An endosteal fixation for mounting a prosthetic or soft tissue graft or combination thereof, under tension at a cortex end of a bone tunnel and process for its use. The endosteal fixation stud includes a cylindrical body that is preferably manufactured from a somewhat resilient material, and is suitable for implantation in a human body. The cylindrical body is stepped outwardly, proximate to a rear end, into a bridge that has spaced rearwardly extending arms wherebetween the graft is secured. The cylindrical body forward end is split into equal parallel sections that can be flexed together, one of which sections includes a hook that extends and rearwardly, that will align with the cylindrical body surface when the two cylindrical body sections are compressed together. The endosteal fixation stud can be arranged to be pushed or pulled through a bone tunnel.
A single endosteal fixation stud is utilized to mount a graft and to the cortex at a bone tunnel end, the graft extending therefrom through the tunnel and out the opposite bone tunnel end, whereat it is bent and secured under tension, as with a staple, to the cortex surface adjacent to that bone tunnel end.
|
1. An endosteal fixation stud comprising, a cylindrical body that has a diameter to closely fit in a cortex end of a bone tunnel that is formed appropriately in a bone mass, which cylindrical body from a forward end thereof is slotted longitudinally, splitting said forward end into two segments; and an arcuate hook means is secured to an end of one of said two segments extending outwardly and rearwardly therefrom, an outer edge of which said arcuate hook means is above the plane of said cylindrical body and can be flexed inwardly to below said plane when said two segments are flexed together.
14. A process for mounting a natural, prosthetic or soft tissue graft in tension in a prepared bone tunnel consisting of the steps of, attaching an end of a graft to an endosteal fixation stud, which said endosteal fixation stud includes, with a cylindrical body, arrangements for directly securing a forward end thereof to a bone cortex and for mounting a graft to its opposite rear end; and forming a bone tunnel between femoral and tibial cortex surfaces, where, at least one said bone tunnel cortex end has a diameter to accommodate said endosteal fixation stud forward end fitted therein to connect to said bone cortex.
2. An endosteal fixation stud as recited in
3. An endosteal fixation stud as recited in
4. An endosteal fixation stud as recited in
5. An endosteal fixation stud as recited in
6. An endosteal fixation stud as recited in
7. An endosteal fixation stud as recited in
8. An endosteal fixation stud as recited in
9. An endosteal fixation stud as recited in
10. An endosteal fixation stud as recited in
11. An endosteal fixation stud as recited in
12. An endosteal fixation stud as recited in
13. An endosteal fixation stud as recited in
15. A process as recited in
16. A process as recited in
17. A process as recited in
18. A process as recited in
19. A process as recited in
20. A process as recited in
21. A process as recited in
22. A process as recited in
23. A process as recited in
24. A process as recited in
25. A process as recited in
26. A process as recited in
|
1. Field of the Invention
This invention relates to ligament anchor systems and devices for use in arthroscopic surgical procedures involving securing an end of a ligament, such as the anterior cruciate ligament, stint, or the like, under tension within a bone mass.
2. Prior Art
In certain ligament replacement surgical procedures, particularly arthroscopic knee surgery, involving a cruciate ligament replacement, it is usual to form a tunnel through bone masses on both sides of a joint for installing a ligament therein. Such installation has generally involved fitting the ligament through the prepared tunnel and attaching its ends onto the bone cortex surfaces as with staples, or the like, for maintaining the ligament under tension across the joint. Examples of arrangements for attaching ligament ends within a bone mass are shown in a United Kingdom patent, No. G.B. 2,084,468A; and a patent of the present inventors, U.S. Pat. No. 4,772,286. A U.S. patent application of the present inventors, application Ser. No. 235,194, entitled "Channel Ligament Clamp and System", shows a device for securing a ligament end onto a bone mass. Additionally, another earlier patent of the present inventors, U.S. Pat. No. 4,870,957, entitled "Ligament Anchor System", shows a stud for mounting a ligament end within a ligament tunnel that involves a threaded sleeve or footing that is turned into a tapped endosteal bone. Another U.S. patent application of the present inventors, application Ser. No. 352,153, entitled "Interference Screw, System and Process", provides an interference screw and system for turning it into a ligament tunnel, alongside a ligament end therein.
All of the above-cited devices and systems involve hardware and systems for connection of a ligament to the endosteal portion of the distal femur, and the "Ligament Anchor System" application involves a separate stud and footing for mounting a ligament end to bone. Whereas, the present invention employs a single stud only that is for insertion to closely fit in a ligament tunnel and to lock into the cortex surface, and is arranged for mounting a ligament end to a rear end thereof. The stud of the present invention is for sliding along the prepared ligament tunnel. The stud forward end sections are split by a slot, allowing the section to be squeezed together as the stud is urged into the tunnel. The stud forward end, as it emerges from a cortex end of the ligament tunnel, flexes outwardly, a hook end section of the stud to extend beyond the tunnel edge. Which hook edge thereby binds into the surrounding bone mass or over the outer cortex when the stud is pulled back into the ligament tunnel, securely and permanently mounting that stud end to that bone cortex.
It is a principal object of the present invention to provide an endosteal fixation system for mounting a ligament in a bone tunnel.
Another object of the present invention is to provide an endosteal fixation stud that is for closely fitting through a straight bone tunnel that is formed at an angle to the bone cortex surface, the stud to include a hook end that exits the tunnel cortex end and flexes outwardly thereat, the hook end edge to flex over the tunnel cortex edge, locking thereto and prohibiting withdrawal of that stud back through the bone tunnel.
Another object of the present invention is to provide an endosteal fixation stud with an arrangement for mounting it to a ligament end, the stud and ligament for fitting in a prepared ligament bone tunnel, the stud to travel therealong, a stud hook end on exiting which tunnel to flex over the bone cortex tunnel edge, prohibiting withdrawal of that stud and ligament back through the tunnel.
Still another object of the present invention is to provide an endosteal fixation stud that is formed from a suitable material for human implantation that will exhibit resilient qualities.
Still another object of the present invention is to provide an endosteal fixation stud whereto can be attached a ligament or the like, which stud is for locking into the end of a bone tunnel formed through the femur and is preferably re-absorbable.
The present invention is in an endosteal fixation stud and system for permanently mounting a ligament end, or the like, within a bone tunnel. The stud is a cylindrical section having a slightly smaller diameter than does a bone tunnel wherein a ligament end is to be mounted. Which bone tunnel is formed at an angle to the plane of the bone cortex tunnel end whereby a hook end of the stud will flex over, as to lock onto the edge of that bone cortex surface. Which angle is optimally forty-five (45) degrees but may be in a range of angles between twenty-five (25) degrees and sixty-five (65) degrees, within the scope of this disclosure.
The endosteal fixation stud consists of a cylindrical body that preferably includes a bridge arrangement at its rear most end for attaching a ligament graft, or the like, mounted between parallel legs thereof. The nose of the stud cylindrical body is preferably flared outwardly and rearwardly at approximately a sixty (60) degree angle to the vertical forming an arcuate segment as a hook end. An outer edge of which hook end is to extend beyond the bone tunnel edge for binding into or onto the bone cortex. To allow the stud with outwardly extending hook end to slide along the ligament tunnel, a longitudinal slot is formed in that stud forward end to approximately a mid-point thereof. The slot divides the stud end into segments, that, when compressed as when the stud is fitted through the bone tunnel, will flex together, and will spring apart on exiting the tunnel end. To provide this flexure, the stud is preferably formed from a resilient material that is suitable for human implantation, such as a resilient metal or a plastic like DELRIN™, polyethene or re-absorbable material.
Additionally, a bridge, or the like, that includes an arm or spaced arms is provided as a stud end for use in attaching a ligament end. Further, a threaded suture, wire or rod can be used with the invention for turning into a tapped hole that is formed in the stud forward end, the suture, wire or rod for pulling the stud through a bone tunnel. Whereafter, the suture, wire or rod is removed by turning it out of that stud end tapped end hole.
In practice, for securing an end of a ligament, or like graft, either biological or prosthetic, utilizing the endosteal fixation stud of the present invention, a tunnel is formed through a bone or bones, for receiving the ligament. The bone tunnel is to receive the stud and, provide a proper binding surface therefore. Accordingly, it is preferably angled from the plane of bone cortex surface at approximately a forty-five (45) degree angle, plus or minus twenty (20) degrees to conform to the angle of the stud hook end. So arranged, a ligament end is attached at the bridge rear end of the stud cylindrical body. The stud is to travel through the bone tunnel and exit the bone cortex surface. On exiting, the stud hook end will flex or spring outwardly, an edge thereof extending beyond to rest on the tunnel edge. With tension then applied through the ligament, that anchor stud hook edge will seat into the bone cortex, prohibiting ligament withdrawal back through the bone tunnel.
In one installation procedure of an anterior cruciate ligament, a first endosteal fixation stud mounting a anterior cruciate is urged through a bone tunnel, the stud hook edge emerging from a femoral cortex end to bind into the bone at the tunnel edge. This passage can involve passing the suture, wire or rod, threaded end first, through the femoral cortex tunnel end to the tibial cortex end. Thereat, the stud is turned onto that wire or rod end. The suture, rod or wire is then drawn back through the ligament tunnel, with the connected stud and ligament drawn therewith until the stud hook end extends beyond and is pulled back to engage the bone tunnel femoral cortex end. The ligament free end is then placed under tension at the tibial cortex end as by attaching it with a standard staple, or the like, to the cortex surface. Alternatively, the endosteal femoral fixation stud can be fitted through an arthroscopic port into the patient's knee and pushed with an appropriate instrument outwardly through the femoral bone tunnel section from within the intra articular joint, and with the free ligament end fitted from the intra articular joint through the tibial bone tunnel section.
To release a stud hook end, the stud forward end sections can be collapsed together, until the hook end edge aligns with the ligament tunnel wall. The stud can thereafter be pushed back into the ligament tunnel, allowing for its removal.
In the drawings that illustrate that which is presently regarded as the best mode for carrying out the invention:
FIG. 1 is a side elevation perspective view taken from a rear end of an endosteal fixation stud of the present invention;
FIG. 2 is a side elevation perspective view of the endosteal fixation stud of FIG. 1 taken from a forward end and showing a ligament mounted between opposing parallel flanges of a stud rear end;
FIG. 3 is a side elevation sectional view taken along the line 3--3 of FIG. 1;
FIG. 4 is a side elevation view of a longitudinal cross-section of a distal femur wherein a ligament tunnel has been formed, and counter-sunk to accommodate a endosteal fixation stud of the present invention fitted therein that includes a ligament mounted thereto; and
FIG. 5 is a side elevation sectional view of a patient's knee wherein a ligament tunnel has been formed in an anterior cruciate ligament replacement surgical procedure, showing the ligament of FIG. 4 connected at its one end to the endosteal fixation stud, with the ligament free end extending beyond and bent onto the tibial cortex whereat it is secured by a staple.
FIG. 1 shows a side elevation perspective view taken from a rear end of the present invention in an endosteal fixation stud 10 of the present invention, hereinafter referred to as stud. Stud 10, as shown best in FIGS. 1 through 3, includes a cylindrical body 11 that includes body 12 as a rear end. The bridge 12 includes spaced apart parallel arms 13 that extend parallel to one another and rearwardly from the face of the cylindrical body. A stud forward or front end 14 is shown in FIGS. 2 and 3 as rounded at 15. Which stud front end includes an arcuate section that is formed into a hook 16, as shown in FIGS. 1, 2 and 3.
The hook 16 is formed as an outwardly and rearwardly projecting extension of a section of the stud cylindrical body front end 14, extending rearwardly from the rounded forward end 15. The hook 16, as shown best in FIG. 3, is preferably angled at approximately forty-five (45) degrees rearwardly from the cylindrical body 11 surface, which angle is illustrated as arrow A, and is preferably the angle of a bone tunnel to a bone cortex. A forward face of the hook 16 is shown formed at approximately a sixty (60) degree angle from the vertical plane of the stud front end 14, illustrated as arrow B. In practice, the hook is preferably formed as a section of less than one hundred eighty (180) degrees of arc, and has essentially parallel opposite edges 16a, with a hook edge or lip 18, and is an extension of the stud forward or front end.
As will be discussed in greater detail hereinbelow, the stud 10 is intended to fit into and travel along a bone tunnel that is formed through a bone mass, shown herein as the distal femur, exiting the anterolateral cortex. Which bone tunnel is counter-sunk to just accommodate the stud cylindrical body forward end at the anterolateral cortex exit, which anterolateral cortex end is of lesser cross-section than the cross-section of the stud forward end with the stud hook 16 extended. Accordingly, to allow for collapse of the stud hook 16, to where the stud will slide therethrough the femoral tunnel section, a slot 17, as shown in FIGS. 1 through 3, is formed longitudinally into the stud cylindrical body. This slot splits that cylindrical body to approximately the mid-point thereof. So arranged, the opposite slot edges are spaced apart equidistantly along the slot, the stud sections capable of being collapsed together.
The slot 17 is to allow the sections of the stud cylindrical body 11, at the hook end, to be squeezed together. The hook edge or lip 18 is thereby recessed to where it can be fitted into the ligament tunnel. At the anterolateral cortex end of which tunnel, the cylindrical body sections to flex or return to their uncompressed state, extending the hook edge 18 over the tunnel edge. That hook edge 18 will thereby bind into a section of the bone surrounding that tunnel end when the stud is pulled back into the bone tunnel. To provide which flexure the stud 10 is formed from a resilient material, such as DELRIN™ plastic material, or the like, but can also be formed of an appropriate metal, as required.
Shown in FIG. 2, the bridge 12 is formed as the rear end of the cylindrical body and is stepped outwardly as the parallel spaced apart arms 13. Which arms 13 are to receive a ligament end 31 fitted therebetween. Shown best in FIG. 2, the ligament end 31 is preferably secured between the stud arms 13 as with screws 34, that are fitted through aligned holes 33 that are formed through the stud arms. Which screws preferably pass through both the ligament end 31 and a bone plug 32 that is arranged as a stiffener with that ligament end. The bone plug 32 is shown as provided to wedge the ligament end between which arms 13, as well as for receiving the screws 34 turned therein.
Alternative to bridge 12, the stud 10 rear end can be provided with a screw extending rearwardly therefrom, not shown, from turning into the ligament 30 end, or can involve an eyelet end, not shown, for receiving a ligament and/or stint, not shown, threaded therethrough.
The stud forward end 14, as shown best in FIG. 2, preferably includes longitudinal parallel arcuate grooves 21 that are formed in the center of the slot 17 opposing surfaces. As shown best in FIG. 3, a center longitudinal hole 22 is formed into the end of stud slot 17 that is tapped with threads 23. Which hole 22 aligns with, as an end of, the arcuate grooves 21. The hole 22, as shown in broken lines in FIG. 5, is to receive a threaded end 25 of a suture, wire or rod. In FIG. 5, a wire or rod 24 is shown that preferably includes a handle 26 formed on the opposite end thereof to threaded end 25, which handle is for manually guiding and turning the wire or rod threaded end 25 into the threads 23 of the stud longitudinal hole 22. So connected, an operator can move the stud 10 as by pulling or pushing on handle 26 along the bone tunnel. In such travel, the stud cylindrical body sections are compressed into slot 17, the arcuate grooves 21 to collapse towards the wire or rod 24.
FIGS. 4 and 5 illustrate an example of a practice of a process of the present invention for replacing a patient's anterior cruciate ligament 30. Which procedure can be adapted to provide a bone/tendon/bone attachment, and the ligament 30 can be a prosthetic or soft tissue graft or a combination or composite thereof. The process utilizes a stud 10 with a ligament end 31 attached to the stud bridge 12. The ligament end is maintained rearwardly between arms 13 of bridge 12. That other end of which ligament, as shown in FIG. 5, extends from the tibial cortex end 28 of bone tunnel 29. The ligament 30, as shown in FIG. 5, is bent back onto the tibia cortex surface, and receives a staple 35 straddling that ligament for maintaining the ligament under tension to the bone surface. The stud 10 is for maintaining the ligament 30 stretched through the bone tunnel 30 to the bone at the femoral cortex tunnel end. The bone tunnel 29 is initially formed to have a diameter to just accommodate the stud 10. Thereafter, the bone tunnel is counter-bored, as bone tunnel section 29, to have a diameter to freely accommodate the stud bridge 12 with ligament 30 attached thereto, a femoral tunnel end 27, shown in FIGS. 4 and 5 to just accommodate stud 10. The femoral tunnel end 27, for proper stud 10 functioning, should exit the femoral cortex at an angle that is the angle of the rear face of the stud hook 16 relative to the cylindrical body 11. Which angle is preferably forty-five (45) degrees plus or minus twenty (20) degrees, for proper stud hook 16 functioning.
In an arthroscopic surgical procedure, through an opening, not shown, that is formed into the patient's intra articular joint, a surgeon can manipulate stud 10 into the bone tunnel femoral end and can urge that stud, as with a tool, not shown, along the tunnel section until the hook 16 extends beyond the femoral cortex edge. Whereat the stud hook edge overlaps the tunnel edge securing the connected femoral end of ligament 30 in the femur section of the bone tunnel. Additionally, a stint, not shown, can be attached to extend from the stud bridge 12, within the scope of this disclosure.
In another installation procedure, as illustrated in FIG. 5, the wire or rod 24 threaded end 25 can be fitted through the femoral bone tunnel cortex end 27 and turned into the threads 23 of hole 22 formed in stud 10. So arranged, a surgeon gripping the wire or rod handle 26 can pull the stud 10 mounted thereto through the femoral end of the bone tunnel, the attached ligament following therethrough to where the hook 16 of the stud extends beyond the bone tunnel femoral cortex end. Thereat, the hook edge or lip 18 will engage and, with an application of a tensile force on the ligament 30 at its tibial end, will bind or bite into the cortex surface. The hook edge 18 thereby prohibits withdrawal of the stud 10 back through the bone tunnel. To secure the free ligament 10 tibial end, that end is pulled beyond the tibial cortex tunnel end and is bent onto the bone surface. A staple, or like fastener, like staple 35, is then driven into the tibial cortex, the staple web compressing the ligament against the bone surface.
The stud 10, along with a staple 35, or like fastener, provides a tension mounting of ligament 30, with or without a stint across the intra articular joint. Which tension can be readily adjusted by urging the stud 10 outwardly from the bone tunnel femoral cortex and freeing the hook edge 18 by compressing the stud sections across slot 17 together, the stud hook 16 thereby allowed to pass into the tunnel femoral cortex end. The stud can thereafter be pulled back through the bone tunnel 29, allowing for a ligament length adjustment to provide a desired tensile force on the ligament when the stud is reinstalled to the femoral cortex tunnel end, as set out above.
In practice, a stud 10 installed as set out above in a cadaver knee was found to provide a stable and secure ligament anchor up to an application of approximately two hundred (200) pounds of tensile force. Which force is well above an mean functional load for an anterior or posterior cruciate ligament of approximately one hundred (100) pounds of tensile force.
While a preferred embodiment of the present invention and process for securing a ligament in a ligament tunnel have been shown and described herein, it should be understood that the present disclosure is made by way of example only and that variations and changes thereto are possible without departing from the subject matter and reasonable equivalency thereof coming within the scope of the following claims, which claims we regard as our invention.
Goble, E. Marlowe, Somers, W. Karl
Patent | Priority | Assignee | Title |
10004489, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10004493, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
10004588, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
10016289, | Aug 25 2015 | RCM Enterprise LLC | Bio-mechanical prosthetic thumb |
10022118, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10022248, | May 15 2015 | RCM Enterprise LLC | Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot |
10039543, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
10052094, | Mar 11 2013 | MEDOS INTERANTIONAL SÀRL | Implant having adjustable filament coils |
10092288, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10098629, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10123885, | Feb 03 2015 | RCM Enterprise LLC | Biomechanical finger brace assembly |
10136886, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
10149767, | May 28 2009 | Biomet Manufacturing, LLC | Method of implanting knee prosthesis assembly with ligament link |
10154837, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10251637, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
10265064, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
10265159, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
10321906, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
10327920, | May 15 2015 | RCM Enterprise LLC | Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot and multiple-finger ring |
10327921, | Feb 03 2015 | RCM Enterprise LLC | Bio-mechanical prosthetic finger with Y-shaped rocker |
10335135, | Oct 22 2010 | NCS LAB S R L | Fixing device for suture threads to be inserted into a bone tissue |
10349931, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10363028, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
10368856, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
10398428, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
10398430, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
10441264, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
10517587, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
10517714, | Sep 29 2006 | Biomet Sports Medicine, LLC | Ligament system for knee joint |
10537448, | Feb 03 2015 | RCM Enterprise LLC | Bio-mechanical prosthetic finger with H-shaped rocker |
10542967, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10582957, | Sep 19 2014 | CROSSROADS EXTREMITY SYSTEMS, LLC | Bone fixation implant and means of fixation |
10595851, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10603029, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
10610217, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
10610382, | May 15 2015 | RCM Enterprise LLC | Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot |
10631854, | Dec 19 2011 | Edwards Lifesciences Corporation | Methods of securing a cardiac implant using knotless suture clamps |
10639168, | Feb 03 2015 | RCM Enterprise LLC | Biomechanical finger brace assembly |
10675073, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for sternal closure |
10687803, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10695045, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for attaching soft tissue to bone |
10695052, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10702259, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
10716557, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
10729421, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
10729423, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
10729430, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10743856, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
10743925, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10758221, | Mar 14 2013 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
10806443, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
10806600, | Feb 03 2015 | RCM Enterprise LLC | Bio-mechanical prosthetic finger with H-shaped rocker |
10835232, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10842652, | May 15 2015 | RCM ENTERPRISE, LLC | Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot and multiple-finger ring |
10856967, | Mar 11 2013 | MEDOS INTERNATIONAL SÀRL | Implant having adjustable filament coils |
10898178, | Mar 11 2013 | MEDOS INTERNATIONAL SÀRL | Implant having adjustable filament coils |
10912551, | Mar 31 2015 | Biomet Sports Medicine, LLC | Suture anchor with soft anchor of electrospun fibers |
10932770, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
10973507, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10987099, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
11039826, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11065103, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
11096684, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11109857, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
11116495, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
11173052, | Feb 03 2015 | RCM Enterprise LLC | Bio-mechanical prosthetic finger with y-shaped rocker |
11185320, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
11219443, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
11241305, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
11259792, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
11259794, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
11284884, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11311287, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
11317907, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11376115, | Sep 29 2006 | Biomet Sports Medicine, LLC | Prosthetic ligament system for knee joint |
11419738, | May 15 2015 | RCM Enterprise LLC | Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot |
11446019, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11471147, | May 29 2009 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11534157, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
11534159, | Aug 22 2008 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11576667, | Dec 19 2011 | Edwards Lifesciences Corporation | Methods of securing a cardiac implant using knotless suture clamps |
11589859, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
11596529, | Feb 03 2015 | RCM Enterprise LLC | Biomechanical finger brace assembly |
11612391, | Jan 15 2008 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11617572, | Jan 16 2007 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11648004, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
11672527, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
11701218, | Jul 30 2012 | CoNextions, Inc. | Soft tissue to bone repair devices, systems, and methods |
11723648, | Feb 03 2003 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
11730464, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
11786236, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
11819205, | Jan 16 2007 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11896210, | Jan 15 2008 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11896475, | Mar 11 2013 | MEDOS INTERNATIONAL SARL | Implant having adjustable filament coils |
11903813, | Apr 15 2019 | Intraosseous screw with cortical window and system and method for associating soft tissue with bone | |
5062851, | Apr 25 1989 | Medevelop AB; MEDEVELOP AB, MOLNDAL, SWEDEN A CORP OF SWEDEN | Anchoring element for supporting a joint mechanism of a finger or other reconstructed joint |
5147362, | Apr 08 1991 | MITEK SURGICAL PRODUCTS, INC ; Medicine Lodge, Inc | Endosteal ligament fixation device |
5306301, | Feb 11 1993 | Smith & Nephew, Inc | Graft attachment device and method of using same |
5356413, | Mar 12 1993 | Mitek Surgical Products, Inc. | Surgical anchor and method for deploying the same |
5372599, | Mar 12 1993 | Mitek Surgical Products, Inc.; MITEK SURGICAL PRODUCTS, INC | Surgical anchor and method for deploying the same |
5425733, | Feb 18 1993 | Arthrex, Inc. | Interference screw with rounded back end and cannulated sheath for endosteal fixation of ligaments |
5507812, | Dec 28 1992 | Modular prosthetic ligament | |
5527342, | Dec 14 1993 | Biomet Manufacturing, LLC | Method and apparatus for securing soft tissues, tendons and ligaments to bone |
5549609, | Sep 07 1993 | Hospital for Joint Diseases | Bone fixation for fractures of the upper ulna |
5562668, | Feb 19 1993 | Tension device for anchoring ligament grafts | |
5570706, | Jul 16 1990 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method for ACL reconstruction |
5632748, | Jun 14 1993 | CHARLES L BECK, JR ; FRANCE, E PAUL; ELLINGSON, RICHARD L | Endosteal anchoring device for urging a ligament against a bone surface |
5643266, | Jun 05 1995 | Li Medical Technologies, Inc. | Method and apparatus for securing ligaments |
5643320, | Mar 13 1995 | DePuy Orthopaedics, Inc | Soft tissue anchor and method |
5645588, | Feb 11 1993 | Smith & Nephew, Inc | Graft attachment device |
5645589, | Aug 22 1994 | Linvatec Corporation | Anchor and method for securement into a bore |
5665110, | Sep 21 1995 | INNOVASIVE ACQUISITION CORP | Suture anchor system and method |
5690649, | Dec 05 1995 | Linvatec Corporation | Anchor and anchor installation tool and method |
5702215, | Jun 05 1995 | Li Medical Technologies, Inc. | Retractable fixation device |
5702397, | Feb 20 1996 | INNOVASIVE ACQUISITION CORP | Ligament bone anchor and method for its use |
5707395, | Jan 16 1997 | Li Medical Technologies, Inc.; LI MEDICAL TECHNOLOGIES, INC , A CORPORATION OF CONNECTICUT | Surgical fastener and method and apparatus for ligament repair |
5713897, | Mar 06 1997 | Anterior cruciate ligament tensioning device and method for its use | |
5723008, | Jul 20 1995 | Splint for repair of tendons or ligaments and method | |
5741300, | Sep 10 1996 | Linvatec Corporation | Surgical anchor and package and cartridge for surgical anchor |
5766250, | Oct 28 1996 | INNOVASIVE ACQUISITION CORP | Ligament fixator for a ligament anchor system |
5800544, | Dec 02 1994 | Omeros Corporation | Tendon and ligament repair system |
5843127, | Aug 22 1994 | Linvatec Corporation | Fixation device and method for installing same |
5868749, | Apr 05 1996 | Solana Surgical, LLC | Fixation devices |
5931840, | Oct 28 1996 | Innovasive Corp.; INNOVASIVE CORP | Bone fixator for a ligament anchor system |
5961520, | Jun 14 1993 | CHARLES L BECK, JR ; FRANCE, E PAUL; ELLINGSON, RICHARD L | Endosteal anchoring device for urging a ligament against a bone surface |
5964764, | Mar 24 1998 | HS WEST INVESTMENTS, LLC | Apparatus and methods for mounting a ligament graft to a bone |
5968047, | Apr 05 1996 | Solana Surgical, LLC | Fixation devices |
5984966, | Mar 02 1998 | Bionx Implants Oy | Bioabsorbable bone block fixation implant |
6001100, | Aug 19 1997 | Bionx Implants Oy | Bone block fixation implant |
6001106, | Sep 03 1997 | M & R Medical, Inc.; M & R MEDICAL, INC | System for tensioning ligament grafts |
6018094, | Sep 30 1997 | FOX, WILLIAM CASEY, DR | Implant and insert assembly for bone and uses thereof |
6019767, | Jul 16 1990 | Biomet Sports Medicine, LLC | Tibial guide |
6036694, | Aug 03 1998 | Innovasive Devices, Inc. | Self-tensioning soft tissue fixation device and method |
6053935, | Nov 08 1996 | Boston Scientific Corporation | Transvaginal anchor implantation device |
6056752, | Oct 24 1997 | Smith & Nephew, Inc | Fixation of cruciate ligament grafts |
6077216, | Dec 03 1991 | Boston Scientific Scimed, Inc | Device for transvaginally suspending the bladder neck |
6080192, | Dec 02 1994 | Omeros Corporation | Tendon and ligament repair system |
6086591, | Jan 29 1999 | Smith & Nephew, Inc. | Soft tissue anchor |
6096041, | Jan 27 1998 | Boston Scientific Scimed, Inc | Bone anchors for bone anchor implantation device |
6099530, | Apr 09 1998 | Smith & Nephew, Inc. | Soft-tissue intra-tunnel fixation device |
6099568, | Mar 03 1998 | Linvatec Corporation | ACL graft fixation device and method |
6106556, | Dec 02 1994 | Omeros Corporation | Tendon and ligament repair system |
6117161, | Jun 06 1995 | Smith & Nephew, Inc | Fastener and fastening method, particularly for fastening sutures to bone |
6132442, | Mar 25 1999 | SMITH & NEPHEW | Graft clamp |
6146406, | Feb 12 1998 | Smith & Nephew, Inc. | Bone anchor |
6152928, | Mar 02 1999 | DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC | Ligament fixation device and method |
6221107, | Aug 03 1998 | SMITH & NEPHEW, INC | Ligament fixation device and method |
6245082, | Feb 13 1997 | SciMed Life Systems, Inc. | System for attaching a urethral sling to a suture |
6254604, | Jul 16 1990 | Biomet Sports Medicine, LLC | Tibial guide |
6254605, | Jul 16 1990 | Biomet Sports Medicine, LLC | Tibial guide |
6264676, | Nov 08 1996 | Boston Scientific Scimed, Inc | Protective sheath for transvaginal anchor implantation devices |
6319272, | Nov 08 1996 | Boston Scientific Corporation | Transvaginal anchor implantation device and method of use |
6379361, | Jun 14 1993 | Endosteal anchoring device for urging a ligament against a bone surface | |
6440134, | Jul 29 1999 | Device for the femoral fixation of the semitendinosus and gracilis tendons for the reconstruction of the anterior cruciate ligament of the knee | |
6440154, | Nov 08 1996 | SciMed Life Systems, Inc. | Protective sheath for transvaginal anchor implantation device |
6482210, | Nov 12 1998 | ORTHOPAEDIC BIOSYSTEMS LTD , INC | Soft tissue/ligament to bone fixation device with inserter |
6517579, | Sep 06 2000 | THE LONNIE AND SHANNON PAULOS TRUST AS AMENDED AND RESTATED F K A THE JAMES DIZIKIS TRUST, DATED FEBRUARY 26, 2008 | Method and apparatus for securing a soft tissue graft to bone during an ACL reconstruction |
6599289, | Mar 10 2000 | Smith & Nephew, Inc | Graft anchor |
6679889, | Nov 13 2000 | HS WEST INVESTMENTS, LLC | Apparatus and methods for independently conditioning and pretensioning a plurality of ligament grafts during joint repair surgery |
6689153, | Apr 16 1999 | Orthopaedic Biosystems Ltd, Inc. | Methods and apparatus for a coated anchoring device and/or suture |
6936052, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
6939355, | Jan 27 1998 | Boston Scientific Scimed, Inc. | Bone anchors for bone anchor implantation device |
6974462, | Dec 19 2001 | Boston Scientific Scimed, Inc | Surgical anchor implantation device |
6991597, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
7025772, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
7118578, | Nov 13 2000 | HS WEST INVESTMENTS, LLC | Apparatus and methods for independently conditioning and pre-tensioning a plurality of ligament grafts during joint repair surgery |
7131973, | May 16 2002 | Boston Scientific Scimed, Inc | Bone anchor implantation device |
7144414, | Jun 27 2000 | Smith & Nephew, Inc | Surgical procedures and instruments |
7235043, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
7361138, | Jul 31 2003 | Boston Scientific Scimed, Inc | Bioabsorbable casing for surgical sling assembly |
7402133, | Dec 17 2002 | Boston Scientific Scimed, Inc | Spacer for sling delivery system |
7500983, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Apparatus for soft tissue attachment |
7591850, | Apr 01 2005 | Arthrocare Corporation | Surgical methods for anchoring and implanting tissues |
7601165, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable suture loop |
7608092, | Feb 20 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for performing meniscus repair |
7648524, | Dec 23 2005 | HOWMEDICA OSTEONICS CORP | Porous tendon anchor |
7658751, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
7674269, | May 16 2002 | Boston Scientific Scimed, Inc. | Bone anchor implantation device |
7686810, | Aug 29 2003 | HS WEST INVESTMENTS, LLC | Suture separation and organization devices for use with graft tensioning device |
7686838, | Nov 09 2006 | Arthrocare Corporation | External bullet anchor apparatus and method for use in surgical repair of ligament or tendon |
7695503, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for soft tissue attachment |
7713293, | Apr 15 2003 | Arthrocare Corporation | Transverse suspension device |
7749250, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
7776077, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method for soft tissue attachment |
7819898, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for soft tissue fixation |
7824326, | Jul 31 2003 | Boston Scientific Scimed, Inc. | Bioabsorbable casing for surgical sling assembly |
7828820, | Mar 21 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatuses for securing suture |
7842042, | May 16 2005 | Arthrocare Corporation | Convergent tunnel guide apparatus and method |
7857830, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair and conduit device |
7901404, | Jan 16 2004 | Arthrocare Corporation | Bone harvesting device and method |
7905903, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
7905904, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
7909851, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
7959650, | Sep 29 2006 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
7967843, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method for soft tissue attachment |
8033983, | Mar 09 2001 | Boston Scientific Scimed, Inc | Medical implant |
8052423, | Aug 24 2009 | King Abdulaziz University | Tunneling method for dental block grafting |
8088130, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8109965, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for soft tissue fixation |
8118836, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8128658, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8137382, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8162816, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
8206389, | Aug 31 2007 | Rod-based system for bone fixation | |
8221454, | Feb 20 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Apparatus for performing meniscus repair |
8231654, | Sep 29 2006 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
8251998, | Aug 16 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Chondral defect repair |
8273106, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair and conduit device |
8292921, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8298262, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
8303604, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
8308780, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method for soft tissue attachment |
8317825, | Nov 09 2004 | Biomet Sports Medicine, LLC | Soft tissue conduit device and method |
8337525, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8343227, | May 28 2009 | Biomet Manufacturing, LLC | Knee prosthesis assembly with ligament link |
8361113, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8409253, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
8449612, | Nov 16 2009 | Arthrocare Corporation | Graft pulley and methods of use |
8491632, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for soft tissue fixation |
8500818, | Sep 29 2006 | Biomet Manufacturing, LLC | Knee prosthesis assembly with ligament link |
8506596, | Mar 21 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Methods and apparatuses for securing suture |
8506597, | Oct 25 2011 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for interosseous membrane reconstruction |
8551140, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8562645, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
8562647, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for securing soft tissue to bone |
8574235, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for trochanteric reattachment |
8597327, | Feb 03 2006 | Biomet Manufacturing, LLC | Method and apparatus for sternal closure |
8608777, | Feb 03 2006 | Biomet Sports Medicine | Method and apparatus for coupling soft tissue to a bone |
8617048, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
8632453, | Dec 17 2002 | Boston Scientific Scimed, Inc. | Spacer for sling delivery system |
8632569, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8652171, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
8652172, | Feb 03 2006 | Biomet Sports Medicine, LLC | Flexible anchors for tissue fixation |
8672968, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
8672969, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
8721684, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8771316, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8771352, | May 17 2011 | Biomet Sports Medicine, LLC | Method and apparatus for tibial fixation of an ACL graft |
8777956, | Aug 16 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Chondral defect repair |
8801783, | Sep 29 2006 | Biomet Sports Medicine, LLC | Prosthetic ligament system for knee joint |
8840645, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8900314, | May 28 2009 | Biomet Manufacturing, LLC | Method of implanting a prosthetic knee joint assembly |
8932331, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8936621, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
8968364, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
8998949, | Nov 09 2004 | Biomet Sports Medicine, LLC | Soft tissue conduit device |
9005287, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for bone reattachment |
9011535, | Dec 20 2005 | DePuy Mitek, LLC | Methods for ligament reconstruction |
9017381, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
9078644, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9078652, | Dec 19 2011 | Edwards Lifesciences Corporation | Side-entry knotless suture anchoring clamps and deployment tools |
9101462, | Feb 13 2004 | Frantz Medical Development, Ltd. | Soft tissue repair apparatus and method |
9149267, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9173651, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9216078, | May 17 2011 | Biomet Sports Medicine, LLC | Method and apparatus for tibial fixation of an ACL graft |
9241785, | Dec 20 2005 | DePuy Mitek, LLC | Methods for ligament reconstruction |
9259217, | Jan 03 2012 | Biomet Manufacturing, LLC | Suture Button |
9265600, | Feb 27 2013 | OrthoPediatrics Corp | Graft fixation |
9271713, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for tensioning a suture |
9314241, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
9357991, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
9357992, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
9370350, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
9370430, | Mar 29 2013 | RCM ENTERPRISE L L C | Bio-mechanical prosthetic full finger |
9375319, | Mar 29 2013 | RCM ENTERPRISE L L C | Bio-mechanical prosthetic thumb |
9381013, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
9402621, | Feb 03 2006 | Biomet Sports Medicine, LLC. | Method for tissue fixation |
9414833, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
9414925, | Sep 29 2006 | Biomet Manufacturing, LLC | Method of implanting a knee prosthesis assembly with a ligament link |
9433407, | Jan 03 2012 | Biomet Manufacturing, LLC | Method of implanting a bone fixation assembly |
9445827, | Oct 25 2011 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for intraosseous membrane reconstruction |
9468433, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
9486211, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
9492158, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9498204, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
9504460, | Nov 05 2004 | Biomet Sports Medicine, LLC. | Soft tissue repair device and method |
9504466, | Dec 19 2011 | Edwards Lifesciences Corporation | Methods of deploying knotless suture anchoring clamps |
9510819, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9510821, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
9532777, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9538998, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fracture fixation |
9539003, | Sep 29 2006 | Biomet Sports Medicine, LLC. | Method and apparatus for forming a self-locking adjustable loop |
9561025, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9572655, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9603591, | Feb 03 2006 | Biomet Sports Medicine, LLC | Flexible anchors for tissue fixation |
9615822, | May 30 2014 | Biomet Sports Medicine, LLC | Insertion tools and method for soft anchor |
9622736, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9622851, | Jun 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for soft tissue attachment |
9629731, | May 15 2015 | RCM Enterprise LLC | Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot and multiple-finger ring |
9642661, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and Apparatus for Sternal Closure |
9681940, | Sep 29 2006 | Biomet Sports Medicine, LLC | Ligament system for knee joint |
9700291, | Jun 03 2014 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Capsule retractor |
9707101, | Feb 03 2015 | RCM ENTERPRISE, LLC | Bio-mechanical prosthetic finger with Y-shaped rocker |
9707102, | Feb 03 2015 | RCM ENTERPRISE, LLC | Bio-mechanical prosthetic finger with H-shaped rocker |
9707103, | May 15 2015 | RCM Enterprise LLC | Bidirectional biomechanical prosthetic full finger configured for abduction and adduction with MCP pivot |
9713541, | Aug 25 2015 | RCM Enterprise LLC | Bio-mechanical prosthetic thumb |
9724090, | Sep 29 2006 | Biomet Manufacturing, LLC | Method and apparatus for attaching soft tissue to bone |
9757119, | Mar 08 2013 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Visual aid for identifying suture limbs arthroscopically |
9763656, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
9788876, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9801620, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
9801708, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9833230, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9848984, | Dec 19 2011 | Edwards Lifesciences Corporation | Methods of anchoring cardiac implants using knotless suture fasteners |
9849001, | Feb 03 2015 | RCM ENTERPRISE, LLC | Bio-mechanical finger brace assembly |
9861351, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
9918826, | Sep 29 2006 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
9918827, | Mar 14 2013 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
9931194, | Dec 20 2005 | DePuy Mitek, LLC | Ligament grafts for ligament reconstruction |
9936947, | Dec 19 2011 | Edwards Lifesciences Corporation | Systems for deploying knotless suture anchoring clamps |
9949847, | Feb 03 2015 | RCM Enterprise LLC | Bio-mechanical prosthetic finger with Y-shaped rocker |
9955980, | Feb 24 2015 | Biomet Sports Medicine, LLC | Anatomic soft tissue repair |
9974643, | Mar 11 2013 | MEDOS INTERNATIONAL SÀRL | Implant having adjustable filament coils |
9993241, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
9999521, | Feb 03 2015 | RCM Enterprise LLC | Bio-mechanical prosthetic finger with H-shaped rocker |
D745822, | Oct 21 2013 | Gripple Limited | Clamping assembly |
RE46164, | Jul 14 2010 | RCM Enterprise LLC | Mechanical prosthetic finger device |
Patent | Priority | Assignee | Title |
3744488, | |||
4301551, | May 24 1979 | Ecole Polythechnique | Deformable high energy storage tension spring |
4388921, | May 28 1980 | SYNTHES U S A | Device comprising a plate and screws for fastening a plate to a bone |
4688561, | Sep 17 1985 | REESE, H WILLIAM; H WILLIAM REESE, D P M | Bone handling apparatus and method |
4772286, | Feb 17 1987 | INNOVASIVE ACQUISITION CORP | Ligament attachment method and apparatus |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 13 1994 | SOMERS FAMILY TRUST, THE SOMERS, W KARL | Medicine Lodge, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007360 | /0006 | |
Dec 05 1994 | Medicine Lodge, Inc | MITEK SURGICAL PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007247 | /0333 | |
Dec 05 1994 | GOBLE, E MARLOWE | Medicine Lodge, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007251 | /0131 |
Date | Maintenance Fee Events |
May 09 1994 | M283: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 03 1998 | M284: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Aug 16 2002 | M285: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Mar 05 1994 | 4 years fee payment window open |
Sep 05 1994 | 6 months grace period start (w surcharge) |
Mar 05 1995 | patent expiry (for year 4) |
Mar 05 1997 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 05 1998 | 8 years fee payment window open |
Sep 05 1998 | 6 months grace period start (w surcharge) |
Mar 05 1999 | patent expiry (for year 8) |
Mar 05 2001 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 05 2002 | 12 years fee payment window open |
Sep 05 2002 | 6 months grace period start (w surcharge) |
Mar 05 2003 | patent expiry (for year 12) |
Mar 05 2005 | 2 years to revive unintentionally abandoned end. (for year 12) |