A precursor device is provided for forming a surgical implant for prosthetic surgery. The device has a body or matrix of biocompatible material which is thermoplastic and electrically insulating. Embedded in the matrix is a plurality of electrically conductive fibres. Opposite ends of at least some of the fibres project outwardly from the matrix to permit heating and softening of the matrix for shaping thereof, by the application of a suitable electric potential to opposite ends of said outwardly projecting fibres.

Patent
   4506681
Priority
Nov 11 1981
Filed
Oct 26 1982
Issued
Mar 26 1985
Expiry
Oct 26 2002
Assg.orig
Entity
Large
145
9
EXPIRED
1. A precursor device for forming a surgical implant in the form of a bone prothesis which comprises a stiff moldable matrix of biocompatible thermoplastic electrically insulating material which material has sufficient rigidity for supporting bone in carrying out a load bearing function and within which is embedded a plurality of electrically conductive fibres, opposite ends of at least some of the fibres extending outwardly from the matrix and being exposed to provide electrical contacts which permit heating and softening of the matrix for shaping thereof, by the application of a suitable electric potential to said contacts.
9. A method of prosthetic surgery in which a bone prosthesis comprising a stiff matrix of biocompatible thermoplastic electrically insulating material within which is embedded a plurality of electrically conductive fibres, projecting outwardly from opposite ends of the matrix and being exposed to provide electrical contacts, is implanted in a living body, the method comprising,
heating the matrix by means of an electrical potential applied to said electrical contacts to soften the matrix,
shaping the matrix while soft into a desired permanent shape for its intended use,
causing or allowing the matrix to cool and harden into said permanent shape, and
then implanting the prosthesis into the body.
2. A precursor device as claimed in claim 1, in which the biocompatible material of the matrix is a material selected from the group consisting of polysulphone and polylactic acid.
3. A precursor device as claimed in claim 1, in which the biocompatible material of the matrix is biodegradable, and is capable of eventual at least partial absorption and excretion by a body in which it is implanted, while being replaced by invasive bodily tissue.
4. A precursor device as claimed in claim 1, in which the fibres are biocompatible.
5. A device as claimed in claim 4, in which the fibres are carbon fibres.
6. A precursor device as claimed in claim 1, in which the matrix is elongated, and in which opposite ends of the outwardly projecting fibres project out of opposite ends of the matrix where they can be gathered together in bundles.
7. A device as claimed in claim 6, in which the outwardly projecting ends of the fibres, at opposite ends of the matrix, are gathered together in bundles, by sleeves which are shrunk-fitted around opposite ends of the matrix and around the outwardly projecting fibres, said fibres projecting outwardly from the sleeves to provide the contacts and the ends of the matrix, with their associated sleeves and outwardly projecting fibres, being disposable prior to implantation.
8. A device as claimed in claim 1, in which the fibres act to reinforce the matrix and are located in the matrix to extend along predetermined paths in positions and in directions which permit both effective heating and reinforcing of the matrix to provide a proper bone support structure.
10. A method as claimed in claim 9, in which, as an initial step, an incision is made in the body where the prosthesis is to be implanted to expose the intended site of the prosthesis, after which the matrix is shaped with reference to said site to provide a prosthesis which fits said site.
11. A method as claimed in claim 10, in which the matrix is shaped by hand and its fit is estimated by eye, the prosthesis after being shaped and cooled, being located in situ in its intended site, at least once, to test its fit while it is in a condition to be heated and shaped again to improve its fit, before the prosthesis is implanted and the incision closed.
12. A method as claimed in claim 10, in which a template is inserted into the intended site of the prosthesis and shaped to correspond with the intended shape of the prosthesis, the template being removed from the site and the matrix being shaped with reference to the template to provide the matrix with the required shape.
13. A method as claimed in claim 9, in which the electrical contacts of the prosthesis are provided by having said opposite ends of the fibres project outwardly from the matrix, the method including removing at least said outwardly projecting fibres from the prosthesis after the prosthesis has been shaped into its permanent shape and before it is implanted into the body.

This invention relates to surgical implants. More particularly, the invention relates to a precursor device from which a surgical implant is formed.

According to the invention, a precursor device for forming a surgical implant comprises a matrix of biocompatible thermoplastic electrically insulating material within which is embedded a plurality of electrically conductive fibres, opposite ends of at least some of the fibres projecting outwardly from the matrix to permit heating and softening of the matrix for shaping thereof, by the application of a suitable electric potential to opposite ends of said outwardly projecting fibres.

The precursor device may typically be for a surgical implant such as a bone plate or intramedullary nail. In use, it is often desirable to have such implants shaped so that they can extend along a path which is not necessarily straight, but which may be somewhat curved to permit them to conform more or less closely with the shape of the part of the body, human or animal, for which they are intended, e.g. to extend along the surface or interior of a bone which is not necessarily straight.

The biocompatible material of the matrix may be a suitable resin, such as a polysulphone or polylactic acid. In some cases, polylactic acid may be preferred, as it is biodegradable, thereby permitting the implant to be left indefinitely in place. Thus, the biocompatible material of the matrix may be biodegradable, being capable of eventual, at least partial, absorption and excretion by a body in which it is implanted, while being replaced by invasive bodily tissue.

The fibres, particularly when the matrix is biodegradable, should preferably also be of a biocompatible material, i.e. one which is inert or gives rise to no undesirable reactions when in contact with bodily fluids. Carbon fibres are suitable for this purpose, being inert in the body while providing excellent mechanical reinforcing of the matrix and adequate conductivity for heating.

As is the case of bone plates and intramedullary nails, the implants and hence the precursor devices will often be elongated, and in such cases the outwardly projecting opposite ends of the fibres may conveniently project out of opposite ends of the matrix in bundles. Where they project from the matrix, they may be enclosed by sleeves, e.g. of heat-shrunk plastics material to hold them together in easily manageable bundles for easy attachment to an electric power source. In use, the parts of the precursor devices from which the fibres project, or at least the outwardly projecting parts of the fibres, will be removed after the shaping from the precursor device together with the sleeves, to leave the final implant, shaped and ready for use.

As mentioned above, the fibres may act to reinforce the matrix as well as heat it, being located in the matrix to extend along paths in positions and in directions which permit both effective heating of the matrix and effective reinforcing in use of the eventual implant by the fibres.

The invention extends to a method of making a device as described above, which comprises locating a plurality of electrically conductive fibres in a mould so that opposite ends of at least some of the fibres project outwardly from the mould, and causing or allowing a biocompatible thermoplastic electrically insulating material to set in the mould to form a matrix in which the fibres are embedded and from which said outwardly projecting fibre ends project.

Molten matrix material may be injected into the mould after the fibres have been located in the mould. Instead, matrix material in particulate form may be introduced into the mould together with the fibres, being melted in situ prior to its being caused or allowed to set. Instead, prior to the moulding, one or more layers of the fibres may be impregnated with matrix material, the said layer or layers then being heated under pressure in the mould to melt the matrix material in situ, before the matrix material sets, to cause the layers to adhere together to form the device.

Locating the fibres in the mould may be so that they extend along paths in positions and in directions which permit both effective heating of the matrix and effective reinforcing in use of the eventual implant by the fibres.

An elongated matrix having said outwardly projecting opposite ends of the fibres projecting from opposite ends thereof may be formed, the method including the step of gathering said outwardly projecting fibre ends into two bundles, one at each end of the matrix.

In use, prior to implanting the device, the matrix will be heated, as mentioned above, by means of an electric potential applied to said opposite ends of the outwardly projecting fibres to soften the matrix, the matrix then being shaped while soft, into a desired shape for its intended use, and the device being implanted after it has been caused or allowed to harden in said desired shape, and after the outwardly projecting fibres and, if necessary, parts of the matrix have been removed to provide the eventual implant.

As an initial step, an incision may be made in the body into which the implant is to be implanted to expose the intended site of the implant, after which the matrix is shaped and one or more parts of the device are removed to provide an implant which fits said site.

The matrix may be shaped by hand, its fit being estimated by eye, the device then being cooled and located in situ in its intended site, at least once, to test its fit before the fibres are removed and the implant is implanted. Instead, a template may be inserted into the intended site of the implant and shaped to correspond with the intended shape of the implant, the template then being removed from the site and the matrix being shaped with reference to the template to provide the matrix with the required shape.

The invention will now be described, by way of example, with reference to the accompanying diagrammatic drawings, in which

FIG. 1 shows a plan view of a device according to the invention;

FIG. 2 shows a plan view of an implant formed from the device of FIG. 1;

FIG. 3 shows a detail of the interior of the implant of FIG. 2;

FIG. 4 shows a sectional side elevation of the implant of FIG. 2 in use;

FIG. 5 shows a cross-section, along line V--V in FIG. 2 of the implant of FIG. 2;

FIG. 6 shows an exploded three-dimensional view of a device according to FIG. 1 during manufacture thereof; and

FIG. 7 shows a side elevation of a pin used in the manufacture of the device of FIG. 1.

In the various Figures of the drawings, the same reference numerals designate the same parts unless otherwise specified.

In FIG. 1 of the drawings, reference numeral 10 generally designates a precursor device for forming a surgical implant in the form of a bone plate. The device comprises a body 12 in the form of a flattened elongated plate of biocompatible electrically insulating thermoplastic material, which forms a matrix wherein is embedded a plurality of carbon fibres 14, of the type typically having a diameter of about 0.008 mm.

The body 12 is substantially flat and straight, having parallel longitudinal side edges 16, and two series of equally spaced holes 18 extending along its length, the holes of the one series being staggered relative to the holes of the other series, and each series being adjacent one of the side edges, but it will be appreciated that in smaller plates, a single series of holes can be used.

The holes are intended for studs whereby the eventual bone plate (17 in FIG. 2) will be attached to a bone, and are thus countersunk as at 20 on one side of the body 12. On the other side of the body 12, the bone plate has two longitudinally extending ribs 22, along its side edges 16, to aid in seating of that side of the body 12 against a bone.

The device 10 is formed (see FIG. 3) by winding and laying down a plurality of skeins or tows 24 of carbon fibres 14 around a plurality of pins or pegs 26 in a mould. The tows 24 can be wound according to any suitable arrangement whereby they are arranged to extend in directions, and to be located in positions where they will best, or at least sufficiently, serve to resist or combat anticipated stresses during use, and where they will provide for at least effective dispersion of heat throughout the matrix, as described hereunder. A suitable arrangement for one tow is shown in FIG. 3.

The tow 24 shown in FIG. 3 can start to be laid down at either of its ends 28, to finish at its opposite end 28. Several tows are laid down on top of each other, and they can follow similar but different paths, e.g. starting at the other end of the mould, so that each tow does not only criss-cross itself, but criss-crosses the adjacent tows, so that the tows together form an effective reinforcing and heating medium.

When sufficient, say 3, tows have been laid in position, the matrix material can then be injected into the mould in molten form, or introduced as a powder into the mould and melted in situ, and allowed to cool and harden, the pegs 26 forming the openings 18. The ends of the tows will project, as shown at 28, from the ends of the mould, and will be clamped these to prevent molten matrix from running out of the ends of the mould.

When the matrix has set, the device is removed from the mould, and sleeves 30 are shrink-wrapped around the ends of the body 12, where the tows project from the body, to retain the fibres 14 in bundles as at 28 in FIG. 1, which can easily be dealt with.

It should be appreciated that the pattern shown in FIG. 3 is merely representative, and any desired pattern which is effective for reinforcing and heating can be used to lay down the tows, provided that their ends 28 project from the ends of the mould, as shown in FIG. 3.

In use, e.g. in the repair of a broken femur 32 as shown in FIG. 4, it will often be found that the femur 32 is not necessarily straight, and as femurs can be of different shapes and sizes, it is unproductive to have different shapes and sizes for the body 12 of the bone plate. The device 10 of FIG. 1 is thus shaped and bent to conform with the bone 32.

In use, the bone 32, e.g. having a diagonal break 34, is exposed and the bone portions are arranged so that they abut in the correct relationship and alignment at the break at 34.

The bundles of fibres 28 are then connected to the output terminals of a suitable electrical power source, such as a transformer, and sufficient potential and current are applied to the fibres 14 to heat them and the matrix 12 sufficiently to soften the matrix. The surgeon will then grip the body 12, e.g. with suitable hand-held clamps, tongs or the like, and will shape and bend the body 12 by eye, until it conforms in shape with the bone 32 so that it can be laid against the bone to follow and abut the outer surface of the bone against which it is laid, as closely as possible. During the shaping, the device can be cooled from time to time by dipping it in a saline solution, and can be placed against the bone to see how good the fit is. Instead, a flexible template can be used, the template being shaped to have a curvature corresponding to that of the bone, and the device being compared with the template to determine the fit.

When an adequate fit has been obtained, the ends of the device 10 are cut by means of suitable cutters, to form the bone plate 17 shown in FIG. 2 and FIG. 4, and the bone plate is then attached to the bone by drilling suitable holes 36 in the bone registering with the holes 18, and by using suitable bone screws, or, as shown, studs 38 having heads 40 and expandable shanks 42 to hold the bone plate in position. The shanks 42 are expanded in the holes 36 to grip the bone 32, the heads 40 being received at 20 in the body 12 of the bone plate, where the holes 18 are countersunk.

The side of the bone plate having the ribs 22 is that which abuts the bone 32, and it can be seen from FIG. 4 that where the bone changes shape or direction as at 44, the bone plate is correspondingly shaped to abut against the bone. This would be impossible were the bone plate to be straight.

Further aspects of the invention are that the holes 18 can be dispensed with, and the surface of the bone plate having the countersunk mouths at 20 to the holes 18 can be provided with a plurality of longitudinally spaced bosses, ribs, or grooves.

With this embodiment, several narrower bone plates can be placed alongside the bone 32, spaced laterally from one another, and can be held in position by suitable plastics straps. This can provide for better access of oxygen, blood and other bodily fluids to the bone, and these bone plates will usually be provided over a sector of the circumferential periphery of the bone, when seen in cross-section, the remainder of the bone being undisturbed, except for the straps which extend circumferentially around the bone and bone plates to hold the bone plates in position.

The straps, like the studs 38, may be made of some suitable biocompatible and possibly biodegradable material.

Another way of making the device of FIG. 1, is by impregnating the matrix material into one or more layers of the fibres, and heating the layers together in a mould to melt the matrix material under pressure in the mould to form the device. Thus, for example, the layers of fibres can be saturated with a saturated solution of polysulphone in a suitable solvent such as N-methyl pyrrolidone-2, after which the solvent can be evaporated at a suitable temperature (for N-methyl-pyrrolidone-2, 100°C is suitable) to leave the layers impregnated with the solid thermoplastic Solute residue, ready for heating in the mould.

In FIG. 6, reference numeral 46 generally designates a device of this type during manufacture. An exploded view is shown, comprising four layers of carbon fibres designated 48 to 54 respectively. Layers 48 and 54 are identical and comprise body portions 56 which are elongate rectangular, having the same outline as the body 12 of FIG. 1. These body portions comprise a multiplicity of essentially parallel carbon fibres 14 which have been impregnated with matrix material and dried as described above, the matrix material causing the fibres to adhere together. At opposite ends of the body portion 56 the fibres 14 are not impregnated and will form the bundles 28 of FIG. 1. These layers 48 and 54 can conveniently be cut from larger sheets of pre-impregnated parallel carbon fibres which have strips of unimpregnated fibres along opposite edges at the ends of the fibres, the cuts being parallel to the fibres.

The layers 50 and 52 have the same outline as the body portions 56 of the layers 48 to 54, and are cut from similar sheets of pre-impregnated carbon fibres in a similar fashion, except that the cuts are at an angle to the direction of the fibres of about 40°-45°. The layers 48 to 54 are assembled together as shown in FIG. 5, with the layers 48 and 54 outermost, and the layers 50 and 52 sandwiched therebetween with their fibres extending diagonally or at an inclination relative to the fibres of the layers 48 and 54, and in opposite directions, so that the fibres of the layers 50 and 52 criss-cross, and also criss-cross the fibres of the layers 48 and 54.

The layers 48 to 54 typically have a thickness of about 0.5-2 mm, and as many as are necessary are used, the four shown in FIG. 6 being merely illustrative. However, two layers of the type 50, 52, with their fibres criss-crossing, should always be sandwiched between a pair of layers of the type 48, 54, and layers of the type 48, 54 will typically be outermost in the eventual laminate. Naturally, if desired, layers of the type 50,52 can be omitted, and it will be appreciated that they function only for mechanical reinforcing, the layers 48, 54 acting in use to heat the matrix as well as to provide strength.

The layers 48 to 54 are sandwiched in the order described above, in the mould with the fibre ends at 28 projecting out of the mould and are then heated under a suitable pressure and temperature (e.g. 300°C for polysulphone) to cause the matrix material to melt and, after cooling and setting, to stick the layers together to form a unitary body 12. The sleeves 30 may then be applied as described above.

To form the holes 18 (see FIG. 1), after heating and before final pressing, pegs or pins 26 of the type shown in FIG. 7 are inserted into the mould at the desired positions to form the holes. From FIG. 7 it will be seen that these pins have points 26.1 for easy insertion through the sandwich of layers with no more than marginal damage to the fibres 14 which are pushed aside during insertion, and the pins 26 have tapered roots or bases 26.2 for forming the countersinking at 20 (see FIG. 1). Similar pins 26 may be used for the method of manufacture described with reference to FIG. 3, although the points 26.1 are not needed in that case.

The invention provides the advantage that a surgical implant precursor is provided which can easily be shaped in situ for a close fit in position in a body undergoing surgery, e.g. to fit against a bone being repaired.

Mundell, Peter J.

Patent Priority Assignee Title
10022228, Nov 30 2009 DePuy Synthes Products, Inc. Expandable implant
10058393, Oct 21 2015 P Tech, LLC Systems and methods for navigation and visualization
10076377, Jan 05 2013 P Tech, LLC Fixation systems and methods
10159515, Jul 03 2014 Acumed LLC Bone plate with movable joint
10238378, Oct 26 2004 P Tech, LLC Tissue fixation system and method
10265128, Mar 20 2002 P Tech, LLC Methods of using a robotic spine system
10278747, Jul 03 2007 MEDACTA INTERNATIONAL S.A. Medical implant
10368924, May 03 2006 P Tech, LLC Methods and devices for trauma welding
10368953, Mar 20 2002 P Tech, LLC Robotic system for fastening layers of body tissue together and method thereof
10376259, Oct 05 2005 P Tech, LLC Deformable fastener system
10390817, Feb 13 2007 P Tech, LLC Tissue fixation system and method
10441269, Oct 05 2005 P Tech, LLC Deformable fastener system
10456180, Jul 22 2002 Acumed LLC Adjustable bone plates
10517584, Feb 13 2007 P Tech, LLC Tissue fixation system and method
10765484, Oct 21 2015 P Tech, LLC Systems and methods for navigation and visualization
10813764, Oct 26 2004 P Tech, LLC Expandable introducer system and methods
10869728, Mar 20 2002 P Tech, LLC Robotic surgery
10932869, Mar 20 2002 P Tech, LLC Robotic surgery
10959791, Mar 20 2002 P Tech, LLC Robotic surgery
11013542, Feb 22 2005 P Tech, LLC Tissue fixation system and method
11033306, Dec 18 2009 Charles River Engineering Solutions and Technologies, LLC Articulating tool and methods of using
11083504, Oct 10 2008 Acumed LLC Bone fixation system with opposed mounting portions
11129645, Feb 07 2006 P Tech, LLC Methods of securing a fastener
11134995, Feb 07 2006 P Tech, LLC Method and devices for intracorporeal bonding of implants with thermal energy
11219446, Oct 05 2005 P Tech, LLC Deformable fastener system
11246638, May 03 2006 P Tech, LLC Methods and devices for utilizing bondable materials
11253296, Feb 07 2006 P Tech, LLC Methods and devices for intracorporeal bonding of implants with thermal energy
11278331, Feb 07 2006 P TECH LLC Method and devices for intracorporeal bonding of implants with thermal energy
11317974, Oct 21 2015 P Tech, LLC Systems and methods for navigation and visualization
11457958, Oct 26 2004 P Tech, LLC Devices and methods for stabilizing tissue and implants
11684430, Oct 21 2015 P Tech, LLC Systems and methods for navigation and visualization
11744651, Oct 21 2015 P Tech, LLC Systems and methods for navigation and visualization
11801044, Feb 13 2007 P Tech, LLC Tissue fixation system and method
11911083, Oct 10 2008 Acumed LLC Bone fixation system with opposed mounting portions
4832686, Jun 24 1986 Method for administering interleukin-2
4898186, Sep 11 1986 Gunze Limited Osteosynthetic pin
4913903, Feb 04 1987 ALZA Corporation Post-surgical applications for bioerodible polymers
4917699, May 16 1988 ZIMMER TECHNOLOGY, INC Prosthetic ligament
5037442, Aug 30 1988 Sulzer Brothers Limited Fixing stem for a prosthesis
5163960, Jun 28 1990 P Tech, LLC Surgical devices assembled using heat bondable materials
5163962, Aug 30 1990 Biomet Manufacturing Corp Composite femoral implant having increased neck strength
5282863, Jun 10 1985 ZIMMER SPINE, INC Flexible stabilization system for a vertebral column
5522904, Oct 13 1993 Biomet Manufacturing, LLC Composite femoral implant having increased neck strength
5593425, Jun 28 1990 P Tech, LLC Surgical devices assembled using heat bonable materials
5714105, Jun 04 1992 Sulzer Medizinaltechnik AG Method of making an endoprosthesis of compact thermoplastic composite material
5735875, Jun 28 1990 P Tech, LLC Surgical devices assembled using heat bondable materials
5921986, Feb 06 1998 Bonutti Skeletal Innovations LLC Bone suture
5928267, Jun 28 1990 P TECH LLC; ADVANCED SKELETAL INNOVATIONS LLC; Bonutti Skeletal Innovations LLC Interconnecting bone across a fracture
6045551, Jun 01 1999 Bonutti Skeletal Innovations LLC Bone suture
6059817, Jun 28 1990 P Tech, LLC Surgical devices assembled using heat bondable materials
6117160, Feb 06 1998 Bonutti Skeletal Innovations LLC Bone suture
6203565, Jun 28 1990 P Tech, LLC Surgical devices assembled using heat bondable materials
6238395, Feb 06 1998 Bonutti Skeletal Innovations LLC Method of treating a fractured bone
6395293, Jul 24 1989 Atrix Laboratories Biodegradable implant precursor
6464713, Jun 28 1990 P Tech, LLC Body tissue fastening
6503267, Jun 28 1990 P Tech, LLC Surgical devices assembled using heat bondable materials
6638279, Feb 06 1998 Bonutti Skeletal Innovations LLC Method of positioning body tissue relative to a bone
6908466, Jun 28 1990 P Tech, LLC Surgical devices having a biodegradable material with a therapeutic agent
6997940, Feb 06 1998 Bonutti Skeletal Innovations LLC Bone suture assembly
7090676, Nov 19 2002 Acumed LLC Adjustable bone plates
7128753, Jun 28 1990 P Tech, LLC Surgical devices having a polymeric material with a therapeutic agent and methods for making same
7153309, Nov 19 2002 Acumed LLC Guide system for bone-repair devices
7189237, Nov 19 2002 Acumed LLC Deformable bone plates
7201752, Jul 22 2002 Acumed LLC Bone fusion system
7208013, Jun 28 1990 P Tech, LLC Composite surgical devices
7217290, Jun 28 1990 P Tech, LLC Surgical devices containing a heat bondable material with a therapeutic agent
7326212, Nov 19 2002 Acumed LLC Bone plates with reference marks
7481825, Feb 06 1998 Bonutti Skeletal Innovations LLC Apparatus and method for treating a fracture of a bone
7537596, Jun 20 2003 Acumed LLC Bone plates with intraoperatively tapped apertures
7537603, Jul 22 2002 Acumed LLC Bone fusion system
7537604, Oct 17 2003 Acumed LLC Bone plates with slots
7578825, Apr 19 2004 Acumed LLC Placement of fasteners into bone
7635365, Aug 28 2003 Bone plates
7695501, Aug 28 2003 Bone fixation system
7704251, Nov 19 2002 Acumed LLC Adjustable bone plates
7717945, Jun 20 2003 Acumed LLC Orthopedic systems
7854750, Aug 27 2002 Bonutti Skeletal Innovations LLC Apparatus and method for securing a suture
7879072, Aug 01 1997 Bonutti Skeletal Innovations LLC Method for implanting a flowable fastener
7967820, May 03 2006 P Tech, LLC Methods and devices for trauma welding
8083741, Jun 07 2004 Synthes USA, LLC Orthopaedic implant with sensors
8147514, Feb 06 1998 Bonutti Skeletal Innovations LLC Apparatus and method for securing a portion of a body
8162977, Aug 27 2002 Bonutti Skeletal Innovations LLC Method for joining implants
8177819, Apr 22 2004 Acumed LLC Expanded fixation of bones
8226598, Sep 24 1999 TOLMAR THERAPEUTICS, INC Coupling syringe system and methods for obtaining a mixed composition
8425574, Jul 22 2002 Acumed, LLC Bone fixation with a bone plate attached to a fastener assembly
8496657, Feb 07 2006 P Tech, LLC Methods for utilizing vibratory energy to weld, stake and/or remove implants
8568417, Dec 18 2009 Charles River Engineering Solutions and Technologies, LLC Articulating tool and methods of using
8617185, Feb 13 2007 P Tech, LLC Fixation device
8617208, Mar 13 2000 P Tech, LLC Method of using ultrasonic vibration to secure body tissue with fastening element
8632573, Aug 28 2003 Bone fixation system
8747439, Mar 13 2000 Bonutti Skeletal Innovations LLC Method of using ultrasonic vibration to secure body tissue with fastening element
8777618, Sep 17 2007 MEDACTA INTERNATIONAL S A Medical implant II
8808329, Feb 06 1998 ADVANCED SKELETAL INNOVATIONS LLC; Bonutti Skeletal Innovations LLC Apparatus and method for securing a portion of a body
8814902, May 03 2000 Bonutti Skeletal Innovations LLC Method of securing body tissue
8845687, Aug 19 1996 Bonutti Skeletal Innovations LLC Anchor for securing a suture
8845699, Aug 09 1999 Bonutti Skeletal Innovations LLC Method of securing tissue
8932330, Feb 17 2004 Bonutti Skeletal Innovations LLC Method and device for securing body tissue
9060767, Apr 30 2003 P Tech, LLC Tissue fastener and methods for using same
9067362, Mar 13 2000 Bonutti Skeletal Innovations LLC Method of using ultrasonic vibration to secure body tissue with fastening element
9089323, Feb 22 2005 P Tech, LLC Device and method for securing body tissue
9138222, Feb 17 2004 Bonutti Skeletal Innovations LLC Method and device for securing body tissue
9149281, Mar 20 2002 P Tech, LLC Robotic system for engaging a fastener with body tissue
9155544, Mar 20 2002 P Tech, LLC Robotic systems and methods
9173647, Feb 22 2005 P Tech, LLC Tissue fixation system
9173650, May 03 2006 P Tech, LLC Methods and devices for trauma welding
9192395, Mar 20 2002 P Tech, LLC Robotic fastening system
9226828, Oct 26 2004 P Tech, LLC Devices and methods for stabilizing tissue and implants
9237910, Jan 26 2012 Acute Innovations LLC Clip for rib stabilization
9271741, Mar 20 2002 P Tech, LLC Robotic ultrasonic energy system
9271766, Oct 26 2004 P Tech, LLC Devices and methods for stabilizing tissue and implants
9271779, Mar 20 2002 P Tech, LLC Methods of using a robotic spine system
9308033, Jul 22 2002 Acumed LLC Adjustable bone plates
9398927, Jul 03 2007 MEDACTA INTERNATIONAL S A Medical implant
9402668, Feb 13 2007 P Tech, LLC Tissue fixation system and method
9402725, Nov 30 2009 DEPUY SYNTHES PRODUCTS, INC Expandable implant
9421005, Feb 07 2006 P Tech, LLC Methods and devices for intracorporeal bonding of implants with thermal energy
9439642, May 03 2006 P Tech, LLC Methods and devices for utilizing bondable materials
9457125, Sep 17 2007 MEDACTA INTERNATIONAL S A Medical implant with electromagnetic radiation responsive polymer and related methods
9463012, Oct 05 2005 P Tech, LLC Apparatus for guiding and positioning an implant
9486227, Mar 20 2002 P Tech, LLC Robotic retractor system
9545268, Oct 26 2004 P Tech, LLC Devices and methods for stabilizing tissue and implants
9579129, Oct 26 2004 P Tech, LLC Devices and methods for stabilizing tissue and implants
9585725, Mar 20 2002 P Tech, LLC Robotic arthroplasty system
9610073, Feb 07 2006 P Tech, LLC Methods and devices for intracorporeal bonding of implants with thermal energy
9629687, Mar 20 2002 P Tech, LLC Robotic arthroplasty system
9743963, May 03 2006 P Tech, LLC Methods and devices for trauma welding
9750496, Aug 27 2002 P TECH LLC System for securing a portion of a body
9770238, Dec 03 2001 P Tech, LLC Magnetic positioning apparatus
9775657, Sep 30 2011 Acute Innovations LLC Bone fixation system with opposed mounting portions
9808297, Oct 10 2008 Acute Innovations LLC Bone fixation system with opposed mounting portions
9808318, Mar 20 2002 P Tech, LLC Robotic arthroplasty system
9814453, Oct 05 2005 P Tech, LLC Deformable fastener system
9867706, Oct 26 2004 P Tech, LLC Tissue fastening system
9877793, Mar 20 2002 P Tech, LLC Robotic arthroplasty system
9884451, Mar 13 2000 Bonutti Skeletal Innovations LLC Method of using ultrasonic vibration to secure body tissue
9888916, Mar 09 2004 P Tech, LLC Method and device for securing body tissue
9924986, Dec 18 2009 Charles River Engineering Solutions and Technologies, LLC Articulating tool and methods of using
9949771, Mar 08 2013 Intramedullary apparatus and methods of treating bone fracture using the same
9956015, Jul 03 2014 Acumed LLC Bone plate with movable joint
9962162, Apr 30 2003 P Tech, LLC Tissue fastener and methods for using same
9980717, Feb 22 2005 P Tech, LLC Device and method for securing body tissue
9980761, Feb 22 2005 P Tech, LLC Tissue fixation system and method
9986994, Mar 13 2000 P Tech, LLC Method and device for securing body tissue
9999449, Oct 26 2004 P Tech, LLC Devices and methods for stabilizing tissue and implants
RE46582, Jun 07 2004 DePuy Synthes Products, Inc. Orthopaedic implant with sensors
Patent Priority Assignee Title
4029091, Aug 12 1974 Osteosynthesis
4170990, Jan 28 1977 FRIED. KRUPP Gesellschaft mit beschrankter Haftung Method for implanting and subsequently removing mechanical connecting elements from living tissue
4187558, Oct 25 1977 Cutter Laboratories, Inc. Prosthetic ligament
4329748, Jul 03 1980 Mollura Industries Double pancake waterbed mattress
DE2920223,
GB1414303,
GB629153,
GB646823,
GB841779,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 01 1982MUNDELL, PETER J SOUTH AFRICAN INVENTIOSL DEVELOPMENT CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST 0040620845 pdf
Oct 26 1982South African Inventions Development Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Aug 05 1985ASPN: Payor Number Assigned.
Oct 25 1988REM: Maintenance Fee Reminder Mailed.
Mar 26 1989EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 26 19884 years fee payment window open
Sep 26 19886 months grace period start (w surcharge)
Mar 26 1989patent expiry (for year 4)
Mar 26 19912 years to revive unintentionally abandoned end. (for year 4)
Mar 26 19928 years fee payment window open
Sep 26 19926 months grace period start (w surcharge)
Mar 26 1993patent expiry (for year 8)
Mar 26 19952 years to revive unintentionally abandoned end. (for year 8)
Mar 26 199612 years fee payment window open
Sep 26 19966 months grace period start (w surcharge)
Mar 26 1997patent expiry (for year 12)
Mar 26 19992 years to revive unintentionally abandoned end. (for year 12)