A placement assembly used for positioning and holding a ligament graft within a selected bone tunnel. The assembly includes a graft pulley, a surgical suture, and a graft pulley placement instrument. The graft pulley includes a pulley portion and a bone anchoring portion. The pulley portion is adapted to receive the surgical suture and for surgical suture to be drawn through it, to act as a pulley. The bone anchoring portion comprises at least one flexible wing that is adapted to selectively fix the graft pulley within a bone tunnel. At least one wing is adapted to flex during insertion into a bone tunnel and then resist flex and thereby resist movement back out of the tunnel and hence wedge itself within the tunnel. The graft instrument may be selectively attached to the graft pulley and includes a handle and elongate body, adapted to insert the graft pulley into the selected bone tunnel. Once the graft pulley is in place, the placement instrument may then be detached and withdrawn leaving the graft pulley firmly fixed within the bone tunnel and can then be used to position a ligament graft.

Patent
   8449612
Priority
Nov 16 2009
Filed
Nov 16 2009
Issued
May 28 2013
Expiry
Apr 15 2031
Extension
515 days
Assg.orig
Entity
Large
2
353
EXPIRED
8. A graft pulley for positioning a ligament graft within a selected bone tunnel comprising:
a pulley portion having an aperture, sized to receive a surgical suture; and
a bone anchoring portion having at least one flexible wing extending radially from a graft pulley longitudinal axis, the at least one wing adapted to selectively fix the graft pulley within a bone tunnel, wherein the at least one wing has a non-flexed cross sectional dimension larger than a diameter of the selected bone tunnel, and wherein the at least one wing is operable to irreversibly flex to a flexed position, during insertion of the graft pulley into the selected bone tunnel in a first direction such that the flexed position is characterized as convex relative to the first direction.
1. A placement assembly for positioning a ligament graft within a selected bone tunnel comprising:
a graft pulley, having a pulley portion and a bone anchoring portion;
the pulley portion having an aperture sized to receive a surgical suture;
the bone anchoring portion operable to selectively fix the graft pulley within a bone tunnel, the anchoring portion having at least one flexible wing, the flexible wing having a radially extending diameter larger than a diameter of the selected bone tunnel, wherein the at least one flexible wing is operable to flex from a first position wherein the at least one flexible wing is substantially flat to a second position wherein the at least one flexible wing is convex relative to a direction of insertion, and wherein the at least one flexible wing is sized so as to be restricted from returning to the first position while inserted in the bone tunnel; and
a graft pulley placement instrument having an elongate body and a handle;
the elongate body adapted to insert the graft pulley into the selected bone tunnel.
2. The placement assembly of claim 1 wherein at least one wing is sized so as to wedge into the bone tunnel and remain in the second position when the graft pulley is pulled in a second direction via the surgical suture wherein the second direction is substantially opposite the direction of insertion.
3. The placement assembly of claim 1 wherein the graft pulley is adapted to allow motion in a first direction and resist movement along a second direction, both during and after insertion, where the first direction is substantially opposite the second direction.
4. The placement assembly of claim 1 wherein the graft pulley placement instrument handle comprises a suture securing portion, adapted to manage the surgical suture.
5. The placement assembly of claim 1 wherein the suture comprises a stop button adapted to prevent the suture from traveling through the anchor pulley aperture.
6. The placement assembly of claim 1 wherein a needle is removably attached to the suture for attaching the suture to a ligament graft.
7. The placement assembly of claim 1 wherein the graft pulley includes an attachment portion and the placement instrument includes a connecting portion, adapted to removably connect with the pulley attachment portion.
9. The graft pulley of claim 8 further comprising an attachment portion adapted to removably connect with a graft pulley placement instrument.
10. The graft pulley of claim 8 wherein the graft pulley is adapted to allow motion in the first direction and resist movement along a second direction at all times, and the first direction is substantially opposite the second direction.
11. The graft pulley of claim 8 wherein at least one wing is disc shaped and disposed approximately concentric with a longitudinal axis of the pulley.
12. The graft pulley of claim 8 wherein the pulley has a longitudinal axis and wherein at least one wing is formed substantially perpendicular to said longitudinal axis.
13. The graft pulley of claim 8 wherein the at least one wing extends at an angle to the longitudinal axis.
14. The graft pulley of claim 8 wherein the at least one wing comprises a hook radiating from said pulley longitudinal axis.
15. The graft pulley of claim 8 wherein the anchoring portion comprises at least one flexible fin radiating from said pulley longitudinal axis.
16. The graft pulley of claim 8 wherein the graft pulley fixes within the bone tunnel without trauma to the bone tunnel.
17. The graft pulley of claim 8 wherein the pulley portion comprises a low friction material.
18. The graft pulley of claim 17 wherein the pulley portion comprises a polyolefin.
19. The graft pulley of claim 8 wherein a portion of the graft pulley comprises a radiopaque material.
20. The graft pulley of claim 8 wherein the at least one wing comprises a first wing having a first cross sectional dimension and a second wing with a second cross sectional dimension.

The present invention relates generally to an apparatus and method for positioning a ligament graft, and more particularly to an implantable graft pulley adapted to firmly fix within a selected bone tunnel and assist the positioning of a graft within said bone tunnel.

One of the most common sports injuries to the knee involves a tearing or detachment of the anterior cruciate (ACL) ligament in the knee. Over the years, surgery to repair this injury has evolved from open reduction surgical procedures on the knee, to less invasive techniques. The goal of the surgery is to attach a graft ligament, between the femur and the tibia. Various grafts may be used, including bone-tendon-bone grafts, soft tissue grafts or an artificial tendon. Whichever graft is used, a typical procedure involves drilling a long tunnel from the anterior proximal end of the tibia, through the distal anterior portion of the femur.

In some procedures a button type fixation device is used, to hold or position one end of the graft in place. The button is typically located external to the knee, close to the bone tunnel exit on the femur and there are numerous disadvantages associated with this button and the button's location. Firstly, this external location is some distance from the site where the graft may be fixed within the bone tunnel, which makes positioning the graft more difficult and requires additional lengths of sutures to attach the graft to this button. The button also necessitates the extension of the bone tunnel through the femur skin and quadriceps muscle, causing additional trauma to the leg and the increased potential for infections or nerve damage. It is also considered less cosmetically desirable. This external button may also cause interference with the tourniquet used during the surgical procedure.

Several products have more recently been presented that appear to position a graft within a bone tunnel without an incision in the anterior portion of the femur. U.S. Pat. No. 7,381,213, the complete disclosure of which is incorporated herein by reference, describes a radially expanding suture anchor, including a bore formed therein. This system also includes an expander pin to cause the anchor to radially expand within a bone tunnel or hole, into the bone wall to securely attach to bone.

An externally threaded anchor and pulley is described in commonly assigned patent application entitled, “Threaded Pulley Anchor Apparatus and Methods for Use in Surgical Repair of Ligament or Tendon”, application Ser. No. 11/599,138, filed Nov. 14, 2006, and a bullet-shaped anchor is described in commonly assigned patent application entitled, “External Bullet Anchor Apparatus and Method for Use in Surgical Repair of Ligament of Tendon, application Ser. No. 11/595,353, filed Nov. 9, 2006, the complete disclosures of which are incorporated herein by reference.

The present disclosure presents an improved placement assembly for positioning a ligament graft within a selected bone tunnel. The assembly includes a surgical suture which may be assembled with a graft pulley, and a graft pulley placement instrument removably connected with said graft pulley. The graft pulley has a pulley portion and a bone anchoring portion. The pulley portion includes an aperture or channel sized to receive the surgical suture, so that the surgical suture may be drawn through the aperture, to act as a pulley. The bone anchoring portion includes at least one flexible wing that is adapted to selectively fix the graft pulley within a bone tunnel. The placement instrument is adapted to place the graft pulley within the bone tunnel and also to assist in fixing it within the bone tunnel and the instrument includes a handle and elongate body. Once the graft pulley is in place, the instrument may then be detached from the graft pulley and withdrawn from the bone tunnel.

In another aspect a graft pulley is disclosed adapted for positioning a ligament graft within a selected bone tunnel. The graft pulley includes a pulley portion having an aperture or channel sized to receive surgical suture and a bone anchoring portion having at least one flexible wing, adapted to selectively fix the graft pulley within a bone tunnel.

In yet another aspect a graft pulley for positioning a ligament graft within a bone tunnel is disclosed, including a pulley portion having an aperture or channel sized to receive surgical suture and a bone anchoring portion.

In yet another aspect a method of performing a medical procedure on a body is disclosed. The method includes drilling a bone tunnel and then inserting a graft pulley into the bone tunnel. The graft pulley includes a pulley portion and a bone anchoring portion. The pulley portion has an aperture sized to receive a surgical suture and the bone anchoring portion has at least one flexible wing adapted to fix the graft anchor within a bone tunnel. At least one wing is then flexed in a second direction, so as to slide the graft pulley into the bone tunnel in a first direction, and once the graft pulley is in place the graft pulley is retracted in the second direction, to firmly fix the graft pulley within the bone tunnel.

The present disclosure includes a number of important technical advantages. One technical advantage is that the pulley may be precisely, quickly and easily slid into place. Another advantage is that the pulley may not cause any significant trauma to the bone tunnel wall during insertion as well as during fixation. Another advantage is that this invention does not require an incision in the anterior femur, reducing the trauma to the femur and likelihood of an additional wound site infection, unsightly markings of the incision site and interference with tourniquets or equipment used during surgery. Another advantage is that the graft pulley may be placed closer to where the graft may be anchored, potentially reducing the length of sutures required for the procedure, and thereby reducing the complexity of the procedure. Another advantage is that the graft may be easily positioned within the bone tunnel without extra placement equipment. Additional advantages will be apparent to those of skill in the art and from the figures, description and claims provided herein.

The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:

FIG. 1A shows a placement assembly according to the teachings of the present disclosure;

FIG. 1B shows a cross section of a placement assembly according to the teachings of the present disclosure;

FIG. 2 shows a graft pulley according to the teachings of the present disclosure;

FIG. 3 shows a partial view of a placement assembly, disassembled to show the suture, according to the teachings of the present disclosure;

FIG. 4A shows a placement assembly before insertion into a bone tunnel according to the teachings of the present disclosure;

FIG. 4B shows a placement assembly during insertion into a bone tunnel according to the teachings of the present disclosure;

FIGS. 5A, 5B and 5C are representations of a graft pulley in place and a ligament graft attached with alternative embodiments of suture routing;

FIGS. 6A and 6B show flow diagrams of methods of using the present invention in a medical procedure, according to the teachings of the present disclosure;

FIGS. 7A and 7B show longitudinal cross sectional views of alternative graft pulley embodiments; and

FIG. 8 shows an alternative embodiment of a graft pulley.

Before the present invention is described in detail, it is to be understood that this invention is not limited to particular variations set forth herein as various changes or modifications may be made to the invention described and equivalents may be substituted without departing from the spirit and scope of the invention. As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.

Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events. Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.

All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.

Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Last, it is to be appreciated that unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

FIG. 1A shows a placement assembly 100 according to the teachings of the present disclosure. Assembly 100 generally includes at least one graft pulley placement instrument 110, at least one surgical suture 130 (shown in phantom) and at least one graft pulley 150.

Instrument 110 includes a handle 120 and an elongate body 112; body 112 may be tubular. Elongate body 112 includes a distal end 114 and proximal end 116 to which instrument handle 120 is preferably connected. Handle 120 generally facilitates manipulation of instrument 110. In the present embodiment a suture securing portion 122 is formed within handle 120 or may alternatively be formed on handle surface 124. Securing portion 122 is preferably adapted to temporarily secure suture 130 until graft pulley 150 has been inserted. Suture securing portion 122 may include at least one post or tab 143 that suture 130 wraps around. In alternative embodiments securing portion 122 may include grooves or hooks to secure suture 130. Handle 120 may include a clam shell type recess or slot (not expressly shown) to access the suture 130 once pulley 150 is in place. The present embodiment shows a barrel type handle 120; however the present invention may be employed with any suitable handle shape of configuration such as T-grip type handle.

Instrument elongate body 112 may generally include a smooth outer surface 118 and an inner luminal surface 119 as shown in FIG. 1B. Elongate body distal end 114 may also include a connecting portion 126, adapted to removably connect with graft pulley 150. As shown in FIGS. 1A and 1B, suture 130 may extend from graft pulley 150 along inner lumen 119 to instrument handle 120 and instrument handle securing portion 122. Suture 130 may be contained within elongate body 112. In alternative embodiments not shown here, suture 130 may extend along a groove positioned longitudinally along elongate body outer surface 118 or juxtaposition upon the outside surface 118 of elongate body. Alternative embodiments with the suture 130 on the outside of the elongate body may be preferable should the surgeon wish to pre-attach the ligament before pulley 150 insertion.

Graft pulley 150 is shown in more detail in FIG. 2. Graft pulley 150 generally includes a pulley portion 152, a bone anchoring portion 160 and an instrument attachment portion 170. Graft pulley 150 is preferably constructed from an implant grade material and portions of graft pulley 150 may also be constructed from a radiopaque material to aid in visualization using imaging techniques such as fluoroscopy or radiography. Bone anchoring portion 160 may comprise at least one flexible wing 162 adapted to secure graft pulley 150 within a bone tunnel. In the present embodiment wing 162 is a substantially flat, circular disc. In alternative embodiments, wing 162 may be non-cylindrical and/or non-circular in shape and may be any shape suitable for anchoring techniques described herein. In alternative embodiments, wing 162 may have a uniform thickness, as shown in the present embodiment, or may have a variable thickness. Each wing 162 has a non-flexed cross sectional dimension 164, measured when wing 162 is in a neutral relaxed position and each wing 162, 162A and 162B may have a different cross sectional dimension 164, 164A and 164B from any other wing, to account for variation in bone tunnel size or shape and to facilitate insertion into a bone tunnel. Alternatively, more or fewer flexible wings 142 may be provided. In some alternate embodiments, flexible wings 142 may have a substantially uniform cross sectional dimension 164. Three flexible wings 162, 162A and 162B are shown in FIG. 2, each with differing cross sectional dimensions 164. As shown in FIG. 2, each wing 162, 162A and 162B is progressively smaller cross sectional dimension 164, 164A and 164B. As shown, a first wing 162A includes a cross sectional dimension 164A and a second wing 162B includes a cross sectional dimension 164B. In the present embodiment first cross sectional dimension 164A is smaller than second cross sectional dimension 164B. In alternative embodiments wing 162 may not form a continuous disc or other shape, but may include slots or gaps in wing 162 (not expressly shown). In the present embodiment wing 162 is shown positioned approximately perpendicular to longitudinal axis 165.

Wing 162 may be formed so as to preferably flex during insertion into a bone tunnel and resist flex and wedge into the bone tunnel if pulley 150 is pulled in a direction approximately opposing the direction of insertion. This flexing occurs as a result of inserting pulley 150 into the tunnel, as they inherently bend downstream as a result of insertion, so as to fit within tunnel. In the embodiment shown in FIG. 2, at least one wing cross sectional dimension 164 is designed to be larger than the intended bone tunnel diameter (described in a later figure). Wings 162, 162A and 162B may preferably be constructed from a flexible material such as high density polyethylene.

In some embodiments, wing edges 168 may be formed to facilitate fixation of pulley 150. For example, wing edges 168 may be formed with a surface texture (not expressly shown) and/or a high friction coating may be disposed on wing edge 168 to increase friction between wing edge 168 and the bone tunnel wall and thereby increase the relative fixation strength or so-called pull-out strength of pulley 150 after implantation. However, the expected load on pulley 150 during ligament insertion and positioning may be relatively small as pulley 150 may be used primarily for positioning of a ligament within the bone tunnel and other surgical instruments may assist in positioning. Following the positioning of the ligament, the ligament may be held in tension, thereby exerting a force on pulley 150, as a suitable fixation device, such as a cannulated screw or expandable device, is inserted within the bone tunnel and secure the ligament therein.

Pulley portion 152 includes at least one opening or aperture 153 sized to receive surgical suture 130. Pulley portion aperture 153 is sized so as to allow standard sized surgical suture 130 to easily slide through said aperture 153 and may be oriented approximately perpendicular to longitudinal axis 165. Pulley portion 152 may be made from substantially low friction materials such as polyolefin to allow suture 130 to easily slide through aperture 153. In alternative embodiments, not shown here, aperture may be a channel or tunnel that extends into pulley 150 and pulley portion 152 may be fully or partially recessed within bone anchoring portion 160.

Graft pulley instrument attachment portion 170 is generally adapted to removably attach to an instrument (not shown here) used to insert graft pulley 150 within a bone tunnel. Shown here, graft attachment portion 170 is a shaft 172. An instrument with a hollow lumen (not shown here) may then removably slide over said shaft 172 to manipulate pulley 150 into a bone tunnel. An instrument may then slide off shaft 172 to disengage. Shaft 172 may be substantially circular in shape. Alternate embodiments may include a substantially non circular shaft 172, which may aid in pulley 150 orientation or rotation if needed. Shaft 172 may preferably be sized to insert the pulley 150 into the tunnel but easily slide off once retracted. In alternative embodiment, suture 130 may also cause a frictional or interference fit between the shaft 172, suture 130 and the instrument lumen. In alternative embodiments the shaft 172 may be adapted to selectively disengage from pulley 150, via release mechanisms or friction fits, not shown here.

FIG. 3 shows a partial view of a placement assembly 100, shown with instrument 110 disconnected from anchor 150. Assembly 100 generally includes a graft pulley 150 having a pulley portion 152 and instrument attachment portion 170, surgical suture 130 and placement instrument 110. Shown in FIG. 3 is an embodiment with suture 130 assembled within instrument elongate body 112. Suture 130 is shown assembled with pulley portion 152. Instrument attachment portion 170 is adapted to removably engage with distal end 114 of elongate body 112.

FIG. 4A shows a placement assembly 100 ready to be inserted into a patient's knee 410. Knee 410 is shown with tibia 411 approximately ninety degrees with respect to femur 414. A bone tunnel 416 has been formed in an upper anterior portion 417 of the tibia 411, extending into a distal end 415 of femur 414 through knee capsule 413. In the present embodiment, the distal end of the femur capsule 418 may not be punctured, that is, bone tunnel 416 extends only partially into femur 414. In some embodiments, bone tunnel 416 may include a guide or pilot hole that does extend through the end of femur capsule 418. Bone tunnel 416 has a bone tunnel diameter 430. In alternate embodiments, bone tunnel diameter may not be constant along the length the of bone tunnel 416.

Graft pulley 150 is shown with at least one wing 162 that has a non-flexed cross sectional dimension 164 that is larger than bone tunnel diameter 430. During the insertion of assembly 100 in first direction 440, at least one wing 162 may preferably flex in second direction 450 to allow for slideable insertion of assembly down bone tunnel. Bone tunnel diameters 430 may vary in size depending on the tool a surgeon chooses to drill said tunnel. Some exemplary diameters 430 vary from 7 mm to 12 mm and therefore a variety of wing cross sectional dimensions 164 may also be provided. Wing cross sectional dimensions 164 may be approximately between 1 mm and 4 mm greater than the bone tunnel diameter 430 and more preferably be approximately 1-2 mm greater than the respective bone tunnel diameter 430. Therefore, for example, for a tunnel diameter 430 that is approximately 10 mm, a pulley cross sectional dimension 164 may preferably be no larger than approximately 12 mm at any point on at least one wing 162. This cross sectional dimension 164 may depend on material properties such as elastic modulus and shape, thickness and size of the wing 162.

Placement assembly 100 is then preferably inserted into bone tunnel 416 in first direction 440 as shown in FIG. 4B and pulley 150 is shown with at least one wing 162 that is flexed to facilitate insertion. As pulley 150 enter bone tunnel 416, wing 162 preferably flexes in second direction 450 to conform to tunnel diameter 430, which is smaller than wing non flexed cross sectional dimension 164. Thereafter, wing 162 will resist any attempt to withdraw or retract pulley 150 in second direction 450. This resistance provided by wing 162 is preferable sufficient to position a ligament graft as described below. In a preferred embodiment, wing 162 will preferably not flip or flex to first direction 440 and will essentially wedge graft pulley 150 in place within the tunnel. However, if pulley 150 is not considered deep enough in the tunnel 416 at any time, pulley 150 may be easily repositioned further along the first direction, into the tunnel. Instrument may be re-engaged in order to reposition pulley 150, if instrument has been disengaged. In the present embodiment pulley 150 will preferably not burrow or dig into bone tunnel 416 during use.

FIG. 5A shows a ligament graft 550 being positioned within bone tunnel 416. Similar to FIG. 4, knee 410 is shown with tibia 411 and femur 414 in a ninety degree position. Graft pulley 150 is shown firmly fixed within bone tunnel 416. Graft 550 is shown attached to a suture first end 530. A suture needle (not shown) may be used to attach ligament 550 to suture 530. A suture second end 570 may then be pulled in second direction 450 out of tunnel 416, to position graft 550 in place within tunnel 416. Suture second end 570 may also include a stop button or stop ring 580 adapted to prevent suture second end 570 from traveling into bone tunnel 416 and potentially through pulley aperture 153. Once ligament 550 is in place ligament, suture end 570 may be cut as close to the pulley as possible. Alternately suture may left within the tunnel 416 and may be made of a suitably absorbable material. Ligament 550 may be further anchored into place using traditional anchors and instruments for ligament repair as are well known to those of skill in the art.

FIG. 5B shows a ligament graft 550 being positioned within bone tunnel 416 using an alternative suture routing. This alternate routing may allow the surgeon the ability to remove the suture 530 from the tunnel 416, if desired. Similar to FIG. 4, knee 410 is shown with tibia 411 and femur 414 in a ninety degree position. Graft pulley 150 is shown firmly fixed within bone tunnel 416. Graft 550 is shown with suture 530 looped through ligament 550 and then two suture ends 531 and 571 routed through pulley aperture 153 together, in the same direction. A suture needle (not shown) may be used to attach ligament 550 to suture 530, and for this alternate suture routing, suture may be attached to ligament 550 and routed through pulley 150, before placement of pulley 150 within bone tunnel 416. Alternatively, a suture shuttle (not expressly shown) may be integral to the insertion instrument to route the suture according to FIG. 5B. Suture ends 531 and 571 may then be pulled, in tandem, in second direction 450 out of tunnel 416, to position graft 550 in place within tunnel 416. At least one of suture ends 531 or 571, may also include a stop button or stop ring 580, adapted to prevent suture second end 571 from traveling into bone tunnel 416 and potentially inadvertently through pulley aperture 153. Once ligament 550 is in place, suture end 531 may then be pulled in second direction 450 so as to withdraw suture 530 completely from pulley 150 and ligament 550 and out of tunnel 416. Ligament 550 may then be further anchored into place using traditional anchors and instruments for ligament repair as are known to those of skill in the art.

FIG. 5C shows a ligament graft 550 being positioned within bone tunnel 416 using an alternative routing of a suture, similar in spirit to FIG. 5B. This alternate routing may allow the surgeon the ability to remove the suture 530 from the tunnel 416. Similar to FIG. 4, knee 410 is shown with tibia 411 and femur 414 in a ninety degree position. Graft pulley 150 is shown firmly fixed within bone tunnel 416. Graft 550 is shown with suture 530 attached to ligament 550 and then two suture ends 531 and 571 are routed through pulley aperture 153. The two suture ends 531 and 571 are routed through the graft pulley 150 in opposing directions. A suture needle (not shown) may be used to attach ligament 550 to suture 530, and for this alternate suture routing, suture may need to be attached to ligament 550 and pulley 150, before placement of pulley 150. Alternatively, a suture shuttle (not shown) may be integral to the insertion instrument to route the suture according to FIG. 5B. Suture ends 531 and 571 may then be pulled, in tandem, in second direction 450 out of tunnel 416, to position graft 550 in place within tunnel 416. At least one of suture ends 531 or 571, may also include a stop button or stop ring 580 adapted to prevent suture second end 570 from traveling into bone tunnel 416 and potentially inadvertently through pulley aperture 153. Once ligament 550 is in place ligament, suture end 531 may then be pulled in second direction 450 so as to withdraw suture 530 from pulley 150 and ligament 550, and subsequently out of tunnel 416. Ligament may then be further anchored into place with using traditional anchors and instruments for ligament repair as are known to those of skill in the art.

A method of performing a portion of a medical procedure using a graft pulley is shown in FIG. 6A. A knee joint is first positioned at a ninety degree angle and a bone tunnel is drilled 605 from an upper anterior portion of a tibia through a knee capsule and partially within a distal end of a femur without penetration into a lateral femoral cortex. A graft pulley is then inserted 610, using a placement instrument. Graft pulley includes a pulley portion sized to receive surgical suture and a bone anchoring portion; the anchoring portion includes one or more flexible wings adapted to fix the graft pulley within the bone tunnel. The wings may be flexed 615 in a second direction as the graft pulley is inserted into the bone tunnel in the first direction. The graft pulley may then be pulled in a second direction 620 to firmly fix graft pulley within bone tunnel. Placement instrument may then be detached and withdrawn 625, leaving graft pulley in place.

Thereafter a ligament graft may be provided and attached 630 to surgical suture. Suture end may then be drawn 635 through graft pulley aperture in order to position graft within a bone tunnel. If the pulley is not deemed far enough along the tunnel, at any time, an additional step may be added, further inserting the pulley into the bone tunnel before the step of detaching the placement instrument. Alternatively, the placement instrument may be re-engaged.

The ligament may then be fixed in position within the bone tunnel 640. Fixing the ligament more permanently to the tunnel wall is achieved using a large variety of bone anchors that are well known to one skilled in the art. The suture may be left within the tunnel, or may be cut during the step of fixing the ligament in place, leaving only a portion of suture in-situ. Alternatively, the surgeon may chose to cut the suture before the step of fixing the ligament in position.

An alternate method of performing a portion of a medical procedure using a graft pulley is shown in FIG. 6B. A knee joint is first positioned at a ninety degree angle and a bone tunnel is drilled 605 from an upper anterior portion of a tibia through a knee capsule and partially within a distal end of a femur without penetration into a lateral femoral cortex. A suture may then be attached 608 to a ligament to preassemble the suture and ligament before pulley insertion. A suture may also be inserted through a pulley portion of a graft pulley sized to receive surgical suture. A graft pulley is then inserted 610, using a placement instrument. Graft pulley includes a pulley portion and a bone anchoring portion; the anchoring portion includes one or more flexible wings adapted to fix the graft pulley within the bone tunnel. The wings may be flexed 615 in a second direction as the graft pulley is inserted into the bone tunnel in the first direction. The graft pulley may then be pulled in a second direction 620 to firmly fix graft pulley within bone tunnel. Placement instrument may then be detached and withdrawn 625, leaving graft pulley in place.

Both suture ends may then be drawn 629 through graft pulley aperture, in order to position graft within a bone tunnel. Once ligament is in position, one suture end may then be drawn 634 so as to withdraw the suture from the tunnel. The ligament may then be fixed in position within the bone tunnel 640.

FIG. 7A shows a longitudinal cross section of an alternative embodiment of a graft pulley 700. Graft pulley 700 is similar in spirit to the previous pulley described and includes a pulley portion 702, attachment portion 704, longitudinal axis 705 and at least one wing 720. At least one wing 720 is formed at an angle 725 to longitudinal axis 705. Angle 725 may improve the ease of pulley 700 insertion into a bone tunnel. Wing non-flexed outer cross sectional dimension 730 may be substantially larger than an intended bone tunnel diameter to make graft pulley 700 wedge within the tunnel when a retraction force is applied. Wing 720 may be circular or non-circular.

FIG. 7B shows a longitudinal cross section of an alternative embodiment of a graft pulley 750. Pulley 750 is similar in spirit to previous pulley described and includes a pulley portion 752, attachment portion 754, longitudinal axis 755 and at least one wing 770. At least one wing 770 is formed in the shape of a hook 775. Hook 775 may improve the ease of pulley 750 insertion into a bone tunnel and provide for improved affixation strength. Wing non flexed outer cross sectional dimension 780 may be larger than an intended bone tunnel diameter to make pulley 750 wedge within a bone tunnel. Wing 770 may be circular or non-circular.

FIG. 8 shows a view of an alternative embodiment of a graft pulley 800. Pulley is similar in spirit to pulleys previously described and includes at least one radially extending flexible fin or hook 802 formed to firmly fix the pulley 800 within a bone tunnel (not shown here). A series of hooks or fins 802 may be formed in rows (as shown) or fins 802 may be arranged in a helix or randomly disposed along pulley 800. Similar to previous figures, the non-flexed cross sectional dimension 810 may preferably be selected to be larger than a respective bone tunnel diameter (not shown here). At least one fin 802 may flex upon pulley 800 insertion into a bone tunnel in a first direction and then resist flex when pulled in a second direction out of said bone tunnel, effectively affixing pulley 800 within bone tunnel. This pulley 800 embodiment may adapt better to uneven bone tunnel shapes.

Pulley 800 also shows a pulley portion 805 including a suture aperture 806 in a channel shape, located inside pulley 800. Suture 804 is shown threaded along suture channel 806 and is similar in spirit to previous pulley portions described. This embodiment may show improved durability over previous embodiments described as it is internal to the body of the pulley 800. Alternate embodiments (not shown here) may include a pulley with an anchoring portion comprising at least two fins or hooks, legs or wings. These fins etc. may have a cross sectional dimension smaller than that of a bone tunnel and with heat or mechanical activation, at least one fin may recover to a position that increases the cross sectional dimension to a size larger or equal to a bone tunnel diameter, thus wedging the pulley within the bone tunnel.

Although only a few embodiments of the present invention have been described, it should be understood that the present invention may be embodied in many other specific forms without departing from the spirit or the scope of the present invention. Therefore, the present examples are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope of the appended claims.

Delli-Santi, George, Wolf, Alan W.

Patent Priority Assignee Title
10130354, Aug 17 2015 Arthrex, Inc. Limited sliding suture in suture anchor
10136999, Jun 06 2014 Conmed Corporation Surgical implant, and associated installation tool, surgical kit and method of production
Patent Priority Assignee Title
3896500,
3973277, Jan 30 1974 Attaching fibrous connective tissue to bone
4126165, Oct 14 1977 Wood lathe chisel
4149277, Jun 22 1977 General Atomic Company Artificial tendon prostheses
4187558, Oct 25 1977 Cutter Laboratories, Inc. Prosthetic ligament
4204544, Sep 30 1977 California Institute of Technology Simultaneous muscle force and displacement transducer
4275717, Jul 27 1979 Zimmer USA, Inc. Intramedullary fixation device for fractured tubular bones
4309778, Jul 02 1979 BIOMEDICAL ENGINEERING TRUST, A CORP OF NEW JERSEY New Jersey meniscal bearing knee replacement
4708132, Jan 24 1986 HOWMEDICA OSTEONICS CORP Fixation device for a ligament or tendon prosthesis
4712542, Jun 30 1986 Medmetric Corporation System for establishing ligament graft orientation and isometry
4776851, Jul 23 1986 W L GORE & ASSOCIATES, INC Mechanical ligament
4870957, Dec 27 1988 ZIMMER TECHNOLOGY, INC Ligament anchor system
4950270, Feb 03 1989 Ethicon, Inc Cannulated self-tapping bone screw
4997433, Jan 16 1990 MITEK SURGICAL PRODUCTS, INC ; Medicine Lodge, Inc Endosteal fixation stud and system
5037422, Jul 02 1990 Smith & Nephew, Inc Bone anchor and method of anchoring a suture to a bone
5037426, Sep 19 1988 GOBLE, E MARLOWE Procedure for verifying isometric ligament positioning
5046513, May 18 1987 Mitek Surgical Products, Inc. Method for anchoring suture to bone
5080680, Sep 04 1990 ZIMMER TECHNOLOGY, INC Femoral stem prosthesis with preapplied cement mantle
5100417, Jul 13 1990 Smith & Nephew, Inc Suture anchor and driver assembly
5112338, Feb 11 1991 Surgical instrument for removing artificial acetabular cups
5139520, Jan 31 1990 Smith & Nephew, Inc Method for ACL reconstruction
5147361, Nov 29 1989 ASAHI KOGAKU KOGYO KABUSHIKI KAISHA, A CORP OF JAPAN Vertebral connecting plate
5151104, Oct 26 1989 PFIZER HOSPITAL PRODUCTS GROUP, INC Self-locking joint connector
5152790, Mar 21 1991 Smith & Nephew, Inc Ligament reconstruction graft anchor apparatus
5156616, Feb 10 1992 Apparatus and method for suture attachment
5176682, Jun 01 1992 Surgical implement
5203787, Nov 19 1990 Biomet Manufacturing Corp Suture retaining arrangement
5207679, Sep 26 1991 Mitek Surgical Products, Inc. Suture anchor and installation tool
5224946, Jul 02 1990 Smith & Nephew, Inc Bone anchor and method of anchoring a suture to a bone
5258003, Jun 01 1992 Conmed Corporation Method and apparatus for induction of pneumoperitoneum
5258016, Jul 13 1990 Smith & Nephew, Inc Suture anchor and driver assembly
5266075, Oct 05 1992 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC Tendon threader for endosteal ligament mounting
5306301, Feb 11 1993 Smith & Nephew, Inc Graft attachment device and method of using same
5324308, Oct 28 1993 Suture anchor
5330468, Oct 12 1993 Drill guide device for arthroscopic surgery
5350380, Jan 15 1993 INNOVASIVE ACQUISITION CORP Method for securing a ligament replacement in a bone
5350383, Feb 20 1992 ARTHREX, INC A CORP OF DELAWARE Adjustable drill guide with interchangeable marking hooks
5356413, Mar 12 1993 Mitek Surgical Products, Inc. Surgical anchor and method for deploying the same
5364400, Feb 14 1992 Smith & Nephew, Inc Interference implant
5370662, Jun 23 1993 WRIGHT MEDICAL TECHNOLOGY, INC Suture anchor assembly
5383932, Apr 27 1993 DePuy Orthopaedics, Inc Absorbable medullary plug
5405359, Apr 29 1994 Toggle wedge
5423860, May 28 1993 Smith & Nephew, Inc Protective carrier for suture anchor
5443482, Jun 23 1993 WRIGHT MEDICAL TECHNOLOGY, INC Suture anchor assembly
5464427, Oct 04 1994 Synthes USA, LLC Expanding suture anchor
5472452, Aug 30 1994 Linvatec Corporation Rectilinear anchor for soft tissue fixation
5480403, Mar 22 1991 United States Surgical Corporation Suture anchoring device and method
5486197, Mar 24 1994 Ethicon, Inc Two-piece suture anchor with barbs
5505735, Jun 10 1993 Mitek Surgical Products, Inc. Surgical anchor and method for using the same
5522843, Feb 23 1994 Orthopaedic Biosystems Limited, Inc.; ORTHOPAEDIC BIOSYSTEMS LIMITED, INC Apparatus for attaching soft tissue to bone
5534011, Oct 27 1994 Vesica Medical, Inc. Method and apparatus for threading a suture anchor
5545180, Dec 13 1993 Ethicon, Inc Umbrella-shaped suture anchor device with actuating ring member
5554192, Oct 05 1994 ZIMMER TECHNOLOGY, INC Intramedullary implant stem and centralizer
5556411, Jul 09 1993 Nissho Corporation; GETZ BROS CO , LTD Trocar assembly having a cannula retaining member
5591190, Jan 06 1992 Safety trocar penetrating instrument
5591232, Apr 17 1995 Surgical method for rejuvenating body members or for reshaping body members or for rejuvenating and reshaping body members by bone grafting
5601557, May 20 1982 Anchoring and manipulating tissue
5601562, Feb 14 1995 Arthrex, Inc. Forked insertion tool and metnod of arthroscopic surgery using the same
5609634, Jul 07 1992 Intervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
5618314, Dec 13 1993 Ethicon, Inc Suture anchor device
5632748, Jun 14 1993 CHARLES L BECK, JR ; FRANCE, E PAUL; ELLINGSON, RICHARD L Endosteal anchoring device for urging a ligament against a bone surface
5643266, Jun 05 1995 Li Medical Technologies, Inc. Method and apparatus for securing ligaments
5643321, Nov 10 1994 INNOVASIVE DEVICES, INC Suture anchor assembly and methods
5645588, Feb 11 1993 Smith & Nephew, Inc Graft attachment device
5647874, May 20 1982 John O., Hayhurst Anchoring and manipulating tissue
5658289, Sep 24 1993 Linvatec Corporation Ligament graft protection apparatus and method
5662654, Jun 04 1995 DEXTERITY SURGICAL, INC Bone anchor, insertion tool and surgical kit employing same
5674224, Nov 18 1994 Biomet Manufacturing, LLC Bone mulch screw assembly for endosteal fixation of soft tissue grafts and method for using same
5683471, Jun 02 1994 Hybrid tibial tray knee prosthesis
5690676, Jul 13 1990 Smith & Nephew, Inc Suture anchor and drive assembly
5702422, Dec 06 1995 Anterior cruciate ligament repair method
5707395, Jan 16 1997 Li Medical Technologies, Inc.; LI MEDICAL TECHNOLOGIES, INC , A CORPORATION OF CONNECTICUT Surgical fastener and method and apparatus for ligament repair
5713897, Mar 06 1997 Anterior cruciate ligament tensioning device and method for its use
5720766, Feb 23 1995 Orthopaedic Biosystems Limited, Inc. Apparatus for attaching soft tissue to bone
5725529, Sep 24 1990 Innovasive Devices, Inc. Bone fastener
5725541, Jan 22 1996 The Anspach Effort, Inc. Soft tissue fastener device
5733307, Sep 17 1996 Sherwood Services AG Bone anchor having a suture trough
5735867, Aug 23 1995 Arthrocare Corporation Working cannula for arthroscopy
5766178, Dec 13 1996 HOWMEDICA OSTEONICS CORP Bone plug
5766250, Oct 28 1996 INNOVASIVE ACQUISITION CORP Ligament fixator for a ligament anchor system
5769894, Feb 05 1997 Smith & Nephew, Inc Graft attachment device and method of attachment
5782749, May 10 1994 Laparoscopic surgical instrument with adjustable grip
5782917, Feb 26 1996 SUNMEDICA Intramedullary bone plug
5791350, Jun 07 1995 Device and method for measuring force systems
5797963, Nov 10 1994 INNOVASIVE DEVICES, INC Suture anchor assembly and methods
5813808, Oct 28 1996 Expansion screw having overlapping expanding elements
5814070, Feb 20 1996 HOWMEDICA OSTEONICS CORP Suture anchor and driver
5824011, Jun 23 1993 WRIGHT MEDICAL TECHNOLOGY, INC Suture anchor assembly
5840078, Mar 01 1995 Method and apparatus for mechanical attachment of soft tissue to bone tissue
5849004, Jul 17 1996 ORTHOPEDIC DESIGNS, INC Surgical anchor
5861043, Feb 26 1996 SUNMEDICA Intramedullary bone plug
5868789, Feb 03 1997 Acumed LLC Removable suture anchor apparatus
5871504, Oct 21 1997 Linvatec Corporation Anchor assembly and method for securing ligaments to bone
5879403, Mar 27 1997 Johnson & Johnson Professional, Inc Bistable cement restrictor
5891150, Dec 04 1996 Apparatus and method for fixing a ligament in a bone tunnel
5891168, Jan 31 1997 Process for attaching tissue to bone using a captured-loop knotless suture anchor assembly
5895425, Feb 12 1997 Arthrex, Inc. Bone implant
5913860, Feb 27 1998 Synthes USA, LLC Surgical nail inserter
5918604, Feb 12 1997 Arthrex, Inc. Method of loading tendons into the knee
5935129, Mar 07 1997 INNOVASIVE DEVICES, INC Methods and apparatus for anchoring objects to bone
5935169, Feb 13 1997 Bone cement plug for deployment in a bone canal
5957953, Feb 16 1996 Smith & Nephew, Inc Expandable suture anchor
5964783, Nov 07 1997 Arthrex, Inc. Suture anchor with insert-molded suture
5972034, Jul 29 1997 JOINT ENTERPRISES, L C Self-venting intramedullary cement restrictor
5984966, Mar 02 1998 Bionx Implants Oy Bioabsorbable bone block fixation implant
5989253, Oct 27 1995 Ligament anchoring device
6022373, Sep 10 1996 Linvatec Corporation Surgical anchor and package and cartridge for surgical anchor
6045573, Jan 21 1999 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Suture anchor having multiple sutures
6056752, Oct 24 1997 Smith & Nephew, Inc Fixation of cruciate ligament grafts
6068648, Jan 26 1998 Synthes USA, LLC Tissue anchoring system and method
6080154, Mar 22 1997 Arthrocare Corporation Locating anchor
6086591, Jan 29 1999 Smith & Nephew, Inc. Soft tissue anchor
6099568, Mar 03 1998 Linvatec Corporation ACL graft fixation device and method
6110207, Apr 23 1996 Aesculap AG Implant for securing a tendon replacement member
6117161, Jun 06 1995 Smith & Nephew, Inc Fastener and fastening method, particularly for fastening sutures to bone
6129762, Aug 22 1994 Linvatec Corporation Anchor and method for securement into a bore
6132433, Feb 12 1997 Arthrex, Inc. Apparatus of loading tendons into the knee
6146406, Feb 12 1998 Smith & Nephew, Inc. Bone anchor
6146407, Sep 11 1998 Bio Innovation, Ltd. Suture anchor installation devices and methods
6152928, Mar 02 1999 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Ligament fixation device and method
6156039, Aug 06 1999 Snagging knotless suture anchor assembly
6187011, Dec 05 1997 Smith & Nephew, Inc. Positioning a tibial tunnel
6214007, Jun 01 1999 Surgical fastener for fixation of a soft tissue graft to a bone tunnel
6221107, Aug 03 1998 SMITH & NEPHEW, INC Ligament fixation device and method
6224603, Jun 09 1998 NuVasive, Inc Transiliac approach to entering a patient's intervertebral space
6235057, Jan 24 1995 Smith & Nephew, Inc. Method for soft tissue reconstruction
6264677, Oct 15 1997 Applied Biological Concepts, Inc. Wedge screw suture anchor
6280477, Mar 27 1997 DePuy Orthopaedics, Inc Cement restrictor
6283973, Dec 30 1998 Ethicon, Inc Strength fixation device
6283996, Sep 20 1996 Medicine, Lodge, Inc. Adjustable length strap and footing for ligament mounting and method for its use
6306138, Sep 24 1997 Ethicon, Inc ACL fixation pin and method
6319270, Aug 05 1996 Arthrex, Inc. Headed bioabsorbable tissue anchor
6328758, Apr 21 1998 Tornier SAS Suture anchor with reversible expansion
6355053, Jun 02 1998 Smith & Nephew, Inc Anchor, tool and method and apparatus for emplacing anchor in a borehole
6355066, Aug 19 1998 Anterior cruciate ligament reconstruction hamstring tendon fixation system
6365149, Jun 30 1999 ENDO-SURGERY, INC Porous tissue scaffoldings for the repair or regeneration of tissue
6371124, Feb 12 1997 Arthrex, Inc. Method of loading tendons into the knee
6379361, Jun 14 1993 Endosteal anchoring device for urging a ligament against a bone surface
6402757, Mar 12 1999 Biomet Manufacturing, LLC Cannulated fastener system for repair of bone fracture
6440134, Jul 29 1999 Device for the femoral fixation of the semitendinosus and gracilis tendons for the reconstruction of the anterior cruciate ligament of the knee
6491714, May 03 1996 ZipTek LLC Surgical tissue repair and attachment apparatus and method
6499486, Jul 29 1999 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Method for reconstructing a ligament
6508830, Apr 30 2001 Musculoskeletal Transplant Foundation Suture anchor
6517542, Aug 04 1999 CLEVELAND CLINIC FOUNDATION, THE Bone anchoring system
6517578, Dec 15 1999 Arthrocare Corporation Graft suspension device
6527795, Oct 18 2000 DePuy Mitek, LLC Knotless suture anchor system and method of use
6533802, May 16 2001 Smith & Nephew, Inc Endobutton continuous loop for bone-tendon-bone
6533816, Feb 09 1999 Graft ligament anchor and method for attaching a graft ligament to a bone
6540783, Jan 28 1998 Ethicon, Inc. Method and apparatus for fixing a graft in a bone tunnel
6544273, Jan 08 1999 Boston Scientific Corporation; Boston Scientific Scimed, Inc Tack device with shield
6547800, Jun 06 2001 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device
6551343, Apr 01 1998 Bionx Implants, Oy Bioabsorbable surgical fastener for tissue treatment
6554553, Mar 23 1993 Tension adjusting device
6554862, Nov 27 1996 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Graft ligament anchor and method for attaching a graft ligament to a bone
6562071, Jun 14 2000 Fixation anchor
6579295, Sep 25 2000 Tendon anchors
6589245, Oct 21 1999 KARL STORZ SE & CO KG Interference screw
6599289, Mar 10 2000 Smith & Nephew, Inc Graft anchor
6610064, Aug 10 1999 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Apparatus and method for reconstructing a ligament
6610080, Feb 28 2001 HOWMEDICA OSTEONICS CORP Parabolic eyelet suture anchor
6616694, Nov 21 1996 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Apparatus for anchoring autologous or artificial tendon grafts in bone
6623524, Jun 09 2000 Arthrex, Inc.; ARTHREX, INC , A CORPORATION OF DELAWARE Method for anterior cruciate ligament reconstruction using cross-pin implant with eyelet
6629977, Nov 15 1999 Arthrex, Inc.; ARTHREX, INC Tapered bioabsorbable interference screw and method for endosteal fixation of ligaments
6632245, Aug 19 1998 Anterior cruciate ligament reconstruction hamstring tendon fixation system
6635058, Nov 13 1992 AMS Research Corporation Bone anchor
6635074, Mar 02 1999 Suture anchor and associated method of implantation
6652560, Jul 03 1999 Arthrocare Corporation Bone anchor
6652563, Oct 02 2001 Arthrex, Inc. Suture anchor with internal suture loop
6663656, Feb 26 2001 Arthrex, Inc. Torque driver for interference screw
6685728, Jan 25 2002 Stryker Corporation Threaded suture anchor and method of use
6689153, Apr 16 1999 Orthopaedic Biosystems Ltd, Inc. Methods and apparatus for a coated anchoring device and/or suture
6736847, Jul 07 2001 Arthrocare Corporation Anchoring device
6752833, Feb 18 2000 ISOTIS ORTHOBIOLOGICS, INC Plug for insertion into a bone canal
6780187, Sep 25 2000 Scissor action tendon anchor
6780188, Sep 24 1997 Ethicon, Inc. ACL fixation pin
6802862, Jan 24 1995 Smith & Nephew, Inc. Method for soft tissue reconstruction
6808528, Feb 23 2000 Ethicon, Inc Apparatus and method for securing a graft ligament in a bone tunnel
6833005, Feb 02 2001 Ligament graft system and method
6860887, Nov 05 2001 TECHWOOD SHUTTER, INC Suture management method and system
6875214, Sep 25 2000 Rotating tendon anchor
6878166, Aug 28 2000 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC Method and implant for securing ligament replacement into the knee
6887271, Sep 28 2001 DePuy Mitek, LLC Expanding ligament graft fixation system and method
6890354, Mar 08 2002 Musculoskeletal Transplant Foundation Bone-tendon-bone assembly with allograft bone block and method for inserting same
6905513, Aug 30 2002 Biomet Manufacturing, LLC Knee prosthesis with graft ligaments
6932834, Jun 27 2002 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Suture anchor
6994725, Oct 03 2000 MedicineLodge, Inc Method and apparatus for reconstructing a ligament
7001429, Oct 24 2000 Depuy Orthopaedics, Inc. Method for securing soft tissue to an artificial prosthesis
7056340, Jan 28 1998 Ethicon, Inc. Method for fixing a graft in a bone tunnel
7063717, May 26 2000 Arthrex, Inc. Biointerference screw fixation technique
7063724, Oct 01 2001 Covidien LP Apparatus and method for reconstructing a ligament
7083647, Nov 27 1996 Fixation screw, graft ligament anchor assembly, and method for securing a graft ligament in a bone tunnel
7137996, Mar 08 2002 Musculoskeletal Transplant Foundation Bone tendon bone assembly with allograft bone block
7144413, Apr 20 2001 Synthes USA, LLC Graft fixation system and method
7172595, Oct 03 2000 ARTHREX, INC Bone fixation systems and related methods
7175632, May 15 2002 Linvatec Corporation Cross-pin graft fixation instruments and method
7226469, Feb 02 1999 Arthrex, Inc.; ARTHREX, INC Insert molded suture anchor
7285121, Nov 05 2001 Warsaw Orthopedic, Inc Devices and methods for the correction and treatment of spinal deformities
7322986, Nov 15 1999 Arthrex, Inc. Bioabsorbable interference screw for endosteal fixation of ligaments
7338492, May 15 2002 Linvatec Corporation Cross-pin graft fixation, instruments, and methods
7468074, Oct 29 2004 Arthrex, Inc.; ARTHREX, INC Ligament fixation using graft harness
7485136, May 21 1998 Apparatus and method for ligament fixation
7588586, May 27 2003 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Tissue fixation device
7591850, Apr 01 2005 Arthrocare Corporation Surgical methods for anchoring and implanting tissues
7594929, Nov 21 2002 Anchoring screw for a relay strip or suture
7637910, Mar 21 2006 Arthrex, Inc. Method of ACL reconstruction using dual-sided rotary drill cutter
7637949, Nov 21 1996 Innovasive Devices, Inc. Method for anchoring autologous or artificial tendon grafts in bone
7645293, Apr 18 2005 United States Surgical Corporation Suture anchor installation system and method
7674275, Oct 05 2006 Ethicon Endo-Surgery, Inc Suture anchor
7686838, Nov 09 2006 Arthrocare Corporation External bullet anchor apparatus and method for use in surgical repair of ligament or tendon
7713293, Apr 15 2003 Arthrocare Corporation Transverse suspension device
7766964, Mar 30 2007 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC In situ graft preparation for knee ligament reconstruction
7780701, Aug 13 2003 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC Suture anchor
7896901, May 27 2003 DePuy Mitek, Inc. Tissue fixation device
7951198, May 10 2005 Acumed LLC Bone connector with pivotable joint
8029537, Nov 28 2000 Linvatec Corporation Knotless suture anchor and method for knotlessly securing tissues
8034090, Nov 09 2004 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC Tissue fixation device
8043347, Dec 29 2005 Industrial Technology Research Institute; NATIONAL TAIWAN UNIVERSITY HOSPITAL Device and method for fixing soft tissue
8043374, Oct 01 2001 Covidien LP Apparatus and method for reconstructing a ligament
8062363, Feb 27 2008 Xircon Limited; Kieran, Hirpara Tendon repair apparatus and method
8092528, May 27 2005 DEPUY SYNTHES PRODUCTS, INC Intervertebral ligament having a helical bone fastener
8100968, May 21 1998 Apparatus and method for ligament fixation
8100969, Nov 21 1996 DePuy Mitek, Inc. Methods for anchoring autologous or artificial tendon grafts using first and second bone anchors
8110001, Jan 11 2000 RTI Surgical, Inc Materials and methods for improved bone tendon bone transplantation
8114127, Jun 22 2004 HS WEST INVESTMENTS, LLC Bone anchors for use in attaching soft tissue to bone
8114129, Sep 13 1996 Tendon Technology, Ltd.; Ortheon Medical L.L.C. Apparatus and methods for tendon or ligament repair
20010018619,
20010020187,
20010021875,
20010025181,
20020007182,
20020019635,
20020019670,
20020038123,
20020040241,
20020111693,
20020128721,
20030088250,
20030187446,
20040111117,
20040176854,
20040193167,
20050075636,
20050222619,
20060030940,
20060253119,
20060276841,
20070021751,
20070093895,
20070162124,
20070213730,
20070225805,
20070260249,
20070260259,
20070270857,
20080154314,
20080228271,
20080234819,
20080275553,
20080288069,
20080300683,
20090018654,
20090018655,
20090030516,
20090093880,
20090125058,
20090216326,
20090234451,
20090248068,
20090265004,
20090306776,
20090306777,
20090318964,
20090319043,
20100004683,
20100016894,
20100063541,
20100121448,
20100121449,
20100145448,
20100152850,
20100161054,
20100217389,
20100249838,
20100249854,
20100292792,
20100305698,
20100312341,
20100324676,
20110040380,
20110046733,
20110046734,
20110106253,
20110112640,
20110112641,
20110118838,
20110137416,
20110152928,
20110153018,
20110160767,
20110184227,
20110184517,
20110196432,
20110196490,
20110208305,
20110218625,
20110270306,
20110282447,
20110282450,
20110288584,
20110288641,
20110301707,
20110301708,
20110313453,
20120035671,
20120053630,
D330591, Jan 31 1990 Smith & Nephew, Inc Suture anchor driver
D426305, Dec 08 1998 Lincoln Diagnostics, Inc. Combined skin testing and vaccination needle
D547451, Feb 02 2006 ASFORA IP, LLC Surgical knife
DE29607352,
DE9002844,
EP674880,
EP865774,
EP1066805,
EP1180351,
EP238223,
EP279129,
EP317406,
EP346469,
EP379789,
EP574707,
EP619982,
FR2395012,
FR2590792,
FR2683715,
FR2725615,
FR2732211,
GB2288739,
GB2337463,
RE34871, May 21 1992 INNOVASIVE ACQUISITION CORP Process of endosteal fixation of a ligament
RE36289, Dec 13 1993 Ethicon, Inc. Umbrella shaped suture anchor device with actuating ring member
SU1521465,
WO3088874,
WO9325148,
WO9511631,
WO9629029,
WO9639934,
WO9720522,
WO9812991,
WO9812992,
WO9822048,
WO9838937,
WO9952472,
WO9959488,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 07 2009DELLI-SANTI, GEORGEArthrocare CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0236130186 pdf
Nov 16 2009Arthrocare Corporation(assignment on the face of the patent)
Dec 01 2009WOLF, ALAN W Arthrocare CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0236130238 pdf
Date Maintenance Fee Events
Nov 17 2016M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 18 2021REM: Maintenance Fee Reminder Mailed.
Jul 05 2021EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 28 20164 years fee payment window open
Nov 28 20166 months grace period start (w surcharge)
May 28 2017patent expiry (for year 4)
May 28 20192 years to revive unintentionally abandoned end. (for year 4)
May 28 20208 years fee payment window open
Nov 28 20206 months grace period start (w surcharge)
May 28 2021patent expiry (for year 8)
May 28 20232 years to revive unintentionally abandoned end. (for year 8)
May 28 202412 years fee payment window open
Nov 28 20246 months grace period start (w surcharge)
May 28 2025patent expiry (for year 12)
May 28 20272 years to revive unintentionally abandoned end. (for year 12)