Following the method of making structures with dimensions in the submicrometer range, structures of a polymeric layer with horizontal and substantially vertical surfaces are first made on a substrate. Thereupon, a silicon nitride or oxide layer is plasma deposited. This layer is subjected to reactive ion etching methods in such a manner that its horizontal regions and the polymeric structures are removed, with merely the narrow regions of the silicon nitride or oxide layer that had originally been arranged adjacent the vertical surfaces of the polymeric structures remaining. In the case of positive lithography, the silicon nitride or oxide walls are converted into a mask with the same dimensions but consisting of a different mask material. In the case of negative lithography the silicon nitride or oxide walls are converted in a mask reversal process into openings in a mask material layer through which by means of reactive ion etching vertical trenches approximately 0.5 μm deep can be etched in the silicon substrate. The trenches are filled by thermal oxidation or with a synthetic material as e.g. polyimide. The method as disclosed by the invention can also be applied to other processes than recessed isolation in semiconductor technology.

Patent
   4502914
Priority
Nov 13 1982
Filed
Oct 28 1983
Issued
Mar 05 1985
Expiry
Oct 28 2003
Assg.orig
Entity
Large
300
6
all paid
1. Method for fabricating sub-micrometer dimensioned structures using a polymeric layer comprising:
providing a body to form said structures;
depositing said polymeric layer upon said body;
removing portions of said polymeric layer where the edges of the formed openings are at locations where said sub-micrometer dimensioned structures are desired;
forming a sub-micrometer dimensioned sidewall structure on the said edges of the polymeric layer of substantially the same width as the desired said sub-micrometer dimensioned structures and at a temperature which is less than a temperature which would adversely affect said polymeric layer;
removing the remaining said polymeric layer; and
using the said sidewall structure as the mask to form the sub-micrometer structures in said body.
3. Method of making structures with dimensions in the sub-micrometer range in a layer arranged on a silicon substrate comprising:
forming an isolating layer upon said silicon substrate;
forming upon said isolating layer a polymeric layer having substantially horizontal surfaces and substantially vertical surfaces;
forming upon the vertical surfaces of said polymeric layer a sub-micrometer dimensioned sidewall layer at a temperature less than that temperature which would adversely effect said polymeric layer;
removing said polymeric layer in such a manner that said sidewall layer remains upon the isolating layer; and
that in the case of positive lithography the said sidewall layer directly serves as a mask for forming structures in the said substrate with dimensions in the submicrometer range.
2. Method for fabricating sub-micrometer dimensioned structures using a polymeric layer comprising:
providing a body to form said structures;
depositing said polymeric layer upon said body;
removing portions of said polymeric layer where the edges of the formed openings are at locations where said sub-micrometer dimensioned structures are desired;
forming a sub-micrometer dimensioned sidewall structure on the said edges of the polymeric layer of substantially the same width as the desired and sub-micrometer dimensioned structures and at a temperature which is less than a temperature which would adversely affect said polymeric layer;
removing the remaining said polymeric layer;
depositing a mask material layer over said sidewall layer;
removing said sidewall layer; and
using as a mask the said maks material layer having the openings left by said sidewall structure for making sub-micrometer structures in said body.
4. Method of making structures with dimensions in the sub-micrometer range in a layer arranged on a silicon substrate comprising:
forming an isolating layer upon said silicon substrate;
forming upon said isolating layer a polymeric layer having substantially horizontal surfaces and substantially vertical surfaces;
forming upon the vertical surfaces of said polymeric layer a sub-micrometer dimensioned sidewall layer at a temperature less than that temperature which would adversely effect said polymeric layer;
removing said polymeric layer in such a manner that sidewall layer remains upon the isolating layer;
that in the case of negative lithography the said sidewall layer is embedded into a desired mask material; and
removing said sidewall layer embedded in the mask material by etching which results in mask openings having dimensions in the submicrometer range which serve as a mask for forming structures in said substrate.
18. The method for making a deep dielectric isolation with submicrometer width within a silicon body comprising:
forming an isolating layer upon said silicon substrate;
forming upon said isolating layer a polymeric layer having substantially horizontal surfaces and substantially vertical surfaces;
forming upon the vertical surfaces of said polymeric layer a sub-micrometer dimensioned sidewall layer at a temperature less than that temperature which would adversely effect said polymeric layer;
removing said polymeric layer in such a manner that sidewall layer remains upon the isolating layer;
that in the case of negative lithography the said sidewall layer is embedded into a desired mask material;
removing said sidewall layer embedded in the mask material by etching which results in mask openings having dimensions in the submicrometer range which serve as a mask for forming structures in said substrate;
etching trenches through said mask openings into the silicon substrate by reactive ion etching; and
filling said trenches with dielectric material.
5. The method as in claim 3 or 4 wherein the polymeric layer is formed by applying the polymeric layer directly upon the said isolating layer, a layer of plasma deposited silicon nitride upon the polymeric layer and a top layer of a photoresist upon said silicon nitride layer;
forming the desired pattern in the top photoresist layer and transferring the pattern by anisotropic reactive ion etching into the said plasma silicon nitride layer and into the polymeric layer respectively.
6. The method as in claim 5 characterized in that the polymeric layer is a positive photoresist and is between about 1.0 μm and 2.0 μm thick, that the said plasma silicon nitride layer is between about 0.2 μm and 0.5 μm thick, and that the top said photoresist layer is a highly sensitive photoresist and is between 0.5 μm to 1.5 μm thick.
7. The method as in claim 5 wherein the said pattern is transferred from the said top layer by reactive ion etching with CF4 into the said plasma silicon nitride layer, and by reactive ion etching with oxygen at a pressure of less than 5 μbar into the said polymeric layer.
8. The method as in claim 3 wherein said isolating layer is a silicon dioxide layer and is produced by means of thermal oxidation.
9. The method as in claim 3 or 4 wherein said sidewall layer is silicon nitride deposited upon the said horizontal and substantially vertical surfaces of the said polymeric layer and the exposed said isolating layer by plasma deposition out of an atmosphere containing silane, ammonia and argon, at a pressure of approximately 1 μbar, an energy of about 100 Watt (energy density of 0.05 Watt/cm2) and a temperature of about 210°C or less.
10. The method as in claim 9 wherein the said horizontal regions of the silicon nitride layer are removed by reactive ion etching with CF4, and the said polymeric layer removed by reactive ion etching with oxygen.
11. The method as claimed in claim 3 wherein the said isolating layer is composed of two component layers and is removed in the regions not covered by the said sidewall layer by means of reactive ion etching, and that subsequently the said sidewall layer and the remains of the said isolating layer therebeneath are etched off, with a mask with the dimensions of the original pattern, but consisting of the material of the top of said component layers.
12. The method as claimed in claim 4 wherein said mask material is composed of polymeric material.
13. The method as claimed in claim 4 wherein said mask material is deposited by means of a 2 stage sputtering method with a first thicker layer being applied under the standard conditions, and a second, thinner layer being deposited with increased anode efficiency to achieve an improved surface planarity.
14. The method as claimed in claim 4 wherein said mask material is a silicon dioxide layer, and a first portion of said silicon dioxide layer is chemically vapor deposited uniformly over the said sidewall layer walls, and that subsequently by means of sputtering a second thicker silicon dioxide layer is deposited over said first portion with increased anode efficiency to increase the silicon dioxide layer thickness, and to achieve an improved surface planarity.
15. The method as claimed in claim 12 wherein said polymeric material is a photoresist material layer which is spun-on and etched back for surface planarization.
16. The method as claimed in claim 4 wherein said mask material layer is blanket removed by reactive ion etching until the peaks of the said sidewall layer are exposed, and then removing said sidewall layer by etching to form openings in said mask material layer extending to the surface of the said silicon substrate.
17. The method as claimed in claim 16 wherein the said mask material is silicon dioxide, the said sidewall layer is silicon nitride, and the sidewall layer is removed by etching with CF4 to the surface of the silicon substrate.
19. The method as claimed in claim 18 wherein the said trenches in the silicon substrate are made by reactive ion etching in a CCl2 F2 /oxygen ambient.
20. The method as claimed in claim 19 wherein deep and shallow trenches are made in said silicon substrate by covering the designated shallow trenches during an additional etching step which forms the deep trenches.
21. The method as claimed in any one of claim 18 wherein the said trenches are filled by a thermal oxidation to produce thin silicon dioxide layer, a vapor deposition to produce slightly thicker silicon nitride layer and the said trenches are then completely filled with polyimide.
22. The method as claimed in claim 18 wherein after the said trenches are filled by thermal oxidation, the silicon dioxide is removed from the silicon substrate surface by blanket reactive ion etching with CHF3, and that subsequently the silicon substrate is reoxidized to an silicon dioxide layer thickness required for the subsequent processes.

1. Technical Field

The invention relates to a method of making structures with dimensions in the sub-micrometer range, and to the implementation of this method to make a deep dielectric isolation with sub-micrometer width in a silicon body.

2. Background Art

A number of methods are known to increase the integration density of integrated circuits. Considerable increases of integration density have recently been achieved mainly by decreasing photolithographic defect densities. By using electron and X-ray exposure methods instead of the hitherto used light radiation, a progress was made in the direction of a higher optical resolution. There were furthermore efforts to reach very narrow line widths in the 1 μm range and less by extending conventional lithographic processes, avoiding the cost-intensive techniques of electron and X-ray lithography. With the technique of plasma or reactive ion etching for etching metals, semi-conductive and dielectric materials further developments took place in the direction of very narrow line widths, and consequently toward an increased integration density.

A number of publications and patents describe the so-called sidewall technology by means of which structures in the sub-micrometer range can be made. In IEEE Electron Device Letters, Vol. EDL-2, No. 1, January 1981, pp. 4 to 6, a method is described where vertical (anisotropic) dry etching methods are applied for making MOSFETs which are defined by an edge and have dimensions in the sub-micrometer range. The technology described permits the production of physical channel lengths of the MOSFETs in the 0.1 to 0.15 μm range.

U.S. Pat. No. 4,358,340 describes a method of making sub-micrometer devices, but without using the sub-micrometer lithography, where a conductive thin film with dimensions in the sub-micrometer range is deposited across a vertical step between adjacent surfaces of an isolation, and subsequently vertically etched until there only remains that part of the conductive film which is adjacent the vertical step. The remaining isolation not covered by the conductor is removed, thus obtaining a gate of an MOS field effect transistor with a width in the sub-micrometer range which equals the layer thickness of the originally applied thin film.

U.S. Pat. No. 4,209,349 describes a method of forming very small mask openings for making semiconductor circuit arrangements. According to this method, first insulator regions are formed on a substrate so that substantially horizontal as well as substantially vertical surfaces are obtained. A second insulator layer is applied thereon of a material different from that of the first insulator layer, and it is subjected to a reactive ion etching process in such a manner that the horizontal regions of the second insulator layer are removed, with merely very narrow regions of this layer remaining on the vertical surface regions of the first insulator layer, and the respective regions of the substrate, respectively. Subsequently, the exposed substrate regions are thermally oxidized, and for finally forming the desired mask openings the regions of the second insulating layer there are removed. By means of this method, minimum dimensions smaller than those of hitherto applied photolithographic methods are to be obtained.

In the process of this U.S. patent, the first insulator layer (silicon dioxide) determines the position and thickness of the mask (column 2, line 62). All openings in the insulator layer are made by standard photolithography and etching techniques (column 3, line 21) according to which no vertical sidewalls can be made. In the method as disclosed by the invention however a polymeric layer determines position and thickness of the mask. In the method of the U.S. patent, only hot processes are applied, e.g. a thermal oxidation at 970°C (column 4, line 65), and the chemical vapor deposition of silicon nitride at approximately 1000°C (column 5, line 69), whereas in the method as disclosed by the invention so-called cold processes at less than 300°C are performed permitting a more universal application of the method. With the method of the U.S. patent, masks with a layer thickness of less than 0.5 μm can be made which are not suitable as masks e.g. for etching deep trenches. With the method as disclosed by the invention however masks with a thickness of 2 to 3 μm can be made that can be used for etching 4 to 5 μm deep trenches in a silicon substrate. From thermal oxidation (column 4, line 64 of the U.S. patent) there results an asymmetrical mask with the bird's beak problem being involved which originates from the forming of a non-planar silicon dioxide on the trench surface, so that the mask cannot be used for trench etching also for that reason. The mask made in accordance with the invention has strictly vertical sidewalls and is of a symmetrical structure.

A feature common to all hitherto known methods is that for making structures with vertical sidewalls and dimensions in the sub-micrometer range materials as polysilicon, silicon nitride or silicon dioxide are used which are all deposited at higher temperatures. None of the publications describes the use of polymeric materials for the purpose.

Using the method as disclosed by the invention is particularly advantageous in the production of deep dielectric isolations with sub-micrometer width in a semiconductor body. In the following, the various isolation methods will be briefly referred to. One of the known isolation methods for isolating against each other various active and/or passive elements in integrated circuit structures is the so-called junction isolation, where isolation regions are formed in the semiconductor regions are surrounded with oppositely doped semiconductor regions. The thus formed semiconductor junctions form reverse-operated diodes effecting isolation. Another known isolation method is the so-called dielectric isolation. There, the semiconductor regions to be isolated are surrounded with a dielectric isolation region. In an embodiment thereof, trenches are made in silicon in which the isolation regions are subsequently made. During the etching of the trenches, the remaining semiconductor substrate surface is protected by a protective layer consisting of a silicon dioxide-silicon nitride sandwich structure. Following the forming of the trenches, the silicon semiconductor substrate is conventionally oxidized, so that the silicon in the trench region is oxidized and the resulting silicon dioxide fills the trenches. In the conventional thermal oxidation for filling the trenches with oxide however undesired structures appear at the trench edges which are called "bird's beak". The term bird's beak refers to the forming of a non-planar silicon dioxide on the trench surface which is caused by lateral oxidation underneath the silicon dioxide layer and which effects an elevation of the silicon dioxide/silicon nitride structure at the trench edges. The direct bordering of diffusions at the isolation which represents an essential advantage of the originally planned dielectric isolation is thus no longer possible.

An alternative to the embedded oxide isolation is the deep dielectric isolation comprising the forming of rectangular trenches through reactive ion etching methods, and the filling of these trenches to form the isolation for the various silicon regions of the substrate. This method, too, presents some important disadvantages, e.g. no thermal oxide can be used for filling the trenches but only an oxide which is chemically vapor deposited out of a silane and oxygen-containing phase, or polysilicon. Filling of the trenches with oxide through chemical vapor deposition can in turn cause a poor oxide quality or a seam in the middle of the trenches which can influence the continuity of the metallic conductor on the surface, and finally cause conductivity defects. During the various subsequent temperature processes, the chemically vapor deposited oxide does not have the same thermal expansion coefficient as silicon, and causes tensions round the trenches at process temperatures around 1000°C Furthermore, chemically vapor deposited oxide is difficult to planarize.

It is therefore desirable to have a method available according to which deep dielectric isolations with sub-micrometer width can be made which do not have the above specified disadvantages. It is furthermore intended to provide dielectric isolations with a width of approximately 1 μm and a depth of approximately 5 μm in silicon semiconductor substrates.

The invention as characterized in the claims achieves the object of providing an improved lithography method with reduced line widths down into the sub-micrometer range. A further object of the invention is the application of this method to make deep dielectric isolations with widths in the sub-micrometer range.

To summarize, the method as disclosed by the invention provides a structure of polymeric material with vertical sidewalls, the latter serving to make sidewall structures of silicon dioxide or nitride with dimensions in the sub-micrometer range. These sidewall structures can be used as masks directly. For the negative lithography, another layer is alternatively applied over the sidewall structures, which is partly removed until the peaks of the sidewall structures are exposed. Subsequently the sidewall structures themselves are removed. The resulting opening can then be used as a mask for a plurality of processes for making integrated circuits. The invention also comprises the application of the method of making deep dielectric isolations with sub-micrometer width in a silicon semiconductor body.

The drawings show the following:

FIGS. 1A to 1F illustrate a basic method of the invention for negative lithography;

FIGS. 2A to 2C illustrate a basic method of the invention for positive lithography;

FIG. 3 is a three-layer structure for making a vertical profile of polymeric material;

FIG. 4 shows the etching of a vertical polymeric material profile;

FIG. 5 shows the deposition of silicon nitride or oxide on the horizontal and vertical surfaces of the polymeric material structure;

FIG. 6 illustrates the making of silicon nitride or oxide walls by means of the etching;

FIG. 7A shows the deposition of the actual mask material;

FIGS. 7B to 7C show variations of the mask material deposition method, and surface planarization;

FIG. 8 illustrates removal of the silicon nitride or oxide walls embedded in the mask material;

FIG. 9 illustrates opening of the mask down to the substrate by means of reactive ion etching;

FIG. 10 shows etching deep trenches in the substrate using the mask;

FIG. 11 shows filling these trenches by means of thermal oxidation;

FIG. 12 shows etching the silicon dioxide off the surface, and subsequent reoxidation;

FIG. 13 illustrates filling the trenches with synthetic material;

FIG. 14 illustrates reversing the sidewall structure of FIG. 6 into a mask of a different material but with identical dimensions (positive lithography);

FIG. 15 shows the finished mask of the different material;

FIG. 16 is a secondary electron microscope or scanning electron microscope graph (SEM) corresponds to FIG. 4 and shows a photoresist profile as an example of a polymeric material with vertical sidewalls;

FIG. 17 is an SEM corresponding to FIG. 5 and shows the silicon nitride-covered photoresist with vertical sidewalls;

FIG. 18 is a SEM corresponding to FIG. 6 and shows approximately 0.3 μm wide silicon nitride walls;

FIG. 19 is a SEM corresponding to FIG. 7A and shows silicon nitride walls embedded in silicon dioxide deposited by means of cathode sputtering;

FIG. 20 is a SEM corresponding to FIG. 9 and depicts a silicon dioxide mask opened down to the silicon substrate;

FIG. 21 is a SEM corresponding to FIG. 10 and depicts the deep trenches in the silicon, with the silicon dioxide mask having already been removed;

FIG. 22 is a SEM corresponding to FIG. 12 and shows the trenches after having been filled by thermal oxidation.

With the method as disclosed by the invention and according to a preferred embodiment, silicon dioxide or the like etching masks with openings having a sub-micrometer width such as 0.2 μm wide openings with vertical sidewalls can be made. These etching masks used can be as an example for etching trenches in the slicon substrate with a width of 0.5 μm. The trenches are subsequently filled with dielectric material.

The making an etching mask in a negative lithography process involves the following steps, following the basic method in accordance with FIGS. 1A to 1D:

forming a vertical profile in a polymeric material layer by reactive ion etching, and plasma depositing silicon nitride or silicon dioxide (FIG. 1A);

removing silicon nitride or silicon dioxide from all horizontal surfaces by reactive ion etching, and removing the polymeric material, thus obtaining silicon nitride or silicon dioxide walls (FIG. 1B);

converting the silicon nitride or silicon dioxide walls into openings of a mask in a reversal process by depositing the mask material over the silicon nitride or silicon dioxide walls, removing the mask material by etching until the peaks of the silicon nitride or silicon dioxide walls are exposed, and removing the silicon nitride or silicon dioxide walls by plasma etching or wet etching (FIG. 1C);

opening the mask down to the substrate (FIG. 1D).

Using the thus made mask trenches are etched into the silicon substrate by reactive ion etching, and the mask material is removed (FIG. 1E). Subsequently, the trenches are filled by thermal oxidation with silicon dioxide or with any other material. The silicon dioxide on the substrate surface is removed by reactive ion etching (FIG. 1F), and the silicon is reoxidized to form a layer thickness required for further processes. If the trenches are filled with polyimide, the reoxidation is performed following the hot processes. Prior to the filling with polyimide 13 (FIG. 13), a thermal oxidation is executed until the trench walls are covered with an approximately 15 nm thick oxide layer 11. This layer is sealed by depositing approximately 50 nm silicon nitride 12.

For making a mask of a different mask material, but with the same dimensions the following steps have to be performed in accordance with FIGS. 2A to 2C:

as described above, forming a vertical profile in a polymeric material layer, and plasma depositing silicon nitride or silicon dioxide (FIG. 2A);

removing silicon nitride or silicon dioxide from all horizontal surfaces, and removing the polymeric material, thus obtaining silicon nitride or silicon dioxide walls (FIG. 2B);

converting the mask according to FIG. 2B into a mask with identical dimensions, but made of a different material (FIG. 2C) by means of reactive in etching and stripping the walls of silicon nitride or silicon dioxide, respectively.

With reference to FIGS. 3 to 9 and 14 and 15, the lithography method as disclosed by the invention is described in general, and following that, with reference to a specific embodiment (FIGS. 10 to 13), the making of a deep dielectric isolation in a silicon semiconductor body is described.

According to FIG. 3, a layer 2 of dielectric material is applied on a silicon semiconductor substrate in a conventional manner. Layer 2, to give an example, can consist of silicon dioxide produced by thermal oxidation at 925°C Layer 2 can also consist of a silicon dioxide and a silicon nitride layer, with the silicon dioxide layer being approximately 160 nm thick, and the silicon nitride layer approximately 100 nm. The silicon dioxide layer is usually produced by thermal oxidation, and the silicon nitride layer is deposited in a known manner out of an atmosphere containing silane, ammonia, and argon, at a temperature of approximately 1000°C Instead of the double layer of silicon dioxide-silicon nitride, it is also possible to apply a double layer of silicon dioxide and polysilicon, or polysilicon and silicon dioxide, respectively. Layer 2 can also consist of a layer sequence which will be referred to in detail in connection with FIG. 14. It is furthermore possible to apply the now following layers onto the surface of silicon substrate 1 directly.

For making a structure of polymeric material with vertical sidewalls, a polymer, e.g. a polyimide, is applied by spin-coating which is thermally stable up to approximately 400° to 450°C It should be noted that the layer thickness of the polymeric material determines the height of the silicon nitride or silicon dioxide walls which are made in further steps of the process. It is also possible to apply as polymeric materials a series of known positive or negative resist materials in the desired layer thickness, e.g. of approximately 2.0 μm. A positive resist material which can e.g. be used is a resist produced by Shipley commercially available under the trade designation 1350J, and consisting of a phenolformaldehyde resin and a naphthoquinone diazide sensitizer which is identified as 3, 4-dihydroxybenzophenone-4-[naphthoquinone(1,2)-diazide(2)]sulfonate. At a temperature which is equal to, or higher than the deposition temperature of material 6, resist layer 3 is cured for forming the sidewall structure (FIG. 5). Resist layer 3 of the above specified material can e.g. be cured at a temperature of 210°C for approximately 30 minutes. As an etching barrier for reactive ion etching with oxygen, a silicon nitride layer 4 approximately 100 nm thick is applied on resist layer 3. The silicon nitride is plasma deposited out of an atmosphere containing silane, ammonia and argon at a pressure of approximately 1 mbar and an energy of 100 Watt (energy density 0.05 W/cm2). The time required for this amounts to 3 to 4 minutes approximately. It should be noted that the deposition temperature is 210°C, i.e. this is a so-called "cold process" which does not affect the material of layer 3. In the same manner, it is possible to plasma deposit instead of silicon nitride layer 4 a silicon dioxide layer, or a polysilicon layer on resist layer 3. In the present case, an approximately 1.0 μm thick resist layer 5 is deposited on plasma silicon nitride layer 4. Layer 5 can consist of the same resist material as layer 3. However, it can also consist of another highly radiation-sensitive photoresist, e.g. a methacrylate resist. In layer 5, a pattern is generated by exposure and development. Subsequently, as depicted in FIG. 4 and FIG. 16, a resist mask 3 with edge angles of maximum steepness is produced through reactive ion etching. For making the desired mask structure with edge angles of maximum steepness these resist sidewalls have to be as steep as possible.

Using the top resist layer 5 as a mask, openings are etched into plasma nitride layer 4. Nitride layer 4 and polymeric or resist layer 3 therebeneath are etched by reactive ions. Plasma nitride layer 4 is etched in a reactor with carbon tetrafluoride under the following conditions:

CF4 flow: 30 cm3 /min.;

pressure: 50 μbar;

energy density: 0.2 Watt/cm2.

Under these conditions, the plasma nitride etching rate is 30 nm/min. approximately.

Layer 4 with the etched openings is used as a mask for etching resist or polymeric layer 3.

Layer 3 is etched in a reactive ion etching process with oxygen, under the following conditions:

O2 flow: 10-100 cm3 /min;

pressure: 2-3 μbar;

energy density: 0.2 Watt/cm2.

The etching rate for a resist amounts to approximately 150 nm/min. under these conditions. In order to arrive at resist sidewalls of maximum steepness, reactive ion etching is carried out at a very low oxygen pressure of approximately 2 to 5 μbar. If operations would take place at a higher oxygen pressure, lateral etching would increase which becomes apparent as lateral sub-etching of the silicon nitride mask. Plasma nitride and resist residues are removed in a known manner by etching with buffered hydrofluoric acid. In connection with the above described three-layer process for making resist sidewalls of maximum steepness, reference is also made to the PCT application WO 80/00639, Western Electric, U.S. priority Sept. 11, 1978 (Ser. No. 941,369).

The structure of polymeric material 3 with vertical sidewalls can also be produced (no figures) in a modified image reversal process (German Pat. No. 25 29 054). This method is inexpensive and not elaborate. It also results in structures with almost vertical sidewalls. In detail, for making a resist image that is negative relative to the original, a photosensitive layer containing a phenolformaldehyde resin, an o-quinonediazide, and a 1-hydroxyethyl-2-alkyl-imidazoline (Monazoline C) is applied on substrate 1, 2 of FIG. 3. This layer is exposed image-wise, and subsequently heated for 10 to 20 minutes to approximately 105° C. During that process, there is a cross-linking in the exposed regions of the photoresist by the Monazoline molecules so that these regions become insoluble in an alkaline developer. After this thermal processing, the photoresist layer is blanket exposed. During this blanket exposure, the photoresist is now decomposed also in those regions which have not been exposed in the image-wise exposure, while there is no further change in the exposed regions. Following development in an alkaline developer, a resist image negative relative to the original is obtained.

Resist structure 3 on substrate 1, 2 made in accordance with the three-layer process FIG. 16 or the modified image reversal process, serves to define position and height of the sidewall mask to be made in the subsequent process steps. FIGS. 5 and 6, FIGS. 17 and 18 depict plasma deposition of silicon nitride 6 on the horizontal and vertical surfaces of resist structure 3 and of substrate 2, as well as the making of plasma nitride walls by removing the nitride from all horizontal surfaces through reactive ion etching, and equally through reactive ion etching the removing of resist 3. Instead of the nitride plasma deposition, it is also possible to vapor deposit on the horizontal and vertical surfaces of the resist structure silicon dioxide or polysilicon at a low temperature.

In accordance with FIG. 5, silicon nitride 6 is plasma deposited out of an atmosphere containing silane, ammonia and argon at a pressure of 1 mbar and an energy density of 100 Watt, at a temperature of 210°C, in a layer thickness of approximately 400 nm. Silicon nitride 6 covers all horizontal and vertical surfaces of resist structure 3 and substrate 2 FIG. 17. Subsequently, the silicon nitride is removed from all horizontal surfaces by reactive ion etching in carbon tetrafluoride. For that purpose, etching takes place e.g. at a CF4 flow of 30 cm3 /min., a pressure of approximately 50 μbar and an energy density of 0.2 W/cm2. CF4 etching is interrupted when the entire silicon nitride has been removed from the horizontal surfaces. The etching end point is determined by means of laser interference with 5 to 1-10% overetching. The process steps are carried out analogously when the deposited material consists of silicon dioxide or polysilicon. As described above, resist 3 is removed by reactive ion etching in an oxygen-containing atmosphere. Maintaining a particularly low oxygen pressure is not required for this step.

According to FIG. 6 (FIG. 18), approximately nm thick silicon nitride walls 6 remain after the two previously mentioned etching steps.

In negative lithography, there now follows the deposition of the desired mask material (FIG. 7A). Any kind of material that can be deposited by spin-coating can be used for that purpose, e.g. a photoresist, polyimide or glass, or materials that can be sputtered on or vapor deposited, e.g. silicon dioxide, silicon nitride, magnesium oxide, polysilicon, aluminum oxide, metals etc. If silicon dioxide is used as mask material, it can be deposited by means of cathode sputtering, or out of a silane or oxygen containing gas plasma, or by chemical vapor deposition out of a SiH4 and oxygen, or SiH2 Cl2 and N2 O containing atmosphere. The various deposition methods each result in a different type of the silicon dioxide which covers plasma silicon nitride walls 6.

According to FIG. 7A (FIG. 19), silicon nitride walls 6 are e.g. covered with silicon dioxide by means of cathode sputtering. This method is preferred for the present invention. First, approximately 1.3 μm silicon dioxide (standard quartz) are applied by cathode sputtering by means of a standard process. Subsequently, a 0.5 μm thick silicon dioxide layer (planar quartz) is deposited following the planar process by means of cathode sputtering with increased anode efficiency. Following this method, silicon dioxide is removed simultaneously with the deposition, so that structures with a surface topology are substantially planarized (FIG. 7A).

Further ways of covering silicon nitride walls 6 with silicon dioxide are depicted in FIGS. 7B and 7C. Following FIG. 7B, a 0.5 μm thick silicon dioxide layer 7a is chemically vapor deposited on the entire surface of the structure with silicon nitride walls 6. Chemical vapor deposition uses SiH4 and O2 at approximately 500°C, or SiH2 Cl2 and N2 O at approximately 800°C, and atmospheric pressure or less. Subsequently, an approximately 1 μm thick silicon dioxide layer is deposited by means of cathode sputtering, with increased anode efficiency (planar quartz). While the vapor deposited silicon dioxide 7a uniformly grows around the walls, silicon dioxide 7b applied by cathode sputtering effects an increase of the silicon dioxide layer thickness, and a planarization of the regions over the silicon nitride walls 6 (FIG. 7B). Instead of planar quartz, it is also possible to use a photoresist for planarization as layer 7b, and to cure it at 180° C.

Another way of planarizing a structure in accordance with FIG. 7 consists in depositing quartz under the usual cathode sputtering conditions, and to etch back until the peaks of silicon nitride walls 6 have been exposed (FIG. 7C). As already indicated in connection with the planarization in accordance with FIG. 7B, such planarization can also be implemented in such a manner that instead of the quartz deposited by means of cathode sputtering, a photoresist is applied in a layer thickness of 2.0 μm, and cured at 180°C, and that subsequently the resist layer is partly removed until the peaks of the silicon nitride walls have been exposed (FIG. 7C).

In the subsequent process step, the silicon nitride walls embedded in silicon dioxide as a mask material are removed in accordance with FIG. 8 by etching. First, the silicon dioxide is blanket removed in a layer thickness of approximately 0.3 μm by reactive ion etching with CF4. Subsequently, the silicon nitride walls are removed by plasma etching in a system of the LFE Corporation and with carbon tetrafluoride, at a pressure of approximately 1.0 mbar, thus obtaining openings 8 with a width of 0.2 to 0.3 μm reaching down to the SiO2 layer 2. The silicon nitride walls can also be removed by wet etching. According to Fit. 9, openings 8 of the silicon dioxide mask are extended by blanket reactive ion etching with CF4 through layer 2 to silicon substrate 1. This step can also be carried out with CHF3 gas because this ensures a better interruption of the etching process at the silicon substrate surface. During this etching, silicon dioxide is also removed from the mask surface. If the walls 6 defining height and width of mask openings 8 are made of silicon dioxide or polysilicon a photoresist has to be used for planarizing. With polysilicon walls it is also possible to employ quartz. Silicon dioxide or polysilicon walls 6 are removed by wet etching until layer 2 is reached which in this case consists of silicon nitride. FIG. 9 (FIG. 20) represents the finished etching mask consisting of silicon dioxide 7 which can be used for etching trenches in silicon substrate 1. The mask is approximately 0.6 to 1 μm thick, and has openings with practically vertical sidewalls and with a width of 0.2 to 0.3 μm.

Up to now, a method of making a mask using the sidewall technology has been described, resulting in a mask negative to the original mask pattern. Basing on FIG. 6, a method will now be described with reference to FIGS. 14 and 15 according to which sidewalls 6 can be converted into a mask positive to the original pattern, with identical dimensions but made of a different material. According to FIG. 14, layer 2 of the above described figures consists of a double layer, i.e. of a layer 2a of the desired mask material, e.g. a photoresist, of polyimide, silicon dioxide, silicon nitride, polysilicon, metal, or combinations thereof with a thin dielectric layer 2b arranged on layer 2a and consisting of plasma nitride or oxide. Instead of layer 2, a sequence of layers, e.g. silicon dioxide, polyimide, silicon dioxide can also be used. Sidewall structures 6 with the sub-micrometer dimensions are made, as described above, by means of a polymeric material structure with vertical sidewalls. Dielectric layer 2b which consists of silicon dioxide if the sidewalls are made of plasma nitride, is removed by reactive ion etching in carbon tetrafluoride. Layer 2a is removed in the regions not covered by sidewalls 6 by reactive ion etching, too. If layer 2a consists of polymeric material, the reactive ion etching can be executed in an oxygen atmosphere. Subsequently, sidewall structures 6 and the remaining silicon dioxide of layer 2b are removed by plasma etching as described above or wet etching. The result is a positive mask structure with the dimensions of the plasma nitride columns in accordance with FIG. 6 which however are made of the material of layer 2a (FIGS. 14 and 15).

If layer 2 of FIG. 14 is made of a layer sequence of e.g. silicon dioxide, polyimide, silicon dioxide the top thin oxide layer, after the production of sub-micrometer mask 6, is etched in a CF4 atmosphere, the polyimide in an oxygen atmosphere, and the silicon dioxide on the surface of the silicon substrate in a CF4 atmosphere with reactive ions. By plasma etching in oxygen, or by dissolving the middle polyimide layer of the etched structures, the final mask of silicon dioxide on the silicon substrate is obtained.

In the following, a specific application of the above described method is discussed, where in a mask reversal process the structures of FIG. 6 are used for making a silicon dioxide mask 7.

Using this mask, trenches are etched in a silicon substrate. The trenches are filled by thermal oxidation, or by the spin-coating of a synthetic material, e.g. polyimide. As a silicon substrate, e.g. a semiconductor chip of P conductive material can be used. On this substrate with a resistivity of 10 Ω-cm in which an N+ conductive region has been made (not shown) an N conductive layer with a maximum impurity concentration of 1018 atoms/cm3 is epitaxially grown in a conventional method, at a temperature between 950° and 1170° C., and with a duration of approximately 17 minutes. While this layer is deposited, the N+ conductive region diffuses out into this layer. Epitaxial layer 1 (FIG. 3) is between 1 and 4 μm thick, corresponding with the other data of the integrated circuit. For the purposes of the present invention, an epitaxial layer 1 with a thickness of 2.35 μm is assumed, the epitaxial layer being 0.35 μm silicon are used up by oxidation during the implementation of the method as disclosed by the invention. Epitaxial layer 1, to give an example, can be applied using a device and a method as described in U.S. Pat. No. 3,424,629. In accordance with FIG. 3, a layer 2 of dielectric material is then deposited on epitaxial layer 1 in accordance with conventional methods.

Following the basic method shown in FIGS. 1A to 1F, and the specific description, the following procedures can be used for making the trenches and for filling the trenches.

Forming a vertical profile of polymeric material by reactive ion etching, and plasma depositing of silicon nitride or silicon dioxide. As specified above in detail, the forming of the vertical profile of polymeric material is effected in a three-layer process (FIGS. 3 and 4), or in a modified mask reversal process. Plasma depositing of silicon nitride or silicon dioxide on all horizontal and vertical surfaces of the polymeric structure (FIG. 5) is performed at temperatures ≧200°C and ≧400°C This so-called low temperature process does not effect the polymeric structure materials.

Silicon nitride or silicon dioxide is removed from all horizontal surfaces by reactive ion etching in an atmosphere containing CF4, and the removal of the polymeric material which results in silicon nitride or oxide walls is effected in an oxygen-containing atmosphere. Details of the method were discussed in connection with FIG. 6.

The silicon nitride or dioxide walls are converted in a mask reversal process in openings of a mask by depositing the mask material silicon dioxide over these walls, removing the silicon dioxide by etching until the peaks of the walls are exposed, and removing the silicon nitride or silicon dioxide walls by plasma etching. The method preferred within this embodiment for covering the silicon nitride walls with silicon dioxide is the method discussed in the specification with reference to FIG. 7A, where first approximately 1.3 μm silicon dioxide are deposited following the conventional method, and subsequently about 0.5 μm silicon dioxide are deposited in the planar method by means of cathode sputtering with increased anode efficiency. The silicon nitride walls are removed after the exposure of the peaks by plasma etching with carbon tetrafluoride, and subsequently the openings of the silicon dioxide mask are extended by blanket reactive ion etching with carbon tetrafluoride to the silicon substrate. This process steps were discussed in the specification with reference to FIG. 8.

In the process survey, FIG. 1E shows the etching of the deep trenches in the silicon substrate, and FIG. 1F depicts the filling of the trenches with silicon dioxide or polyimide. The etching of the trenches in the silicon substrate, and their filling will be discussed in the following with reference to FIGS. 10 to 12, and the secondary electron microscope graphs FIGS. 21 and 22.

FIG. 10 (FIG. 21) depicts the making of trenches 9 in silicon substrate 1 by etching. The reactive ion etching performed for that purpose is carried out at the following conditions:

etching medium: 10% chlorine, rest argon;

flow: 30 cm3 /min.;

pressure: 15 mbar;

energy density: 0.2 Watt/cm2.

Other methods for etching silicon use gas mixtures with a content of SF6, CL2 and helium, or CCl2 F2 and O2 or SiF4, Cl2, helium or argon. Generally, gas mixtures containing chlorine, fluorine, and/or oxygen can be used for the reactive ion etching of silicon. In a system with 10% Cl2 in argon, etching rate ratios of silicon to silicon dioxide of up to 20:1 are obtained in a reactive ion etching device produced by Leybold. If deep and shallow trenches are to be etched simultaneously, the above described etching process has to be carried out twice, or a protective mask has to be used which covers the shallow trenches during the additional etching of the deep trenches. According to FIG. 10, the remaining silicon dioxide etching mask is removed in a wet etching step with buffered hydrofluoric acid.

FIG. 11 depicts the filling of the trenches by thermal oxidation. This oxidation takes place at approximately 1000°C, and is implemented as a dry-wet-dry oxidation, until approximately 0.5 μm silicon dioxide has formed in the trenches starting from either side of the trench wall, and on the surface a silicon dioxide of comparable layer thickness has formed. The oxidation can also take place in the form of a high pressure oxidation at 850°C In order to obtain an oxide layer 10 on silicon substrate surface 1 (FIG. 12, FIG. 22) in a layer thickness necessary for subsequent etching and diffusion processes, the oxide in FIG. 11 is removed by blanket reactive ion etching in CHF3 with the etching being interrupted at the silicon surface. Then, the silicon is reoxidized to a layer thickness of approximately 160 nm (FIG. 12). Instead of the filling of the trenches by thermal oxidation, the following process can be applied (FIG. 13):

(a) thermal oxidation to produce approximately 25 nm silicon dioxide 11;

(b) vapor depositing approximately 50 nm silicon nitride 12;

(c) completely filling the trenches with polyimide 13 which is spun-on in a known manner.

In the following, the essential features and advantages of the method as disclosed by the invention when applied to making deep dielectric isolations with sub-micrometer widths will be repeated:

It is possible to make dielectric isolations with a width of approximately 0.5 to 1.0 μm.

Deep and shallow isolations can be made simultaneously, e.g. a subcollector isolation with a depth of 4 to 5 μm and a base isolation with a depth of 1 μm.

The minimum distance between two isolations is approximately 1.5 to 2.0 μm.

The interface between the isolation and the silicon substrate has a low charge level owing to the thermal oxidation.

Filling the trenches with polyimide instead of by thermal oxidation is particularly advantageous because defects were observed in the silicon when the trenches were completely filled by thermal oxidation. When the filling takes place by vapor deposition of oxide, such defects can be substantially avoided.

The method described is a planar process, therefore the forming of the undesired "bird's heads" is avoided.

The diffusions of subcollector, base and emitter can directly be adjacent to the isolation; the forming of the undesired "bird's beak" is avoided, too. When filling with polyimide takes place, the trenches are etched subsequently to the diffusion of subcollector, base and emitter.

The quality of the devices made in accordance with the method as disclosed by the invention is improved owing to the lower capacity caused by the diffusions directly adjacent to the isolations and owing to shorter electric conductive paths.

There results a higher integration density from the lower isolation width and the diffusions directly adjacent to the diffusions.

The general method as disclosed by the invention for making structures with dimensions in the sub-micrometer range uses, instead of dielectric materials, polymeric materials to define structures with horizontal and vertical surfaces, e.g. a photoresist or polyimide. The polymeric materials can be deposited inexpensively and easily by spin-coating. They can be vertically etched in an excellent manner, particularly using the above described three layer process, with reactive oxygen ions. The polymeric layer determining position and height of the mask can be applied with a much higher layer thickness than e.g. dielectric materials. For that reason, thicker masks can be made than with other processes. With masks having a thickness of e.g. up to 3 μm up to 6 μm deep trenches can be etched in a silicon substrate. The sidewall structures of silicon dioxide or silicon nitride are made in a plasma deposition process that can be carried out at temperatures of ≧200°C, and which represents a so-called low temperature process so that there is no damage of the polymer structures. The process temperatures that are low compared with prior art furthermore permit a more universal applicability of the method. The method as disclosed by the invention is suitable not only for making deep dielectric isolations with a trench width in the sub-micrometer range; further possible uses are e.g. making field effect transistors with a channel length in the sub-micrometer range, or making lateral, bipolar PNP transistors with a base width in the sub-micrometer range.

Greschner, Johann, Trumpp, Hans-Joachim

Patent Priority Assignee Title
10396281, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming arrays of small, closely spaced features
10497611, Dec 18 2007 Micron Technology, Inc. Methods for isolating portions of a loop of pitch-multiplied material and related structures
10515801, Jun 04 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Pitch multiplication using self-assembling materials
4568601, Oct 19 1984 International Business Machines Corporation Use of radiation sensitive polymerizable oligomers to produce polyimide negative resists and planarized dielectric components for semiconductor structures
4586980, Feb 20 1984 Canon Kabushiki Kaisha Pattern forming method
4596070, Jul 13 1984 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, 13500 NORTH CENTRAL EXPRESSWAY, DALLAS, TX 75265 A DE CORP Interdigitated IMPATT devices
4599136, Oct 03 1984 International Business Machines Corporation Method for preparation of semiconductor structures and devices which utilize polymeric dielectric materials
4631803, Feb 14 1985 Texas Instruments Incorporated Method of fabricating defect free trench isolation devices
4661204, Oct 25 1985 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method for forming vertical interconnects in polyimide insulating layers
4663832, Jun 29 1984 International Business Machines Corporation Method for improving the planarity and passivation in a semiconductor isolation trench arrangement
4689871, Sep 24 1985 Texas Instruments Incorporated Method of forming vertically integrated current source
4707218, Oct 28 1986 International Business Machines Corporation Lithographic image size reduction
4753901, Nov 15 1985 MagnaChip Semiconductor, Ltd Two mask technique for planarized trench oxide isolation of integrated devices
4755478, Aug 13 1987 International Business Machines Corporation Method of forming metal-strapped polysilicon gate electrode for FET device
4776922, Oct 30 1987 International Business Machines Corporation Formation of variable-width sidewall structures
4796070, Jan 15 1987 Intersil Corporation Lateral charge control semiconductor device and method of fabrication
4799990, Apr 30 1987 IBM Corporation Method of self-aligning a trench isolation structure to an implanted well region
4803181, Mar 27 1986 International Business Machines Corporation Process for forming sub-micrometer patterns using silylation of resist side walls
4838991, Oct 30 1987 International Business Machines Corporation Process for defining organic sidewall structures
4839305, Jun 28 1988 Texas Instruments Incorporated Method of making single polysilicon self-aligned transistor
4869781, Oct 30 1987 INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY Method for fabricating a semiconductor integrated circuit structure having a submicrometer length device element
4886763, Aug 21 1987 Oki Electric Industry Co., Ltd. Device isolation by etching trench in dielectric on substrate and epitaxially filling the trench
4931137, Dec 28 1986 Commissariat a l'Energie Atomique Process for producing mutually spaced conductor elements on a substrate
4941026, Dec 05 1986 Fairchild Semiconductor Corporation Semiconductor devices exhibiting minimum on-resistance
4980317, Apr 19 1988 INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY Method of producing integrated semiconductor structures comprising field-effect transistors with channel lengths in the submicron range using a three-layer resist system
5047117, Sep 26 1990 Micron Technology, Inc.; Micron Technology, Inc Method of forming a narrow self-aligned, annular opening in a masking layer
5055383, Nov 17 1988 International Business Machines Corporation Process for making masks with structures in the submicron range
5082795, Dec 05 1986 Semiconductor Components Industries, LLC Method of fabricating a field effect semiconductor device having a self-aligned structure
5084130, Sep 21 1985 Semiconductor Energy Laboratory Co., Ltd. Method for depositing material on depressions
5110760, Sep 28 1990 The United States of America as represented by the Secretary of the Navy; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY Method of nanometer lithography
5118383, Feb 01 1990 Siemens Aktiengesellschaft Method for producing trench structures in silicon substrates for VLSI semiconductor circuits
5118384, Apr 03 1990 International Business Machines Corporation Reactive ion etching buffer mask
5202272, Mar 25 1991 International Business Machines Corporation Field effect transistor formed with deep-submicron gate
5236853, Feb 21 1992 United Microelectronics Corporation Self-aligned double density polysilicon lines for ROM and EPROM
5254218, Apr 22 1992 Micron Technology, Inc.; Micron Technology, Inc Masking layer having narrow isolated spacings and the method for forming said masking layer and the method for forming narrow isolated trenches defined by said masking layer
5298466, Aug 07 1987 COBRAIN N V , DE REGENBOOG 11 1, 2800 MECHELEN, BELGIUM A COMPANY OF BELGIUM Method and apparatus for dry anisotropically etching a substrate
5310693, Feb 21 1992 United Microelectronics Corporation Method of making self-aligned double density polysilicon lines for EPROM
5378646, Jul 07 1994 United Microelectronics Corporation Process for producing closely spaced conductive lines for integrated circuits
5429988, Jun 13 1994 United Microelectronics Corporation Process for producing high density conductive lines
5459099, Sep 28 1990 The United States of America as represented by the Secretary of the Navy Method of fabricating sub-half-micron trenches and holes
5462767, Sep 21 1985 Semiconductor Energy Laboratory Co., Ltd. CVD of conformal coatings over a depression using alkylmetal precursors
5510286, Jul 14 1994 Hyundai Electronics Industries Co., Ltd. Method for forming narrow contact holes of a semiconductor device
5573837, Apr 22 1992 Micron Technology, Inc. Masking layer having narrow isolated spacings and the method for forming said masking layer and the method for forming narrow isolated trenches defined by said masking layer
5595941, Jun 01 1994 Renesas Electronics Corporation Method of forming fine patterns
5612255, Dec 21 1993 GLOBALFOUNDRIES Inc One dimensional silicon quantum wire devices and the method of manufacture thereof
5618383, Mar 30 1994 Texas Instruments Incorporated; Texas Instruments Incorported Narrow lateral dimensioned microelectronic structures and method of forming the same
5665997, Mar 31 1994 Texas Instruments Incorporated Grated landing area to eliminate sticking of micro-mechanical devices
5667632, Nov 13 1995 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method of defining a line width
5688723, Jun 01 1994 Renesas Electronics Corporation Method of forming fine patterns
5702976, Oct 24 1995 Round Rock Research, LLC Shallow trench isolation using low dielectric constant insulator
5710066, Jun 01 1994 Mitsubishi Denki Kabushiki Kaisha; Ryoden Semiconductor System Engineering Corporation Method of forming fine patterns
5711851, Jul 12 1996 Round Rock Research, LLC Process for improving the performance of a temperature-sensitive etch process
5767017, Dec 21 1995 International Business Machines Corporation Selective removal of vertical portions of a film
5928967, Jun 10 1996 International Business Machines Corporation Selective oxide-to-nitride etch process using C4 F8 /CO/Ar
5946566, Mar 01 1996 Ace Memory, Inc. Method of making a smaller geometry high capacity stacked DRAM device
5952246, Nov 03 1993 Advanced Micro Devices, Inc. Nitride selective, anisotropic Cl2 /He etch process
6056850, Oct 22 1996 Round Rock Research, LLC Apparatus for improving the performance of a temperature-sensitive etch process
6104038, Jun 07 1995 Round Rock Research, LLC Method for fabricating an array of ultra-small pores for chalcogenide memory cells
6127708, Apr 25 1996 NEC Electronics Corporation Semiconductor device having an intervening region between channel stopper and diffusion region
6136211, Nov 12 1997 Applied Materials, Inc Self-cleaning etch process
6139483, Jul 27 1993 Texas Instruments Incorporated Method of forming lateral resonant tunneling devices
6139647, Dec 21 1995 International Business Machines Corporation Selective removal of vertical portions of a film
6221205, Jul 12 1996 Round Rock Research, LLC Apparatus for improving the performance of a temperature-sensitive etch
6291137, Jan 20 1999 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
6300684, Jun 07 1995 Round Rock Research, LLC Method for fabricating an array of ultra-small pores for chalcogenide memory cells
6322714, Nov 12 1997 Applied Materials, Inc Process for etching silicon-containing material on substrates
6323101, Sep 03 1998 Micron Technology, Inc Semiconductor processing methods, methods of forming silicon dioxide methods of forming trench isolation regions, and methods of forming interlevel dielectric layers
6362057, Oct 26 1999 Freescale Semiconductor, Inc Method for forming a semiconductor device
6383951, Sep 03 1998 Micron Technology, Inc. Low dielectric constant material for integrated circuit fabrication
6391688, Jun 07 1995 Round Rock Research, LLC Method for fabricating an array of ultra-small pores for chalcogenide memory cells
6392913, Jun 18 1996 Round Rock Research, LLC Method of forming a polysilicon diode and devices incorporating such diode
6413875, Jul 12 1996 Round Rock Research, LLC Process and apparatus for improving the performance of a temperature-sensitive etch process
6423475, Mar 11 1999 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
6429449, Jun 07 1995 Round Rock Research, LLC Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
6440837, Jul 14 2000 Round Rock Research, LLC Method of forming a contact structure in a semiconductor device
6444531, Aug 24 2000 Infineon Technologies AG Disposable spacer technology for device tailoring
6455394, Mar 13 1998 Micron Technology, Inc Method for trench isolation by selective deposition of low temperature oxide films
6527968, Mar 27 2000 Applied Materials Inc. Two-stage self-cleaning silicon etch process
6531391, Jul 22 1996 Round Rock Research, LLC Method of fabricating a conductive path in a semiconductor device
6534368, Jan 28 1997 Round Rock Research, LLC Integrated circuit memory cell having a small active area and method of forming same
6534780, Jun 07 1995 Round Rock Research, LLC Array of ultra-small pores for memory cells
6540928, Sep 10 1999 PLASMA-THERM, LLC Magnetic pole fabrication process and device
6547975, Oct 29 1999 PLASMA-THERM, LLC Magnetic pole fabrication process and device
6563156, Mar 15 2001 Round Rock Research, LLC Memory elements and methods for making same
6607974, Jul 14 2000 Round Rock Research, LLC Method of forming a contact structure in a semiconductor device
6635951, Jul 22 1996 Round Rock Research, LLC Small electrode for chalcogenide memories
6653195, Jun 07 1995 Round Rock Research, LLC Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
6670713, Feb 23 1996 Micron Technology, Inc. Method for forming conductors in semiconductor devices
6699399, Nov 12 1997 Applied Materials, Inc Self-cleaning etch process
6700211, Feb 23 1996 Micron Technology, Inc. Method for forming conductors in semiconductor devices
6777705, May 09 1997 Round Rock Research, LLC X-point memory cell
6781212, Aug 31 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Selectively doped trench device isolation
6787054, Mar 27 2000 Two-stage etching process
6797188, Nov 12 1997 Applied Materials, Inc Self-cleaning process for etching silicon-containing material
6797612, Jul 22 1996 Round Rock Research, LLC Method of fabricating a small electrode for chalcogenide memory cells
6797978, Jun 07 1995 Round Rock Research, LLC Method for fabricating an array of ultra-small pores for chalcogenide memory cells
6831330, Jun 07 1995 Round Rock Research, LLC Method and apparatus for forming an integrated circuit electrode having a reduced contact area
6831347, Oct 24 1995 Round Rock Research, LLC Shallow trench isolation using low dielectric constant insulator
6835995, Sep 03 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Low dielectric constant material for integrated circuit fabrication
6852242, Feb 23 2001 Applied Materials, Inc Cleaning of multicompositional etchant residues
6862798, Jan 18 2002 HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Method of making a narrow pole tip by ion beam deposition
6872322, Nov 12 1997 Applied Materials, Inc Multiple stage process for cleaning process chambers
6888212, Aug 22 1997 Micron Technology, Inc. Method for trench isolation by selective deposition of low temperature oxide films
6905800, Nov 21 2000 Applied Materials, Inc Etching a substrate in a process zone
6913871, Jul 23 2002 Intel Corporation Fabricating sub-resolution structures in planar lightwave devices
6916710, Jun 07 1995 Round Rock Research, LLC Method for fabricating an array of ultra-small pores for chalcogenide memory cells
7098105, May 26 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming semiconductor structures
7115525, Sep 02 2004 Round Rock Research, LLC Method for integrated circuit fabrication using pitch multiplication
7151040, Aug 31 2004 Round Rock Research, LLC Methods for increasing photo alignment margins
7176549, Oct 24 1995 Round Rock Research, LLC Shallow trench isolation using low dielectric constant insulator
7253118, Mar 15 2005 Round Rock Research, LLC Pitch reduced patterns relative to photolithography features
7259442, Aug 31 1998 Micron Technology, Inc. Selectively doped trench device isolation
7268054, Aug 31 2004 Round Rock Research, LLC Methods for increasing photo-alignment margins
7271440, Jun 07 1995 Round Rock Research, LLC Method and apparatus for forming an integrated circuit electrode having a reduced contact area
7273809, Jul 22 1996 Round Rock Research, LLC Method of fabricating a conductive path in a semiconductor device
7361569, Aug 31 2004 Round Rock Research, LLC Methods for increasing photo-alignment margins
7368362, Aug 31 2004 Round Rock Research, LLC Methods for increasing photo alignment margins
7390746, Mar 15 2005 Round Rock Research, LLC Multiple deposition for integration of spacers in pitch multiplication process
7391070, May 26 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor structures and memory device constructions
7393789, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Protective coating for planarization
7396781, Jun 09 2005 Round Rock Research, LLC Method and apparatus for adjusting feature size and position
7413981, Jul 29 2005 Round Rock Research, LLC Pitch doubled circuit layout
7429536, May 23 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming arrays of small, closely spaced features
7435536, Sep 02 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method to align mask patterns
7439144, Feb 16 2006 ALSEPHINA INNOVATIONS INC CMOS gate structures fabricated by selective oxidation
7442976, Sep 01 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT DRAM cells with vertical transistors
7453082, May 09 1997 Round Rock Research, LLC Small electrode for a chalcogenide switching device and method for fabricating same
7455956, Sep 02 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method to align mask patterns
7476933, Mar 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical gated access transistor
7482229, Sep 01 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT DRAM cells with vertical transistors
7488685, Apr 25 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Process for improving critical dimension uniformity of integrated circuit arrays
7494922, Jul 22 1996 Round Rock Research, LLC Small electrode for phase change memories
7504730, Jul 14 2000 Round Rock Research, LLC Memory elements
7517804, Aug 31 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Selective etch chemistries for forming high aspect ratio features and associated structures
7538858, Jan 11 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Photolithographic systems and methods for producing sub-diffraction-limited features
7541632, Jun 14 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Relaxed-pitch method of aligning active area to digit line
7547640, Sep 02 2004 Round Rock Research, LLC Method for integrated circuit fabrication using pitch multiplication
7547949, May 26 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor structures and memory device constructions
7560390, Jun 02 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Multiple spacer steps for pitch multiplication
7566620, Jul 25 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT DRAM including a vertical surround gate transistor
7572572, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming arrays of small, closely spaced features
7601595, Jul 06 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Surround gate access transistors with grown ultra-thin bodies
7611944, Mar 28 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit fabrication
7611980, Aug 30 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Single spacer process for multiplying pitch by a factor greater than two and related intermediate IC structures
7626219, Jul 06 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Surround gate access transistors with grown ultra-thin bodies
7629693, Sep 02 2004 Round Rock Research, LLC Method for integrated circuit fabrication using pitch multiplication
7648919, Mar 28 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit fabrication
7651951, Mar 15 2005 Round Rock Research, LLC Pitch reduced patterns relative to photolithography features
7655387, Sep 02 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method to align mask patterns
7659208, Dec 06 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for forming high density patterns
7666578, Sep 14 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Efficient pitch multiplication process
7687342, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of manufacturing a memory device
7687408, Sep 02 2004 Round Rock Research, LLC Method for integrated circuit fabrication using pitch multiplication
7687796, Jun 07 1995 Round Rock Research, LLC Method and apparatus for forming an integrated circuit electrode having a reduced contact area
7687881, Jul 22 1996 Round Rock Research, LLC Small electrode for phase change memories
7696567, Aug 31 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor memory device
7718540, Mar 15 2005 Round Rock Research, LLC Pitch reduced patterns relative to photolithography features
7732343, Apr 07 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Simplified pitch doubling process flow
7736980, Mar 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical gated access transistor
7737039, Nov 01 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Spacer process for on pitch contacts and related structures
7759197, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of forming isolated features using pitch multiplication
7767573, Jul 29 2005 Round Rock Research, LLC Layout for high density conductive interconnects
7768051, Jul 25 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT DRAM including a vertical surround gate transistor
7772633, Sep 01 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT DRAM cells with vertical transistors
7776683, Mar 28 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit fabrication
7776744, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Pitch multiplication spacers and methods of forming the same
7790531, Dec 18 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for isolating portions of a loop of pitch-multiplied material and related structures
7795149, Jun 01 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Masking techniques and contact imprint reticles for dense semiconductor fabrication
7816262, Aug 30 2005 Micron Technology, Inc. Method and algorithm for random half pitched interconnect layout with constant spacing
7829262, Aug 31 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of forming pitch multipled contacts
7838416, Jul 22 1996 Round Rock Research, LLC Method of fabricating phase change memory cell
7842558, Mar 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Masking process for simultaneously patterning separate regions
7884022, Aug 25 2005 Round Rock Research, LLC Multiple deposition for integration of spacers in pitch multiplication process
7888721, Jul 06 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Surround gate access transistors with grown ultra-thin bodies
7902074, Apr 07 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Simplified pitch doubling process flow
7902598, Jun 24 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Two-sided surround access transistor for a 4.5F2 DRAM cell
7910288, Sep 01 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Mask material conversion
7915116, Jun 14 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Relaxed-pitch method of aligning active area to digit line
7915692, May 26 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor structure including gateline surrounding source and drain pillars
7923373, Jun 04 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Pitch multiplication using self-assembling materials
7935999, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory device
7939409, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Peripheral gate stacks and recessed array gates
7977236, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of forming a transistor gate of a recessed access device, method of forming a recessed transistor gate and a non-recessed transistor gate, and method of fabricating an integrated circuit
8003310, Apr 24 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Masking techniques and templates for dense semiconductor fabrication
8003542, Jun 02 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Multiple spacer steps for pitch multiplication
8011090, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for forming and planarizing adjacent regions of an integrated circuit
8012674, Sep 14 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Efficient pitch multiplication process
8017453, Jun 07 1995 Round Rock Research, LLC Method and apparatus for forming an integrated circuit electrode having a reduced contact area
8030217, Apr 07 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Simplified pitch doubling process flow
8030218, Mar 21 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for selectively modifying spacing between pitch multiplied structures
8030222, Aug 31 2004 Round Rock Research, LLC Structures with increased photo-alignment margins
8039348, Mar 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical gated access transistor
8043915, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Pitch multiplied mask patterns for isolated features
8048812, Mar 15 2005 Round Rock Research, LLC Pitch reduced patterns relative to photolithography features
8076208, Jul 03 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for forming transistor with high breakdown voltage using pitch multiplication technique
8076783, Jul 14 2000 Round Rock Research, LLC Memory devices having contact features
8088691, Aug 31 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Selective etch chemistries for forming high aspect ratio features and associated structures
8097910, Sep 01 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical transistors
8101497, Sep 11 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Self-aligned trench formation
8101992, May 13 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
8114573, Jun 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Topography based patterning
8115243, Jul 06 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Surround gate access transistors with grown ultra-thin bodies
8118946, Nov 30 2007 Quantum Global Technologies LLC Cleaning process residues from substrate processing chamber components
8119535, Mar 15 2005 Round Rock Research, LLC Pitch reduced patterns relative to photolithography features
8123968, Aug 25 2005 Round Rock Research, LLC Multiple deposition for integration of spacers in pitch multiplication process
8129289, Oct 05 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method to deposit conformal low temperature SiO2
8148247, Aug 30 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method and algorithm for random half pitched interconnect layout with constant spacing
8158476, Mar 28 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit fabrication
8173550, Jun 02 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for positioning spacers for pitch multiplication
8207576, Mar 15 2005 Round Rock Research, LLC Pitch reduced patterns relative to photolithography features
8207583, Mar 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory device comprising an array portion and a logic portion
8207614, May 23 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming arrays of small, closely spaced features
8211803, Nov 01 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Spacer process for on pitch contacts and related structures
8216949, Sep 02 2004 Round Rock Research, LLC Method for integrated circuit fabrication using pitch multiplication
8222105, Aug 31 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of fabricating a memory device
8227305, May 13 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
8252646, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Peripheral gate stacks and recessed array gates
8264010, Jul 29 2005 Round Rock Research, LLC Layout for high density conductive interconnects
8264061, Jul 22 1996 Round Rock Research, LLC Phase change memory cell and devices containing same
8266558, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming arrays of small, closely spaced features
8324107, Dec 06 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for forming high density patterns
8334211, Apr 25 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Process for improving critical dimension uniformity of integrated circuit arrays
8338085, Sep 02 2004 Micron Technology, Inc. Method to align mask patterns
8338959, Apr 07 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Simplified pitch doubling process flow
8343875, Sep 11 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming an integrated circuit with self-aligned trench formation
8350320, May 13 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory array and memory device
8354317, Jun 14 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Relaxed-pitch method of aligning active area to digit line
8362625, Jul 14 2000 Round Rock Research, LLC Contact structure in a memory device
8372710, Sep 01 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical transistors
8390034, Dec 18 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for isolating portions of a loop of pitch-multiplied material and related structures
8426118, Aug 31 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of forming pitch multiplied contacts
8426911, Jun 24 2005 Micron Technology, Inc. Memory device with recessed construction between memory constructions
8431971, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Pitch multiplied mask patterns for isolated features
8449805, Jun 01 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Masking techniques and contact imprint reticles for dense semiconductor fabrication
8450829, Sep 14 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Efficient pitch multiplication process
8479384, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for integrated circuit fabrication with protective coating for planarization
8481385, Aug 31 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of fabricating a memory device
8486287, Mar 19 2004 The Regents of the University of California Methods for fabrication of positional and compositionally controlled nanostructures on substrate
8486610, Sep 01 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Mask material conversion
8492282, Nov 24 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming a masking pattern for integrated circuits
8507341, Mar 28 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit fabrication
8507384, Mar 21 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for selectively modifying spacing between pitch multiplied structures
8546215, Aug 31 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of fabricating a memory device
8552526, Sep 11 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Self-aligned semiconductor trench structures
8557704, Aug 30 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Single spacer process for multiplying pitch by a factor greater than two and related intermediate IC structures
8563229, Jul 31 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Process of semiconductor fabrication with mask overlay on pitch multiplied features and associated structures
8568604, Feb 16 2006 ALSEPHINA INNOVATIONS INC CMOS gate structures fabricated by selective oxidation
8592898, Mar 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical gated access transistor
8592940, Jun 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Topography based patterning
8598041, Jun 02 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for positioning spacers in pitch multiplication
8598632, Mar 15 2005 Round Rock Research LLC Integrated circuit having pitch reduced patterns relative to photoithography features
8601410, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming arrays of small, closely spaced features
8609324, Aug 31 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of forming pitch multiplied contacts
8609523, May 13 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of making a memory array with surrounding gate access transistors and capacitors with global staggered local bit lines
8637362, May 13 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
8642474, Jul 10 2007 Advanced Micro Devices, Inc. Spacer lithography
8663532, Jun 01 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Masking techniques and contact imprint reticles for dense semiconductor fabrication
8674512, Sep 02 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method to align mask patterns
8685859, Sep 11 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Self-aligned semiconductor trench structures
8703616, Jun 09 2005 Round Rock Research, LLC Method for adjusting feature size and position
8772166, Nov 01 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Spacer process for on pitch contacts and related structures
8772840, Mar 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory device comprising an array portion and a logic portion
8786101, Jul 14 2000 Round Rock Research, LLC Contact structure in a memory device
8829602, May 26 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuits and transistor design therefor
8836023, Jun 24 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory device with recessed construction between memory constructions
8859362, Mar 28 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit fabrication
8865598, Jun 02 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for positioning spacers in pitch multiplication
8871646, Nov 24 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming a masking pattern for integrated circuits
8871648, Dec 06 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for forming high density patterns
8877639, Aug 30 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method and algorithm for random half pitched interconnect layout with constant spacing
8883644, Aug 30 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Single spacer process for multiplying pitch by a factor greater than two and related intermediate IC structures
8889020, Apr 25 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Process for improving critical dimension uniformity of integrated circuit arrays
8895232, Sep 01 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Mask material conversion
8928111, Jul 03 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Transistor with high breakdown voltage having separated drain extensions
8932960, Dec 18 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for isolating portions of a loop of pitch-multiplied material and related structures
8933508, Jun 24 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory with isolation structure
9003651, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for integrated circuit fabrication with protective coating for planarization
9035416, Sep 14 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Efficient pitch multiplication process
9048194, Mar 21 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for selectively modifying spacing between pitch multiplied structures
9076888, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Silicided recessed silicon
9082829, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming arrays of small, closely spaced features
9099314, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Pitch multiplication spacers and methods of forming the same
9099402, May 23 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit structure having arrays of small, closely spaced features
9117766, Jun 02 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for positioning spacers in pitch multiplication
9147608, Mar 28 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit fabrication
9184159, Apr 07 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Simplified pitch doubling process flow
9184161, Mar 02 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical gated access transistor
9312064, Mar 02 2015 Western Digital Technologies, INC Method to fabricate a magnetic head including ion milling of read gap using dual layer hard mask
9406331, Jun 17 2013 Western Digital Technologies, INC Method for making ultra-narrow read sensor and read transducer device resulting therefrom
9412591, Jul 31 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Process of semiconductor fabrication with mask overlay on pitch multiplied features and associated structures
9412594, Mar 28 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuit fabrication
9478497, Aug 30 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Single spacer process for multiplying pitch by a factor greater than two and related intermediate IC structures
9553082, Apr 25 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Process for improving critical dimension uniformity of integrated circuit arrays
9583381, Jun 14 2013 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for forming semiconductor devices and semiconductor device structures
9666695, Dec 18 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for isolating portions of a loop of pitch-multiplied material and related structures
9673049, Mar 09 2015 United Microelectronics Corp. Manufacturing method of patterned structure of semiconductor device
9679781, Sep 01 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for integrated circuit fabrication with protective coating for planarization
9941155, Dec 18 2007 Micron Technology, Inc. Methods for isolating portions of a loop of pitch-multiplied material and related structures
H986,
RE40842, Jul 14 2000 Round Rock Research, LLC Memory elements and methods for making same
Patent Priority Assignee Title
4042726, Sep 11 1974 Hitachi, Ltd. Selective oxidation method
4313782, Nov 14 1979 Intersil Corporation Method of manufacturing submicron channel transistors
4331708, Nov 04 1980 Texas Instruments Incorporated Method of fabricating narrow deep grooves in silicon
4334348, Jul 21 1980 Data General Corporation Retro-etch process for forming gate electrodes of MOS integrated circuits
4354896, Aug 05 1980 Texas Instruments Incorporated Formation of submicron substrate element
4454014, Dec 03 1980 UNISYS CORPORATION, A DE CORP Etched article
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 27 1983TRUMPP, HANS-JOACHIMINTERNATIONAL BUSINESS MACHINES CORPORATION, A NY CORP ASSIGNMENT OF ASSIGNORS INTEREST 0041930786 pdf
Oct 27 1983GRESCHNER, JOHANNINTERNATIONAL BUSINESS MACHINES CORPORATION, A NY CORP ASSIGNMENT OF ASSIGNORS INTEREST 0041930786 pdf
Oct 28 1983International Business Machines Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
May 13 1988M173: Payment of Maintenance Fee, 4th Year, PL 97-247.
May 13 1992M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 17 1996M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 05 19884 years fee payment window open
Sep 05 19886 months grace period start (w surcharge)
Mar 05 1989patent expiry (for year 4)
Mar 05 19912 years to revive unintentionally abandoned end. (for year 4)
Mar 05 19928 years fee payment window open
Sep 05 19926 months grace period start (w surcharge)
Mar 05 1993patent expiry (for year 8)
Mar 05 19952 years to revive unintentionally abandoned end. (for year 8)
Mar 05 199612 years fee payment window open
Sep 05 19966 months grace period start (w surcharge)
Mar 05 1997patent expiry (for year 12)
Mar 05 19992 years to revive unintentionally abandoned end. (for year 12)