13. The method according to
14. The method according to
15. The method according to
17. The method according to
18. The method according
21. The method according to
22. The method according to
23. The method according to
24. The method according to
25. The method according to
26. The method according to
28. The method according to
measuring the pressure at a first set of multiple timed intervals; and
storing each of the pressure measurements in a memory unit; and
providing the pressure measurements in the memory unit to a processor.
29. The method according to
measuring the pressure at a second set of multiple timed intervals;
storing each of the pressure measurements in a memory unit; and
providing the pressure measurements in the memory unit to a processor.
31. The method according to
32. The method according to
33. The method according to
34. The method according to
36. The method according to
37. The method according to
38. The method according to
39. The method according to
40. The method according to
41. The method according to
42. The method according to
43. The method according to
44. The method according to
46. The method according to
taking the first measurement using a first set of multiple timed intervals; and
storing each of the pressure measurements in a memory unit; and
providing the pressure measurements in the memory unit to a processor.
47. The method according to
storing each of the pressure measurements in a memory unit;
providing the pressure multiplied timed interval measurements to the processor; and
calculating, by the processor, the first and second measurements.
49. The method according to
50. The method according to
51. The method according to
52. The method according to
54. The method according to
|
This application is a continuation of U.S. application Ser. No. 13/973,630, filed Aug. 22, 2013, which is a continuation of U.S. application Ser. No. 12/847,980, filed Jul. 30, 2010, and issued on Oct. 15, 2013 as U.S. Pat. No. 8,556,225, which is a division of U.S. application Ser. No. 12/423,665, filed Apr. 14, 2009 and issued on Aug. 3, 2010 as U.S. Pat. No. 7,766,301, which is a continuation of U.S. application Ser. No. 10/951,441, filed Sep. 28, 2004 and issued on Jul. 14, 2009 as U.S. Pat. No. 7,559,524, which is a continuation of U.S. application Ser. No. 09/357,645, filed Jul. 20, 1999, and issued on Apr. 12, 2005 as U.S. Pat. No. 6,877,713, each of which is herein incorporated by reference in its entirety.
The present invention relates generally to systems and methods for metering, pumping, or handling fluids. The invention, in some embodiments is especially well suited to systems and methods for medical infusion and fluid-handling.
A wide variety of applications in industrial and medical fields require fluid metering and pumping systems able to deliver precisely measured quantities of fluids at accurate flow rates to various destinations. In the medical field especially, precise and accurate fluid delivery is critical for many medical treatment protocols. Medical infusion and fluid-handling systems for use in the pumping or metering fluids to and/or from the body of a patient typically require a high degree of precision and accuracy in measuring and controlling fluid flow rates and volumes. For example, when pumping medicaments or other agents to the body of a patient, an infusion flow rate which is too low may prove ineffectual, while an infusion flow rate which is too high may prove detrimental or toxic to the patient.
Pumping and fluid metering systems for use in medical applications, for example in pumping fluids to and/or from the body of a patient, are known in the art. Many of such prior art systems comprise peristaltic or similar type pumping systems. Such prior art systems typically deliver fluid by compressing and/or collapsing a flexible tube or other flexible component containing the fluid to be pumped. While such known systems are sometimes adequate for certain applications, precise and accurate flow rates in such systems can be difficult to measure and control due to factors such as distortion of the walls of collapsible tubing or components of the systems, changes in relative heights of the patient and fluid supply, changes in fluid supply line or delivery line resistance, and other factors.
Another shortcoming of such prior art systems is that it is often difficult to determine and maintain accurate volumetric flow rates in real time during operation of the infusion system. Typically, many such prior art systems utilize volume and flow rate measurement techniques that, in some cases, can have lower accuracy than desirable, or are cumbersome and difficult to implement and cannot be performed in real time as the system is operating. Some approaches which have been used in such prior art systems for measuring volumes and flow rates include optical drop counting, the weighing of chambers containing infusion liquids, and other approaches.
Many such prior art infusion systems also employ valving systems which comprise clamps, or other pinching devices, which open and close a line by pinching or collapsing the walls of tubing. Such valving arrangements can have several shortcomings for applications involving medical infusion including difficulties in obtaining a fluid-tight seal and distortion of the walls of the tubing, which can lead to undesirable fluid leakage and/or irregular flow rates.
In addition, many typical prior art infusion systems, such as those described above, are constrained to fairly simple fluid handling tasks, such as providing a single or, in some cases, several individual flow paths between one or more fluid sources and a patient. Such prior art systems are not well suited for performing complex, multi-functional fluid handling and pumping tasks and often do not have sufficient operating flexibility to be used for a wide variety of fluid handling applications, without significant rearranging or retooling of the components of the system.
Also, for medical infusion applications involving the pumping or metering of fluids to the body of a patient, it is important to detect air present in a line pumping fluid to the body of a patient and to prevent such air from entering the body of the patient. Typically, prior art infusion systems employed for such applications detect the presence of air in the system by relying only on external air detection components, for example ultrasonic detectors, which are typically downstream of a pump and immediately upstream of the patient. Also, for such systems, once air has been detected in the line, purging the air from the line before it reaches the patient may require manual intervention and, in some cases, disconnection of lines within the system.
For pumping and infusion systems utilized for pumping fluids to the body of a patient, it is also typically desirable to pass fluids through a filter or screen prior to their entering the body of the patient in order to remove any insoluble clumps, or aggregates of material therefrom that may be detrimental to the patient if infused into the body. Such filters are especially important when pumping blood or blood components to the body of a patient; in which case, the filters serve primarily as blood clot filters to remove clots or aggregated cells from the blood or blood components. Prior art infusion systems used for such applications can include blood clot/particulate filters outside the pumping component of the system, installed on the line providing infused fluid to the patient. Such assembly requires additional setup time and attention from an operator of the system and often results in another potential location of fluid leakage or site of contamination within the system.
While the above mentioned and other prior art pumping and fluid handling systems represent, in some instances, useful tools in the art of fluid handling and pumping there remains a need in the art to: (a) provide pumping and fluid metering systems which have an improved ability to control and measure volumes and flow rates; (b) provide improved valving systems; (c) provide increased flexibility for multiple uses; and (d) include air detection capability and integrated fluid filtration. Certain embodiments of the present invention address one or more of the above needs.
Certain embodiments of the present invention provide a series of pumping systems, methods for operating the systems, and components of the systems. These embodiments include, in one aspect, a series of systems for measuring the volume of a volumetric chamber, detecting the presence of a gas in a pump chamber, and/or pumping a liquid with a pump chamber. Some embodiments of the present invention include a series of methods for pumping a liquid at a desired average flow rate with a pumping cartridge of a pumping system. Some embodiments of the present invention provide a series of pumping cartridges and pump chambers, and methods for operating such cartridges and chambers.
According to one embodiment of the present invention, a method and corresponding system for detecting the presence of a gas in a pump chamber is disclosed. The pump chamber may be an isolatable pump chamber. According to this embodiment, the method includes the steps of: isolating the pump chamber; determining a first measured parameter related to the volume of the pump chamber with at least a first force supplied to a surface of the pump chamber; determining a second measured parameter related to the volume of the pump chamber with at least a second force applied to the surface of the pump chamber; and then comparing the first measured parameter and the second measured parameter.
In another embodiment, a method for detecting the presence of a gas in a pump chamber is disclosed, where the pump chamber is coupled to or contained within a control chamber. In this embodiment, the method comprises: supplying a measurement gas to the control chamber at a first measured pressure; changing the pressure of the measurement gas in the control chamber to a second measured pressure; supplying a measurement gas to the control chamber at a third measured pressure; changing the pressure of the measurement gas in the control chamber to a fourth measured pressure; and determining the presence of a gas in the pump chamber based at least in part on the measured pressures.
In yet another embodiment, a method for detecting the presence of gas in a pump chamber is disclosed, where the pump chamber is coupled to or contained within a control chamber. The method comprises determining a first measured parameter related to the volume of the pump chamber and/or the control chamber with a fluid supplied to the control chamber at a first pressure, determining a second measured parameter related to the volume of the pump chamber and/or the control chamber with a fluid supplied to the control chamber at a second pressure, and comparing the first measured parameter and the second measured parameter.
In yet another embodiment, a method for detecting the presence of gas in a pump chamber is disclosed, where the pump chamber is at least partially comprised of a movable surface. The method comprises determining a first measured parameter related to a volume of the pump chamber with at least a first force applied to the movable surface, where the first force creates a first level of stress in the movable surface. The method further comprises determining a second measured parameter related to a volume of the pump chamber with at least a second force applied to the movable surface, where the second force creates a second level of stress in the movable surface. The method further comprises comparing the first measured parameter and the second measured parameter.
In another embodiment, a method for detecting the presence of a gas in a pump chamber is disclosed, where the pump chamber is at least partially comprised of a movable surface and is coupled to or contained within a control chamber. The method comprises: supplying a measurement gas to the control chamber at a first measured pressure, where the first measured pressure creates a first difference in pressure between the pump chamber and the control chamber; supplying a measurement gas to the control chamber at a second measured pressure, where the second measured pressure creates a second difference in pressure between the pump chamber and the control chamber; and determining the presence of a gas in the pump chamber based at least in part on the measured pressures.
In another embodiment, a system for detecting the presence of a gas in an isolatable pump chamber is disclosed. In this embodiment, the system includes a force applicator that is constructed and arranged to apply a force to a surface of the pump chamber at least a first level of force and a second level of force. The system further includes a comparer configured to determined the presence of a gas in the pump chamber based at least in part on a first measured parameter related to the volume of the pump chamber at a first condition, and a second measured parameter related to the volume of the pump chamber at a second condition.
In another embodiment, a system for detecting the presence of a gas in a pump chamber is disclosed. The system in this embodiment includes a control chamber that is coupled to or contains the pump chamber, a flexible membrane comprising at least a portion of the pump chamber, and at least one pressure measuring component able to measure a pressure in the control chamber. The system further includes a fluid supply system in fluid communication with the control chamber that is able to supply a fluid to the control chamber at at least a first and a second predetermined pressure, where the fluid pressure in the control chamber is measured with the pressure measuring component. The system in this embodiment also includes a comparer configured to determine the presence of a gas in the pump chamber based on a first measured parameter related to a volume of the control chamber at at least the first pressure and a second measured parameter related to the volume of a control chamber at at least the second pressure.
In yet another embodiment, a system for detecting the presence of a gas in a pump chamber is disclosed. The system in this embodiment includes a control chamber that is coupled to or contains the pump chamber, a pressure supply to pressurize the control chamber at at least a first pressure and a second pressure, and a comparer that is configured to determine the presence of gas in the pump chamber based at least in part on a first measured parameter related to a volume of the pump chamber and/or control chamber at a first condition, and a second measured parameter related to a volume of a pump chamber and/or control chamber at a second condition.
In another embodiment, a system for detecting the presence of a gas in a pump chamber is disclosed. The system in this embodiment comprises force applicator means for supplying a force to the surface of the pump chamber at a first level of force and a second level of force, and processor means for determining the presence of a gas in the pump chamber based at least in part on a first measured parameter related to the volume of the pump chamber at a first condition and a second measured parameter related to the volume of the pump chamber at a second condition.
In another embodiment, a pump chamber is disclosed. The pump chamber in this embodiment includes a wall and a movable surface comprising at least a portion of the wall. The pump chamber further includes at least one spacer positioned within the pump chamber to inhibit gas from being pumped through the pump chamber.
In yet another embodiment, a pump chamber including a wall and a flexible membrane disposed over at least a portion of the wall is disclosed. The pump chamber in to this embodiment further includes at least one spacer positioned within the pump chamber to assist air to rise in the pump chamber.
In yet another embodiment, a pump chamber comprising a volumetric container is disclosed. The pump chamber in this embodiment includes a flexible membrane comprising at least a portion of a wall of the container, with at least one spacer positioned within the container to inhibit contact between internal surfaces of the container.
In another embodiment, a pump chamber is disclosed. The pump chamber is this embodiment comprises a first movable wall of the pump chamber, a second wall of the pump chamber, and at least one elongate spacer attached to the second wall and projecting towards the first movable wall.
In another embodiment, a method of pumping of fluid is disclosed. The method involves providing a pump chamber, which includes a flexible membrane, and preventing any gas contained within the pump chamber from being pumped from the pump chamber by providing at least one spacer element within the pump chamber. The spacer element in this embodiment prevents the flexible membrane from contacting an internal surface of the pump chamber during pumping.
In another aspect, a series of pumping systems is disclosed. In one embodiment, the system is for pumping a liquid with a pump chamber. The system in this embodiment includes at least one fluid source, containing a fluid at a first pressure, where the source is able to be placed in fluid communication with a control chamber that is coupled to the pump chamber when the system is in operation. The system in this embodiment further includes a variable sized orifice valve able to be placed in fluid communication with the fluid source and the control chamber. The system may also include a processor which controls the variable sized orifice valve to selectively allow the control chamber to be pressurized with a fluid from the fluid source to a desired pressure. In this embodiment, the processor also controls the pressure within the control chamber during filling of the pump chamber with a liquid or during discharge of a liquid from the pump chamber by selectively changing the size of an orifice within the variable sized orifice valve.
In another embodiment, a method for pumping a liquid using a pump chamber is disclosed. The method comprises: providing a first fluid source that supplies a fluid at a first pressure in fluid communication with an inlet of a variable sized orifice valve; providing a control chamber that is coupled to the pump chamber, where the control to chamber is in fluid communication with an outlet of the variable sized orifice valve; selectively changing a size of an orifice within the variable sized orifice valve in order to pressurize the control chamber with the fluid to a desired pressure; and maintaining the desired pressure in the control chamber by selectively changing the size of the orifice.
In another embodiment, a system for measuring the volume of a volumetric chamber is disclosed. The system includes a reference chamber, a first fluid source supplying fluid at a first pressure, and a second fluid source supplying fluid at a second pressure. The system in this embodiment also includes a switch valve having a first and second inlet and an outlet. The first inlet of the switch valve is connected in fluid communication with the first fluid source, and the second inlet of the switch valve is connected in fluid communication with the second fluid source. The outlet of the switch valve is connected in fluid communication with at least one line able to be placed in fluid communication with the reference chamber and the volumetric chamber. The switch valve has a first position that provides fluid communication between the first fluid source and the reference chamber and volumetric chamber, and has a second position that provides fluid communication between the second fluid source and the reference chamber and volumetric chamber. The system may also include a processor which controls the switch valve to selectively allow the reference chamber and/or the volumetric chamber to be pressurized to a selected pressure with a fluid from either the first fluid source or the second fluid source. The processor also determines a volume of the volumetric chamber based at least in part on the selected pressure.
In another embodiment, a method for measuring a volume of a volumetric chamber is disclosed. The method comprises providing a first fluid source to supply fluid at a first pressure, a second fluid source to supply fluid at a second pressure, and a switch-valve having a first inlet, a second inlet, and an outlet, where the first inlet is connected in fluid communication with the first fluid source, the second inlet is connected in fluid communication with the second fluid source, and the outlet is connected in fluid communication with at least one line that is able to be placed in fluid communication with the volumetric chamber. The method further comprises positioning the switch valve to allow the volumetric chamber to be pressurized with the fluid from the first fluid source, determining a first pressure of the volumetric chamber, and determining a volume of the volumetric chamber based at least in part on the first pressure.
In yet another embodiment, a system for pumping a liquid with a pump chamber is disclosed. The system in this embodiment includes a first fluid source supplying fluid at a first pressure, and a second fluid source supplying fluid at a second pressure. The system in this embodiment also includes a switch valve having a first and a second inlet and an outlet. The first inlet is connected in fluid communication with the first fluid source, and the second inlet is connected in fluid communication with the second fluid source. The outlet of the switch valve is connected in fluid communication with at least one line able to be placed in fluid communication with a control chamber that is coupled to the pump chamber when the system is in operation. The switch valve has a first position that provides fluid communication between the first fluid source and the control chamber, and has a second position that provides fluid communication between the second fluid source and the control chamber.
In another embodiment, a method for pumping a liquid with a pump chamber is disclosed. The method comprises providing a first fluid source to supply fluid at a first pressure, a second fluid source to supply fluid at a second pressure, and a switch-valve having a first inlet, a second inlet, and an outlet, where the first inlet is connected in fluid communication with the first fluid source, the second inlet is connected in fluid communication with the second fluid source, and the outlet is connected in fluid communication with at least one line able to be placed in fluid communication with a control chamber to be coupled to a pump chamber when the system is in operation. The method further comprises positioning the switch-valve to provide fluid communication between the first fluid source and the control chamber so as to at least partially fill the pump chamber with a liquid, and positioning the switch-valve to provide fluid communication between the second fluid source and the control chamber for dispensing the liquid from the pump chamber.
In yet another aspect, a series of methods and systems for pumping a liquid at a desired average flow rate with a pumping cartridge is disclosed. In one embodiment, the method involves pumping a liquid at a desired average flow rate with a pumping cartridge, where the cartridge includes at least one pump chamber, at least a portion of which pump chamber includes a movable surface. The method of this embodiment involves: at least partially filling the pump chamber with a liquid; isolating the pump chamber; applying a force to the movable surface and regulating the flow of liquid from the pump chamber while to maintaining the force on the surface.
In another embodiment, a method for pumping a liquid at a desired average flow rate with a pumping cartridge that includes at least one pump chamber, at least a portion of which pump chamber comprises a movable surface is disclosed. The method of this embodiment involves: closing a valve positioned on an outlet line of the pump chamber; at least partially filling the pump chamber with a liquid; closing a valve positioned on the inlet line of the pump chamber thereby isolating the pump chamber; and, while maintaining the inlet valve in a closed position, applying a force to the movable surface and opening the outlet valve for predetermined periods at predetermined intervals while maintaining the force on the movable surface. The predetermined time periods and intervals may be selected to yield a desired average flow rate.
In yet another embodiment, a fluid metering system is disclosed. The system of this embodiment comprises a reusable component that is constructed and arranged for operative association with a removable pumping cartridge by coupling to the pumping cartridge. The pumping cartridge of this embodiment includes at least one pump chamber and has an outlet line having an outlet valve therein. The fluid metering system in this embodiment includes a processor that is configured to control pulsing of the outlet valve to achieve a desired flow rate.
In yet another embodiment, a fluid metering system including a reusable component that is constructed and arranged for operative association with a removable pumping cartridge is disclosed. The pumping cartridge includes at least one pump chamber having an inlet line having a first valve therein and an outlet line having a second valve therein. The pump chamber is at least partially formed from a movable surface. The system further includes valve actuating means for operating the first valve and the second valve, and pump chamber actuating means for applying a force to the movable surface. The system further includes control means for controlling the valve actuating means and pump chamber actuating means to deliver fluid at a desired flow rate from the pump chamber by closing the first valve, applying a force to the movable surface, and pulsing the second valve.
In another embodiment, a series of pumping cartridges is disclosed. In one embodiment, the pumping cartridge includes a first liquid flow path, a second liquid flow path, and a bypass valve in fluid communication with the first liquid flow path and the second liquid flow path. The bypass valve is constructed and arranged to selectively permit to liquid flow through the first liquid flow path or the second liquid flow path, or to prevent liquid flow through both the first liquid flow path and the second liquid flow path.
In another embodiment, a pumping cartridge including a first component and at least one membrane disposed on the first component is disclosed. The first component and the membrane define a bypass valving chamber. The bypass valving chamber in this embodiment includes three ports, two of which ports are occludable by the membrane. The pumping cartridge in this embodiment further includes a first fluid flow path entering the bypass valving chamber through a first port and exiting the bypass valving chamber through a third occludable port. The pumping cartridge in this embodiment further includes a second fluid flow path entering the bypass valving chamber through a second occludable port and exiting the bypass valving chamber through the first port.
In yet another embodiment, a reusable system is disclosed that is constructed and arranged for operative association with a removable pumping cartridge, where the pumping cartridge provides at least two fluid flow paths therein and includes a bypass valving chamber in fluid communication with a first fluid flow path and a second fluid flow path. The system in this embodiment includes a pump housing component that is constructed and arranged to couple to the pumping cartridge, and a valve actuator to actuate the bypass valving chamber. The valve actuator in this embodiment is disposed within the pump housing adjacent to and in operative association with the bypass valving chamber, when the pumping cartridge is coupled to the pump housing
In yet another embodiment, a reusable system is disclosed that is constructed and arranged for operative association with a removable pumping cartridge, where the pumping cartridge provides at least two liquid flow paths therein and includes a first component, with at least one membrane disposed on the first component. The first component and the membrane define a bypass valving chamber. The reusable system in this embodiment includes a pump housing component that is constructed and arranged for operative association with the pumping cartridge by coupling to the pumping cartridge. The reusable system in this embodiment also includes a valve actuator to actuate the bypass valving chamber, which actuator is disposed adjacent to and in operative association with the bypass valving chamber when the pumping cartridge is coupled to the pump housing. The system may further include a force applicator forming at least a part of the valve actuator, where the force applicator is constructed and arranged to alternatively: apply a force to at least a to portion of the membrane to restrict liquid flow through a first liquid flow path through the bypass valving chamber; apply a force to at least a portion of the membrane to restrict liquid flow through a second liquid flow path through the bypass valving chamber; and apply a force to at least a portion of the membrane to restrict liquid flow through both the first and the second liquid flow paths.
In another embodiment, a method for directing flow in a pumping cartridge is disclosed, where the pumping cartridge includes a bypass valving chamber having three ports therein and two liquid flow paths therethrough. At least a portion of the bypass valving chamber in this embodiment is formed from a membrane. The method in this embodiment comprises occluding a first port disposed in the bypass valving chamber with the membrane to restrict the flow of liquid through the bypass valving chamber along a first flow path, or occluding a second port disposed in the bypass valving chamber with the membrane to restrict the flow of liquid through the bypass valving chamber along a second flow path, and/or occluding both the first and second ports disposed in the bypass valving chamber with the membrane to restrict the flow of liquid along both the first and second flow paths.
In yet another aspect, pumping cartridges including filter elements and methods for filtering fluids are disclosed. In one embodiment, a removable pumping cartridge that is constructed and arranged for operative association with the reusable component is provided, the cartridge including at least one pump chamber, at least one valving chamber, and at least one fluid flow path constructed and positioned within the cartridge to provide fluid communication between the pump chamber and a body of a patient when pumping a fluid thereto. The cartridge in this embodiment further includes at least one filter element in fluid communication with the fluid flow path.
In another embodiment, a method for filtering a liquid supplied to the vasculature of a patient is disclosed. The method in this embodiment includes supplying a liquid to a pump chamber disposed in a removable pumping cartridge, where the pumping cartridge is constructed and arranged for operative association with a reusable component. The method further involves pumping the liquid to the patient through a filter element disposed in the pumping cartridge.
In yet another aspect, occluders for occluding collapsible tubing, and methods for occluding collapsible tubing using such occluders are disclosed. In one embodiment, an to occluder for occluding at least one collapsible tube is disclosed. The occluder in this embodiment comprises an occluding member and a force actuator that is constructed and positioned to bend the occluding member.
In another embodiment, a method for occluding at least one collapsible tube is disclosed. The method comprises applying a force to bend the occluding member in order to open the collapsible tube to enable fluid to flow therethrough, and releasing the force in order to relax the occluding member and occlude the collapsible tube.
Each of the above disclosed inventions and embodiments may be useful and applied separately and independently, or may be applied in combination. Description of one aspect of the inventions are not intended to be limiting with respect to other aspects of the inventions.
Other advantages, novel features, and objects of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings, which are schematic and are not intended to be drawn to scale. In the figures, identical or substantially similar components that are illustrated in various figures may be represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention.
Certain embodiments of the present invention relate to a series of methods and systems useful in fluid pumping applications. Some embodiments of these methods and systems are especially useful for applications involving the pumping of liquids to and from the body of a patient during a medical treatment or procedure. The need for pumping liquids to and from the body of a patient arises in a wide variety of medical treatments and procedures including, for example, hemodialysis for the treatment of kidney failure, plasmapheresis for separating blood cells from plasma, general infusion of intervenous fluids and/or medicaments, and a wide variety of additional treatments and procedures apparent to those of ordinary skill in the art. The methods and systems of the current invention may be advantageously utilized for any of the above-mentioned liquid pumping applications, or any other fluid pumping application, including various industrial applications, as apparent to those of ordinary skill in the art.
Certain embodiments of the present invention relate to pumping systems and methods for operating the pumping systems for pumping liquids with a pump chamber. The term “pump” or “pumping” as used herein refers to the forcing, controlling or metering of to the flow of a fluid through a line either by metering a flow of a fluid that is moving under the influence of a pre-existing pressure drop within the line, or by forcing a fluid through a line by increasing the pressure of the fluid within the line. Many embodiments, as described in more detail below, involve systems where the pressure of the fluid being pumped is increased (e.g., increased cyclically) by using a pump chamber and a source of mechanical force acting on one or more external surfaces of the pump chamber.
A “chamber” as used herein, for example in the context of a pump chamber, refers to a volumetric container having a constant or variable internal volume, which is able to contain a fluid. A “fluid” as used herein can refer to a material that is either a liquid or gas.
The methods and systems provided in some embodiments of the present invention, in preferred embodiments, include pumping systems with pump chambers having at least one moveable surface. A “moveable surface” as used herein in this context refers to a surface of a chamber that can be displaced by a force applied thereto, so as to change an internal volume of the chamber. A non-limiting list of pumping systems that employ pump chambers including at least one moveable surface include: diaphragm pumps, piston pumps, peristaltic pumps, flexible bulb pumps, collapsible bag pumps, and a wide variety of other pump configurations, as apparent to those of ordinary skill in the art.
Preferred embodiments of the invention involve pumping systems including a pump chamber which comprises an isolatable chamber. An “isolatable chamber” as used herein refers to a volumetric chamber or container for holding a fluid, which can isolate the fluid from fluid communication with fluids outside of the isolatable chamber (e.g., by sealing or closing inlets and outlets to the chamber). The term “fluid communication” as used herein refers to two chambers, or other components or regions containing a fluid, where the chambers, components, or regions are connected together (e.g., by a line, pipe, or tubing) so that a fluid can flow between the two chambers, components, or regions. Therefore, two chambers which are in “fluid communication” can, for example, be connected together by a line between the two chambers, such that a fluid can flow freely between the two chambers. For embodiments involving an isolatable chamber, for example an isolatable pump chamber, lines connecting the isolatable chamber to other chambers or regions of the pumping system may include at least one valve (or other device) therein which may be closed, or occluded, in order to block fluid communication between the chambers.
The term “valve” as used herein refers to a component of a pumping system to disposed in, or adjacent to, a fluid line or fluid flow path within the system, which component is able to block the flow of a fluid therethrough. Valves, which may be utilized in various aspects of the invention, include, but are not limited to, ball valves, gate valves, needle valves, globe valves, solenoid-activated valves, mechanisms or components for applying an external force to a fluid flow path so as to block or occlude the flow path (for example, by pinching or collapsing a length of flexible tubing), and others, as would be apparent to those of ordinary skill in the art. Two or more chambers or regions of a pumping system which are connected together by a fluid flow path including one or more valves therein are able to be placed in fluid communication. “Able to be placed in fluid communication” as used herein refers to components, regions, or chambers within a pumping system, which components, regions, or chambers are either connected in unrestricted fluid communication or have at least one valve therebetween that can be selectively opened to place the components, regions, or chambers in fluid communication. Components, regions, or chambers connected together by a fluid flow path that includes no valves or obstructions therein are said to be in “unrestricted fluid communication” as used herein. The term “fluid communication” generally includes both unrestricted fluid communication and able to be placed in fluid communication.
In many pumping applications, e.g., pumping liquids to the body of a patient, it is critical to prevent gases, such as air, which may find their way into a pump chamber of the system from being pumped out (e.g., pumped into the body of the patient). Certain embodiments of the present invention include methods and systems for detecting the presence of a gas in an isolatable pump chamber. Such methods and systems may utilize pump chambers having at least one moveable surface, where, in some embodiments the moveable surface is a flexible membrane, which, in some such embodiments is elastic. The term “membrane” as used herein refers to a movable surface which comprises at least a portion of a wall of a pump chamber. The term “flexible membrane” as used herein refers to a moveable surface having at least a portion that is movable by bending and/or stretching when a force is applied thereto. A flexible membrane which is “elastic” or an “elastic membrane” as used herein refers to a flexible membrane that provides a resistance to bending and/or stretching by an applied force, which resistance is proportional to an amount of the displacement/stretching of the membrane from an equilibrium configuration without such force applied. A force applied to an elastic membrane that displaces the membrane to from a relaxed equilibrium condition will tend to create a stress in the membrane which resists further displacement and creates a restoring force tending to return the membrane to its relaxed equilibrium condition. An “equilibrium condition” as used herein for elastic membranes or other movable surfaces refers to the configuration of the membrane/surface at a condition where there are no applied forces tending to move or displace the membrane/surface from a stationary position. A “relaxed equilibrium condition” as used herein refers to an equilibrium condition wherein a stress within a membrane/surface is at a minimum level allowed by the configuration of the pump chamber. For example, for a pump chamber including an elastic membrane as a portion thereof, a relaxed equilibrium condition could be the configuration of the membrane at its minimum level of strain (stretching) when forces on both sides of the membrane are essentially balanced and equal.
In one embodiment, a method for detecting the presence of a gas in an isolatable pump chamber having at least one moveable surface is used. The method involves isolating the pump chamber, which is at least partially filled with a liquid being pumped, for example by closing an inlet and an outlet valve in fluid communication with the pump chamber. The method of this embodiment further involves determining a measured parameter related to the volume of the pump chamber with a predetermined level of force is applied to a moveable surface of the pump chamber. The method further involves determining the measured parameter related to the volume of the pump chamber again, except this time with a different level of force applied to the moveable surface of the pump chamber. The method involves comparing the measured parameters determined at each condition of the pump chamber described, and detecting the presence of a gas within the pump chamber based on the values of the measured parameters.
This embodiment utilizes, at least in part, the compressibility of any gas within the pump chamber, as contrasted with the essentially incompressible nature of the liquid within the pump chamber, as a means for determining the presence of a gas. The presence of such gas in the pump chamber permits the movable surface to be able to undergo a displacement in response to an applied force thereto owing to the compressibility of the gas in the pump chamber. In some embodiments, the method can involve the determination of a measured parameter related to the volume of the pump chamber determined with at least two substantially differing levels of force applied to a moveable surface of the pump chamber. For example, a first determination of the measured parameter related to the volume of the to pump chamber at a first condition can be made with a positive force applied to the moveable surface of the pump chamber, such force tending to decrease the volume of the pump chamber, and a second determination at a second condition can be made with a negative (or lesser) force to the moveable surface of the pump chamber, which force tending to increase the volume of the pump chamber. If the pump chamber is essentially completely filled with a liquid, because the liquid will be essentially incompressible, the measured parameter related to the volume of the pump chamber measured with the pump chamber at a first condition (e.g., with the positive force applied to the moveable surface of the pump chamber) will be nearly identical to the value of the measured parameter related to the volume of the pump chamber measured with the pump chamber at the second condition (e.g., with a negative force applied to the moveable surface of the pump chamber). In contrast, if the pump chamber also contains a quantity of a gas, such as air, because the air is compressible, the measured parameter related to the volume of the pump chamber measured at the first condition can differ from the value of the measured parameter measured with the pump chamber at the second condition by an amount proportional to the quantity of gas within the pump chamber. In short, when a gas is present within the pump chamber, the volume of the pump chamber measured utilizing a positive force applied to a moveable surface thereof can be measurably different than the volume of the pump chamber determined utilizing a negative force applied to a moveable surface thereof. By comparing the measured parameters related to the volume of the pump chamber determined at the first and second conditions above, it can be determined whether there is any gas present within the pump chamber and in some embodiments, roughly, the relative amount of such gas.
A “measured parameter related to a volume” as used herein refers either to a measure of the volume itself or to a measured parameter determined by the system that can be converted to the volume by arithmetic or mathematical transformations utilizing one or more additional parameters that are either constant conversion factors or variables which are not functions of the volume (e.g., unit conversion factors, calibration constants, curve-fit parameters, etc.). In other words, in some embodiments of the invention, the volume of the pump chamber itself need not be determined, but rather parameters from which the volume could be determined, which parameters are typically proportional to the volume, may be determined and compared. Depending on the embodiment, as discussed in more detail below, such measured parameters can include, for example, pressures and combinations of to pressures, products of pressures and volumes of components of the pumping system, acoustical signals, temperatures, combinations of temperatures and pressures, values of linear displacement, etc. as apparent to those of ordinary skill in the art. A “condition” as used above in the context of the determination of a measured parameter related to the volume of a chamber, refers herein to a particular state of a pump chamber, or other chamber in which a measured parameter is being determined, which state is associated with at least one measurable parameter related to the volume of the chamber with a particular level of force or range of forces being applied to an external surface of the chamber during the volume measurement procedure.
As would be readily apparent to those of ordinary skill in the art from the disclosure provided herein, the method for determining the presence of a gas in a pump chamber may be utilized and find application in a wide variety of pumping systems known in the art, such pumping systems including a force applicator for applying a variable, or selectable, force and/or range of forces to a moveable surface of the pump chamber. A “force applicator” as used herein in this context refers to a component of a pumping system that is able to apply a force to an external surface of a chamber within the system. Force applicators in pumping systems which may be utilized according to the invention include, but are not limited to: moveable surfaces in contact with the external surface of the pump chamber (e.g. pistons, push rods, plungers, etc.), pressurized fluids in contact with the external surface of the pump chamber, magnetic or electrostatic fields that are able to exert a force on the external surface of the pump chamber, and many others.
Pumping systems utilizing the inventive methods for determining the presence of a gas in a pump chamber also preferably include a mechanism for determining a measured parameter related to the volume of the pump chamber with different levels of force or ranges of forces being applied to a moveable external surface of the pump chamber. For example, a pumping system which includes a moveable surface in contact with the external surface of the pump chamber can include a motor and linear actuator for moving the surface in contact with the pump chamber, so as to create a variable force on the surface of the pump chamber, and can further include a detector for measuring a linear displacement or position of the moveable surface, which linear displacement or position can act as the measured parameter related to the volume of the pump chamber. Similarly, systems which utilize a magnetic or electrostatic field that is able to exert a force on the external surface of to the pump chamber can include detectors or measuring devices to determine either field strengths and/or displacements of the external surface of the pump chamber, which measurements can constitute a measured parameter related to the volume of the pump chamber. Other systems, and measurable parameters for determining the volume of the pump chamber for alternative systems may also be used.
One preferred embodiment of a pumping system able to employ the inventive method for detecting the presence of a gas in a pump chamber utilizes pressurized fluids in contact with a moveable, or flexible, surface of the pump chamber in order to apply a force to the surface. Preferred pumping systems according to the invention utilize fluid sources for providing a measuring fluid at different and selectable pressures, which fluid can be brought into contact with a moveable or flexible external surface of a pump chamber. As will be discussed in more detail below, some preferred embodiments of pumping systems utilizing measurement fluids for applying forces to moveable surfaces of pump chambers employ pump chambers having a moveable surface comprised, at least in part, by an elastic flexible membrane. The term “fluid source(s)” as used herein refers to one or more components of a pumping system that alone, or in combination, are able to supply or withdraw a quantity of fluid to another component, or components, of the pumping system with which they are, or are able to be placed, in fluid communication. As discussed below, examples include, but are not limited to, pumps, compressors, pressurized or evacuated tanks, and combinations thereof.
As discussed in more detail below, the fluids supplied by the fluid sources included in certain embodiments of pumping systems useful for practicing the invention provide a measurement gas, most preferably air, but in other embodiments, can also provide one or more liquids. Such fluids, which are provided by the fluid supply components of certain embodiments of the pumping systems according to the invention are hereinafter collectively referred to as “measurement fluids.” “Measurement fluids” (e.g., measurement gases or measurements liquids) as used herein refer to fluids which are used to determine a volume, or a measured parameter related to a volume of a volumetric container within the pumping system, for example a pump chamber, or for other purposes within the pumping system, which, preferably, are not in fluid communication with a fluid being pumped or metered by a pump chamber of the system. The measurement fluid sources utilized by certain preferred embodiments of pumping systems according to the invention can comprise one or more components of a measurement fluid supply system that are constructed and arranged to pressurize one or more components of the pumping system. “Constructed and arranged to pressurize” a component, as used herein, refers to a system containing the necessary sources of fluid, together with the associated components (e.g., plumbing and pneumatic or other connections), which are necessary to enable the system to change the pressure of a fluid contained within the component.
One embodiment of a pumping system that utilizes a measurement gas for actuating a pump chamber to pump a liquid therethrough and for detecting the presence of a gas in the pump chamber is shown schematically in
Pumping system 100 includes a pump 104 comprising a substantially rigid container 106 that includes a pump chamber 108 and a control chamber 110 disposed therein. Pump chamber 108 and control chamber 110 are fluidically isolated (i.e., not able to be placed in fluid communication) from each other by a flexible membrane 112, disposed between the two chambers, such that pump chamber 108 is coupled to control chamber 110 and in operative association therewith. Such a membrane may (as just one example) be constructed of medical grade polyvinyl chloride.
“Substantially rigid” as used herein refers to a material, or a component constructed therefrom, that does not flex or move substantially under the application of forces applied by the pumping system. A “control chamber” as used herein refers to a chamber of a pumping system that is coupled to, or contains, a volumetric chamber, for example a pump chamber, for the purpose of exerting a force on the volumetric chamber and, in preferred embodiments, for determining a measured parameter related to the volume of the volumetric container. The term “coupled to” as used in this context with respect to chambers or other components of the pumping system, refers to the chambers or components being attached to, or interconnected with, another component of the pumping system, such that the other component is able to exert a force on an external surface of the chamber or component to which it is coupled.
Liquid to be pumped by pump system 100 enters pump chamber 108 via inlet line 114 including an inlet valve 116 therein. Liquid can be pumped from pump chamber 108 to a desired downstream destination through outlet line 118 including an outlet valve 120 therein.
Control chamber 110 includes a pressure measuring component 122 therein for determining the pressure of the measurement gas within the control chamber. A “pressure measuring component” as used herein refers to a device that is able to convert a fluid pressure into a measurable signal or parameter. Pressure measuring components that may be useful in this embodiment include but are not limited to: transducers; pressure gauges; manometers; piezoresistive elements; and others as apparent to those of ordinary skill in the art.
Preferred embodiments of control chamber 110 of pumping system 100 also include a vent line 124 including a vent valve 126 therein. Control chamber 110 is connected in fluid communication with a variable volume cylinder 128 via a measurement gas inlet line 130. Variable volume cylinder 128 which includes a piston 132 therein which is moved and actuated by motor 133 for compressing, or expanding the volume of the measurement gas contained within the system.
Pumping system 100 also preferably contains a processor 134 which is in electrical communication with the various valves, pressure transducers, motors, etc. of the system and is preferably configured to control such components according to a desired operating sequence or protocol. Reference to a processor being “configured” to perform certain tasks herein refers to such processor containing appropriate circuitry, programming, computer memory, electrical connections, and the like to perform a specified task. The processor may be implemented as a standard microprocessor with appropriate software, custom designed hardware, or any combination thereof. As discussed in more detail below, processor 134, in addition to including control circuitry for operating various components of the system, also preferably includes a comparer that is configured to determine a measured parameter related to the volume of pump chamber 108 and to detect the presence of any gas contained within pump chamber 108 during operation of pump 104. A “comparer” as used herein refers to a processor (e.g., with appropriate programming) or circuit or component thereof that is able to compare the values of two or more measured parameters or other parameters derived therefrom.
In embodiments where passing gas through the system is problematic, pump chamber 108 is oriented in an essentially vertical configuration during operation such that inlet line 114 is disposed above outlet line 118. The above-described orientation is advantageous for preventing any gas which may be present in pump chamber 108 during operation from being pumped from the pump chamber to a downstream destination through outlet line 118. Instead, any gas contained within pump chamber 108 will tend to rise towards the top of the pump chamber, for example the region adjacent to inlet port 136, and will be detected by the system, as described in more detail below, before being pumped from the pump chamber.
In some embodiments, pump chamber 108 includes the novel inclusion of a plurality of spacers 138 included therein. The spacers 138 function to prevent flexible membrane 112 from contacting an inner surface 140 of the pump chamber when the liquid contained within pump chamber 108 is being pumped through outlet line 118. During the pump stroke, the maximum displacement of flexible membrane 112 which is permitted by spacers 138 is shown in
Pump chamber 108 of pumping system 100 is essentially defined by a substantially rigid wall 145 (e.g., made of a rigid plastic such as a polyacrylate) having a flexible membrane 112 disposed over the wall, thus forming a volumetric chamber. An alternative embodiment for providing a pump chamber and a control chamber is shown in
One embodiment of a method for operating the pumping system 100 shown in
Referring to
For embodiments employing a protocol for detecting air/gas where pump and/or control chamber volumes are determined, at least in part, from measured pressures by utilizing an equation of state describing the pressure-volume behavior of a measurement gas, the pump chamber preferably includes a movable surface which comprises an elastic membrane. The restoring force of the elastic membrane, when stretched or displaced from a relaxed equilibrium condition, enables the pressure on each side of the membrane (i.e. in the pump chamber and control chamber) to be different, where the degree of difference in the pressures, and the resistance to further displacement/stretching (stress/elastic energy stored in the membrane), is a function of the degree of stretch or displacement from the relaxed equilibrium condition of the membrane. In such embodiments, it is also preferred that the measurement gas pressures applied to the elastic membrane during the determination of pump/control chamber volumes at the first and second conditions of applied force for detecting air/gas in the pump chamber discussed above, tend to stretch the elastic membrane (if air/gas is present in the pump chamber), from its equilibrium configuration before the pressure is applied, by a different extent for each condition, so that the stress in the membrane and its resistance to further displacement in response to a given level of applied pressure will be different for the first and second condition (or in other words, the force/displacement response of the elastic membrane for the first and second conditions will be asymmetrical). In such embodiments, the difference in the pressure in the control chamber versus the pressure in the pump chamber, at an equilibrium condition, will be different for the first condition of applied pressure versus the second condition of applied pressure. In such embodiments, without being tied to any particular physical mechanism, it is believed that the different level of stress and strain of the elastic membrane during measurements of pump/control volume determined at the first and second conditions above create, at least in part, deviations in the pressure-volume behavior of the measurement gas from that predicted for each condition by the equation of state, which deviations can create and/or enhance a difference in the volume of the pump/control chamber determined for each condition by using the equation of state.
In some embodiments, one way to achieve or enhance such asymmetry in the response of the elastic membrane to the applied measurement gas pressures utilized during volume determinations for gas detection is to perform the volume determination steps when the pump chamber flexible elastic membrane has already been stretched, from the configuration it has at a relaxed equilibrium condition, with essentially equal fluid pressures on each side of the membrane, before the application of pressurized measurement gas to the membrane for the purpose of volume measurement. This can be accomplished, for example, by performing the volume determinations related to air/gas detection after filling the pump chamber with sufficient liquid so that the elastic membrane is at least somewhat stretched, and preferably substantially stretched, by displacement of the membrane in the direction of the control chamber, and by using a positive measurement gas pressure during volume measurement at the first condition and a negative measurement gas pressure during volume measurement at the second condition (or vis versa). Such a condition of displacement of elastic membrane 112 for pump 104 is illustrated in
Referring again to the protocol of
Step 2 (172) involves filling the pump chamber 108 with a liquid to be pumped. The step involves first opening inlet valve 116, then actuating motor 133 so as to move piston 132 to position 3 shown in
Referring again to
Referring to
Equation 1 assumes that any temperatures changes or differences caused by changing the volume of measurement gas are minimal and that the system is essentially isothermal. It will be appreciated that for systems where temperature changes may be significant, the temperature dependence of the measurement fluid, as defined by the equation of state being used, may be incorporated into the volume calculation of substep 4 (182) in a straightforward fashion, as apparent to those of ordinary skill in the art. VF in equation 1 refers to the internal volume of pump chamber 108 and VT refers to the known total volume of the system including pump chamber 108, control chamber 110, and the volumes contained within measurement fluid inlet line 130 and cylinder 128.
The remaining substeps of the volume calculation subcycle 174 involve redetermining the volume of the pump chamber 108 at a different condition and comparing the volumes determined at the first and second conditions. In substep 5 (184) of
If the difference in measured volumes is less than the allowable limit (204), the system will proceed to pump the liquid contained in pump chamber 108. In substep 12 (206) the system opens control chamber vent valve 126 in order to equilibrate the pressure in control chamber 110 and the surrounding atmosphere, and then closes vent valve 126. Pumping system 100 is now in condition to deliver the liquid contained in pump chamber 108.
As described above, the measured volumes at the two different conditions can be compared to detect the presence of gas in the pump chamber. If the presence of a gas is detected in the pump chamber and is of sufficient quantity to cause the system to set off an alarm, as described above in substep 11 (204)
It should be appreciated that while the above described example of a pump stroke cycle for pumping system 100 was described as being fully controlled, and regulated by a processor, the method could equivalently be performed under manual operator control without utilizing such a processor or by using any other mechanism to control the operation. In addition, while the above described methods involve an essentially ideal gas as a measuring fluid, other embodiments of the invention may utilize non-ideal measurement gases, or liquids as measurement fluids. When such alternative measurement fluids are used, the ideal gas law may no longer be an appropriate equation of state to utilize for determining volumetric measurements but instead an equation of state appropriate for the measurement fluid being used may be utilized. In addition, as discussed earlier, a variety of other techniques for measuring the volume contained in a volumetric container can be used to determine a measured parameter related to the volume of a pump chamber having a movable surface or flexible membrane at a first and second condition of applied force, such alternative means of volumetric measurement being apparent based on the disclosure herein and are within the scope of the present invention. In addition, also as discussed previously, the skilled practitioner will envision many alternative mechanisms for applying a variable level of force to a moveable wall, for example flexible elastic membrane 112, or other movable wall configuration, of a pump chamber, which can be substituted for the pressurized gas pump drive system 230 described in
An exemplary embodiment of a pump stroke cycle, including the detection of a gas in pump chamber 108 utilizing the ideal gas law in determining pump chamber volumes, which can be utilized for operating pumping system 300 is described in
Step 4 (356) comprises a volume calculation and air detection subcycle described below in more detail with reference to
Substep 4 (364) involves allowing a quantity of measurement gas to be exchanged between control chamber 110 and reference chamber 308. This can be accomplished by opening and, optionally, closing valve 318. If desired, valve 318 may be opened for a sufficient time to allow the pressure in control chamber 110 and reference chamber 308 to equilibrate to a common value. For embodiments where the pressures in control chamber 110 and reference chamber 308 are allowed to equilibrate in substep 4, the system can compare the pressure signals obtained from pressure transducer 122 and pressure transducer 316 and can create an alarm condition indicating a system fault if the pressures do not essentially agree.
In substep 5 (366) the system determines pressure PC2 in control chamber 110 and PR2 in reference chamber 308 and records the pressures (PC2 and PR2 should be essentially to the same if the pressures in control chamber 110 and reference chamber 308 were allowed to equilibrate in substep 4 above).
In substep 6 (368) the volume of the control chamber 110, (which also includes the volume of line 306 up to valve 318 and line 322 up to valve 320) is determined at this first set of conditions of measurement (or “first condition” as used herein) from the known volume of reference chamber 308 and the pressures determined above utilizing the ideal gas law equation of state and conservation of mass for the measurement gas exchanged during substep 4 (364) above. As described for the previous embodiment, equations of state other than the ideal gas law may be used for measurement fluids which do not simulate ideal gas behavior. Also, as before, the system is assumed to be isothermal, specifically, the temperature in reference chamber 308 is assumed to be equal to the temperature in control chamber 110 during pressurization and gas exchange. The volume of the control chamber described above VC is determined by:
where VR is the known volume of reference chamber 308. The volume of fluid in pump chamber 108 may be explicitly determined, if desired, by subtracting VC from VT, which is the known total volume of pump chamber 108 and control chamber 110.
In substep 7 (370) and substep 8 (372) the presence of any gas contained in pump chamber 108 is determined. In substep 7 (370), substeps 1-6 (358, 360, 362, 364, 366, 368) described above are repeated, except that in substep 2, pump 312 is operated so as to decrease the pressure in reference chamber 308 to a value lower than that of the pressure in control chamber 110 and atmospheric pressure. In substep 8 (372) the processor determines the difference between the volume of pump chamber 108 determined in substep 7 (370) (i.e. the volume determined at the second set of measurement conditions or “second condition” as used herein) and the volume of pump chamber 108 determined in substep 6 (368).
As shown in
An alternative embodiment to the pump system 300 shown in
Before the beginning of a pump cycle which utilizes pumping system 400, a pressure differential between positive tank 408 and negative tank 410 is established by opening valves 421 and 423 and operating pump 424 to move measurement gas from negative tank 410 to positive tank 408. The pump cycle and volume measurement cycle utilizing system 400 is similar to that described for system 300 of
Pumping system 400 enables a more constant and controllable pressure to be applied to control chamber 110 during the filling and emptying of pump chamber 108, as compared to pump system 300 shown in
It should be appreciated that the particular ways in which the various tanks, valves, pumps, and chambers of the various pumping systems described herein are arranged, configured, and interconnected can be varied considerably without changing the overall performance or operation of the pump drive system. A variety of alternative configurations for the pumping systems described herein have been previously described in U.S. Pat. Nos. 4,778,451, 4,808,161, 4,826,482, 4,976,162, 5,088,515, and 5,178,182, each of which is commonly owned and which are incorporated herein by reference in its entirety.
A preferred arrangement of components for providing a pump drive system according to the invention is shown in
Fluid supply system 504 also contains a pump 516 positioned and configured to pump measurement gas from negative tank 512 through line 518, valve 520, valve 522 and line 524 to positive pressure tank 508, so as to establish a pressure difference between the measurement gas contained in positive pressure tank 508 and negative pressure tank 512. Positive pressure tank 508 has an outlet line 526 and negative pressure tank 512 has an outlet line 528, each of which lines are in fluid communication with a switch valve 530. The outlet of switch valve 530 is able to be placed in fluid communication with both control chamber 110 and reference chamber 532 of the system. Switch valve 530 is preferably a solenoid-operated three-way type valve which is controlled by processor 506 so that in a first position, positive pressure tank 508 is placed in fluid communication with control chamber 110 and/or reference chamber 532, and in a second position negative pressure tank 512 is placed in fluid communication with control chamber 110 and/or reference chamber 532.
Outlet line 534 from switch valve 530 includes a variable-sized orifice valve 536 therein, which valve comprises, in preferred embodiments, a valve having an orifice for fluid flow therethrough, where the size of the orifice is selectively adjustable over an essentially continuous range of values in order to control a flow rate of fluid therethrough. The size of the orifice in variable size orifice valve 536 is controlled, in preferred embodiments, by processor 506 in order to selectively vary the pressure of the measurement gas downstream of variable size orifice valve 536. Variable size orifice valves for use in the invention are known in the art and have been utilized for other purposes. Such valves are available, for example, from Parker Hannifin Corp., Pneutronics Division.
One embodiment of the present invention involves the novel incorporation of such a variable size orifice valve in a fluid supply system for measuring the volume of a volumetric chamber and, in some embodiments, for providing a pressurized fluid in contact with the moveable surface of a pump chamber.
The outlet of variable size orifice valve 536 is in fluid communication with measurement fluid inlet line 538, which provides measurement gas to control chamber 110. The outlet of variable size orifice valve 536 is also in fluid communication with valve 540 on inlet line 542 of reference chamber 532. Reference chamber 532, in preferred embodiments, also includes a vent line 544 through which measurement gas can be vented to the atmosphere by opening valve 546. Reference chamber 532 also includes a pressure transducer 548 in fluid communication therewith, which measures the pressure of a measurement gas in the reference chamber.
One embodiment of a method for operating pumping system 500 is shown in
Step 2 (602) involves filling pump chamber 108 with liquid through inlet line 114 and inlet valve 116. First, switch valve 530 is positioned to select negative pressure tank 512. Next, inlet valve 116 is opened and variable size orifice valve 536 is opened until pump chamber 108 has filled with liquid. In preferred embodiments, variable size orifice valve 536 is also selectively controlled during filling so as to provide an essentially constant negative pressure in control chamber 110, as described in more detail below. As will also be described in more detail below, the ability to vary the pressure in control chamber 110 to via control of variable size orifice valve 536 enables system 500 to detect when flexible membrane 112 is distended into control chamber 110 to its maximum permissible extent indicating that pump chamber 108 is completely full of liquid. Thus, in preferred embodiments, system 500 can detect when pump 104 has reached the end of a stroke, either in the filling or emptying of pump chamber 108. This end of stroke detection method of preferred embodiments for operating pump system 500 is described in more detail below.
In step 3 (604) pump chamber 108 and control chamber 110 are isolated by closing inlet valve 116 and variable size orifice valve 536 respectively. Step 4 (606) comprises a subcycle which determines the volume of the volumetric container comprising pump chamber 108 and/or the volumetric container comprising control chamber 110, and determines the presence of any gas in pump chamber 108 utilizing the determined volumes. The various substeps of step 4 (606) are outlined in detail in
Referring to
Substep 4 (614) involves allowing for measurement gas exchange between control chamber 110 and reference chamber 532. The gas exchange is enabled by opening and, optionally, closing valve 540. In some embodiments, valve 540 may be opened for a sufficient period of time to equilibrate the pressures in reference chamber 532 and control to chamber 110 to essentially the same value. For such embodiments, it should be appreciated that pressure transducer 122 in fluid communication with control chamber 110 is optional since the measurement gas pressures in control chamber 110 can be determined, for various steps of the method, with pressure transducers 548, 510, or 514. In substep 5 (616), after allowing gas exchange, pressure PC2 and PR2 in control chamber 110 and reference chamber 532 respectively are measured and stored by processor 506. The volume VC of the control chamber and, optionally, the volume VF of pump chamber 108 at this first condition can be calculated from the known volume VR of reference chamber 532 and the above-measured pressures utilizing the ideal gas equation of state and conservation of mass, as described previously, from equation 2 shown previously.
In order to detect the presence of any gas in pump chamber 108, in substep 7 (620), substeps 1-6 (608, 610, 612, 614, 616, 618) are repeated as described above except that in substep 2 (610) switch valve 530 is positioned to select negative pressure supply tank 512. In substep 8 (622) processor 506 determines an absolute value of the difference between volume measurements determined in substep 7 (620) (i.e. at the second condition) and substep 6 (618) above and, as shown in
Referring again to
Step 6 (626) of the pump cycle involves repeating the volume calculation routine by re-performing substeps 1-6 (608, 610, 612, 614, 616, 618) shown in
The flow rate of the liquid delivered from the pump chamber for each pump stroke will be a function of the force applied to the flexible membrane of the pump chamber during the filling steps and delivery steps discussed above, and a function of the upstream and downstream liquid pressures in fluid communication with the pump chamber inlet line and outlet line respectively during filling and delivery. Typically, the forces applied to the flexible membrane, for example due to the pressure of the measurement gas in the control chamber, during the filling and delivery steps are chosen to yield a desired liquid flow rate for a given pump stroke cycle. For applications where the pumping system is being utilized to pump a liquid to the body of a patient, the fill and delivery pressures are preferably chosen to be compatible with acceptable pressures for infusion of liquid to a patient. Typically, for delivery of liquids to the vasculature of a patient, the maximum measurement gas pressure in the pumping system will not exceed about 8 psig and the minimum measurement gas pressure in the pumping system will not exceed about −8 psig.
When liquid delivery involves performing a multiple number of pump stroke cycles, as described above, over a period of time, in addition to determining a liquid flow rate for a to given stroke, preferred pumping systems will include a processor that also is configured to determine an average pump flow rate over the entire period of operation. An average pump flow rate or average liquid flow rate is defined as the volume of liquid dispensed by the pump during multiple pump stroke cycles divided by the total time elapsed during the cycles. For applications involving multiple pump stroke cycles, in addition to controlling liquid flow rate via selection and control of the force applied to the pump chamber membrane, the system can also control the average liquid flow rate by selectively varying the length of a dwell period that can be inserted between individual pump stroke cycles prior to filling and/or delivering liquids from the pump chamber. The pumping systems according to the invention can also be configured to deliver a desired total liquid volume during operation, as well as to deliver a desired liquid flow rate as described above.
The predetermined limit to which the differences in measured volumes, or measured parameters related to volumes, of the pump chamber are compared for determining when the amount of gas in the pump chamber has exceeded an acceptable value can be determined in a variety of ways. The predetermined value may be chosen, for example, to be reflect the difference in volumes determined for an amount of gas present in the pump chamber that is equal to or somewhat less than the volume of the dead space in the pump chamber created by spacers, discussed above, therein. For applications where preventing air from being pumped from the pump chamber is critical, for example, when pumping liquid to the body of a patient, the predetermined threshold limit may be chosen to be less than that discussed above for safety reasons. In some embodiments, a predetermined limit can be determined by injecting a maximum permissible quantity of gas into the pump chamber, the remainder of which is filled with a liquid, and determining with the pumping system the difference in measured volume of the pump chamber at a first condition of applied force/pressures to the flexible membrane and a second condition of applied force/pressures to the flexible membrane, as described in detail in the above embodiments.
As discussed above in the context of
As discussed above, for such embodiments preferred systems will also include an to end of stroke detection procedure to determine when liquid has stopped flowing into the pump chamber and when liquid has stopped flowing out of the pump chamber during filling and delivery strokes respectively. This end of stroke detection methodology is described in detail in commonly owned copending application Ser. No. 09/108,528, which is hereby incorporated by reference in its entirety. Briefly, in preferred embodiments, pump drive system 502 of
Preferred pumping systems according to the invention are also able to detect a line to blockage or occlusion in the inlet or outlet line of pump chamber 108 during operation, and are able to create an alarm condition and, in some embodiments, shut down the pumping cycle, when such blockage or occlusion is detected. Such a no-flow condition is detected by the system by comparing the volume of liquid delivered during the pump delivery stroke and the volume of liquid filling the pump chamber during the pump chamber filling stroke and comparing the volume, determined as described above, to the known minimum and maximum volumes for the pump chamber respectively. The system can then determine if the volume of liquid delivered by the pump chamber or the volume of liquid entering the pump chamber differs significantly from the volumes expected for a full stroke. If so, the system can create an alarm condition indicating a no/low flow condition or occlusion in the line exists. The no/low flow condition threshold value can be set based on the needs of the various applications of the inventive pumping systems and can be, in some embodiments, about one half of the maximum stroke volume of the pump chamber.
Certain embodiments provide an alternative way of operating a pump chamber for delivering a liquid therefrom, which is useful for generally, and especially useful when delivering very small quantities of liquid, liquid at very low average flow rates, and where precise measurement is needed. The basic steps of an example embodiment of this method include filling the pump chamber with a liquid, isolating the pump chamber, applying a force to the flexible membrane or moveable surface of the pump chamber, and regulating the flow of liquid from the pump chamber while maintaining the force on the membrane or surface. For example, in the context of pumping system 500 shown in
For certain embodiments of pumping systems, it is preferred that the systems be comprised of two separable components, one component being reusable and including the pump drive system, and the other component being removable from the reusable component. Such systems may be particularly useful for medical applications for pumping fluids to and/or from the body of a patient. In many embodiments, the reusable component may be disposable and designed for a single use.
The removable/disposable portion of the system may include the pump chamber and the pump chamber inlet and outlet lines, including the valves therein, and the other components which are in contact with the liquid being pumped with the pumping system. The removable/disposable component of such a system is referred to herein as the “pumping cartridge,” which pumping cartridge can be configured and designed with a plurality of pump chambers, flow paths, valves, etc., specifically designed for a particular application. An exemplary pumping cartridge for use in one particular medical application is described in more detail below.
For example, considering the example pumping systems previously discussed, pumping system 100 shown in
For embodiments involving removable/disposable pumping cartridges and reusable pump drive systems, the pumping cartridge and the reusable component are constructed and arranged to be couplable to each other. “Constructed and arranged to be couplable” as used herein indicates that the separable components are shaped and sized to be attachable to and/or mateable with each other so that the two components can be joined together in an operative association. Those of ordinary skill in the art would understand and envision a variety of ways to construct and arrange pumping cartridges and components of reusable systems to be couplable in operative association. A variety of such systems which may be employed in the present invention have been described previously in commonly owned U.S. Pat. Nos. 4,808,161, 4,976,162, 5,088,515, and 5,178,182.
Typically, the pumping cartridge and reusable component will be coupled together with an interface therebetween, where the reusable component adjacent to the interface will have a series of depressions formed in a surface of the interface, which depressions are sized and positioned to mate with similar depressions in the pumping cartridge, when the pumping cartridge and the reusable component are coupled together, so that upon coupling, the depressions in the pumping cartridge and the reusable components together form the various chambers utilized by the pumping system. Also, when coupled together, the pumping cartridge and the reusable component preferably interact at an interface therebetween such that the interface creates a fluid impermeable/fluid-tight seal between the components, so that the measurement fluid contained by the reusable component and the liquid present in the pumping cartridge are not in fluid communication with each other during operation of the system. Those of ordinary skill in the art would readily envision a variety of means and mechanisms for coupling together the pumping cartridges and reusable components to achieve the above requirements. For example, the components may be held together in operative association by clips, bolts, screws, clamps, other fasteners, etc., or the reusable component may include slots, channels, doors, or other components as part of a housing for holding the pumping cartridge in operative association with the reusable component. Such techniques for coupling together disposable/reusable pumping cartridges and reusable pump drive systems are well known in the art, and any such systems are potentially useful in the context of the present invention.
Pump housing component 700 includes a door 702 and a mating block 704 the surface of which forms an interface when pumping cartridge 503 is coupled to pump housing component 700. Mating block 704 has a generally planar surface in contact with the pumping cartridge having a variety of depressions 706, 708, 710 therein which mate with complementary depressions contained within pumping cartridge 503 for forming various chambers of the pumping system when the components are coupled together. For example, depression 706 in mating block 704 is coupled to depression 712 in pumping cartridge 503 thus forming a pump chamber 108 in pumping cartridge 503 and an adjacent control chamber 110 in mating block 704, when the components are coupled together.
As will be described in more detail below, pumping cartridge 503 comprises a substantially rigid component 714 covered, on at least one side thereof, by a flexible membrane, which in preferred embodiments is an elastic membrane. In a preferred embodiment shown, mating block 704 is also covered by a flexible membrane 716 which is in contact with flexible membrane 112 covering pumping cartridge 503, when the components are coupled together. Flexible membrane 716 is an optional component which provides an additional layer of safeguarding against potential leakage of fluids between pumping cartridge 503 and the reusable component thus preventing contamination of the reusable component by the liquids in the pumping cartridge.
Upon coupling, a fluid-tight seal should be made between the flexible membranes and the surfaces of mating block 704 and pumping cartridge rigid component 714 forming the various chambers. In order to obtain such a seal, there should be some degree of compression between pumping cartridge 503 and mating block 704 when the components are coupled together. In addition, seals 718 may be provided around the periphery of the depression within mating block 704, which seals are positioned adjacent to the periphery of complementary depressions in pumping cartridge 503 in order to create additional compression of the flexible membranes for forming a leak-tight seal. Alternatively, such seals could be provided around the perimeter of the depressions in pumping cartridge 503 in addition to, or instead of, mating block 704. Such seals may be provided by a variety of materials, as apparent to those of ordinary skill in the art, for example, properly sized rubber or elastomer O-rings can be used which fit into complementary grooves within mating block 704 or, alternatively, are affixed to the mating block by adhesives, etc.
As discussed above, pumping cartridge 503, in the embodiment shown, includes a substantially rigid component 714 that is preferably constructed of a substantially rigid medical grade material, such as rigid plastic or metal. In preferred embodiments, substantially rigid component 714 is constructed from a biocompatible medical grade polyacrylate plastic. As will be described in more detail below, substantially rigid component 714 is molded into a generally planar shape having a variety of depressions and grooves or channels therein forming, when coupled to the reusable component, the various chambers and flow paths provided by the pumping cartridge.
In some embodiments, the substantially rigid component of the pumping cartridge can include a first side, which mates with the mating block, which first side contains various depressions and channels therein for forming flow paths and chambers within the pumping cartridge upon coupling to the reusable component. This first side of such pumping cartridges is covered with a flexible, an preferably elastic membrane, which can be bonded to the first side of the substantially rigid component at the periphery thereof and/or at other locations on the first side. Alternatively, instead of being a single continuous sheet, the flexible membrane may comprise a plurality of individual membranes which are bonded to the substantially rigid component only in regions comprising chambers, or other components, in operative association with the reusable component.
The flexible membranes for use in pumping cartridge 503 and, in some embodiments, mating block 704, can be comprised of a variety of flexible materials known in the art, such as flexible plastics, rubber, etc. Preferably, the material comprising the flexible membranes used for the pumping cartridge is an elastic material that is biocompatible and designed for medical use, when used for applications where the pumping cartridge is used for pumping liquid to and from the body of a patient. The material comprising the flexible membranes should also be selected based on its ability to form a fluid-tight seal with the substantially rigid component 714 of pumping cartridge 503 and with mating block 704 of the reusable component. In a preferred embodiment, where rigid component 714 of pumping cartridge 503 is formed of a clear acrylic plastic, elastic membrane 112 is comprised of polyvinyl chloride sheeting, which is about 0.014 in thick and which is hermetically sealed to the first side 720 of rigid component 714 of pumping cartridge 503. Since the elasticity of membrane 712 disposed on the second side 722 of pumping cartridge 503 does not substantially contribute to its performance, it is not necessarily preferred to use an elastic material for membrane 712. However, for convenience and ease of fabrication, membrane 712 can be comprised of the same material as membrane 112, and can be hermetically sealed the second side 722 of rigid component 714 of pumping cartridge 503 in a similar fashion as membrane 112.
In the embodiment illustrated, door 702 is hinged to the body of the reusable component and can be opened or closed by an operator of the system, either manually, or in some embodiments, under computer control of the processor controlling the system, so that pumping cartridge 503 can be properly inserted and mated with mating block 704. Preferably, pumping cartridge 503, mating block 704, and door 702 are shaped and configured so that pumping cartridge 503 can only mate with the reusable component in the proper orientation for operative association. In preferred embodiments, door 702 latches to the reusable component when closed. In some embodiments, the pumping system may include detectors and circuitry for determining the position of the door and is configured to allow operation of the system only when pumping cartridge 503 has been properly installed and door 702 has been properly closed. Also, in preferred embodiments, the pumping system is configured to prevent the door from being opened during operation of the system, so that the fluid-tight seal that is formed between pumping cartridge 503 and the reusable system is not compromised while the system is in operation. Door 702 also, in preferred embodiments, includes an inflatable piston bladder 734 having an inlet line 736 which is in to fluid communication with a fluid supply of the pumping system when the system is in operation. Also, in preferred embodiments, adjacent to piston bladder 734 and pumping cartridge 503 is an essentially planar piston surface 738. After inserting pumping cartridge 503 and closing door 702, but before operating pumping cartridge 503, the system supplies pressurized fluid to piston bladder 734 to create a compressive force against pumping cartridge 503 so as to create fluid-tight seals within the system, as described previously.
As discussed above, pumping cartridge 503 and reusable component 502, as shown in
Mated to valving chambers 740 and 742, when the pumping cartridge is in operative association with the reusable component, are valve actuating chambers 752 and 754 formed from depressions 708 and 710 within mating block 704. In order to close the valves to restrict or block flow therethrough, pumping system 500 includes valve actuators (provided in this embodiment by the valve actuating chambers as shown) configured to selectively and controllably apply a force to flexible membrane 112 tending to force the flexible membrane against an adjacent occludable port, thus occluding the port. Inlet valve 116 is shown in such a closed configuration. To open a valve, the pumping system can release the positive force applied to flexible membrane 112 and, in some embodiments, can apply a negative force to flexible membrane 112 tending to move the membrane into the valve actuating chamber. Outlet valve 120 is shown in
Gas inlet lines 756 and 758 supplying valve actuating chambers 752 and 754 are connected so that they are able to be placed in fluid communication with a pressurized measurement gas supply source(s) contained in pumping system 500. It should be understood that in other embodiments not shown, pumping system 500 may include valve actuators using alternative means as a force applicator for applying a force to flexible membrane 112 in order to occlude occludable ports 744 and 746. In alternative embodiments, the system may include a valve actuator that includes a force applicator comprising, for example, a mechanically actuated piston, rod, surface, etc., or some other force applicator using an electrical or magnetic component, disposed adjacent to the flexible membrane. In preferred embodiments, as shown, the system comprises a valve actuator comprising a valve actuating chamber, where the force applicator for applying a force to the flexible membrane comprises a pressurized gas or other fluid.
As with other particular features described above, this valve and mechanism for operating the valve is particularly advantageous. Use of such valves are not, however, required in all embodiments of the present invention and, in the context of a system design, any other valve and valve actuator may be used.
Also shown in
Preferably, after mating pumping cartridge 503 to the reusable component and before commencement of operation, pumping system 500 is configured to perform a variety of integrity tests on pumping cartridge 503 to assure the proper operation of the pumping system. In such embodiments, pumping system 500 includes an inlet and outlet tube occluder (not shown) for blocking the flow of fluid to and from pumping cartridge 503 and for isolating the chambers and flow paths of pumping cartridge 503. After coupling pumping cartridge 503 to the reusable component but before priming pumping cartridge 503 with liquid, a dry pumping cartridge integrity test can be performed. The test involves opening the inlet and outlet line occluding means so that pumping cartridge 503 is not isolated from the surroundings and supplying all of the control chambers and valve actuating chambers in the system with a measurement gas at a predetermined positive or negative pressure. The system then continuously monitors the measurement gas pressure within the various chambers of the reusable component over a predetermined period of time. If the change in pressure exceeds a maximum allowable predetermined limit, the system will indicate a fault condition and terminate operation. This dry pumping cartridge integrity test is useful for detecting holes or other leaks within flexible membrane 112. The dry pumping cartridge integrity test integrity test briefly described above is discussed in more detail in commonly owned copending application Ser. No. 09/193,337 incorporated by reference herein in its entirety.
After performing the dry pumping cartridge integrity test above, but before operation, a wet pumping cartridge integrity test can also be performed. The test involves first priming all of the chambers and flow paths of pumping cartridge 503 with liquid and then performing the following two tests. First, the integrity of the valves within the pumping cartridge is tested by applying positive pressure to valve actuating chambers 752 and 754 to close valves 116 and 120 within the pumping cartridge, and then applying the maximum system measurement gas pressure to the control chamber 110 coupled to the pump chamber 108. The system is configured to measure the volume of the pump chamber 108 within the pumping cartridge, as described previously, before the application of pressure, and again after the pressure has been applied to the pump chamber for a predetermined period of time. The system then determines the difference between the measured volumes and creates an alarm condition if the difference exceeds an acceptable predetermined limit. The second test involves determining the fluid tightness of the various to fluid flow paths in chambers within pumping cartridge 503. This test is designed to prevent the system from operating when a cartridge has been manufactured so that there may be leakage between flow paths and undesirable mixing of liquids within the pumping cartridge. The test is performed in a similar fashion as that described immediately above except that the valves within pumping cartridge 503 are maintained in an open configuration with the inlet and outlet line occlusion means being actuated by the system to isolate the pumping cartridge from its surroundings. As before, a maximum measurement gas pressure is applied to the control chamber of the reusable component, and the volume contained in the pump chamber is determined before and after application of pressure. Again, the system is configured to create an alarm condition and discontinue operation if the differences in measured volume exceed an allowable predetermined limit. It should be understood that while the various integrity tests and preferred modes of operating a pumping cartridge have been described in the context of system 500 and pumping cartridge 503 illustrated in
Pumping cartridge 800 includes a plurality of inlet and outlet lines 802, 804, 806, 808, 810, 812, 814, 816, 818, and 820 for connecting the various flow paths of the pumping cartridge in fluid communication with lines external to the pumping cartridge. In one preferred embodiment, pumping cartridge 800 is utilized for pumping blood from the body of a patient, treating the blood, or components thereof, and returning treated blood and other to fluids to the body of the patient. For such embodiments, pumping cartridge 800 is preferably disposable and designed for a single use, and is also preferably biocompatible and sterilizable so that it may be provided to the user as part of a sterile, single-use package.
As shown in
In operation, pumping cartridge 800 is coupled in operative association with a complimentary mating block of a reusable component having depressions and pneumatic (in appropriate embodiments) connections therein for actuating the various pump chambers and valving chambers of the pumping cartridge in a similar fashion as that previously described. The reusable component also preferably includes an occluder 864 included therein, disposed adjacent to tubing in fluid communication with the various inlet/outlet ports of the pumping cartridge, for occluding the various inlet and outlet lines in fluid communication with the pumping cartridge when performing various integrity tests as described previously and/or for other purposes where it is desirable to fluidically isolate the pumping cartridge. In preferred embodiments, the occluder is constructed as described below and is configured to occlude the tubing unless a force is applied to the occluder, for example by supplying a pressurized fluid to a bladder tending to move the occluder to unocclude the various tubing. In such embodiments, in a fail safe condition (e.g. during a power failure) the occluder will be configured to occlude the tubing, thus preventing undesirable liquid flow to and/or from a source or destination (especially when such source or destination is the body of a patient.
As described below, the reusable system that is constructed and arranged for operative association with pumping cartridge 800 will also include various processors (or a single processor configured to perform multiple functions, or other suitable hardware or software mechanisms) to selectively control and operate the various components of to pumping cartridge 800 for performing various user designated pumping applications. It will be understood by those of ordinary skill in the art that pumping cartridge 800 can be used for an extremely wide variety of potential pumping and fluid metering applications depending on the manner in which the various components contained therein are operated and controlled. Each of such uses and applications are deemed to be within the scope of the present invention.
The flow paths within pumping cartridge 800 which are comprised of channels formed on the first side of the pumping cartridge (the side facing the viewer), for example flow path 866, are shown as solid lines. Flow paths that are formed from channels disposed on the second (opposite) side of pumping cartridge 800, for example flow path 872, are shown in
The structure of pumping cartridge 800 can be seen more clearly from the cross-sectional view of
Referring to
Referring again to
As explained in greater detail below, the function of bypass valving chamber 860 is to selectively permit liquid flow along a first liquid flow path bypassing filter element 862, or alternatively, to block flow along the first fluid flow path and direct flow along a second liquid flow path, which second liquid flow path directs the liquid so that it flows through filter element 862. Also, as discussed below, valving chamber 860 also permits liquid flow along both liquid flow paths above to be simultaneously blocked if desired. For the present embodiment where blood is being removed from a patient and, subsequently, liquids are being returned to a patient, the first liquid flow path described above will be selected by the system, by utilizing bypass valving chamber 860, when removing blood from the patient, to and the second liquid flow path described above will be selected by the system, utilizing bypass valving chamber 860, when liquids are being pumped from the pumping cartridge to the patient.
Bypass valving chamber 860 is comprised of two adjacent subchambers 970, 972 separated by a partition 974 therebetween, which has an aperture therethrough permitting unrestricted fluid communications between the two subchambers. “Subchamber(s)” as used herein refers to regions of a chamber within a pumping cartridge, which region includes an internal partition, that are adjacent and are separated one from the other by the internal partition, where the internal partition allows unrestricted fluid communication between the regions.
The structure of bypass valving chamber 860 is shown in greater detail in the cross-sectional view of
Also shown in
During other operations utilizing pumping cartridge 800, it may be desirable to operate bypass valving chamber in order to block liquid flow along both the first liquid flow path (bypassing the filter element) and along the second liquid flow path (wherein the liquid is passed through the filter element). Flow can be blocked along both the above-mentioned liquid flow paths utilizing bypass valving chamber 860 simply by occluding both occludable port 980 and 982 simultaneously.
It should be understood that while the operation of bypass valving chamber has been described in the context of pumping blood and liquids to and from a patient and for the purpose of selectively passing such liquids through a filter or bypassing the filter, the bypass valving chamber provided by the invention can be used for a wide variety of other purposes, wherein it is desirable to selectively choose liquid flow along a first and second liquid flow path. It should also be understood that while in the above-mentioned embodiment liquids flowing along a first and second liquid flow path through bypass valving chamber 860 flow through the chamber in a particular direction, in other embodiments, the direction of liquid to flows along the first and second liquid flow path could be reversed or could be co-directional in either direction.
Referring again to
In one particular embodiment, pumping cartridge is utilized as part of a system designed for use in photopheresis treatment to the blood components of a patient as part of a therapy for the treatment of various blood disorders and treatments such as in the treatment of HIV infection, to prevent the rejection of transplants, or for treatment of various autoimmune disorders, for example scleroderma. In this embodiment, the patient is first given a dose of the drug psoralen about 30 min. prior to blood treatment. The psoralen molecules attach to specific undesirable blood components. In this embodiment, treatment chamber 1006 is configured to expose the fractionated blood components of a patient to ultraviolet A (UVA) light to activate the psoralen molecules which in turn modify the blood components to which they are bound so that upon reinfusion into the patient, the modified blood components are either recognized by the patient's immune system and eliminated, or they are immobilized and prevented from harming the patient (for guidance in performing the UVA treatment and configuring a UVA treatment chamber reference is made to U.S. Pat. No. 5,147,289 to Edelson, incorporated herein by reference in its entirety). Pumping cartridge 800, for this embodiment, can be operated to initially remove blood from the patient, pump the blood to centrifuge 1004 to fractionate the various components according to the needs of the particular treatment protocol, direct one or more blood components to treatment chamber 1006 for UVA activation and, if desired one or more other components back to the patient or to a storage container, such as plasma return 1002, and finally pump the UVA-treated blood components back to the patient, as well as, if desired or required, saline from saline container 1000 and/or any blood components contained in plasma return container 1002. It will be apparent to those of ordinary skill in the art that the above outlined protocol may be modified in a variety of ways and customized for specific procedures without departing from the scope of the invention.
In general, pump chambers 822, 824 and 826 of pumping cartridge 800 can be operated utilizing a reusable component including a pump drive system constructed according to any of the embodiments previously described for such systems. Pump chambers 822, 824, and 826, when pumping a liquid to the body of a patient, preferably are operated utilizing pump stroke cycles including air detection and purging steps, as described previously.
For embodiments where pump chamber 826 is utilized as an anticoagulant pump, the desired average flow rate to be delivered by the pump chamber may be quite low. In such embodiments, it may be preferable to operate pump chamber 826 utilizing the pulsed delivery protocol described previously. As described previously, in such embodiments, pump chamber 826 is first filled with anticoagulant, inlet valve 832 is closed, a force is applied to flexible membrane 112 adjacent to the pump chamber, and outlet valve 830 is pulsed by selectively opening and closing the outlet valve for predetermined periods of time at predetermined intervals, which intervals and predetermined periods of time are controlled to yield a desired average liquid flow rate. Anticoagulant pump chamber 826 is typically operated to deliver anticoagulant only while either pump chamber 822 or 824 is being filled with blood withdrawn from the body of the patient. Additionally, anticoagulant pump chamber 826 may also be advantageously utilized to dispense anticoagulant when pump chambers 822 and 824 are not pumping liquids to or from the body of the patient but are being utilized for other purposes. In such cases, it may be desirable to continuously, or to intermittently dispense a small quantity of anticoagulant with pump chamber 826 in order to assure that syringe/port 950 remains unoccluded. A pulsed delivery, as described above, may be utilized for operating the anticoagulant pump in such applications. For such applications, it is believed that the pulsed delivery of anticoagulant to the injection can have beneficial effects for keeping the site from clotting and dislodging small clots when compared to a continuous delivery of anti coagulant to the site. In addition, preferred embodiments of systems configured to provide pulsed delivery of anticoagulant are configured to continuously monitor the quantity/flow rate of anticoagulant to the patient and can adjust the flow rate by changing and controlling the positive pressure applied to the pump chamber during pulsed delivery as well as by changing the pulse duration and interval between pulses. Such capability allows for improved flow rate delivery volume control for applications where the anticoagulant is being delivered to a site at variable pressure, for example an artery of a patient.
When anticoagulant pump 826 is being utilized to dispense anticoagulant while pump chambers 822 and/or 824 are filling with blood from the patient, the pulse duration and interval between pulses of outlet valve 830 for delivering anticoagulant from pump chamber 826 can be selected, in preferred embodiments, so that the average liquid delivery rate of the anticoagulant is a desired predetermined fraction of the flow rate of blood to pump chambers 822 and/or 824 while they are being filled with blood from the patient. In other embodiments, it may be desirable to operate pump chamber 826 to provide an average liquid flow rate delivered from the pump chamber that is a predetermined fraction of the liquid flow rate of pump chamber 822 and/or 824 during a liquid delivery stroke. In yet other embodiments, pump chamber 826 may be operated so that the average liquid flow rate delivered from the chamber is a predetermined fraction of a liquid flow rate measured for a complete pump stroke (including fill and delivery) of pump chamber 822 and/or 824 or, in yet another embodiment, is a predetermined fraction of an average liquid flow rate (calculated over several pump stroke cycles) of pump chambers 822 and/or 824. It is also to be understood that instead of pump chamber 826 being operated to provide a liquid flow rate that is a predetermined fraction of a liquid flow rate provided by pump chambers 822 and/or 824, alternatively, pump chamber 822 could be operated to provide a liquid flow rate which is a predetermined fraction of a liquid flow rate of pump chamber 824, or vice versa.
As discussed previously, preferred components of the pump housing component of to the reusable system include an occluder bar and mechanism for actuating the bar to selectively occlude the tubing attached in fluid communication with a pumping cartridge. One embodiment of a pump housing component including an occluder bar and actuating mechanism is shown in
As discussed previously, cassette 800 is held against the mating block 1105 on pump housing component 1100 cassette door 1118 disposed against the second side of the cassette and opposite the mating block. As shown in
In the embodiment illustrated in
Referring again to
A preferred arrangement of an occluder mechanism is shown in
The spring plate 1152 can be constructed from any material that is elastically resistant to bending forces and which has sufficient longitudinal stiffness (resistance to bending) to provide sufficient restoring force, in response to a bending displacement, to occlude a desired number of collapsible tubes. In the illustrated embodiment, the spring plate is essentially flat and in the shape of a sheet or plate. In alternative embodiments, any occluding member that is elastically resistant to bending forces and which has sufficient longitudinal stiffness (resistance to bending) to provide sufficient restoring force, in response to a bending displacement to occlude a desired number of collapsible tubes may be substituted for the spring plate. Such elongated members can have a wide variety of shapes as apparent to those of ordinary skill in the art, including, but not limited to cylindrical, prism-shaped, trapezoidal, square, or rectangular bars or beams, I-beams, elliptical beams, bowl-shaped surfaces, and others.
In one preferred embodiment, the spring plate 1152 is in the shape of an essentially rectangular sheet and is constructed of spring steel having a thickness that is preferably less than 1/10 its length (the distance between pivot 1158 and 1160). While the particular dimensions of spring plate 1152 must be determined based on factors which will vary depending on the application, such as the modulus of elasticity of the material from which it is constructed, the shape and thickness of the occluding member the number of tubes to be occluded, the stiffness of the tubes, and other factors as apparent to those of ordinary skill in the art, in a particular preferred embodiment, the spring plate 1152 is constructed from spring steel with a thickness of about 0.035 in. The width (the dimension into the plane of the figures) of the spring plate 1152 is selected to enable the plate to occlude all the fluid lines going into or out of cassette 800. The length of the spring plate 1152 can be determined by considering factors such as the required displacement of occluder blade 1164, the mechanical properties of the fluid lines, the yield point and elastic modulus of the spring plate material, and the thickness of the spring plate as mentioned above. Those of ordinary skill in the art can readily select proper materials and dimensions for spring plate 1152 based on the requirements of a particular application. In one exemplary embodiment where the pumping cartridge includes five fluid lines to be occluded, the spring plate is constructed from spring steel and has a thickness of 0.035 inch, a width of 4 inches, and a length of 6.1 inches.
In the illustrated embodiment, rear spring mount 1158 is pivotally attached to the occluder frame 1154 by a rear pivot pin 1166 located at a fixed point on the occluder frame. The spring mount 1158 can, in some embodiments, be a separate piece from the spring plate 1152, which piece is rigidly attached to the spring plate or, in other embodiments, the spring mount 1158 can be integrated into the spring plate, for example, by looping the edge of the spring plate to form a cylinder capable of accepting a pivot pin. The forward spring mount 1160 is attached to the occluder frame 1154 by a forward pivot pin 1168 that can slide in a direction parallel to the length of the spring plate 1152 in a pivot slot 1170 located on the occluder frame 1154. An occluder blade 1164 which moves as the spring plate 1152 is bent, is pivotally attached to the forward pivot pin 1168.
The force required to permit occluder blade 1164 to occlude tubing 1116 is provided by the longitudinal stiffness of spring plate 1152. Upon applying a force to the surface of spring plate 1152 in a direction essentially perpendicular to the surface of the plate (as shown in
In other alternative embodiments, occluder blade 1164 may not include the pivot pin and pivot slot, but may instead be rigidly attached to the spring plate 1152. In yet other embodiments, the occluder blade may be eliminated altogether with the edge of the spring plate or other occluding member positioned adjacent to the tubing so that the plate/member can open and occlude the tubing as it is during bending and relaxation respectively.
In the illustrated embodiment, occluder frame 1154 is mounted to mating block 1172. The mating block 1172 mates to the first face of a pumping cartridge 800. The pumping cartridge 800 is held in place by a door 1174 (mating block 1172 and door 1174 can include additional components (not shown), such as piston bladders, depressions for forming chambers, etc. as discussed previously). The mating block 1172 and door 1174 can to extend beyond the pumping cartridge 800 as shown to allow the tubing 1116 to be occluded by occluder blade 1164. The mating block 1172 incorporates a slot 1176 through which the occluder blade 1164 can be displaced. The slot can be sized and positioned to enable occlusion of all of the fluid lines 1116 entering and exiting the pumping cartridge 800 when the occluder blade 1164 is displaced through the slot 1176 so that it occludes the fluid lines 1116 by pinching them against an extended portion 1178 of the door.
In the illustrated embodiment, a force actuator for applying a bending force to the spring plate comprises an inflatable occluder bladder 1182. The occluder frame 1154 includes a bladder support 1180 housing an inflatable occluder bladder 1182 disposed against the spring plate 1152. The occluder bladder 1182 may be inflated with any hydraulic fluid but in a preferred embodiment air is used as the hydraulic fluid. The inflatable occluder bladder 1182 can be supplied with air via an air line 1184 for either inflating or deflating the bladder. In a preferred embodiment, the air line 1184 can be connected to a three-way valve 1186 controlled by a processor, wherein the occluder bladder 1182 can be placed in fluid communication with either a vent line 1188 for deflating the occluder bladder or a pressure supply line 1190 for inflating the occluder bladder.
Door module 1062 contains all necessary hardware and pneumatic connections to provide fluid-tight coupling between pumping cartridge 800 and a pump housing component of the reusable system. Door module 1062 also preferably contains a piston bladder and piston, which bladder is in pneumatic communication with master module 1054 via pneumatic line 1068. The configuration of door module 1062 can be similar to that shown previously in
Each of pump modules 1056, 1058, and 1060 are preferably similar in design, and each is dedicated to the operation of an individual pump chamber, and its associated valves, provided in pumping cartridge 800. For example, pump module 1 (1056) can be configured to operate pump chamber 822, and its associated valves, pump module 2 (1058) can be configured to operate pump chamber 824, and its associated valves, and pump module 3 (1060) can be configured to operate pump chamber 826, and its associated valves. Each pump module is in pneumatic communication with door module 1062, in order to supply measurement gas to the various control and valve actuating chambers in the pump housing component, which are disposed adjacent to the pump chambers and valving chambers of pumping cartridge 800, when the system is in operation.
In a preferred embodiment, each of the pump modules is configured in a similar fashion as pump drive system 502 shown previously in
Each of the microprocessors included in the various pump modules is preferably configured to communicate with a microprocessor in master module 1054. Master module 1054 is preferably configured to control the pressure within the positive and negative pressure fluid supply tanks preferably included therein, as well as within the piston bladder and occluder bladder in door module 1062. The microprocessor included in master module 1054 preferably acts as the primary communications interface between the user interface and system control module 1052 and the individual pump control modules 1056, 1058, and 1060.
Master module 1054 is preferably configured to handle all of the input/output communications with the user interface/system control module 1052. The commands input to master module 1054 from module 1052 can be processed by the microprocessor of master module 1054 and in turn can be translated by the microprocessor into appropriate commands for input to the microprocessors that are resident in individual pump modules 1056, 1058, and 1060. In preferred embodiments, overall system control module 1052 includes the majority of application-specific programming and provides for communication between the reusable system and a user of the system. Upon receipt of a command from system control module 1052 by master module 1054, the master module is preferably configured to: (1) determine which valves of the system are to be opened or closed; (2) determine which pump module/door module/master module contains the valves; and (3) issue an appropriate command to open or close such valves. All valve mapping (i.e., physical location of the various valves in the system) that is unique to the operation of the particular pumping cartridge being utilized, is preferably resident in the microprocessor of master module 1054.
Also, in preferred embodiments, embedded application programming for each of the microprocessors in the various pump modules may be similar. In some preferred embodiments, there is no application-specific programming resident in pump modules 1056, to 1058, and 1060. In preferred embodiments, pump modules receive commands from master module 1054 and are configured to determine which commands from master module 1054 to act on and which to ignore based upon whether the specific valves or components which are the subject of the command are resident in the particular pump module.
It should be appreciated that the overall system architecture described in
Those skilled in the art would readily appreciate that all parameters and configurations described herein are meant to be exemplary and that actual parameters and configurations will depend upon the specific application for which the systems and methods of the present invention are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described. The present invention is directed to each individual feature, system, or method described herein. In addition, any combination of two or more such features, systems, or methods, provided that such features, systems, or methods are not mutually inconsistent, is included within the scope of the present invention.
Spencer, Geoffrey P., Gray, Larry B., Bryant, Jr., Robert J.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2313551, | |||
2703055, | |||
2816514, | |||
2843050, | |||
3048121, | |||
3111125, | |||
350850, | |||
3539081, | |||
3568214, | |||
3593854, | |||
3759483, | |||
3808595, | |||
3814548, | |||
3827561, | |||
3951147, | Apr 07 1975 | INTERMEDICS INFUSAID, INC , A CORP OF TEXAS; SHILEY INFUSAID, INC | Implantable infusate pump |
4096211, | Oct 01 1975 | Regie Nationale des Usines Renault | Variable flow elastic nozzle |
4161264, | Jun 17 1977 | Fluid metering and mixing device having inlet and outlet valves | |
4212589, | Sep 21 1977 | Device for producing an artificial blood circulation | |
4247018, | Dec 14 1979 | The Coca-Cola Company | Non-pressurized fluid transfer system |
4322054, | Dec 29 1980 | Red Valve Company, Inc. | Pinch valve |
4398908, | Nov 28 1980 | QMI MEDICAL, INC | Insulin delivery system |
4441357, | Mar 04 1982 | Meadox Instruments, Inc. | Pressure monitoring and leak detection method and apparatus |
4479760, | Dec 28 1982 | Baxter Travenol Laboratories, Inc. | Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures |
4479761, | Dec 28 1982 | Baxter Travenol Laboratories, Inc. | Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures |
4479762, | Dec 28 1982 | Baxter Travenol Laboratories, Inc. | Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures |
4486190, | Dec 27 1982 | Eaton Corporation | Precision medication dispensing system and method |
4501405, | Jun 21 1983 | Bunnell Life Systems, Inc. | Frictionless valve/pump |
4585442, | Jul 26 1984 | Ivy Medical, Inc. | Miniature intravenous infusion rate controller |
4594058, | Jun 01 1984 | The Johns Hopkins University | Single valve diaphragm pump with decreased sensitivity to ambient conditions |
4623450, | Jun 16 1981 | Hospal Industrie | Artificial kidney |
4634430, | Mar 07 1985 | Fresenius AG | Pump arrangement for medical purposes |
4648810, | Oct 17 1981 | Barmag Barmer Maschinenfabrik AG | Control apparatus for a positive displacement reciprocating pump |
4778451, | Mar 04 1986 | DEKA PRODUCTS LIMITED PARTNERSHIP, A LIMITED PARTNERSHIP OF NH | Flow control system using boyle's law |
4808161, | Mar 04 1986 | DEKA PRODUCTS LIMITED PARTNERSHIP, A LIMITED PARTNERSHIP OF NH | Pressure-measurement flow control system |
4826482, | Mar 05 1987 | DEKA PRODUCTS LIMITED PARTNERSHIP, A LIMITED PARTNERSHIP OF NH | Enhanced pressure measurement flow control system |
4828543, | Apr 03 1986 | WEISS, PAUL I | Extracorporeal circulation apparatus |
4833329, | Nov 20 1987 | MALLINCKRODT MEDICAL, INC , A DE CORP | System for generating and containerizing radioisotopes |
4833922, | Jun 01 1987 | Rosemount Inc.; ROSEMOUNT INC , 12001 TECHNOLOGY DR , EDEN PRAIRIE, MN 55344, A CORP MN | Modular transmitter |
4898585, | May 18 1988 | Baxter International Inc | Implantable patient-activated fluid delivery device with bolus injection port |
4950235, | May 10 1988 | CARDINAL HEALTH 303, INC | Container-side occlusion detection system for a medication infusion system |
4976162, | Mar 04 1986 | DEKA PRODUCTS LIMITED PARTNERSHIP, A LIMITED PARTNERSHIP OF NH | Enhanced pressure measurement flow control system |
5002471, | Jul 20 1987 | D.F. Laboratories Ltd. | Disposable cell and diaphragm pump for use of same |
5088515, | Mar 04 1986 | Valve system with removable fluid interface | |
5105981, | Nov 19 1990 | Selectively shakeable freestanding particulate matter reservoir | |
5147289, | Mar 29 1990 | Therakos, Inc | Non-specific immune system enhancement |
5178182, | Mar 04 1986 | DEKA PRODUCTS LIMITED PARTNERSHIP A LIMITED PARTNERSHIP FORMED UNDER THE LAWS OF NH | Valve system with removable fluid interface |
5214241, | Sep 20 1991 | The United States of America as represented by the Secretary of the Army | Pressure stabilized radio frequency gasket |
5279504, | Nov 02 1992 | Multi-diaphragm metering pump | |
5300044, | Sep 26 1991 | Baxter International Inc. | Intravenous tube safety apparatus |
5306242, | Dec 15 1992 | HOSPIRA, INC | Recirculation through plural pump cassettes for a solution compounding apparatus |
5318414, | Jun 07 1990 | Humanteknik AB | Valve arrangement and positive-displacement pump |
5336053, | Jan 29 1993 | HOSPIRA, INC | Method of testing for leakage in a solution pumping system |
5349896, | Jun 14 1993 | W L GORE & ASSOCIATES, INC | Pump diaphragm |
5350357, | Mar 03 1993 | DEKA Products Limited Partnership | Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow |
5351686, | Feb 01 1993 | FRESENIUS MEDICAL CARE HOLDINGS, INC | Disposable extracorporeal conduit for blood constituent monitoring |
5384714, | Mar 12 1993 | Emerson Electric Co | Pump controller program |
5408420, | Mar 09 1990 | Emerson Electric Co. | Line leak test apparatus measuring rate of pressure change in a liquid storage and dispensing system |
5411472, | Jul 30 1992 | GALEN MEDICAL, INC | Low trauma blood recovery system |
5421823, | Mar 03 1993 | DEKA Products Limited Partnership | Peritoneal dialysis methods that emulate gravity flow |
5423738, | Mar 13 1992 | C R BARD, INC | Blood pumping and processing system |
5427509, | Dec 22 1993 | Fenwal, Inc | Peristaltic pump tube cassette with angle pump tube connectors |
5429485, | Dec 18 1992 | Graseby Medical Limited | Plural inlet pumping cassette with integral manifold |
5431626, | Mar 03 1993 | DEKA Products Limited Partnership | Liquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure |
5438510, | Mar 03 1993 | DEKA Products Limited Partnership | User interface and monitoring functions for automated peritoneal dialysis systems |
5439355, | Nov 03 1993 | HOSPIRA, INC | Method and apparatus to test for valve leakage in a pump assembly |
5441231, | May 17 1994 | Valve closing actuator | |
5462416, | Dec 22 1993 | Fenwal, Inc | Peristaltic pump tube cassette for blood processing systems |
5472325, | Jan 18 1991 | UNOMEDICAL A S | Suction pump for draining body fluids from body cavities |
5474683, | Mar 03 1993 | DEKA Products Limited Partnership | Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements |
5480294, | Dec 22 1993 | Fenwal, Inc | Peristaltic pump module having jaws for gripping a peristaltic pump tube cassett |
5482440, | Dec 22 1993 | Fenwal, Inc | Blood processing systems using a peristaltic pump module with valve and sensing station for operating a peristaltic pump tube cassette |
5487827, | Sep 14 1993 | Baxter International Inc | Method and apparatus for kidney dialysis |
5558255, | Aug 06 1993 | ALISANAE GROUP LIMITED | Liquid delivery device |
5575310, | Mar 04 1986 | DEKA Products Limited Partnership | Flow control system with volume-measuring system using a resonatable mass |
5578012, | Apr 24 1995 | DEKA Products Limited Partnership | Medical fluid pump |
5628908, | Mar 03 1993 | DEKA Products Limited Partnership | Peritoneal dialysis systems and methods employing a liquid distribution and pump cassette with self-contained air isolation and removal |
5634896, | Mar 03 1993 | DEKA Products Limited Partnership | Liquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure |
5676644, | Jun 07 1995 | Terumo BCT, Inc | Extracorporeal blood processing methods and apparatus |
5692729, | Feb 16 1996 | Vision-Sciences, Inc. | Pressure equalized flow control apparatus and method for endoscope channels |
5808181, | Sep 16 1995 | Fresenius AG | Method for testing a filter in a dialysis system |
5837905, | Jul 24 1996 | Gish Biomedical, Inc. | Cardioplegia monitoring system, flow cell cassette, variable ratio valve, and method |
5868162, | Mar 03 1997 | Automatically switching valve with remote signaling | |
5931648, | May 30 1995 | Servicio Regional De Salud, De La Consejeria De Salud De La Comunidad De | Vacuum actuated tubular blood pumping device with active values and application of the same |
5935105, | Nov 15 1991 | DEKA Products Limited Partnership | Intravenous-line air-elimination system |
5938634, | Sep 08 1995 | Baxter International Inc. | Peritoneal dialysis system with variable pressure drive |
5965821, | Jul 03 1997 | MKS Instruments, Inc. | Pressure sensor |
5989423, | Mar 03 1993 | DEKA Products Limited Partnership | Disposable cassette, delivery set and system for peritoneal dialysis |
6003513, | Jan 12 1996 | COCHRAN CONSULTING, INC | Rebreather having counterlung and a stepper-motor controlled variable flow rate valve |
6022483, | Mar 10 1998 | WIND RIVER SYSTEMS, INC | System and method for controlling pressure |
6041801, | Jul 01 1998 | DEKA Products Limited Partnership | System and method for measuring when fluid has stopped flowing within a line |
6065941, | Jul 01 1998 | DEKA Products Limited Partnership | System for measuring when fluid has stopped flowing within a line |
6223130, | Nov 16 1998 | DEKA Products Limited Partnership | Apparatus and method for detection of a leak in a membrane of a fluid flow control system |
6302653, | Jul 20 1999 | DEKA Products Limited Partnership | Methods and systems for detecting the presence of a gas in a pump and preventing a gas from being pumped from a pump |
6382923, | Jul 20 1999 | DEKA Products Limited Partnership | Pump chamber having at least one spacer for inhibiting the pumping of a gas |
6416293, | Jul 20 1999 | DEKA Products Limited Partnership | Pumping cartridge including a bypass valve and method for directing flow in a pumping cartridge |
6485263, | Jul 01 1998 | DEKA Products Limited Partnership | Systems for determining the volume of a volumetric chamber and pumping a fluid with a pump chamber |
6604908, | Jul 20 1999 | DEKA Products Limited Partnership | Methods and systems for pulsed delivery of fluids from a pump |
6663359, | Jul 20 1999 | DEKA Products Limited Partnership | Pump chamber having at least one spacer for inhibiting the pumping of a gas |
6749403, | Jul 20 1999 | DEKA Products Limited Partnership | Methods for controlling a pump's flow rate by pulsed discharge |
6808369, | Jul 10 2000 | DEKA Products Limited Partnership | System for regulating fluid pump pressures |
6877713, | Jul 20 1999 | DEKA Products Limited Partnership | Tube occluder and method for occluding collapsible tubes |
6905479, | Jul 20 1999 | DEKA Products Limited Partnership | Pumping cartridge having an integrated filter and method for filtering a fluid with the cartridge |
6949079, | Sep 03 1999 | Fenwal, Inc | Programmable, fluid pressure actuated blood processing systems and methods |
7559524, | Jul 20 1999 | DEKA Products Limited Partnership | Tube occluder for occluding collapsible tubes |
7766301, | Jul 20 1999 | DEKA Products Limited Partnership | Tube occluder and method for occluding collapsible tubes |
7967022, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8042563, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8459292, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8499780, | Feb 27 2007 | DEKA Products Limited Partnership | Cassette system integrated apparatus |
8556225, | Jul 20 1999 | DEKA Products Limited Partnership | Pump chamber configured to contain a residual fluid volume for inhibiting the pumping of a gas |
20020103453, | |||
20020182090, | |||
20030194328, | |||
20030230191, | |||
20040001766, | |||
20040091374, | |||
20050069425, | |||
20050095154, | |||
20050100450, | |||
20080015493, | |||
20080287854, | |||
20090012448, | |||
20090012449, | |||
20090012453, | |||
20090012454, | |||
20090012455, | |||
20090012456, | |||
20090012457, | |||
20090012458, | |||
20090012461, | |||
20090107902, | |||
20090112151, | |||
20090202367, | |||
20100296953, | |||
20130343936, | |||
20140194820, | |||
20140260556, | |||
20140276428, | |||
20140286794, | |||
D350823, | Feb 24 1993 | DEKA Products Limited Partnership | Rigid portion of disposable parenteral-fluid cassette |
EP406562, | |||
EP815882, | |||
EP856320, | |||
JP4038324, | |||
JP4358779, | |||
JP5502096, | |||
WO29749, | |||
WO2009094179, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 29 2014 | DEKA Products Limited Partnership | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Dec 29 2018 | 4 years fee payment window open |
Jun 29 2019 | 6 months grace period start (w surcharge) |
Dec 29 2019 | patent expiry (for year 4) |
Dec 29 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 29 2022 | 8 years fee payment window open |
Jun 29 2023 | 6 months grace period start (w surcharge) |
Dec 29 2023 | patent expiry (for year 8) |
Dec 29 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 29 2026 | 12 years fee payment window open |
Jun 29 2027 | 6 months grace period start (w surcharge) |
Dec 29 2027 | patent expiry (for year 12) |
Dec 29 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |