The present disclosure is directed to electrosurgical pencils having variable controls. In one aspect, the electrosurgical pencil, includes an elongated housing, an electrocautery blade supported within the housing and extending distally from the housing, the electrocautery blade being connected to a source of electrosurgical energy, an activation button supported on the housing, the activation button being movable from a first position to at least a subsequent position, and a transducer electrically connected between the activation button and the source of electrosurgical energy. The transducer is configured to transmit an electrical output signal to the electrosurgical energy source correlating to the movement of the activation button. The source of electrosurgical energy correspondingly supplies an amount of electrosurgical energy to the electrocautery blade dependant upon the electrical output signal.

Patent
   8128622
Priority
Nov 05 2002
Filed
Jul 09 2007
Issued
Mar 06 2012
Expiry
Feb 13 2027

TERM.DISCL.
Extension
1196 days
Assg.orig
Entity
Large
31
463
EXPIRED<2yrs
26. A surgical device, comprising:
a housing having an activation switch disposed thereon, the activation switch adapted to couple to an electrosurgical energy source, the activation switch including a knob slidingly disposed within a guide channel defined within said housing; and
the activation switch being selectively moveable in a first direction within the guide channel to set a desired electrosurgical energy level and the activation switch being selectively moveable in a second direction to activate the electrosurgical energy source.
32. A method for using a surgical device to administer electrosurgical energy to a patient, comprising the steps of:
providing a surgical device, including:
a housing having an activation switch disposed thereon, the activation switch adapted to couple to an electrosurgical energy source, the activation switch including a knob slidingly disposed within a guide channel defined within said housing; and
the activation switch being selectively moveable in a first direction within the guide channel to set a desired electrosurgical energy level and the activation switch being selectively moveable in a second direction to activate the electrosurgical energy source;
sliding the knob to set the intensity level of electrosurgical energy; and
depressing the knob to activate electrosurgical energy.
17. An electrosurgical device, comprising:
a single activation button movable from a first position to a plurality of subsequent positions in order to activate a plurality of diverse therapeutic effects and to vary an amount of electrosurgical energy transmitted by the electrosurgical device; and
a transducer electrically connected between the activation button and a source of electrosurgical energy, said transducer being configured to transmit a discrete electrical output signal to the electro surgical energy source correlating to each of said plurality of subsequent positions of the activation button, the source of electrosurgical energy correspondingly supplying an amount of electrosurgical energy to the electrocautery blade dependant upon the discrete electrical output signal and at least one of said plurality of diverse therapeutic effects.
35. An electrosurgical system for performing electrosurgery on a patient, the electrosurgical system comprising:
an electrosurgical energy source that provides electrosurgical energy;
an active electrode which supplies electrosurgical energy to a patient;
an electrosurgical return electrode which returns electrosurgical energy to the electrosurgical energy source; and
a surgical device, including:
a housing having an activation switch disposed thereon, the activation switch adapted to couple to the electrosurgical energy source, the activation switch including a knob slidingly disposed within a guide channel defined within said housing; and
the activation switch being selectively moveable in a first direction within the guide channel to set a desired electrosurgical energy level and the activation switch being selectively moveable in a second direction to activate the clectrosurgical energy source.
1. An electrosurgical pencil, comprising:
an elongated housing;
an electrocautery blade supported within the housing and extending distally therefrom, the electrocautery blade being connected to a source of electrosurgical energy;
an activation button supported on the housing;
a transducer electrically connected between the activation button and the source of electrosurgical energy, the transducer being configured to transmit an electrical output signal to the electrosurgical energy source correlating to the movement of the activation button, the source of electrosurgical energy correspondingly supplying an amount of electrosurgical energy to the electrocautery blade dependant upon the electrical output signal; and
a control pendent operatively coupled to the housing and electrically connected to the source of electrosurgical energy, the control pendent including at least one control knob operatively supported thereon, wherein the at least one control knob is configured and adapted to enable selection of a particular emission signal from the source of electrosurgical energy.
6. An electrosurgical system, comprising:
a source of electrosurgical energy; and
an electrosurgical pencil connectable to the source of electrosurgical energy, the electrosurgical pencil including:
an elongated housing;
an electrocautery blade supported within the housing and extending distally from the housing, said electrocautery blade being connected to the source of electrosurgical energy;
a single activation button supported on the housing, said activation button being movable from a first position to a plurality of subsequent positions in order to activate a plurality of therapeutic effects and to vary an amount of electrosurgical energy transmitted to the electrocautery blade; and
a transducer electrically connected between the activation button and the source of electrosurgical energy, said transducer being configured to transmit a discrete electrical output signal to the electrosurgical energy source correlating to each of said plurality of subsequent positions of the activation button, the source of electrosurgical energy correspondingly supplying an amount of electrosurgical energy to the electrocautery blade dependant upon the discrete electrical output signal and at least one of said plurality of diverse therapeutic effects.
2. The electrosurgical instrument according to claim 1, wherein the at least one control knob is electrically connected to the activation button.
3. The electrosurgical instrument according to claim 2, wherein the at least one control knob is electrically connected to the source of electrosurgical energy.
4. The electrosurgical instrument according to claim 2, wherein the control pendent is configured and adapted to be removably attached to at least one of a user's wrist, a user's garment, and an operating table.
5. The electrosurgical instrument according to claim 4, wherein the control pendent includes at least one knob for selecting a function of the electrosurgical instrument and at least one other knob for selecting a power output of the source of electrosurgical energy.
7. An electrosurgical system according to claim 6, wherein the activation button is configured to initiate transmission of the electrical output signal.
8. An electrosurgical system according to claim 7, wherein the activation button is configured for movement from a first position to a series of discrete, subsequent positions wherein each subsequent position corresponds to a specific amount of electrosurgical energy being transmitted to the electrocautery blade.
9. An electrosurgical system according to claim 7, wherein the transducer is a pressure-sensitive transducer.
10. An electrosurgical system according to claim 9, wherein the pressure transducer is configured to produce at least two output signals based upon the movement of the activation button.
11. An electrosurgical system according to claim 10, wherein one of the at least two signals produced by the pressure transducer transmits a signal to the electrosurgical generator corresponding to a cutting-type waveform and wherein the other of the at least two signals produced by the pressure transducer transmits a signal to the source of electrosurgical energy corresponding to a coagulating-type waveform.
12. An electrosurgical system according to claim 9, wherein the pressure transducer is configured to transmit a range of output signals to the source of electrosurgical energy in response to the position of the activation button, the range of output signals corresponding to a range of energy delivered from the source of electrosurgical energy to the electrocautery blade.
13. The electrosurgical system according to claim 6, wherein the activation button includes a slide-switch which is slidingly supported on the housing and is configured for selective movement along a slide path formed in the housing.
14. The electrosurgical system according to claim 13, wherein the transducer is configured to produce an output signal to the source of electrosurgical energy which corresponds to the movement of the slide-switch within the slide path of the housing.
15. The electrosurgical system according to claim 13, wherein the slide-switch transmits a range of output signals to the source of electrosurgical energy in response to the position of the slide-switch, the range of output signals varying from when the slide-switch is at a proximal-most position to when the slide switch is at a distal-most position.
16. The electrosurgical system according to claim 13, wherein the slide-switch is adapted to be depressed to initiate movement thereof and activation of the electrocautery blade.
18. An electrosurgical device according to claim 17, wherein the activation button is configured for movement from a first position to a series of discrete, subsequent positions wherein each subsequent position corresponds to a specific amount of electrosurgical energy being transmitted by the electrosurgical device.
19. An electrosurgical device according to claim 18, wherein the transducer is configured to produce at least two output signals based upon the movement of the activation button.
20. An electrosurgical device according to claim 19, wherein one of the at least two signals produced by the pressure transducer transmits a signal to the electrosurgical generator corresponding to a cutting-type waveform and wherein the other of the at least two signals produced by the pressure transducer transmits a signal to the source of electrosurgical energy corresponding to a coagulating-type waveform.
21. An electrosurgical device according to claim 17, wherein the transducer is configured to transmit a range of output signals to the source of electrosurgical energy in response to the position of the activation button, the range of output signals corresponding to a range of energy emission from the source of electrosurgical energy to the electrosurgical device.
22. The electrosurgical device according to claim 17, wherein the activation button includes a slide-switch which is slidingly supported along a slide path formed in the device.
23. The electrosurgical device according to claim 22, wherein the transducer is configured to produce an output signal to the source of electrosurgical energy which corresponds to the movement of the slide-switch within the slide path.
24. The electrosurgical device according to claim 22, wherein the slide-switch transmits a range of output signals to the source of electrosurgical energy in response to the position of the slide-switch, the range of output signals varying from when the slide-switch is at a proximal-most position to when the slide switch is at a distal-most position.
25. The electrosurgical device according to claim 22, wherein the slide-switch is adapted to be depressed to initiate movement thereof and a transmission of electrosurgical energy.
27. The surgical device according to claim 26, wherein the activation switch is operable to set the intensity level of electrosurgical energy before electrosurgical energy is activated.
28. The surgical device according to claim 26, wherein the knob is biased in an inactivated position.
29. The surgical device according to claim 26, wherein the guide channel includes a plurality of discreet positions, the knob being slideable between the plurality of discreet positions.
30. The surgical device according to claim 29, wherein tactile feedback is provided to a user when the knob is slid between the plurality of discreet positions on the guide channel.
31. The surgical device according to claim 26, wherein the device is an electrosurgical pencil.
33. The method according to claim 32, wherein the activation switch is operable to set the intensity level of electrosurgical energy before electrosurgical energy is activated.
34. The method according to claim 32, wherein the guide channel includes a plurality of discreet positions, the knob being slideable between the plurality of discreet positions.
36. The electrosurgical system according to claim 35, wherein the activation switch is operable to set the intensity level of clectrosurgical energy before electrosurgical energy is activated.
37. The electrosurgical system according to claim 35, wherein the guide channel includes a plurality of discreet positions, the knob being slideable between the plurality of discreet positions.

The present application is a Divisional Application which claims the benefit of and priority to U.S. application Ser. No. 10/701,796, filed on Nov. 5, 2003 now U.S. Pat. No. 7,244,257, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 60/424,352 filed on Nov. 5, 2002, the entire contents of each of which are incorporated herein by reference.

1. Technical Field

The present disclosure relates generally to electrosurgical instruments and, more particularly, to an electrosurgical pencil having a single button variable control.

2. Background of Related Art

Electrosurgical instruments have become widely used by surgeons in recent years. Accordingly, a need has developed for equipment and instruments which are easy to handle, are reliable and are safe in an operating environment. By and large, most electrosurgical instruments typically include a hand-held instrument, or pencil, which transfers radio-frequency (RF) electrical energy to a tissue site. The electrosurgical energy is returned to the electrosurgical source via a return electrode pad positioned under a patient (i.e., a monopolar system configuration) or a smaller return electrode positionable in bodily contact with or immediately adjacent to the surgical site (i.e., a bipolar system configuration). The waveforms produced by the RF source yield a predetermined electrosurgical effect known generally as electrosurgical fulguration.

In particular, electrosurgical fulguration includes the application of electric spark to biological tissue, for example, human flesh or the tissue of internal organs, without significant cutting. The spark is produced by bursts of radio-frequency electrical energy generated from an appropriate electrosurgical generator. Generally, fulguration is used to either coagulate, cut or seal body tissue. Coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dehydrated/dried. Electrosurgical cutting, on the other hand, includes applying an electrical spark to tissue in order to produce a cutting effect. Meanwhile, sealing is defined as the process of liquefying the collagen in the tissue so that it forms into a fused mass.

As used herein the term “electrosurgical pencil” is intended to include instruments which have a handpiece which is attached to an active electrode and which is used to coagulate, cut and/or seal tissue. Typically, the electrosurgical pencil may be operated by a handswitch or a foot switch. The active electrode is an electrically conducting element which is usually elongated and may be in the form of a thin flat blade with a pointed or rounded distal end. Alternatively, the active electrode may include an elongated narrow cylindrical needle which is solid or hollow with a flat, rounded, pointed or slanted distal end. Typically electrodes of this sort are known in the art as “blade”, “loop” or “snare”, “needle” or “ball” electrodes.

As mentioned above, the handpiece of the electrosurgical pencil is connected to a suitable electrosurgical energy source (i.e., generator) which produces the radio-frequency electrical energy necessary for the operation of the electrosurgical pencil. In general, when an operation is performed on a patient with an electrosurgical pencil, electrical energy from the electrosurgical generator is conducted through the active electrode to the tissue at the site of the operation and then through the patient to a return electrode. The return electrode is typically placed at a convenient place on the patient's body and is attached to the generator by a conductive material.

Current electrosurgical instrument systems allow the surgeon to change between two pre-configured settings (i.e., coagulation and cutting) via two discrete buttons disposed on the electrosurgical pencil itself. Other electrosurgical instrument systems allow the surgeon to increment the power applied when the coagulating or cutting button of the instrument is depressed by adjusting or closing a switch on the electrosurgical generator. The surgeon then needs to visually verify the change in the power being applied by looking at various displays and/or meters on the electrosurgical generator. In other words, all of the adjustments to the electrosurgical instrument and parameters being monitored during the use of the electrosurgical instrument are typically located on the electrosurgical generator. As such, the surgeon must continually visually monitor the electrosurgical generator during the surgical procedure.

Accordingly, the need exists for electrosurgical instruments which do not require the surgeon to continually monitor the electrosurgical generator during the surgical procedure. In addition, the need exists for electrosurgical instruments whose power output can be adjusted without the surgeon having to turn his vision away from the operating site and toward the electrosurgical generator.

The present disclosure is directed to an electrosurgical instrument having variable controls. In accordance with one aspect of the present disclosure the electrosurgical instrument, includes an elongated housing, an electrocautery blade supported within the housing and extending distally from the housing, the electrocautery blade being connected to a source of electrosurgical energy, an activation button supported on the housing, the activation button being movable from a first position to at least a subsequent position, and a transducer electrically connected between the activation button and the source of electrosurgical energy. The transducer is configured to transmit an electrical output signal to the electrosurgical energy source correlating to the movement of the activation button. The source of electrosurgical energy correspondingly supplies an amount of electrosurgical energy to the electrocautery blade dependant upon the electrical output signal.

In one aspect, the activation button is depressed to initiate transmission of the electrical output signal. Preferably, the activation button is movable from a first position to a series of discrete, subsequent positions wherein each subsequent position corresponds to a specific amount of electrosurgical energy being transmitted to the electrocautery blade.

It is envisioned that the transducer is a pressure-sensitive transducer. Preferably, the pressure transducer produces at least two output signals based upon the movement of the activation button. It is further envisioned that one of the at least two signals of the pressure transducer transmits a signal to the electrosurgical generator corresponding to the emission of energy having a cutting-type waveform and the other of the at least two signals of the pressure transducer transmits a signal to the electrosurgical generator corresponding to the emission of energy having a coagulating-type waveform.

Preferably, the pressure transducer transmits a range of output signals to the source of electrosurgical energy in response to the position of the activation button. The range of output signals corresponds to a range of energy emission from the source of electrosurgical energy to the electrocautery blade.

In a further aspect, the activation button includes a slide-switch which is slidingly supported on the housing and is configured for selective movement along a slide path formed in the housing. The transducer is configured to produce an output signal to the source of electrosurgical energy which corresponds to the movement of the slide-switch within the slide path of the housing.

Preferably, the slide-switch transmits a range of output signals to the source of electrosurgical energy in response to the position of the slide-switch, the range of output signals varying from when the slide-switch is at a proximal-most position to when the slide switch is at a distal-most position. The slide-switch is configured and adapted to be depressed to initiate movement thereof and activation of the electrocautery blade.

In another aspect of the present disclosure, the electrosurgical pencil further includes a control pendent operatively coupled to the housing and electrically connected to the source of electrosurgical energy. The control pendent includes at least one control knob operatively supported thereon, wherein the at least one control knob is configured and adapted to enable selection of a particular emission signal from the electrosurgical generator.

Preferably, the at least one control knob is electrically connected to the activation button. It is envisioned that the at least one control knob is electrically connected to the source of electrosurgical energy.

It is contemplated that the control pendent is configured and adapted to be removably attached to at least one of a user's wrist, user's garment and operating table. It is further contemplated that the control pendent includes at least one knob for selecting a function of the electrosurgical instrument and at least one other knob for selecting a power output of the source of electrosurgical energy.

These and other objects will be more clearly illustrated below by the description of the drawings and the detailed description of the preferred embodiments.

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.

FIG. 1 is a partially broken, side elevational view of one embodiment of an electrosurgical pencil in accordance with the present disclosure;

FIG. 2 is a partially broken, side elevational view of an alternate embodiment of the electrosurgical pencil, in accordance with the present disclosure, shown in a first position;

FIG. 3 is a partially broken, side elevational view of the electrosurgical pencil of FIG. 2 shown in a second position; and

FIG. 4 is a perspective view of another alternate embodiment of an electrosurgical pencil shown being held in the hand of a surgeon (shown in phantom).

Embodiments of the presently-disclosed electrosurgical pencil will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. In the drawings, and in the description which follows, the term “proximal”, as is traditional, will refer to the end of the electrosurgical pencil which is closest to the operator, while the term “distal” will refer to the end of the electrosurgical pencil which is furthest from the operator.

FIG. 1 sets forth a partially broken, side elevational view of an electrosurgical pencil constructed in accordance with one embodiment of the present disclosure and generally referenced by numeral 100. While the following description will be directed towards electrosurgical pencils it is envisioned that the features and concepts of the present disclosure can be applied to any electrosurgical type instrument. Electrosurgical pencil 100 includes an elongated housing 102 configured and adapted to support a blade receptacle 104 at a distal end thereof which, in turn, receives a replaceable electrocautery blade 106 therein. A distal end portion 108 of blade 106 extends distally from receptacle 104 while a proximal end portion 110 of blade 106 is retained within the distal end of housing 102. Preferably, electrocautery blade 106 is fabricated from a conductive type material, i.e., stainless steel or is coated with an electrically conductive material.

As shown, electrosurgical pencil 100 is coupled to a conventional electrosurgical generator “G” via a cable 112. Cable 112 includes a transmission wire 114 which electrically interconnects the electrosurgical generator “G” with the proximal end portion 110 of blade 106. Cable 112 further includes a control loop 116 which electrically interconnects an activation button 124, supported on an outer surface 107 of the housing 102, with the electrosurgical generator “G”.

By way of example only, electrosurgical generator “G” may be any one of the following, or equivalents thereof: the “FORCE FX”, “FORCE 2” or “FORCE 4” generators manufactured by Valleylab, Inc. a division of Tyco Healthcare, LP, Boulder, Colo. Preferably, the electrosurgical generator “G” can be variable in order to provide appropriate first RF signals (e.g., 1 to 120 watts) for tissue cutting and appropriate second RF signals (e.g., 1 to 300 watts) for tissue coagulation. Preferably, an exemplary electrosurgical generator “G” is disclosed in commonly assigned U.S. Pat. No. 6,068,627 to Orszulak, et al., the entire content of which are hereby incorporated by reference. The electrosurgical generator disclosed in the '627 patent includes, inter alia, an identifying circuit and a switch therein. In general, the identifying circuit is responsive to information received from a generator and transmits a verification signal back to the generator. Meanwhile, the switch is connected to the identifying circuit and is responsive to signaling received from the identifying circuit.

Turning back to FIG. 1, as mentioned above, electrosurgical pencil 100 includes activation button 124 which is supported on an outer surface 107 of housing 102. Activation button 124 is operatively connected to a pressure transducer 126 (or other variable power switch) which, in turn, controls the RF electrical energy supplied from generator “G” to electrosurgical blade 106. More particularly, pressure transducer 126 electrically couples to control loop 116 and is configured to regulate (or variably control) the amount of RF energy transmitted to electrocautery blade 106 and/or to variably control the waveform output from electrosurgical generator “G”.

In use, pressure transducer 126 converts input energy of one form into output energy of another. For example, pressure transducer 126 initially converts a pressure input from activation button into an output signal which is transmitted to electrosurgical generator “G”. In turn, generator “G” transmits a corresponding amount of energy (or an appropriate waveform output) to electrocautery blade 106 via transmission wire 114. As such, by selectively applying pressure to switch 124 to apply pressure to pressure transducer 126, the surgeon can variably control the amount of energy and/or the waveform output of the electrosurgical generator “G”. For example, by applying a relatively light pressure against activation button 124, and, in turn, to pressure transducer 126, in the direction of arrow “P” in FIG. 1, thus depressing pressure transducer 126 a relatively small amount, a “cutting-type” waveform is transmitted. By applying a relatively heavy pressure against activation button 124, thus depressing pressure transducer 126 a relatively large amount, a “coagulating-type” waveform is transmitted. As can be appreciated, an intermediate pressure applied against activation button 124 will produce varying combinations of “cutting-type” waveforms and “coagulating-type” waveforms.

More particularly and in use, when activation button 124 is depressed in direction “P”, pressure is applied against transducer 126 which, in turn, converts the input pressure into a corresponding electrical signal. The electrical signal is transmitted, via control loop 116, to electrosurgical generator “G”. Electrosurgical generator “G”, in turn, processes the electrical signal received from pressure transducer 126 and transmits an output signal (i.e., RF energy, waveform, power, voltage, current, duty, cycle, frequency and the like), via transmission wire 114, to electrocautery blade 106. As can be appreciated, the pressure “P” applied to activation button 124 against the pressure transducer 126, directly determines the overall level of output of electrosurgical generator “G” and, in turn, the ultimate function of electrocautery blade 106. Since activation button 124 can be depressed to a variety of positions the surgeon is able to create a pallet of varying therapeutic effects ranging from a pure “cutting” mode to a pure “coagulating” mode and variations therebetween. It is envisioned that the switch 124 may include a plurality of incremental steps (not shown) to provide better tactile feedback to the surgeon. It is also contemplated that the incremental steps may include audible feedback to further enhance the surgeon's tactile feedback.

As such, the surgeon need not visually verify the new setting of electrosurgical pencil 100 by continuously checking the display, meters or gauges on electrosurgical generator “G”. In particular, the surgeon will be able to make changes to the electrosurgical pencil, as needed, from the operative field.

It is contemplated that activation button 124 can included other electromechanical sensors, e.g., optical sensors, pneumatic sensors, accelerometer, position sensors, etc. to provide sensory feedback to generator “G”. As mentioned above, the activation button 124 may also include some measure of tactile feedback which is felt by the surgeon's finger and/or some measure of audible feedback produced by the activation button 124 (e.g., a “click”), by the electrosurgical generator “G” (e.g., a “tone”) and/or an auxiliary sound-producing device such as a buzzer (not shown).

While RF energy and waveforms have been disclosed as being controlled by the position of or pressure applied to pressure transducer 126, it is envisioned that other electrosurgical parameters can be controlled by pressure transducer 126, such as, for example, power, voltage, current, duty, cycle and/or frequency.

Turning now to FIGS. 2-3, an alternate electrosurgical pencil 200 is shown and includes a slide-switch 224 which is slidably supported atop a slide bed 228 disposed within the outer surface 107 of housing 102. Preferably, slide-switch 224 is operatively connected to transducer 226 which is, in turn, electrically connected to control loop 116 in a similar manner as described above.

In the present embodiment, as slide-switch 224 is displaced, either proximally or distally along activation line “X”, transducer 226 converts the degree of displacement of slide-switch 224 into a signal which is transmitted to electrosurgical generator “G” via transmission line 116. Generator “G”, in turn, transmits a corresponding amount of RF energy (or an appropriate waveform output) to electrocautery blade 106. As such, slide-switch 224, in combination with transducer 226, allows the surgeon to variably control the amount of energy and/or the waveform output of electrosurgical generator “G”. For example, when slide-switch 224 is in a proximal-most position, as seen in FIG. 2, a “cutting-type” waveform is selected. Meanwhile, by displacing slide-switch 224 to a distal-most position, as seen in FIG. 3, a “coagulating-type” waveform is selected. It is envisioned that positioning slide-switch 224 at discrete locations along the length of slide bed 228 will induce a combination of “cutting-type” waveforms and “coagulating-type” waveforms. Accordingly, the surgeon can select the therapeutic effect desired by simply displacing slide-switch 224 to an appropriate position along slide bed 228.

It is envisioned that slide bed 228 may be configured such that slide-switch 224 “clicks” into discrete positions along slide bed 228 from the proximal-most position to the distal-most position. The “clicking” provides the surgeon with both tactile and audible feedback as to the location of slide-switch 224. It is further envisioned that electrosurgical pencil 200 may be activated and deactivated (i.e., energized or de-energized) by depressing and then releasing sliding button 224.

Turning now to FIG. 4, an alternate embodiment of an electrosurgical pencil 300 is shown and includes at least one activation button 324 supported on the outer surface 107 of housing 102. It is envisioned that two activation button 324, 325 may also be employed. In accordance with this embodiment, electrosurgical pencil 300 preferably includes a pendent 350 which is configured and adapted to be removably attached to or stuck to the surgeons wrist or coat sleeve “C” (as seen in FIG. 4), the patients drapes or robe, or a Mayo stand. It is envisioned that the pendent 350 may also be removably attached by any known means such as clips, Velcro™, band, belt, elastic, or the like.

As seen in FIG. 4, pendent 350 is electrically connected to electrosurgical pencil 300 via a connecting wire 352. Optionally, pendent 350 can be electrically connected to electrosurgical generator “G” via a connecting wire 354 (shown in phantom in FIG. 4). Pendent 350 preferably includes at least some of, if not all of, the variable controls 356 of electrosurgical pencil 300. Variable controls 356 permit the surgeon to select the function desired (i.e., cutting or coagulating) and to vary the power being supplied by electrosurgical generator “G” to electrosurgical pencil 300. Variable controls 356, include, but are not limited to knobs, buttons, switches, dials, slides, touch screens, etc.

In use, the surgeon can select the function and level of power from pendent 350 instead of electrosurgical generator “G”. The surgeon then uses or activates and deactivates electrosurgical pencil 300 in a conventional manner by depressing and releasing activation button 324 or 325. Accordingly, during use of electrosurgical pencil 300, if the surgeon desires to vary or adjust the output or function of electrosurgical pencil 300, the surgeon simply needs to adjust variable controls 356 of pendent 350. As such, the surgeon does not need to adjust the controls of the electrosurgical generator “G” or take his/her focus and/or attention away from the patient and the surgical procedure being performed. In addition, in combination or alternatively, a status monitor may also be employed to provide visual and audible indications corresponding to the operational status of the generator “G”. For example, one such status monitor is described in commonly owned U.S. Pat. No. 6,402,741 entitled “CURRENT AND STATUS MONITOR”, the entire contents of which are hereby incorporated by reference herein.

While embodiments of electrosurgical instruments according to the present disclosure have been described herein it is not intended that the disclosure be limited there and the above description should be construed as merely exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Schmaltz, Dale Francis, Reschke, Arlan James, Podhajsky, Ronald J

Patent Priority Assignee Title
10070915, Jan 26 2010 Covidien LP Hernia repair system
10342607, Aug 04 2015 Brian K., Reaux; Quedon, Baul Electro-surgical pencil with an adjustable vacuum nozzle
10492849, Mar 15 2013 Cynosure, LLC Surgical instruments and systems with multimodes of treatments and electrosurgical operation
10980571, Aug 15 2017 Covidien LP Occlusion devices, systems, and methods
11090082, May 12 2017 Covidien LP Colpotomy systems, devices, and methods with rotational cutting
11213320, May 12 2017 Covidien LP Uterine manipulator with detachable cup and locking occluder
11253308, May 12 2017 Covidien LP Colpotomy systems, devices, and methods with rotational cutting
11344292, Jun 14 2018 Covidien LP Trans-vaginal cuff anchor and method of deploying same
11389226, Mar 15 2013 Cynosure, LLC Surgical instruments and systems with multimodes of treatments and electrosurgical operation
11419669, Dec 09 2015 BIO-PROTECH INC Electrosurgical device having easily adjustable length
11730517, May 12 2020 Covidien LP Robotic uterine manipulators with rollable sleeves
11819259, Feb 07 2018 Cynosure, LLC Methods and apparatus for controlled RF treatments and RF generator system
8460289, Jun 28 2005 Covidien AG Electrode with rotatably deployable sheath
8771263, Jan 24 2008 Syneron Medical Ltd Device, apparatus, and method of adipose tissue treatment
8778003, Sep 21 2008 SYNERON MEDICAL LTD INDUSTRIAL ZONE; Syneron Medical Ltd Method and apparatus for personal skin treatment
8900231, Sep 01 2004 Syneron Medical Ltd Method and system for invasive skin treatment
8906015, Sep 01 2004 Syneron Medical, Ltd Method and system for invasive skin treatment
8936593, Jan 24 2008 Syneron Medical Ltd. Device, apparatus, and method of adipose tissue treatment
9271793, Sep 21 2008 Syneron Medical Ltd. Method and apparatus for personal skin treatment
9278230, Feb 25 2009 Syneron Medical Ltd Electrical skin rejuvenation
9301588, Jan 17 2008 Syneron Medical Ltd Hair removal apparatus for personal use and the method of using same
9358072, Jan 15 2010 Immersion Corporation Systems and methods for minimally invasive surgical tools with haptic feedback
9685281, Sep 29 2013 Covidien LP Safety mechanism for medical treatment device and associated methods
D679014, Dec 05 2011 Surgical instrument
D725606, Mar 17 2012 JOHNSON & JOHNSON SURGICAL VISION, INC Remote control for a surgical system
D758582, May 30 2015 Electrosurgery handpiece
D815738, Mar 25 2016 ZHEJIANG SHUYOU SURGICAL INSTRUMENT CO., LTD.; 5 STAR MEDICAL CORPORATION Electrosurgical pencil
D924180, Oct 10 2019 JOHNSON & JOHNSON SURGICAL VISION, INC Remote control
D924181, Oct 10 2019 JOHNSON & JOHNSON SURGICAL VISION, INC Remote control
ER2553,
ER4870,
Patent Priority Assignee Title
2031682,
2102270,
2993178,
3058470,
3219029,
3460539,
3494363,
3648001,
3675655,
3699967,
3720896,
3801766,
3801800,
3825004,
3828780,
3875945,
3902494,
3906955,
3911241,
3967084, May 12 1975 DATA ENTRY PRODUCTS, INC Keyboard switch assemblies having two foot support legs on dome-shaped contact member
3974833, Mar 19 1973 Disposable electrosurgical cautery having optional suction control feature
4014343, Apr 25 1975 BIRTCHER CORPORATION, THE Detachable chuck for electro-surgical instrument
4032738, May 15 1975 BIRTCHER CORPORATION, THE Electro-surgical instrument
4034761, Dec 15 1975 The Birtcher Corporation Disposable electrosurgical switching assembly
4038984, Feb 04 1970 Electro Medical Systems, Inc. Method and apparatus for high frequency electric surgery
4112950, Oct 22 1976 Aspen Laboratories Medical electronic apparatus and components
4232676, Nov 16 1978 Corning Glass Works Surgical cutting instrument
4314559, Dec 12 1979 Corning Glass Works Nonstick conductive coating
4427006, Jan 18 1982 CONCEPT, INC , 12707 U S 19 SOUTH, CLEARWATER, FLORIDA 33546 A FLORIDA CORP Electrosurgical instruments
4443935, Mar 01 1982 Trident Surgical Corporation Process for making electrosurgical scalpel pencil
4459443, Dec 27 1982 CHERRY CORPORATION THE Tactile feedback switch
4463234, Nov 02 1983 Centralab Inc. Tactile feel membrane switch assembly
4463759, Jan 13 1982 Ellman International, Inc Universal finger/foot switch adaptor for tube-type electrosurgical instrument
4492231, Sep 17 1982 Non-sticking electrocautery system and forceps
4492832, Dec 23 1982 BIRTCHER CORPORATION, THE Hand-controllable switching device for electrosurgical instruments
4545375, Jun 10 1983 Aspen Laboratories, Inc. Electrosurgical instrument
4562838, Jan 23 1981 Electrosurgery instrument
4589411, Feb 08 1985 Electrosurgical spark-gap cutting blade
4593691, Jul 13 1983 CONCEPT, INC , 12707 U S 19 SOUTH, CLEARWATER, FLORIDA 33546 A FLORIDA CORP Electrosurgery electrode
4595809, Aug 17 1984 Dart Industries, Inc. Snap action dome switch having wire contacts
4606342, Feb 15 1985 TRANSTECH SCIENTIFIC, INC , A CORP OF DE Cautery device having a variable temperature cautery tip
4619258, Mar 02 1984 DART INDUSTRIES INC , A DE CORP Electrosurgical pencil providing blade isolation
4620548, Apr 21 1980 Accupap, Inc. Pap smear T-zone sampler
4625723, Feb 26 1985 CONCEPT, INC , 12707 U S 19 SOUTH, CLEARWATER, FLORIDA 33546 A FLORIDA CORP Pencil for electrosurgical generator
4640279, Aug 08 1985 Hemostatic Surgery Corporation Combination surgical scalpel and electrosurgical instrument
4642128, Sep 11 1985 Coherent, Inc Smoke evacuator system with electronic control circuitry
4655215, Mar 15 1985 Hand control for electrosurgical electrodes
4657016, Aug 20 1984 Ellman International, Inc Electrosurgical handpiece for blades, needles and forceps
4683884, Apr 11 1986 MD Engineering Noise attenuating smokeless surgical device
4688569, Jun 09 1986 Medi-Tech, Inc. Finger actuated surgical electrode holder
4701193, Sep 11 1985 Coherent, Inc Smoke evacuator system for use in laser surgery
4712544, Feb 12 1986 MDT CORPORATION, A DE CORP ; SANTA BARBARA RESEARCH CENTER, GOLETA, CA , A CA CORP Electrosurgical generator
4735603, Sep 10 1986 GOODSON, JAMES H Laser smoke evacuation system and method
4754754, Aug 20 1984 Ellman International, Inc Electrosurgical handpiece for blades and needles
4785807, Feb 24 1987 MEGADYNE MEDICAL PRODUCTS, INC Electrosurgical knife
4788977, Jul 04 1985 ERBE ELEKTROMEDIZIN GMBH High-frequency surgical instrument
4794215, Sep 29 1984 Matsushita Electric Industrial Co., Ltd. Push switch sealed against contaminants
4796623, Jul 20 1987 NESTLE S A Corneal vacuum trephine system
4803323, Feb 05 1986 PREH ELEKTROFEINMECHANISCHE WERKE JAKOB PREH NACHF GMBH & CO Electric manual switching device having environmentally protected components
4811733, Mar 14 1985 Baxter Travenol Laboratories, Inc. Electrosurgical device
4827911, Apr 02 1986 Sherwood Services AG Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
4827927, Dec 26 1984 Sherwood Services AG Apparatus for changing the output power level of an electrosurgical generator while remaining in the sterile field of a surgical procedure
4846790, Apr 09 1986 Sherwood Services AG Ultrasonic surgical system with irrigation manifold
4850353, Aug 08 1988 GYRUS ACMI, INC Silicon nitride electrosurgical blade
4860745, Jul 17 1986 ERBE ELEKTROMEDIZIN GMBH High frequency electrosurgical apparatus for thermal coagulation of biologic tissues
4862889, Apr 10 1987 Siemens Aktiengesellschaft Monitoring circuit for an RF surgical apparatus
4862890, Feb 29 1988 GYRUS ACMI, INC Electrosurgical spatula blade with ceramic substrate
4869715, Apr 21 1988 Ultrasonic cone and method of construction
4872454, Oct 15 1985 Lucas, DeOliveira Fluid control electrosurgical device
4876110, Feb 24 1987 MEGADYNE MEDICAL PRODUCTS, INC Electrosurgical knife
4886060, Mar 20 1987 SURGICAL TECHNOLOGY GROUP LIMITED Equipment for use in surgical operations to remove tissue
4901719, Apr 08 1986 WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO Electrosurgical conductive gas stream equipment
4903696, Oct 06 1988 GYRUS ACMI, INC Electrosurgical generator
4909249, Nov 05 1987 NESTLE S A , A CORP OF SWITZERLAND Surgical cutting instrument
4911159, Nov 21 1988 Electrosurgical instrument with electrical contacts between the probe and the probe holder
4916275, Apr 13 1988 DATA ENTRY PRODUCTS, INC Tactile membrane switch assembly
4919129, Nov 30 1987 TECHNOLOGY CONSORTUIM ASOCIATES, A PARTNERSHIP, TCA Extendable electrocautery surgery apparatus and method
4921476, Apr 10 1978 INTEGRA LIFESCIENCES IRELAND LTD Method for preventing clogging of a surgical aspirator
4922903, Oct 06 1988 GYRUS MEDICAL, INC Handle for electro-surgical blade
4931047, Sep 30 1987 INTEGRA LIFESCIENCES IRELAND LTD Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
4949734, Aug 25 1988 Shield for electrosurgical device
4969885, Nov 17 1987 ERBE ELEKTROMEDIZIN GMBH High frequency surgery device for cutting and/or coagulating biologic tissue
4986839, Nov 10 1988 LIFESTREAM INTERNATIONAL, INC Self-contained air enhancement and laser plume evacuation system
4988334, May 09 1988 Sherwood Services AG Ultrasonic surgical system with aspiration tubulation connector
5000754, Oct 15 1985 Egidio L., DeOliveira Fluid control electrosurgical method
5011483, Jun 26 1989 SHARPLAN LASERS, INC Combined electrosurgery and laser beam delivery device
5013312, Mar 19 1990 Everest Medical Corporation Bipolar scalpel for harvesting internal mammary artery
5015227, Sep 30 1987 INTEGRA LIFESCIENCES IRELAND LTD Apparatus for providing enhanced tissue fragmentation and/or hemostasis
5026368, Dec 28 1988 MICRO-MEDICAL DEVICES, INC Method for cervical videoscopy
5035695, Nov 30 1987 WEBER, JAROY DR JR Extendable electrocautery surgery apparatus and method
5035696, Feb 02 1990 GYRUS MEDICAL, INC Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy
5046506, Feb 09 1990 XOMED SURGICAL PRODUCTS, INC Molded needle with adhesive
5055100, Jun 19 1989 Suction attachment for electrosurgical instruments or the like
5071418, May 16 1990 Electrocautery surgical scalpel
5074863, Oct 12 1990 DINES, GEOFFREY Disposable retractable surgical instrument
5076276, Nov 01 1989 Olympus Optical Co., Ltd. Ultrasound type treatment apparatus
5088997, Mar 15 1990 Covidien AG; TYCO HEALTHCARE GROUP AG Gas coagulation device
5098430, Mar 16 1990 WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO Dual mode electrosurgical pencil
5100402, Oct 05 1990 MEGADYNE MEDICAL PRODUCTS, INC Electrosurgical laparoscopic cauterization electrode
5108391, May 09 1988 KARL STORZ ENDOSCOPY-AMERICA, INC High-frequency generator for tissue cutting and for coagulating in high-frequency surgery
5133714, May 06 1991 Kirwan Surgical Products LLC Electrosurgical suction coagulator
5147292, Feb 05 1991 C. R. Bard, Inc. Control handle with locking means for surgical irrigation
5154709, Sep 04 1990 JOHNSON, JERRY W ; LANA LEA DAVIS Vacuum hood attachment for electrosurgical instruments
5160334, Apr 30 1991 Utah Medical Products, Inc. Electrosurgical generator and suction apparatus
5162044, Dec 10 1990 Storz Instrument Company Phacoemulsification transducer with rotatable handle
5167659, May 16 1990 Aloka Co., Ltd. Blood coagulating apparatus
5178012, May 31 1991 Rockwell International Corporation Twisting actuator accelerometer
5178605, Sep 23 1991 Alcon Research, Ltd Coaxial flow irrigating and aspirating ultrasonic handpiece
5190517, Jun 06 1991 INTEGRA LIFESCIENCES IRELAND LTD Electrosurgical and ultrasonic surgical system
5192267, Jan 23 1989 Vortex smoke remover for electrosurgical devices
5195959, May 31 1991 Paul C., Smith Electrosurgical device with suction and irrigation
5196007, Jun 07 1991 Ellman International, Inc Electrosurgical handpiece with activator
5197962, Jun 05 1991 Megadyne Medical Products, Inc. Composite electrosurgical medical instrument
5199944, May 23 1990 Automatic smoke evacuator system for a surgical laser apparatus and method therefor
5217457, Mar 15 1990 Covidien AG; TYCO HEALTHCARE GROUP AG Enhanced electrosurgical apparatus
5224944, Jan 07 1991 Aspiration tip for a cautery handpiece
5226904, Feb 08 1991 Conmed Corporation Electrosurgical instrument
5233515, Jun 08 1990 Covidien AG; TYCO HEALTHCARE GROUP AG Real-time graphic display of heat lesioning parameters in a clinical lesion generator system
5234428, Jun 11 1991 KAUFMAN, DAVID I Disposable electrocautery/cutting instrument with integral continuous smoke evacuation
5234429, Jul 06 1992 Cauterization instrument and associated surgical method
5242442, Sep 18 1991 Smoke aspirating electrosurgical device
5244462, Mar 15 1990 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical apparatus
5246440, Sep 13 1990 Electrosurgical knife
5254082, Feb 18 1989 Ultrasonic surgical scalpel
5254117, Mar 17 1992 ALTON DEAN MEDICAL A CORP OF UTAH Multi-functional endoscopic probe apparatus
5256138, Oct 04 1990 WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO Electrosurgical handpiece incorporating blade and conductive gas functionality
5261906, Dec 09 1991 ENDODYNAMICS, INC Electro-surgical dissecting and cauterizing instrument
5269781, Jun 10 1992 Suction-assisted electrocautery unit
5300087, Mar 22 1991 NUSURG MEDICAL, INC Multiple purpose forceps
5304763, Jun 07 1991 Ellman International, Inc Finger switch for electrosurgical handpiece
5306238, Mar 16 1990 BIRTCHER MEDICAL SYSTEMS, INC Laparoscopic electrosurgical pencil
5312329, Apr 07 1993 INTEGRA LIFESCIENCES IRELAND LTD Piezo ultrasonic and electrosurgical handpiece
5312400, Oct 09 1992 Symbiosis Corporation Cautery probes for endoscopic electrosurgical suction-irrigation instrument
5312401, Jul 10 1991 ELECTROSCOPE, INC Electrosurgical apparatus for laparoscopic and like procedures
5318516, May 23 1990 I C MEDICAL, INC Radio frequency sensor for automatic smoke evacuator system for a surgical laser and/or electrical apparatus and method therefor
5318565, Nov 12 1992 Daniel B., Kuriloff; Robert K., Einhorn; Ansel M., Schwartz Suction cautery dissector
5322503, Oct 18 1991 IMAGYN MEDICAL TECHNOLOGIES, INC Endoscopic surgical instrument
5330470, Jul 04 1991 DELMA ELEKTRO- UND MEDINZINISCHE APPARATEBAU GESELLSCHAFT MBH Electro-surgical treatment instrument
5334183, Aug 23 1985 Covidien AG; TYCO HEALTHCARE GROUP AG Endoscopic electrosurgical apparatus
5342356, Dec 02 1992 Ellman International, Inc Electrical coupling unit for electrosurgery
5348555, Apr 26 1993 Endoscopic suction, irrigation and cautery instrument
5366464, Jul 22 1993 Atherectomy catheter device
5376089, Aug 02 1993 Conmed Corporation Electrosurgical instrument
5380320, Nov 08 1993 Advanced Surgical Materials, Inc. Electrosurgical instrument having a parylene coating
5382247, Jan 21 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Technique for electrosurgical tips and method of manufacture and use
5395363, Jun 29 1993 Utah Medical Products Diathermy coagulation and ablation apparatus and method
5399823, Nov 10 1993 MEDTRONIC MINIMED, INC Membrane dome switch with tactile feel regulator shim
5401273, Mar 01 1993 Cauterizing instrument for surgery
5403882, Feb 21 1992 Eeonyx Corporation Surface coating compositions
5406945, May 24 1993 Conmed Corporation Biomedical electrode having a secured one-piece conductive terminal
5409484, Sep 24 1990 SCHWARTZENFELD, TED Cautery with smoke removal apparatus
5413575, Apr 19 1994 AN-CON GENETICS, INC Multifunction electrocautery tool
5421829, Nov 30 1992 INTEGRA LIFESCIENCES IRELAND LTD Ultrasonic surgical handpiece and an energy initiator
5423838, Nov 13 1989 SciMed Life Systems, INC Atherectomy catheter and related components
5431645, Feb 18 1992 Symbiosis Corporation Remotely activated endoscopic tools such as endoscopic biopsy forceps
5431650, Dec 11 1992 I C MEDICAL, INC Vortex hand piece shroud for automatic smoke evacuator system for a surgical laser apparatus and method therefor
5451222, Mar 16 1994 Desentech, Inc. Smoke evacuation system
5460602, Jan 23 1989 Smoke evacuator for smoke generating devices
5462522, Apr 19 1993 Olympus Optical Co., Ltd. Ultrasonic therapeutic apparatus
5468240, Dec 03 1992 Conmed Corporation Manual control device for laparoscopic instrument
5472442, Mar 23 1994 Sherwood Services AG Moveable switchable electrosurgical handpiece
5472443, Jun 07 1991 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
5484398, Mar 17 1994 Sherwood Services AG Methods of making and using ultrasonic handpiece
5484434, Dec 06 1993 NDM, INC Electrosurgical scalpel
5486162, Jan 11 1995 MISONIX, INC Bubble control device for an ultrasonic surgical probe
5496314, May 01 1992 HEMOSTATIC SURGERY CORPORATION, A CAYMAN ISLANDS COMPANY Irrigation and shroud arrangement for electrically powered endoscopic probes
5498654, Jun 05 1992 Taiho Kogyo Co., Ltd. Sliding bearing material
5531722, Nov 21 1994 Aspiration unit
5549604, Dec 06 1994 Conmed Corporation Non-Stick electroconductive amorphous silica coating
5561278, Sep 16 1994 NELSON NAME PLATE COMPANY Membrane switch
5601224, Oct 09 1992 Ethicon, Inc Surgical instrument
5609573, Feb 28 1996 Conmed Corporation Electrosurgical suction/irrigation instrument
5626575, Apr 28 1995 Conmed Corporation Power level control apparatus for electrosurgical generators
5630417, Sep 08 1995 Siemens Medical Solutions USA, Inc Method and apparatus for automated control of an ultrasound transducer
5630426, Mar 03 1995 Intact Medical Corporation Apparatus and method for characterization and treatment of tumors
5630812, Dec 11 1995 Cynosure, Inc Electrosurgical handpiece with locking nose piece
5633578, Jun 07 1991 Hemostatic Surgery Corporation Electrosurgical generator adaptors
5634912, Feb 12 1996 ALCON MANUFACTURING, LTD Infusion sleeve
5634935, Jun 16 1995 Balloon dissection instrument and method of dissection
5643256, May 19 1995 AMADA SURGICAL, INC Gold-plated electrosurgical instrument
5669907, Feb 10 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Plasma enhanced bipolar electrosurgical system
5674219, Oct 06 1994 Donaldson Company, Inc Electrosurgical smoke evacuator
5693044, Dec 11 1992 I C MEDICAL, INC Telescopic surgical device and method therefor
5693050, Nov 07 1995 Aaron Medical Industries, Inc. Electrosurgical instrument
5693052, Sep 01 1995 Megadyne Medical Products, Inc. Coated bipolar electrocautery
5697926, Dec 17 1992 Megadyne Medical Products, Inc. Cautery medical instrument
5702360, Jul 08 1993 Satelec S.A. Ultrasonic surgical knife
5702387, Sep 27 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Coated electrosurgical electrode
5712543, Apr 10 1996 Smith & Nephew, Inc Magnetic switching element for controlling a surgical device
5713895, Dec 30 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Partially coated electrodes
5720745, Nov 24 1992 Unisys Corporation Electrosurgical unit and method for achieving coagulation of biological tissue
5749869, Aug 12 1991 KARL STORZ GMBH & CO KG High-frequency surgical generator for cutting tissue
5765418, May 16 1994 Medtronic, Inc Method for making an implantable medical device from a refractory metal
5776092, Mar 23 1994 ERBE ELEKTROMEDIZIN GMBH Multifunctional surgical instrument
5788688, Nov 05 1992 KARL STORZ ENDOSCOPY-AMERICA, INC Surgeon's command and control
5797907, Nov 06 1989 Mectra Labs, Inc. Electrocautery cutter
5800431, Oct 11 1996 ROBERT H BROWN M D INC Electrosurgical tool with suction and cautery
5836897, Feb 02 1990 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
5836909, Sep 13 1996 I C MEDICAL, INC Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
5836944, Dec 11 1992 I C MEDICAL, INC Removable shroud for use with electrosurgery
5843109, May 29 1996 Abbott Medical Optics Inc Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator
5846236, Jul 18 1994 KARL STORZ GMBH & CO KG High frequency-surgical generator for adjusted cutting and coagulation
5859527, Jun 14 1996 Skop GmbH Ltd Electrical signal supply with separate voltage and current control for an electrical load
5868768, Jun 07 1995 Edwards Lifesciences Corporation Method and device for endoluminal disruption of venous valves
5876400, Jan 13 1997 SONGER, MATTHEW N , DR Electrocautery method and apparatus
5888200, Aug 02 1996 Stryker Corporation Multi-purpose surgical tool system
5893848, Oct 24 1996 PLC Medical Systems, Inc. Gauging system for monitoring channel depth in percutaneous endocardial revascularization
5893849, Dec 17 1992 Megadyne Medical Products, Inc. Cautery medical instrument
5893862, Apr 10 1997 Surgical apparatus
5913864, Jun 09 1997 Cynosure, Inc Electrosurgical dermatological curet
5919219, May 05 1995 THERMAGE, INC Method for controlled contraction of collagen tissue using RF energy
5928159, Mar 03 1995 Intact Medical Corporation Apparatus and method for characterization and treatment of tumors
5938589, Jul 15 1997 Fuji Photo Optical Co., Ltd. Control switch device for an endoscope duct
5941887, Sep 03 1996 BAUSCH & LOMB SURGICAL, INC Sleeve for a surgical instrument
5944737, Oct 10 1997 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved waveguide support member
5951548, Feb 21 1997 Stephen R., DeSisto Self-evacuating electrocautery device
5951581, Dec 02 1996 Advanced Cardiovascular Systems, INC Cutting apparatus having disposable handpiece
5954686, Feb 02 1998 Cynosure, Inc Dual-frequency electrosurgical instrument
5972007, Oct 31 1997 Ethicon Endo-Surgery, Inc. Energy-base method applied to prosthetics for repairing tissue defects
6004318, Aug 30 1996 Ellman International, Inc Electrosurgical electrode for treating glaucoma
6004333, Oct 31 1997 Ethicon Endo-Surgery, Inc. Prosthetic with collagen for tissue repair
6004335, Aug 02 1994 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
6010499, May 31 1995 DIPOLAR LIMITED Electrosurgical cutting and coagulation apparatus
6022347, Aug 19 1991 KARL STORZ GMBH & CO KG High-frequency surgical generator for adjusted cutting and coagulation
6045564, Jul 01 1997 Stryker Corporation Multi-purpose surgical tool system
6063050, Aug 14 1997 Covidien LP Ultrasonic dissection and coagulation system
6068603, Feb 17 1998 Olympus Corporation Medical instrument for use in combination with an endoscope
6068627, Dec 10 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Smart recognition apparatus and method
6070444, Mar 31 1999 Covidien AG; TYCO HEALTHCARE GROUP AG Method of mass manufacturing coated electrosurgical electrodes
6071281, May 05 1998 Boston Scientific Scimed, Inc Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
6074386, Dec 29 1995 Gyrus Medical Limited Electrosurgical instrument and an electrosurgical electrode assembly
6074387, Oct 15 1997 COLORADO FUND I, L P ON ITS OWN BEHALF AND AS OF BOTH AGENT FOR, AND COLLATERAL AGENT FOR SERIES A-1 STOCKHOLDERS AND AWEIDA VENTURE PARTNERS Electrosurgical system for reducing/removing eschar accumulations on electrosurgical instruments
6086544, Mar 31 1999 DEVICOR MEDICAL PRODUCTS, INC Control apparatus for an automated surgical biopsy device
6090123, Feb 12 1999 Stryker Corporation Powered surgical handpiece with state marker for indicating the run/load state of the handpiece coupling assembly
6099525, Oct 07 1996 I C MEDICAL, INC Removable shroud for receiving a pencil used in electro-surgery
6117134, Feb 14 1996 Covidien AG; TYCO HEALTHCARE GROUP AG Instrument for suction electrosurgery
6139547, Dec 30 1994 Covidien AG; TYCO HEALTHCARE GROUP AG Partially coated electrodes, manufacture and use
6142995, Dec 11 1992 I C MEDICAL, INC Electro-surgical unit pencil apparatus having a removable shroud
6146353, Sep 22 1998 Covidien AG; TYCO HEALTHCARE GROUP AG Smoke extraction device
6149648, Dec 11 1992 I C MEDICAL, INC Electro-surgical unit-argon beam coagulator pencil apparatus and method for operating same
6156035, Jan 13 1997 SONGER, MATTHEW N , DR Electrocautery method and apparatus
6197024, Sep 22 1999 Adjustable electrocautery surgical apparatus
6200311, Jan 20 1998 Eclipse Surgical Technologies, Inc Minimally invasive TMR device
6213999, Mar 07 1995 Covidien AG; TYCO HEALTHCARE GROUP AG Surgical gas plasma ignition apparatus and method
6214003, May 11 1999 Stryker Corporation Electrosurgical tool
6238388, Sep 10 1999 Cynosure, LLC Low-voltage electrosurgical apparatus
6241723, Oct 15 1997 Microline Surgical, Inc Electrosurgical system
6241753, May 05 1995 THERMAGE, INC Method for scar collagen formation and contraction
6249706, Mar 18 1996 Electrotherapy system
6251110, Mar 31 1999 Ethicon Endo-Surgery, Inc. Combined radio frequency and ultrasonic surgical device
6257241, Mar 31 1999 Ethicon Endo-Surgery, Inc. Method for repairing tissue defects using ultrasonic radio frequency energy
6258088, Aug 12 1999 Robert H. Brown, M. D., Inc. Switch for electrosurgical tool for performing cutting, coagulation, and suctioning
6273862, Oct 23 1998 DEVICOR MEDICAL PRODUCTS, INC Surgical device for the collection of soft tissue
6277083, Dec 27 1999 Covidien AG Minimally invasive intact recovery of tissue
6286512, Dec 30 1997 CARDIODYNE, INC Electrosurgical device and procedure for forming a channel within tissue
6287305, Dec 23 1997 Microline Surgical, Inc Electrosurgical instrument
6287344, Mar 31 1999 Ethicon Endo-Surgery, Inc. Method for repairing tissue defects using an ultrasonic device
6312441, Mar 04 1999 Stryker Corporation Powered handpiece for performing endoscopic surgical procedures
6325799, Apr 24 1997 Gyrus Medical Limited Electrosurgical instrument
6350276, Jan 05 1996 THERMAGE, INC Tissue remodeling apparatus containing cooling fluid
6352544, Feb 22 2000 LEMAITRE VASCULAR, INC ; INAVEIN, LLC Apparatus and methods for removing veins
6355034, Sep 20 1996 I C MEDICAL, INC Multifunctional telescopic monopolar/bipolar surgical device and method therefor
6358281, Nov 29 1999 MED-EL ELEKTRO-MEDIZINISCHE GERATE GESELLSCHAFT M B H Totally implantable cochlear prosthesis
6361532, May 01 1996 MEDTREX, INC Electrosurgical pencil
6386032, Aug 26 1999 ANALOG DEVICES IMI, INC Micro-machined accelerometer with improved transfer characteristics
6395001, Apr 10 2000 Ellman International, Inc Electrosurgical electrode for wedge resection
6402741, Oct 08 1999 Covidien AG; TYCO HEALTHCARE GROUP AG Current and status monitor
6402742, Apr 11 1997 United States Surgical Corporation Controller for thermal treatment of tissue
6402743, Dec 10 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Smart recognition apparatus and method
6402748, Sep 23 1998 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical device having a dielectrical seal
6409725, Feb 01 2000 LET S GO AERO, INC Electrosurgical knife
6413255, Mar 09 1999 THERMAGE, INC Apparatus and method for treatment of tissue
6416491, May 09 1994 GYRUS ACMI, INC Cell necrosis apparatus
6416509, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6425912, May 05 1995 THERMAGE, INC Method and apparatus for modifying skin surface and soft tissue structure
6458122, Jun 18 1998 Telea Electronic Engineering SRL Radiofrequency electrosurgical generator with current control
6458125, Jul 10 1995 I C MEDICAL, INC Electro-surgical unit pencil apparatus and method therefor
6461352, May 11 1999 Stryker Corporation Surgical handpiece with self-sealing switch assembly
6464702, Jan 24 2001 SORIN GROUP USA, INC Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
6471659, Dec 27 1999 Intact Medical Corporation Minimally invasive intact recovery of tissue
6494882, Jul 25 2000 VERIMETRA, INC A PENNSYLVANIA CORPORATION Cutting instrument having integrated sensors
6500169, May 15 2000 Stryker Corporation Powered surgical handpiece with membrane switch
6511479, Feb 28 2000 Conmed Corporation Electrosurgical blade having directly adhered uniform coating of silicone release material and method of manufacturing same
6526320, Nov 16 1998 United States Surgical Corporation Apparatus for thermal treatment of tissue
6551313, May 02 2001 Electrosurgical instrument with separate cutting and coagulating members
6558383, Feb 16 2000 Covidien AG; TYCO HEALTHCARE GROUP AG Inert gas inhanced electrosurgical apparatus
6585664, Aug 02 2000 DEVICOR MEDICAL PRODUCTS, INC Calibration method for an automated surgical biopsy device
6589239, Feb 01 2000 Electrosurgical knife
6610054, Aug 12 1992 Vidamed, Inc. Medical probe device and method
6610057, Mar 27 2001 Ellman International, Inc Electrosurgical blade electrode
6616658, Nov 08 2001 Covidien LP Electrosurgical pencil
6618626, Jan 16 2001 HS WEST INVESTMENTS, LLC Apparatus and methods for protecting the axillary nerve during thermal capsullorhaphy
6620161, Jan 24 2001 SORIN GROUP USA, INC Electrosurgical instrument with an operational sequencing element
6632193, Nov 22 1995 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
6652514, Sep 13 2001 Cynosure, LLC Intelligent selection system for electrosurgical instrument
6662053, Aug 17 2000 Multichannel stimulator electronics and methods
6669691, Jul 18 2000 Boston Scientific Scimed, Inc Epicardial myocardial revascularization and denervation methods and apparatus
6685701, Dec 10 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Smart recognition apparatus and method
6685704, Feb 26 2002 Megadyne Medical Products, Inc. Utilization of an active catalyst in a surface coating of an electrosurgical instrument
6702812, Jun 01 1998 I C MEDICAL, INC Multifunctional telescopic monopolar/bipolar surgical device and method therefor
6710546, Oct 30 1998 Koninklijke Philips Electronics N V Remote control test apparatus
6712813, Sep 13 2001 Cynosure, Inc RF probe for electrosurgical instrument
6719746, Jun 22 1999 Erblan Surgical Inc. Safety trocar with progressive cutting tip guards and gas jet tissue deflector
6740079, Jul 12 2001 Covidien AG Electrosurgical generator
6747218, Sep 20 2002 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical haptic switch including snap dome and printed circuit stepped contact array
6794929, Mar 28 2000 Infineon Technologies Americas Corp Active filter for reduction of common mode current
6830569, Nov 19 2002 Conmed Corporation Electrosurgical generator and method for detecting output power delivery malfunction
6840948, Jun 06 2002 DEVICOR MEDICAL PRODUCTS, INC Device for removal of tissue lesions
6855140, Jun 06 2002 DEVICOR MEDICAL PRODUCTS, INC Method of tissue lesion removal
6902536, Feb 28 2002 MISONIX OPCO, LLC Ultrasonic medical treatment device for RF cauterization and related method
6905496, Nov 01 2002 Ellman International, Inc RF electrosurgery cryogenic system
6923804, Jul 12 2001 Covidien AG Electrosurgical generator
6923809, Jul 30 2003 Covidien AG Minimally invasive instrumentation for recovering tissue
6939347, Nov 19 2002 Conmed Corporation Electrosurgical generator and method with voltage and frequency regulated high-voltage current mode power supply
6955674, Apr 11 2002 Medtronic, Inc. Medical ablation catheter control
7033353, Mar 21 1996 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical gas attachment
7156842, Nov 20 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical pencil with improved controls
7156844, Nov 20 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical pencil with improved controls
7235072, Feb 20 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Motion detector for controlling electrosurgical output
7241294, Nov 19 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same
7244257, Nov 05 2002 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical pencil having a single button variable control
20010047183,
20010049524,
20020019596,
20020019631,
20020022838,
20020026145,
20020035364,
20020049427,
20020058958,
20020087079,
20020095199,
20020103485,
20020111622,
20020133148,
20020151886,
20020151887,
20020156471,
20020173776,
20020198519,
20030004508,
20030014043,
20030032950,
20030050633,
20030055421,
20030061661,
20030065321,
20030078572,
20030083655,
20030088247,
20030109864,
20030109865,
20030130663,
20030144680,
20030163125,
20030199856,
20030199866,
20030199869,
20030212393,
20030212397,
20030216728,
20030220635,
20030220638,
20030225401,
20030229341,
20030229343,
20040000316,
20040002704,
20040002705,
20040010246,
20040015160,
20040015161,
20040015162,
20040015216,
20040024395,
20040024396,
20040030328,
20040030330,
20040030332,
20040030367,
20040034346,
20040054370,
20040111087,
20040124964,
20040127889,
20040143677,
20040147909,
20040162553,
20040167512,
20040172011,
20040172015,
20040172016,
20040181140,
20040236323,
20040243120,
20040267252,
20040267254,
20040267297,
20050033286,
20050059858,
20050059967,
20050065510,
20050070891,
20050085804,
20050096645,
20050096646,
20050096681,
20050113817,
20050113818,
20050113824,
20050113825,
20050149001,
20050154385,
20060041257,
20060058783,
20060178667,
20070049926,
20070093810,
20070142832,
D253247, Mar 20 1978 Electrical surgical probe
D301739, Oct 15 1986 MDT CORPORATION, A DE CORP ; SANTA BARBARA RESEARCH CENTER, GOLETA, CA , A CA CORP Electrosurgical pencil
D330253, Oct 04 1990 BIRTCHER MEDICAL SYSTEMS, INC A CORP OF CALIFORNIA Electrosurgical handpiece
D370731, Mar 07 1995 Medtronic, Inc. Electrocautery handle
D384148, Oct 06 1994 Donaldson Company, Inc. Smoke evacuator for an electrocautery scalpel
D393067, Aug 27 1996 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil
D402030, Oct 29 1997 Megadyne Medical Products, Inc. Electrosurgical pencil with push button actuators
D402031, Oct 29 1997 Megadyne Medical Products, Inc. Electrosurgical pencil with rocker arm actuator
D433752, Jun 29 1999 Stryker Corporation Handpiece for an electrosurgical tool
D441077, May 01 2000 Cynosure, Inc 3-button electrosurgical handpiece
D453222, Apr 30 2001 Cynosure, Inc Electrosurgical handpiece
D453833, Jan 24 2001 SORIN GROUP USA, INC Handle for surgical instrument
D457955, Mar 29 2001 ANNEX MEDICAL, INC Handle
D493530, Feb 04 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil with slide activator
D493888, Feb 04 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil with pistol grip
D494270, Feb 04 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil with multiple scallops
D495051, Feb 04 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil with notched and scalloped handle
D495052, Feb 04 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil with protected switch and straight proximal end
D515412, Mar 11 2005 Covidien AG; TYCO HEALTHCARE GROUP AG Drape clip
D521641, Nov 13 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil with three button control
D535396, Nov 13 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical pencil with three button control
DE2429021,
DE2460481,
DE3045996,
EP186369,
EP1050277,
EP1050279,
EP1082945,
EP1293171,
EP1645233,
EP1645234,
EP1656900,
EP1852078,
FR2235669,
FR2798579,
WO164122,
WO247568,
WO2004010883,
WO2004045436,
WO2004073753,
WO2005060849,
WO9420032,
WO9639086,
WO9843264,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 09 2007Sherwood Services AGCovidien AGCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0244680236 pdf
May 10 2007PODHAJSKY, RONALD J Sherwood Services AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0244670438 pdf
May 14 2007RESCHKE, ARLAN JAMESSherwood Services AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0244670438 pdf
May 15 2007SCHMALTZ, DALE FRANCISSherwood Services AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0244670438 pdf
Jul 09 2007Covidien AG(assignment on the face of the patent)
Dec 15 2008Covidien AGTYCO HEALTHCARE GROUP AGMERGER SEE DOCUMENT FOR DETAILS 0244680238 pdf
Dec 15 2008TYCO HEALTHCARE GROUP AGCovidien AGCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0244680241 pdf
Date Maintenance Fee Events
Apr 20 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Aug 21 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Oct 23 2023REM: Maintenance Fee Reminder Mailed.
Apr 08 2024EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 06 20154 years fee payment window open
Sep 06 20156 months grace period start (w surcharge)
Mar 06 2016patent expiry (for year 4)
Mar 06 20182 years to revive unintentionally abandoned end. (for year 4)
Mar 06 20198 years fee payment window open
Sep 06 20196 months grace period start (w surcharge)
Mar 06 2020patent expiry (for year 8)
Mar 06 20222 years to revive unintentionally abandoned end. (for year 8)
Mar 06 202312 years fee payment window open
Sep 06 20236 months grace period start (w surcharge)
Mar 06 2024patent expiry (for year 12)
Mar 06 20262 years to revive unintentionally abandoned end. (for year 12)