A smokeless, low noise electrosurgical device includes a tubular housing having a passage extending axially therethrough, with one end of the passage connected to a source of negative gauge pressure. The other, inlet end of the housing is provided with an electrosurgical cutting device or cauterizing probe extending therefrom. The inlet to the passage comprises a wide opening having side walls which converge to a relatively narrow port in flow communication with the passage in the housing. The port is significantly narrower than the passage, resulting in significantly reduced noise generated by the fluid flow into the inlet and through the passage.
|
4. A smokeless, low noise electrosurgical device, including a tubular housing having a passage extending axially therethrough, one end of said passage adapted to be connected to a source of negative gauge pressure, the other end including a closed, generally transverse end wall, an electrosurgical cutting device connected to and extending from said housing adjacent to the other end of said passage, an inlet adjacent to said electrosurgical cutting device, comprising a wide opening having side walls which converge to a relatively narrow port, said port extending through said end wall, said port being significantly narrower than said passage, resulting in significantly reduced noise generated by the fluid flow into the inlet and through said passage.
1. In a device for removing smoke and vapor from a generation site by a vacuum induction device, apparatus for reducing acoustic energy generated by the vacuum induction device, including a housing, a bore extending through said housing, means for connecting one end of said bore to a source of negative gauge pressure; intake means at the other end of said bore for receiving ambient atmosphere by vacuum induction, including an intake port disposed at said other end of said bore, said intake port including an outermost opening, a tapered wall extending smoothly inwardly from said intake port to said bore and defining a narrow throat at the inner end thereof, said bore comprising a cylindrical passage having a diameter substantially greater than said throat, said connecting means comprising an end wall at said other end of said bore having a central opening therethrough, said end wall extending generally transverse to the axis of said cylindrical passage, whereby said throat is connected directly to said opening formed centrally in said end wall.
2. The device of
3. The device of
|
In modern surgical practice it is frequently necessary or desirable to employ electrosurgical tools to effect cutting and simultaneous electrocoagulation of blood and other fluids at the surgical site. A common product of electrocoagulation is smoke and vapor which can obscure the surgical site. Also, the smoke and vapor is generally irritating or noxious to the surgeon and the operting room staff. Thus, prior art tools generally have been provided with suction inlet means directly adjacent to the electrocoagulation member to remove the offensive gases and vapors as they are generated.
These surgical tools are generally relatively small, and the suction inlet is likewise small and narrow. Because of the high fluid flow rate required to remove substantially all of the smoke and vapor which is generated, the suction inlet of a typical prior art device is known to emit a hissing noise which is surprisingly loud. Although this suction noise is not a problem during short term exposure, many surgical procedures are sufficiently time consuming that the hissing noise becomes a significant irritant to the surgeon and others in the immediate area. This noise can also contribute to the fatigue of the surgeon and the operating room personnel.
In recent years the use of laser surgical devices has grown rapidly, and these devices also tend to create large amounts of smoke and vapor. Thus these devices are generally also provided with vacuum induction means adjacent to the laser impact site for immediate removal of the smoke and vapor byproducts. As more of these instruments come into use, it has been noted that the noise radiated by the vacuum induction means is extremely aversive, due to the amplitude and constancy of the noise.
The present invention generally comprises an improved device for removing from a surgical site or the like the noxious smoke and vapor generated as a byproduct of procedures such as electrocoagulation, laser surgery, and the like. A salient feature of the invention is the attenuation of the noise created by the fluid flow into the device, resulting in greatly reduced irritation and fatigue to the surgeon or user.
A device includes a tubular housing having a passage extending axially therethrough, with one end of the passage connected to a source of negative gauge pressure. The other, inlet end of the housing is provided with an electrosurgical cutting device, cauterizing probe, or laser output port extending therefrom. The inlet to the passage comprises a wide opening having side walls which converge to a relatively narrow port in flow communication with the passage in the housing. The port is significantly narrower than the passage, so that the fluid flow decelerates as it enters the passage. The noise created by the fluid flow in the passageway, often perceived as hissing or whistling, is reduced by the lowered fluid velocity. Also, the narrow port extending to the inlet blocks the transmission of the noise to the exterior of the device, resulting in significantly reduced noise in the area immediately adjacent to the device.
FIG. 1 is a partial cross-sectional view of a typical prior art device for removing smoke and vapor from a site of electrocoagulation or laser ablative surgery or the like.
FIG. 2 is a perspective view of the low noise device of the present invention for removing smoke and vapor from a site of electrocoagulation or laser ablative surgery or the like.
FIG. 3 is a cross-sectional view of the device of the present invention as shown in FIG. 2.
The present invention generally comprises an improved device for removing smoke, vapor and gases from a localized generation site, such as a site of electrocoagulation, laser ablation, or the like. A significant feature of the invention is the reduction in noise compared to similar prior art devices.
In the prior art, it is known to remove such smoke and/or vapor by vacuum induction into a closed channel. For example, with regard to FIG. 1, a typical device includes a tubular member 26 having a bore or passageway 23 extending therethrough, with one end 27 connected to a source of negative gauge pressure. The negative guage pressure in the bore 23 causes the ambient atmosphere to be drawn into the inlet end 29 of the device, the inrushing air carrying with it the offensive smoke, gases, and vapor from the site of generation. The bore 23 is generally linear and formed with a constant diameter or width.
It may be appreciated that the inrushing fluid flow is responsible for generating noise of substantial amplitude. It is theorized that the noise is fluid mechanical in origin; the fluid boundary layer in the bore 23 expands as the flow proceeds through the bore, constricting the channel and increasing the velocity. The higher velocity flow causes the majority of the objectional sound, which is radiated from the opening 29. The flared opening 29 acts as a megaphone to effectively couple the generated noise to the area immediately adjacent to the device.
The present invention generally includes an improved device 11 comprised of a tubular housing 12 having a large diameter bore 17 formed therein. An end plug 16 is secured to the proximal end of the housing 12 in sealing fashion, with an opening 18 extending through the plug and connected to a tube 21. The tube 21 extends to a source of negative gauge pressure. An electrosurgical scalpel or the like extends from the distal end of the housing 12, and is connected to an electrical cable 14. The cable 14 extends through the wall of the housing 12 to the proximal end thereof, and is connected to a suitable electrocoagulation control device. Alternatively, a laser output port may be secured to the distal end of the housing 12, and the cable 14 may be replaced by a fiber optic cable connected to a laser light source.
A significant feature of the invention is the provision of an inlet opening 19 which is only slightly narrower in diameter than the housing itself. THe wall of the inlet opening 19 tapers and narrows to a throat 20 which is substantially smaller in diameter than both the opening 19 and the bore 17. In the preferred embodiment the wall is tapered conically at an angle of 20°-30°, and the throat 20 is approximately one third the diameter of the bore 17.
The negative pressure within the bore causes a vacuum induction of ambient atmosphere into the opening 19, carrying with it the noxious smoke and other airborne vapors, aerosols, gases, and the like. As the inrushing fluid enters the bore 17, the increased width of the flow path causes the fluid flow to decelerate substantially, rather than to accelerate, as in the prior art devices. The reduced fluid velocity lowers the amplitude of the sound generated by the fluid flow through the device. Moreover, the sound generated by the fluid flow in the bore 17 is captured and muffled within the bore by the narrow throat 20, thereby decoupling the sound from the exterior of the device.
Research and testing of the invention have determined that the sound intensity measured directly adjacent to the inlet 19 is approximately 1500 times less than the sound intensity at a similar location relative to the prior art device of FIG. 1. At a proximal position the sound intensity is reduced by a factor of 80. It may be appreciated that these substantial reductions result in significantly reduced irritation and fatigue to the user of the device.
It should be noted that the present invention may be used in conjunction with non-medical devices, such as industrial ablative lasers, soldering stations, and the like.
Lash, Robert E., Hatfield, Gregory A.
Patent | Priority | Assignee | Title |
10080600, | Jan 21 2015 | Covidien LP | Monopolar electrode with suction ability for CABG surgery |
10631917, | Aug 28 2012 | Covidien LP | Adjustable electrosurgical pencil |
10631923, | Sep 20 2013 | Covidien LP | Adjustable electrosurgical pencil |
10765472, | May 16 2017 | MEGADYNE MEDICAL PRODUCTS, INC | Electrosurgical instrument extension attachment |
10772997, | May 15 2014 | SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC | Tissue parcelization method and apparatus |
11000329, | Aug 28 2012 | Covidien LP | Adjustable electrosurgical pencil with slidable vent tube |
11039876, | May 16 2017 | MEGADYNE MEDICAL PRODUCTS, INC | Hand-held instrument with extendable shaft locking mechanism |
11241279, | Sep 20 2013 | Covidien LP | Adjustable electrosurgical pencil |
11547463, | Sep 21 2018 | Covidien LP | Smoke evacuation electrosurgical pencil with adjustable electrode and vent tube |
11564732, | Dec 05 2019 | Covidien LP | Tensioning mechanism for bipolar pencil |
11596466, | Sep 09 2019 | Covidien LP | Surgical instrument with evacuation port and method |
11864819, | Aug 28 2012 | Covidien LP | Adjustable electrosurgical pencil with slidable vent tube |
11992261, | May 16 2017 | MEGADYNE MEDICAL PRODUCTS, INC | Locking mechanism and sliding conductor for extendable shaft |
5135526, | Apr 22 1991 | COOPERSURGICAL, INC | Electro-cautery speculum |
5192267, | Jan 23 1989 | Vortex smoke remover for electrosurgical devices | |
5234428, | Jun 11 1991 | KAUFMAN, DAVID I | Disposable electrocautery/cutting instrument with integral continuous smoke evacuation |
5242442, | Sep 18 1991 | Smoke aspirating electrosurgical device | |
5376089, | Aug 02 1993 | Conmed Corporation | Electrosurgical instrument |
5451222, | Mar 16 1994 | Desentech, Inc. | Smoke evacuation system |
5460602, | Jan 23 1989 | Smoke evacuator for smoke generating devices | |
6146353, | Sep 22 1998 | Covidien AG; TYCO HEALTHCARE GROUP AG | Smoke extraction device |
6747218, | Sep 20 2002 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical haptic switch including snap dome and printed circuit stepped contact array |
6935459, | Feb 25 2003 | Stryker Instruments | Resonating device for a pneumatic surgical instrument |
6986768, | Dec 15 2000 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical electrode shroud |
7060064, | Feb 04 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical electrode shroud |
7156842, | Nov 20 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil with improved controls |
7156844, | Nov 20 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil with improved controls |
7235072, | Feb 20 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Motion detector for controlling electrosurgical output |
7241294, | Nov 19 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same |
7244257, | Nov 05 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil having a single button variable control |
7393354, | Jul 25 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil with drag sensing capability |
7500974, | Jun 28 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrode with rotatably deployable sheath |
7503917, | Oct 06 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil with improved controls |
7537594, | May 01 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Suction coagulator with dissecting probe |
7582244, | Dec 15 2000 | Covidien AG | Electrosurgical electrode shroud |
7621909, | Oct 05 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil with drag sensing capability |
7789872, | Mar 23 2005 | SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC | Tissue transplantation method and apparatus |
7794449, | Mar 23 2005 | SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC | Tissue transplantation method and apparatus |
7828794, | Aug 25 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Handheld electrosurgical apparatus for controlling operating room equipment |
7879033, | Nov 20 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil with advanced ES controls |
7955327, | Feb 20 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Motion detector for controlling electrosurgical output |
7959633, | Nov 20 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil with improved controls |
8016824, | Jul 25 2002 | Covidien AG | Electrosurgical pencil with drag sensing capability |
8062286, | Mar 23 2005 | SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC | Tissue transplantation method and apparatus |
8100902, | Jun 28 2005 | Covidien AG | Electrode with rotatably deployable sheath |
8128622, | Nov 05 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical pencil having a single button variable control |
8162937, | Jun 27 2008 | Covidien LP | High volume fluid seal for electrosurgical handpiece |
8231620, | Feb 10 2009 | Covidien LP | Extension cutting blade |
8235987, | Dec 05 2007 | Covidien LP | Thermal penetration and arc length controllable electrosurgical pencil |
8449540, | Nov 20 2003 | Covidien AG | Electrosurgical pencil with improved controls |
8460289, | Jun 28 2005 | Covidien AG | Electrode with rotatably deployable sheath |
8506565, | Aug 23 2007 | Covidien LP | Electrosurgical device with LED adapter |
8591509, | Mar 31 2008 | Covidien LP | Electrosurgical pencil including improved controls |
8597292, | Mar 31 2008 | Covidien LP | Electrosurgical pencil including improved controls |
8622997, | Mar 23 2005 | SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC | Tissue transfer method and apparatus |
8632536, | Mar 31 2008 | Covidien LP | Electrosurgical pencil including improved controls |
8636733, | Mar 31 2008 | Covidien LP | Electrosurgical pencil including improved controls |
8663218, | Mar 31 2008 | Covidien LP | Electrosurgical pencil including improved controls |
8663219, | Mar 31 2008 | Covidien LP | Electrosurgical pencil including improved controls |
8668688, | May 05 2006 | Covidien AG | Soft tissue RF transection and resection device |
8887770, | Mar 17 2011 | SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC | Vessel fill control method and apparatus |
8945124, | Dec 05 2007 | Covidien LP | Thermal penetration and arc length controllable electrosurgical pencil |
9198720, | Mar 31 2008 | Covidien LP | Electrosurgical pencil including improved controls |
9259260, | Mar 14 2013 | MEGADYNE MEDICAL PRODUCTS, INC | Fluid evacuation device |
9375253, | Mar 14 2013 | MEGADYNE MEDICAL PRODUCTS, INC | Electrosurgical instrument |
9468709, | Nov 12 2012 | SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC | Syringe fill method and apparatus |
9581942, | Mar 23 2005 | SUMMIT MEDICAL, INC ; SANTA BARBARA MEDCO, INC ; Shippert Enterprises, LLC | Tissue transfer method and apparatus |
9987074, | Aug 28 2012 | Covidien LP | Adjustable electrosurgical pencil with slidable vent tube |
D521641, | Nov 13 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical pencil with three button control |
Patent | Priority | Assignee | Title |
1611475, | |||
3031760, | |||
3589363, | |||
3782497, | |||
3906955, | |||
3990452, | Jun 13 1975 | Fibra-Sonics, Inc. | Medical machine for performing surgery and treating using ultrasonic energy |
4192336, | Dec 29 1975 | The Boeing Company | Noise suppression refracting inlet for jet engines |
4531934, | Dec 21 1982 | GORKOVSKY GOSUDARSTVENNY MEDITSINSKY INSTITUT IMENI S M KIROVA, USSR, GORKY, PLOSCHAD MININA I POZHARSKOGO, CORP OF SOVIET UNION | Apparatus for the fragmentation and aspiration of ocular tissue |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 13 1985 | HATFIELD, GREGORY A | M D ENGINEERING, A CORP OF CALIFORNIA | ASSIGNMENT OF ASSIGNORS INTEREST | 004541 | /0703 | |
Dec 13 1985 | LASH, ROBERT E | M D ENGINEERING, A CORP OF CALIFORNIA | ASSIGNMENT OF ASSIGNORS INTEREST | 004541 | /0703 | |
Apr 11 1986 | MD Engineering | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 05 1991 | REM: Maintenance Fee Reminder Mailed. |
Aug 04 1991 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 04 1990 | 4 years fee payment window open |
Feb 04 1991 | 6 months grace period start (w surcharge) |
Aug 04 1991 | patent expiry (for year 4) |
Aug 04 1993 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 04 1994 | 8 years fee payment window open |
Feb 04 1995 | 6 months grace period start (w surcharge) |
Aug 04 1995 | patent expiry (for year 8) |
Aug 04 1997 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 04 1998 | 12 years fee payment window open |
Feb 04 1999 | 6 months grace period start (w surcharge) |
Aug 04 1999 | patent expiry (for year 12) |
Aug 04 2001 | 2 years to revive unintentionally abandoned end. (for year 12) |