A handling apparatus, used for handling a carrier of semiconductor wafers, comprises a first mechanism for transferring a carrier between a loader/unloader table and a storage compartment, and a second mechanism, for moving the first mechanism in both vertical and horizontal directions. The first mechanism includes an arm, a loading portion for loading the carrier, and an arm-rocking mechanism. The second mechanism moves the first mechanism to the loader/unloader table, picks up the carrier, and then moves the first mechanism to the storage compartment, where the arm is rocked, so as to discharge the object from the loading portion.
|
1. A handling apparatus operable in a clean room, comprising:
transferring means for transferring a box-like carrier between a storage compartment and a loading/unloading stage in said clean room, said transferring means including an arm member which has a prongshaped loading portion by means of which said arm member picks up the box-like carrier and a main arm portion curved like a boomerang; rocking means, provided in a portion which is lower than said prongshaped loading portion, for rocking said arm member; and moving means for moving said transferring means to the loading/unloading stage, picking up the box-like carrier placed on the loading/unloading stage, moving the carrier so as to be overhead of the rocking means via said arm member, and moving said transferring means to the storage compartment where the arm member is rocked so as to discharge the carrier from the loading portion.
18. A method for transferring box-like carriers by use of a handling apparatus in a clean room, comprising:
means for transferring a box-like carrier between a storage compartment and a loading/unloading stage in said clean room, said means for transferring said carrier including an arm member which has a prongshaped loading portion by means of which said arm member picks up the box-like carrier and a main arm portion curved like a boomerang; rocking means, provided in a portion which is lower than said prongshaped loading portion, for rocking said arm member; and moving means for moving said transferring means to the loading/unloading stage, picking up the box-like carrier placed in the loading/unloading stage, moving the carrier so as to be overhead of the rocking means via said arm member, and moving said transferring means to the storage compartment where the arm member is rocked so as to discharge the carrier from the loading portion, said method comprising the steps of: picking up at least one of a plurality of box-like carriers placed on the loading/unloading stage and loading the picked-up carrier onto the loading portion of the means for transferring said carrier, bu use of the means for moving said means for transferring said carrier and rocking means; moving the carrier from the loading/unloading stage to the storage compartment, bu use of the means for moving said means for transferring said carrier, while making the rocking means unswayable; and discharging the picked-up carrier from the loading portion in the stage compartment, bu use of said means for moving said means for transferring said carrier and said rocking means.
2. The handling apparatus according to
3. The handling apparatus according to
4. The handling apparatus according to
5. The handling apparatus according to
6. The handling apparatus according to
7. The handling apparatus according to
8. The handling apparatus according to
9. The handling apparatus according to
10. The handling apparatus according to
11. The handling apparatus according to
12. The handling apparatus according to
13. The handling apparatus according to
14. The handling apparatus according to
15. The handling apparatus according to
16. The handling apparatus according to
17. The apparatus according to
19. The method of transferring carriers according to
20. The method according to
|
This application is a continuation of application Ser. No. 07/221,090, filed on July 19, 1988, now abandoned.
1. Field of the Invention
This invention relates to a handling apparatus used to transfer carriers which store a plurality of semiconductor wafers or liquid crystal substrates, for example, and also to a method of transferring the carriers by using the handling apparatus.
2. Description of the Related Art
In the process of manufacturing semiconductor devices, semiconductor wafers are transferred in units of lots from one process to another. In other words, wafers are not transferred one by one from one process to another, but instead, a plurality of wafers are placed in box-shaped carriers and transferred in units of lots.
In general, a stocker, for temporary storage of a large number of carriers, is installed beside each unit or group of units such as processing units, wafer testing units, and the like, the purpose of this being to enable the wafers--in units of lots--to be processed in batches. Stated another way, since the processing time differs considerably from one type of processing unit to another, it is therefore necessary to provide means for temporary storage of carriers waiting to undergo processing or to be sent to the next process.
The flow of carriers will now be described briefly as follows:
The carriers are carried by robot from the preceding processing line to a stocker, which is made up of a number of storage compartments, and are stored there temporarily. Then, when desired, the carriers are taken out, one by one, from the storage compartments, and transferred to a processing unit. Then, after being processed by the processing unit in question, the processed wafers are returned to the carrier from which they were removed.
In putting the carriers in and taking them out of the stocker, the carriers are normally first placed on a loading/unloading table and then, they are transferred into and out of the storage compartments by a handling apparatus provided with a traveling and a holding function. To be more specific, the handling apparatus selects the storage compartment of the stocker, identified by address, to which it is going to store the carrier or from which it is going to take the carrier.
Since semiconductor wafers have a hyperfine pattern formed thereon, the wafer surface can easily be damaged even by very fine dust particles. In order to minimize contamination of the wafer surface by dust, it is essential that all handling of the wafers be conducted in a clean room. In the clean room, clean air is made to flow from the ceiling toward the floor to keep the room at a high level of cleanliness (with a smaller number of floating dust per unit volume).
A conventional handling apparatus, however, has a larger number of driving axes and a complicated structure, and thus, when a carrier is handled by such a apparatus, dust is produced by the drive mechanism, and notably degrades the cleanliness of the room. In order to handle semiconductor wafers of a high density integrated circuit pattern, an ultra-high level of cleanliness is required of the clean room. Using a conventional handling apparatus, this requirement cannot be met.
The conventional handling apparatus is structured such that it, a carrier from above and the carrier storing section moves at a higher position than the carrier, thus disturbing the laminar air flow and degrading the cleanliness of the room. Furthermore, since the conventional handling apparatus has a complicated structure with a large number of driving axes, this means a high equipment cost and an economic disadvantage.
It is the first object of this invention to provide a carrier handling apparatus which produces little dust.
The second object of this invention is to provide a handling apparatus, wherein wafers stored in a carrier can be transferred in accordance with the direction of air flow. A more specific object of this invention is to provide a less expensive handling apparatus having a simplified structure made possible by reducing the number of driving axes.
According to an aspect of the present invention, the handling apparatus comprises first means for transferring an object from a first position to a second position, the first means including an arm member, a loading portion, provided for the arm member, for loading the object, and means for rocking the arm member; and second means, for moving the first means to the first position, picking up the object placed in the first position and loading the picked-up object onto the loading portion, and then moving the first means to the second position, where the arm member is rocked, so as to discharge the picked-up object from the loading portion.
It is desirable that the second means include vertical and horizontal moving means.
As for the vertical and horizontal moving means, various types of mechanism, such as a link mechanism, a gear mechanism, and a wrapping connector driving mechanism can be used.
It is desirable to use a ball screw and a nut for the vertical moving mechanism. It is also desirable to adopt a wheel traveling mechanism for the horizontal moving means. In this case, it is desirable to mount the first means and the vertical moving mechanism on a carriage.
It is desirable to provide the loading portion with sensors for prevention of contact with other parts.
It is desirable to provide a sensor to ensure there is nothing at the location where a carrier is to be placed. The reason is that if a carrier is put on top of another that already exists there, the wafers contained will be damaged.
It is desirable to provide a sensor to make sure that a carrier is mounted on the arm member.
It is also desirable to provide fingers for the loading portion to prevent a transferred object from falling out.
The main arms of the arm members are preferably bent like a boomerang.
The contour of the cover for the vertical moving means and rocking means is preferably streamlined. Further, the contour of the arm members is preferably formed in a smooth aerofoil shape.
For the means of rocking the arm members, various types of mechanism such as a link mechanism, gear mechanism or a wrapping connector driving mechanism can be adopted, but it is desirable to use a motor direct driving mechanism.
In addition, it is desirable to transfer a carrier by the handling apparatus between the loading/unloading table and the storage compartment in such a manner that the carrier is slanted by the arm members being slanted to allow the laminar flow of clean air to pass through the gaps between the wafers in the carrier. It is possible to use a single unit of a handling apparatus to transfer two or more carriers at the same time. To further improve the cleanliness of carrier being transferred, it is possible to provide the arm member with an air conditioning means to blow.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
FIG. 1 is a plan view conceptually showing an implanter provided with a cylindrical stocker and a handling apparatus;
FIG. 2 is a perspective view conceptually showing a cylindrical stocker fitted with a handling apparatus;
FIG. 3 is a longitudinal sectional view of the cylindrical stocker fitted with the handling apparatus, with a part of the stocker cut away for clarity;
FIG. 4 is a partially cutaway plan view of cylindrical stocker fitted with the handling apparatus;
FIG. 5 is a perspective view of the handling apparatus of a first embodiment of the invention;
FIG. 6 is a partially cutaway plan view of the handling apparatus to reveal the inner mechanism;
FIG. 7 is a transverse sectional view of an arm of the handling apparatus;
FIG. 8A is a perspective view schematically showing the position of the carrier stored in the stock case;
FIG. 8B is a perspective view schematically showing the position of a carrier when transferred by the handling apparatus;
FIG. 8C is a perspective view schematically showing the position of a carrier on the loading/unloading table;
FIG. 9 is a view showing the loci of the arm and a carrier when a carrier is put into and taken out of a storage compartment of the storage section;
FIG. 10 is a perspective view conceptually showing a book shelf type stocker fitted with the handling apparatus; and
FIG. 11 is a perspective view showing a handling apparatus according to a second embodiment of the invention.
FIG. 12 is a perspective view of a handling apparatus having two rocking arm.
FIG. 13 is a perspective view of a handling apparatus having a fan-installed roof.
The preferred embodiments of the invention will now be described with reference to the accompanying drawings.
FIGS. 1 through 7 are views to explain the handling apparatus according to a first embodiment of the invention. Referring to FIG. 1, in a clean room, there is installed an implanter 60 by which ions of boron, for example, are accelerated using a high-voltage electric field and are driven into the pattern-forming surface of silicon wafers. Lid 61 for the chamber of implanter 60 is open at the entry side of implanter 60. Wafers 11a are taken out of carrier 11 by hands 63 one by one and are put on lid 61. When a specified number of wafers are put on lid 61, lid 61 is closed and ion implantation is executed. There is table 65 at the front of lid 61. Table 65 communicates with stocker 14 via passage 66. By the side of passage 66, there is a handling apparatus 1 which transfers carriers 11, which are stored in stocker 14, to table 65. Stocker 14 has at its front side loading/unloading table 28 and another handling apparatus 1 is provided between loading/unloading table 28 and stock case 14a. A robot transfer line (not shown) is installed from the equipment of the preceding process (not shown) up to the front side of loader/unloader table 28 and a transferring robot is used to load carriers 11 onto loading/unloading table 28. Loading/unloading table 28 has a number of receiving places.
As shown in FIGS. 2 through 4, stock case 14a is in the form of a vertical cylinder and is surrounded by rectangular outer frame 27. Stock case 14a is held at its top and bottom to outer frame 27 by means of shafts 14b and 14c and bearings. Friction drive disk 29c is attached to the underside of lowest-stage shelf 24. Directly friction-driven by output shaft of motor 29a, stock case 14a rotates about shaft 14c. Stock case 14a has a plurality of shelves 24 and each shelf 24 is partitioned into a plurality of box-like storage compartments. Mounting base 24a with a forward-sloped upper surface is provided in each storage compartment and carrier 11 is mounted on base 24a.
Stock case 14a has space 25 formed in its central area such that clean air is supplied through high-performance air filter 25a radially from space 25 into the storage compartments of the shelves 24. Put differently, when lower fan 26 and upper fan 29b are put into motion, clean air circulates in stocker 14 like convection currents.
With reference to FIGS. 5 through 7, description will be made of handling apparatus 1 in greater detail, Handling apparatus 1 basically comprises three mechanisms: horizontal movement mechanism 2, vertical movement mechanism 3 and the rocking mechanism of arm members 5. Their movement is computer-controlled by a control unit not shown. Upper and lower racks 21a and 21b and upper and lower linear guide rails 22a and 22b of horizontal movement mechanism 2 are fixed to outer frame 27 of stocker 14 in such a way that they are mutually horizontal and separated by a specified distance. Vertical drive shaft 17 extends from upper rack 21a to lower rack 21b. Upper gear 16a engages with upper rack 21a and lower gear 16b engages with lower rack 21b, Reduction gear 18 is provided in the middle of drive shaft 17. Reduction gear 18 engages with gear 20 attached to the drive shaft of motor 19. Upper and lower frames 15a and 15b of horizontal movement mechanism 2 have linear guides 23a and 23b, respectively, upper guide 23a being fitted on upper rail 22a and lower guide 23b being fitted on lower rail 22b.
Frame 1b of vertical movement mechanism 3 is secured to upper and lower frames 15a and 15b of horizontal movement mechanism 2 such that frame 1b is parallel with drive shaft 17. Linear guide rail 3b is fixed in the longitudinal direction of frame 1b and guide 3a is fitted on rail 3b. Ball screw 6 is rotatably supported by frames 1c and 1d at the top and bottom ends of frame 1b such that ball screw 6 is parallel with rail 3b. Ball nut 8 in engagement with screw 6 is connected with guide 3a through member 3c. Belt pulley 6a is provided at the bottom end of screw 6 and belt 6b is applied between pulley 7a of the rotating shaft of motor 7 and belt pulley 6a.
The rocking mechanism of arm member 5 is mounted to member 3c. More specifically, shaft 4 of arm member 5 is attached to the side face of member 3c such that the shaft 4 is parallel with linear guide rails 22a and 22b. Belt pulley 10a is attached to shaft 4 and belt 10b is applied between pulley 9a of the rotating shaft of motor 9 and belt pulley 10a. In this case, since the diameter of belt pulley 10a is larger than the diameter of pulley 9a, the rotating speed of shaft 4 is reduced. Motors 7, 9 and 19, each having a reversing switch (not shown) in the respective control circuit, can be driven both in normal and reverse directions.
Arm member 5 comprises a pair of main arms, each of which is provided with a fixed finger 12a extending at a right angle from the main arm and a pair of sensors 13a and 13b attached to each of the end portion of main arm 12. To be more specific, each of main arm 12 are in a bent form like a boomerang, and the end portion of each main 12 and each finger 12a unite to form a carrier loading portion. For sensor 13a, a photo sensor utilizing laser beam, for example, is used to prevent a contact accident between the end portions of arms 12 and other parts or carriers. For sensor 13b, a photo sensor utilizing red light, for example, is adopted to check if carrier 11 is right above sensor 13b.
As shown in FIG. 6, the whole body of vertical movement mechanism 3 is enclosed by streamlined cover 1a (not shown in FIG. 5).
Reference is now made to FIG. 7, which shows arm member 5, the cross section of which is a smooth aerofoil. To be more concrete, arm member 5 is formed such that the lower section is narrower than the upper section so as not to disturb the laminar flow of clean air.
The component parts of handling apparatus 1 are made of a corrosion resisting material, such as a stainless steel or an aluminum alloy or either of these materials coated with tetrafluoroplastics.
With reference to FIGS. 8A through 8C, FIG. 2, and FIG. 3 description will be made of a case where the handling apparatus according to the first embodiment to transfer a carrier from the loading/unloading table to the storage compartment. In FIGS. 8A to 8C, the numeral 11a indicates semiconductor wafers stored in carrier 11. The numeral 11b indicates the wafer entrance through which wafers enter the carrier.
As shown in FIG. 8C, carrier 11 is brought by the transferring robot onto loading/unloading table 28 in such a manner that the wafer entrance 11b faces up. The clean air in the vicinity of loading/unloading table 28 flows in a descending current coming down onto the top surface of loading/unloading table 28. When mounted on the top surface, the surfaces of wafers 11a in the carrier are parallel with the direction of the descending current. Therefore, the air can pass through a plurality of wafers 11a, reducing the air resistance of the whole body of wafer carrier 11. As a result, the presence of carrier 11 hardly disturbs the laminar flow of the clean air. In other words, the carrier which is in the condition indicated by "C" in FIG. 2 can be kept very clean.
Referring to FIG. 8B and FIG. 3, arm member 5 is slanted by the rocking mechanism so that the extreme ends of arm member 5 assume their highest position while a carrier is being transferred. In other words, carrier 11 being transferred is slanted from the mounted position on the loading/unloading table 28 to about 45° such that wafer entrance 11bfaces diagonally upward. Meanwhile, the flow of the clean air changes from a horizontal current (at the region of storage compartment section 14a) to a descending current (at the region of loading/unloading table 28) in the area between storage compartment section 14a and loading/ unloading table 28. Therefore, the air can go through stored wafers 11a, decreasing the current resistance of the whole body of wafer carrier 11 while the wafer carrier is transferred. Thus, the transfer of carrier 11 scarcely causes the laminar flow of the clean air to be disturbed. In addition, the streamlined cover 1a for the vertical movement mechanism and the smooth airfoil-shaped arm members 5 contribute to a reduction of the current resistance of the whole handling apparatus 1, thereby reducing the disturbance resulting from the movement of apparatus 1 to a minimum. In short, the carrier which is in the condition indicated by "B" in FIG. 2 can be kept very clean. To further improve the cleanliness of carrier 11 being transferred, it is possible to provide arm member 5 with a fan-installed roof to blow.
As shown in FIG. 8A and FIG. 3, with the carriers stocked in the storage compartment, wafer entrance 11b is in a position squarely facing high-performance air filter 25a, Hence, the air can pass through the gaps between a plurality of wafer 11a. This decreases the air current resistance of wafer carrier 11 and therefore, the laminar flow of the clean air is hardly disturbed. The carrier which is in the condition indicated by "A" in FIG. 2 can be kept very clean. Thus, the carrier can be kept clean enough in all conditions.
With reference to FIG. 9, description will now be made of a case where a handling apparatus is used to store carrier 11 in the storage compartment. Loading portion 12, 12a of arm member 5 holding the slanted carrier 11 is raised. At the same time, shaft 4 is turned slowly clockwise to insert carrier 11 into the storage compartment. When the carrier 11 has come to a specified position, arm member 5 is lowered a little and carrier 11 is put on mounting base 24a. To pull loading portion 12 out of shelf 24, the above steps are reversed.
As is clear from FIG. 9, the placement of a carrier on the mounting base in a narrow space has been realized by a combination of rocking and vertical movements.
So is the case with the motion of picking up a carrier from the storage compartment and the motion of placing a carrier on and picking it up from the loading/unloading table.
With reference to FIG. 10, description will now be made of a series of movements by which carrier 11 on table 58 is transferred to the storage compartment. Arm member 5 is positioned at the starting position of the above-mentioned picking up motion by moving the handling apparatus in the X-axis and Y-axis directions. Then, carrier 11 on table 58 is picked up. After this, by moving the handling apparatus in the X-axis and Y-axis directions, arm member 5 is positioned at the start position of placement and carrier 11 is placed at a specified location on shelf 55. The reverse operation, that is, the operation of transferring a carrier from shelf 55 to table 58 can also be realized.
According to the first embodiment mentioned above, the number of axes has been reduced from four, which used to be standard, to three, thus simplifying the mechanism. As a result, the amount of dust generated has been reduced greatly. It ought to be noted that a carrier is moved in a three-dimensional movement and in that this handling apparatus three axes are the theoretically minimum number of driving axes.
The wafers stored in the carriers are arranged in a position which is the same as the direction of the clean air current and therefore, the carriers can be transferred with little disturbance of the laminar air flow. Further, since streamlined cover la is adopted and the arm member is designed in a smooth aerofoil shape, the disturbance of the current air flow caused by the movement of the whole handling apparatus is very little. Therefore, it is possible to maintain a required level of cleanliness and to handle semiconductor wafers for high-density integrated circuits day and night continuously in a clean room.
Mounting bases 24a in the storage compartments each have the forward-sloped top surface. This prevents the wafers in carrier 11 from being moved by a considerable degree of vibration.
With reference to FIGS. 10 and 11, description will now be made to a handling apparatus according to a second embodiment. The items of the second embodiment common with the first embodiment will not be described here.
As shown in FIG. 10, handling apparatus 30 is installed for a book shelf type stocker and handling apparatus 30 transfers carriers 11 from loading/unloading table to stock case 54. Stock case 54 of the stocker has straight shelves 55 of multiple stages. Clean air is supplied through a high-performance air filter from the rear side of shelves 55 to their front side.
Referring to FIG. 11, mechanism 31 of handling apparatus 30 is installed a carriage having wheels 33a and 33b and can move horizontally along stock case 54. Guide rail 34 with a C-like cross section is attached horizontally on the front side. Wheels 33a are fitted in rail 34 and the gear of the driving shaft of first motor 32 engages with the gear of the shaft of wheel 33a. Ball nut 38 and linear guide 43 are secured to the frame of vertical movement mechanism 37. The bottom-end gear of ball screw 36 engages with the gear of the driving shaft of second motor 35. Linear guide 43 is slidably mounted to linear guide rail 44 fixed to the frame of mechanism 31. Arm member 40 is mounted through shaft 39 to the top portion of vertical movement mechanism 37. The gear of shaft 39 engages with the gear of the driving shaft of third motor 41. Shaft 39 is installed horizontally with guide rail 34. The construction of arm member 40 is substantially the same as with arm member 5 of the first embodiment described earlier. Each mechanism is enclosed by a streamlined cover (not shown).
According to the second embodiment of the invention. The mechanism of the handling apparatus is constructed in a modular unit and installed on a carriage. Hence, the mechanism can be easily mounted on and dismounted from the stocker and it is easy to adjust to an expansion of the stocker which may occur if circumstances require.
As is shown in FIG. 12, two rocking mechanism boxes 69 may be employed such that they are vertically slidable along grooves 68a of vertical movement mechanism 3 independently of each other. Arm 5 is coupled to each box 69 by means of shaft 4. Arm 5 of one box and that of the other box are rockable independently of each other.
According to the modification shown in FIG. 12, two carriers can be simultaneously transported by use of one handling apparatus. Furthermore, two arms 5 may be attached to each shaft 4, if so desired.
Air conditioning device 70 which can blow clean air against carrier 11 during transfer may be provided, as shown in FIG. 13. Air conditioning device 70 and rocking mechanism box 69 are coupled to each other, and they are driven, in the coupled state, along groove 68a of vertical movement mechanism 3. Fan 73 is attached to roof 72 of device 70, such that downward air is blown against carrier 11 after it is made to pass through filter 74.
According to the modification shown in FIG. 13, when carrier 11 is transferred, it is kept surrounded by side plate 71 and roof 72 of device 70. Further, clean air is constantly blown against carrier 11. Therefore, the wafers stored in carrier 11 can be kept clean.
In the above-mentioned embodiments of the invention, description has been made of the case where semiconductor wafers are transferred in a clean room, but this invention is not limited to the above embodiments and may be used to transfer other plate-shaped materials such as liquid crystal substrates.
According to this invention, carrier movement can be realized by a theoretically minimum number of axes and the apparatus construction has been simplified. Therefore, it is possible to limit the generation of dust during operation to a minimum. In addition, the driving mechanism of the handling apparatus is installed close to the floor of the clean room. As a result, the laminar flow of clean air is least liable to be disturbed. Hence, in the clean room which is required to meet a high required level of cleanliness, it is possible to use the handling apparatus of this invention for a long time continuously. This invention also offers an economical advantage that the cost of the handling apparatus is lower than before. According to this invention, in all situations of placement and movement and placement, the cleanliness of the carrier being transferred is maintained.
Patent | Priority | Assignee | Title |
10141212, | Jun 19 2002 | Murata Machinery Ltd. | Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists |
10147627, | Jun 19 2002 | Murata Machinery Ltd. | Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists |
10190238, | Oct 16 2014 | Maschinenfabrik Rieter AG | Bale opener |
10381251, | Jun 19 2002 | Murata Machinery Ltd. | Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists |
10720331, | Nov 01 2016 | ASM IP Holdings, B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
10767789, | Jul 16 2018 | ASM IP Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
10784102, | Dec 22 2016 | ASM IP Holding B.V. | Method of forming a structure on a substrate |
10787741, | Aug 21 2014 | ASM IP Holding B.V. | Method and system for in situ formation of gas-phase compounds |
10797133, | Jun 21 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
10804098, | Aug 14 2009 | ASM IP HOLDING B V | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
10818758, | Nov 16 2018 | ASM IP Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
10829852, | Aug 16 2018 | ASM IP Holding B.V. | Gas distribution device for a wafer processing apparatus |
10832903, | Oct 28 2011 | ASM IP Holding B.V. | Process feed management for semiconductor substrate processing |
10844484, | Sep 22 2017 | ASM IP Holding B.V.; ASM IP HOLDING B V | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
10844486, | Apr 06 2009 | ASM IP HOLDING B V | Semiconductor processing reactor and components thereof |
10847366, | Nov 16 2018 | ASM IP Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
10847371, | Mar 27 2018 | ASM IP Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
10851456, | Apr 21 2016 | ASM IP Holding B.V. | Deposition of metal borides |
10858737, | Jul 28 2014 | ASM IP Holding B.V.; ASM IP HOLDING B V | Showerhead assembly and components thereof |
10865475, | Apr 21 2016 | ASM IP HOLDING B V | Deposition of metal borides and silicides |
10867786, | Mar 30 2018 | ASM IP Holding B.V. | Substrate processing method |
10867788, | Dec 28 2016 | ASM IP Holding B.V.; ASM IP HOLDING B V | Method of forming a structure on a substrate |
10872771, | Jan 16 2018 | ASM IP Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
10883175, | Aug 09 2018 | ASM IP HOLDING B V | Vertical furnace for processing substrates and a liner for use therein |
10886123, | Jun 02 2017 | ASM IP Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
10892156, | May 08 2017 | ASM IP Holding B.V.; ASM IP HOLDING B V | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
10896820, | Feb 14 2018 | ASM IP HOLDING B V | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
10910262, | Nov 16 2017 | ASM IP HOLDING B V | Method of selectively depositing a capping layer structure on a semiconductor device structure |
10914004, | Jun 29 2018 | ASM IP Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
10923344, | Oct 30 2017 | ASM IP HOLDING B V | Methods for forming a semiconductor structure and related semiconductor structures |
10928731, | Sep 21 2017 | ASM IP Holding B.V. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
10934619, | Nov 15 2016 | ASM IP Holding B.V.; ASM IP HOLDING B V | Gas supply unit and substrate processing apparatus including the gas supply unit |
10941490, | Oct 07 2014 | ASM IP Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
10943771, | Oct 26 2016 | ASM IP Holding B.V. | Methods for thermally calibrating reaction chambers |
10950432, | Apr 25 2017 | ASM IP Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
10957569, | Oct 11 2002 | Murata Machinery, Ltd | Access to one or more levels of material storage shelves by an overhead hoist transport vehicle from a single track position |
10975470, | Feb 23 2018 | ASM IP Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
11001925, | Dec 19 2016 | ASM IP Holding B.V. | Substrate processing apparatus |
11004977, | Jul 19 2017 | ASM IP Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
11015245, | Mar 19 2014 | ASM IP Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
11018002, | Jul 19 2017 | ASM IP Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
11018047, | Jan 25 2018 | ASM IP Holding B.V. | Hybrid lift pin |
11022879, | Nov 24 2017 | ASM IP Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
11024523, | Sep 11 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Substrate processing apparatus and method |
11031242, | Nov 07 2018 | ASM IP Holding B.V. | Methods for depositing a boron doped silicon germanium film |
11049751, | Sep 14 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
11053591, | Aug 06 2018 | ASM IP Holding B.V. | Multi-port gas injection system and reactor system including same |
11056344, | Aug 30 2017 | ASM IP HOLDING B V | Layer forming method |
11056567, | May 11 2018 | ASM IP Holding B.V. | Method of forming a doped metal carbide film on a substrate and related semiconductor device structures |
11069510, | Aug 30 2017 | ASM IP Holding B.V. | Substrate processing apparatus |
11081345, | Feb 06 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Method of post-deposition treatment for silicon oxide film |
11087997, | Oct 31 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Substrate processing apparatus for processing substrates |
11088002, | Mar 29 2018 | ASM IP HOLDING B V | Substrate rack and a substrate processing system and method |
11094546, | Oct 05 2017 | ASM IP Holding B.V. | Method for selectively depositing a metallic film on a substrate |
11094582, | Jul 08 2016 | ASM IP Holding B.V. | Selective deposition method to form air gaps |
11101370, | May 02 2016 | ASM IP Holding B.V. | Method of forming a germanium oxynitride film |
11107676, | Jul 28 2016 | ASM IP Holding B.V. | Method and apparatus for filling a gap |
11114283, | Mar 16 2018 | ASM IP Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
11114294, | Mar 08 2019 | ASM IP Holding B.V. | Structure including SiOC layer and method of forming same |
11127589, | Feb 01 2019 | ASM IP Holding B.V. | Method of topology-selective film formation of silicon oxide |
11127617, | Nov 27 2017 | ASM IP HOLDING B V | Storage device for storing wafer cassettes for use with a batch furnace |
11139191, | Aug 09 2017 | ASM IP HOLDING B V | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
11139308, | Dec 29 2015 | ASM IP Holding B.V.; ASM IP HOLDING B V | Atomic layer deposition of III-V compounds to form V-NAND devices |
11158513, | Dec 13 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
11164955, | Jul 18 2017 | ASM IP Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
11168395, | Jun 29 2018 | ASM IP Holding B.V. | Temperature-controlled flange and reactor system including same |
11171025, | Jan 22 2019 | ASM IP Holding B.V. | Substrate processing device |
11205585, | Jul 28 2016 | ASM IP Holding B.V.; ASM IP HOLDING B V | Substrate processing apparatus and method of operating the same |
11217444, | Nov 30 2018 | ASM IP HOLDING B V | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
11222772, | Dec 14 2016 | ASM IP Holding B.V. | Substrate processing apparatus |
11227782, | Jul 31 2019 | ASM IP Holding B.V. | Vertical batch furnace assembly |
11227789, | Feb 20 2019 | ASM IP Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
11230766, | Mar 29 2018 | ASM IP HOLDING B V | Substrate processing apparatus and method |
11232963, | Oct 03 2018 | ASM IP Holding B.V. | Substrate processing apparatus and method |
11233133, | Oct 21 2015 | ASM IP Holding B.V. | NbMC layers |
11242598, | Jun 26 2015 | ASM IP Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
11244825, | Nov 16 2018 | ASM IP Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
11251035, | Dec 22 2016 | ASM IP Holding B.V. | Method of forming a structure on a substrate |
11251040, | Feb 20 2019 | ASM IP Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
11251068, | Oct 19 2018 | ASM IP Holding B.V. | Substrate processing apparatus and substrate processing method |
11270899, | Jun 04 2018 | ASM IP Holding B.V. | Wafer handling chamber with moisture reduction |
11274369, | Sep 11 2018 | ASM IP Holding B.V. | Thin film deposition method |
11282698, | Jul 19 2019 | ASM IP Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
11286558, | Aug 23 2019 | ASM IP Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
11286562, | Jun 08 2018 | ASM IP Holding B.V. | Gas-phase chemical reactor and method of using same |
11289326, | May 07 2019 | ASM IP Holding B.V. | Method for reforming amorphous carbon polymer film |
11295980, | Aug 30 2017 | ASM IP HOLDING B V | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
11296189, | Jun 21 2018 | ASM IP Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
11306395, | Jun 28 2017 | ASM IP HOLDING B V | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
11315794, | Oct 21 2019 | ASM IP Holding B.V. | Apparatus and methods for selectively etching films |
11339476, | Oct 08 2019 | ASM IP Holding B.V. | Substrate processing device having connection plates, substrate processing method |
11342216, | Feb 20 2019 | ASM IP Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
11345999, | Jun 06 2019 | ASM IP Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
11355338, | May 10 2019 | ASM IP Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
11361990, | May 28 2018 | ASM IP Holding B.V. | Substrate processing method and device manufactured by using the same |
11374112, | Jul 19 2017 | ASM IP Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
11378337, | Mar 28 2019 | ASM IP Holding B.V. | Door opener and substrate processing apparatus provided therewith |
11387106, | Feb 14 2018 | ASM IP Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
11387120, | Sep 28 2017 | ASM IP Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
11390945, | Jul 03 2019 | ASM IP Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
11390946, | Jan 17 2019 | ASM IP Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
11390950, | Jan 10 2017 | ASM IP HOLDING B V | Reactor system and method to reduce residue buildup during a film deposition process |
11393690, | Jan 19 2018 | ASM IP HOLDING B V | Deposition method |
11396702, | Nov 15 2016 | ASM IP Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
11398382, | Mar 27 2018 | ASM IP Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
11401605, | Nov 26 2019 | ASM IP Holding B.V. | Substrate processing apparatus |
11410851, | Feb 15 2017 | ASM IP Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
11411088, | Nov 16 2018 | ASM IP Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
11414760, | Oct 08 2018 | ASM IP Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
11417545, | Aug 08 2017 | ASM IP Holding B.V. | Radiation shield |
11424119, | Mar 08 2019 | ASM IP HOLDING B V | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
11430640, | Jul 30 2019 | ASM IP Holding B.V. | Substrate processing apparatus |
11430674, | Aug 22 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
11437241, | Apr 08 2020 | ASM IP Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
11443926, | Jul 30 2019 | ASM IP Holding B.V. | Substrate processing apparatus |
11447861, | Dec 15 2016 | ASM IP HOLDING B V | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
11447864, | Apr 19 2019 | ASM IP Holding B.V. | Layer forming method and apparatus |
11453943, | May 25 2016 | ASM IP Holding B.V.; ASM IP HOLDING B V | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
11453946, | Jun 06 2019 | ASM IP Holding B.V. | Gas-phase reactor system including a gas detector |
11469098, | May 08 2018 | ASM IP Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
11473195, | Mar 01 2018 | ASM IP Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
11476109, | Jun 11 2019 | ASM IP Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
11482412, | Jan 19 2018 | ASM IP HOLDING B V | Method for depositing a gap-fill layer by plasma-assisted deposition |
11482418, | Feb 20 2018 | ASM IP Holding B.V. | Substrate processing method and apparatus |
11482533, | Feb 20 2019 | ASM IP Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
11488819, | Dec 04 2018 | ASM IP Holding B.V. | Method of cleaning substrate processing apparatus |
11488854, | Mar 11 2020 | ASM IP Holding B.V. | Substrate handling device with adjustable joints |
11492703, | Jun 27 2018 | ASM IP HOLDING B V | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
11495459, | Sep 04 2019 | ASM IP Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
11499222, | Jun 27 2018 | ASM IP HOLDING B V | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
11499226, | Nov 02 2018 | ASM IP Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
11501956, | Oct 12 2012 | ASM IP Holding B.V. | Semiconductor reaction chamber showerhead |
11501968, | Nov 15 2019 | ASM IP Holding B.V.; ASM IP HOLDING B V | Method for providing a semiconductor device with silicon filled gaps |
11501973, | Jan 16 2018 | ASM IP Holding B.V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
11515187, | May 01 2020 | ASM IP Holding B.V.; ASM IP HOLDING B V | Fast FOUP swapping with a FOUP handler |
11515188, | May 16 2019 | ASM IP Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
11521851, | Feb 03 2020 | ASM IP HOLDING B V | Method of forming structures including a vanadium or indium layer |
11527400, | Aug 23 2019 | ASM IP Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
11527403, | Dec 19 2019 | ASM IP Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
11530483, | Jun 21 2018 | ASM IP Holding B.V. | Substrate processing system |
11530876, | Apr 24 2020 | ASM IP Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
11532757, | Oct 27 2016 | ASM IP Holding B.V. | Deposition of charge trapping layers |
11551912, | Jan 20 2020 | ASM IP Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
11551925, | Apr 01 2019 | ASM IP Holding B.V. | Method for manufacturing a semiconductor device |
11557474, | Jul 29 2019 | ASM IP Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
11562901, | Sep 25 2019 | ASM IP Holding B.V. | Substrate processing method |
11572620, | Nov 06 2018 | ASM IP Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
11581186, | Dec 15 2016 | ASM IP HOLDING B V | Sequential infiltration synthesis apparatus |
11581220, | Aug 30 2017 | ASM IP Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
11587814, | Jul 31 2019 | ASM IP Holding B.V. | Vertical batch furnace assembly |
11587815, | Jul 31 2019 | ASM IP Holding B.V. | Vertical batch furnace assembly |
11587821, | Aug 08 2017 | ASM IP Holding B.V. | Substrate lift mechanism and reactor including same |
11594450, | Aug 22 2019 | ASM IP HOLDING B V | Method for forming a structure with a hole |
11594600, | Nov 05 2019 | ASM IP Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
11605528, | Jul 09 2019 | ASM IP Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
11610774, | Oct 02 2019 | ASM IP Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
11610775, | Jul 28 2016 | ASM IP HOLDING B V | Method and apparatus for filling a gap |
11615970, | Jul 17 2019 | ASM IP HOLDING B V | Radical assist ignition plasma system and method |
11615980, | Feb 20 2019 | ASM IP Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
11626308, | May 13 2020 | ASM IP Holding B.V. | Laser alignment fixture for a reactor system |
11626316, | Nov 20 2019 | ASM IP Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
11629406, | Mar 09 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
11629407, | Feb 22 2019 | ASM IP Holding B.V. | Substrate processing apparatus and method for processing substrates |
11637011, | Oct 16 2019 | ASM IP Holding B.V. | Method of topology-selective film formation of silicon oxide |
11637014, | Oct 17 2019 | ASM IP Holding B.V. | Methods for selective deposition of doped semiconductor material |
11639548, | Aug 21 2019 | ASM IP Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
11639811, | Nov 27 2017 | ASM IP HOLDING B V | Apparatus including a clean mini environment |
11643724, | Jul 18 2019 | ASM IP Holding B.V. | Method of forming structures using a neutral beam |
11644758, | Jul 17 2020 | ASM IP Holding B.V. | Structures and methods for use in photolithography |
11646184, | Nov 29 2019 | ASM IP Holding B.V. | Substrate processing apparatus |
11646197, | Jul 03 2018 | ASM IP Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
11646204, | Jun 24 2020 | ASM IP Holding B.V.; ASM IP HOLDING B V | Method for forming a layer provided with silicon |
11646205, | Oct 29 2019 | ASM IP Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
11649546, | Jul 08 2016 | ASM IP Holding B.V. | Organic reactants for atomic layer deposition |
11658029, | Dec 14 2018 | ASM IP HOLDING B V | Method of forming a device structure using selective deposition of gallium nitride and system for same |
11658030, | Mar 29 2017 | ASM IP Holding B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
11658035, | Jun 30 2020 | ASM IP HOLDING B V | Substrate processing method |
11664199, | Oct 19 2018 | ASM IP Holding B.V. | Substrate processing apparatus and substrate processing method |
11664245, | Jul 16 2019 | ASM IP Holding B.V. | Substrate processing device |
11664267, | Jul 10 2019 | ASM IP Holding B.V. | Substrate support assembly and substrate processing device including the same |
11674220, | Jul 20 2020 | ASM IP Holding B.V. | Method for depositing molybdenum layers using an underlayer |
11676812, | Feb 19 2016 | ASM IP Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
11680839, | Aug 05 2019 | ASM IP Holding B.V. | Liquid level sensor for a chemical source vessel |
11682572, | Nov 27 2017 | ASM IP Holdings B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
11685991, | Feb 14 2018 | ASM IP HOLDING B V ; Universiteit Gent | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
11688603, | Jul 17 2019 | ASM IP Holding B.V. | Methods of forming silicon germanium structures |
11694892, | Jul 28 2016 | ASM IP Holding B.V. | Method and apparatus for filling a gap |
11695054, | Jul 18 2017 | ASM IP Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
11705333, | May 21 2020 | ASM IP Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
11718913, | Jun 04 2018 | ASM IP Holding B.V.; ASM IP HOLDING B V | Gas distribution system and reactor system including same |
11725277, | Jul 20 2011 | ASM IP HOLDING B V | Pressure transmitter for a semiconductor processing environment |
11725280, | Aug 26 2020 | ASM IP Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
11735414, | Feb 06 2018 | ASM IP Holding B.V. | Method of post-deposition treatment for silicon oxide film |
11735422, | Oct 10 2019 | ASM IP HOLDING B V | Method of forming a photoresist underlayer and structure including same |
11735445, | Oct 31 2018 | ASM IP Holding B.V. | Substrate processing apparatus for processing substrates |
11742189, | Mar 12 2015 | ASM IP Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
11742198, | Mar 08 2019 | ASM IP Holding B.V. | Structure including SiOCN layer and method of forming same |
11746414, | Jul 03 2019 | ASM IP Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
11749562, | Jul 08 2016 | ASM IP Holding B.V. | Selective deposition method to form air gaps |
11767589, | May 29 2020 | ASM IP Holding B.V. | Substrate processing device |
11769670, | Dec 13 2018 | ASM IP Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
11769682, | Aug 09 2017 | ASM IP Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
11776846, | Feb 07 2020 | ASM IP Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
11781221, | May 07 2019 | ASM IP Holding B.V. | Chemical source vessel with dip tube |
11781243, | Feb 17 2020 | ASM IP Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
11795545, | Oct 07 2014 | ASM IP Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
11798830, | May 01 2020 | ASM IP Holding B.V. | Fast FOUP swapping with a FOUP handler |
11798834, | Feb 20 2019 | ASM IP Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
11798999, | Nov 16 2018 | ASM IP Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
11802338, | Jul 26 2017 | ASM IP Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
11804364, | May 19 2020 | ASM IP Holding B.V. | Substrate processing apparatus |
11804388, | Sep 11 2018 | ASM IP Holding B.V. | Substrate processing apparatus and method |
11810788, | Nov 01 2016 | ASM IP Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
11814715, | Jun 27 2018 | ASM IP Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
11814747, | Apr 24 2019 | ASM IP Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
11821078, | Apr 15 2020 | ASM IP HOLDING B V | Method for forming precoat film and method for forming silicon-containing film |
11823866, | Apr 02 2020 | ASM IP Holding B.V. | Thin film forming method |
11823876, | Sep 05 2019 | ASM IP Holding B.V.; ASM IP HOLDING B V | Substrate processing apparatus |
11827978, | Aug 23 2019 | ASM IP Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
11827981, | Oct 14 2020 | ASM IP HOLDING B V | Method of depositing material on stepped structure |
11828707, | Feb 04 2020 | ASM IP Holding B.V. | Method and apparatus for transmittance measurements of large articles |
11830730, | Aug 29 2017 | ASM IP HOLDING B V | Layer forming method and apparatus |
11830738, | Apr 03 2020 | ASM IP Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
11837483, | Jun 04 2018 | ASM IP Holding B.V. | Wafer handling chamber with moisture reduction |
11837494, | Mar 11 2020 | ASM IP Holding B.V. | Substrate handling device with adjustable joints |
11840761, | Dec 04 2019 | ASM IP Holding B.V. | Substrate processing apparatus |
11848200, | May 08 2017 | ASM IP Holding B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
11851755, | Dec 15 2016 | ASM IP Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
11866823, | Nov 02 2018 | ASM IP Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
11873557, | Oct 22 2020 | ASM IP HOLDING B V | Method of depositing vanadium metal |
11876008, | Jul 31 2019 | ASM IP Holding B.V. | Vertical batch furnace assembly |
11876356, | Mar 11 2020 | ASM IP Holding B.V. | Lockout tagout assembly and system and method of using same |
11885013, | Dec 17 2019 | ASM IP Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
11885020, | Dec 22 2020 | ASM IP Holding B.V. | Transition metal deposition method |
11885023, | Oct 01 2018 | ASM IP Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
11887857, | Apr 24 2020 | ASM IP Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
11891696, | Nov 30 2020 | ASM IP Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
11898242, | Aug 23 2019 | ASM IP Holding B.V. | Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film |
11898243, | Apr 24 2020 | ASM IP Holding B.V. | Method of forming vanadium nitride-containing layer |
11901175, | Mar 08 2019 | ASM IP Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
11901179, | Oct 28 2020 | ASM IP HOLDING B V | Method and device for depositing silicon onto substrates |
11908684, | Jun 11 2019 | ASM IP Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
11908733, | May 28 2018 | ASM IP Holding B.V. | Substrate processing method and device manufactured by using the same |
11915929, | Nov 26 2019 | ASM IP Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
5181819, | Oct 09 1990 | Tokyo Electron Limited | Apparatus for processing semiconductors |
5217345, | Jan 20 1988 | GRAU STORAGE SYSTEMS GMBH & CO KG | Method for transporting computer data storage cassettes between a cassette library and cassette drive |
5248886, | Mar 01 1991 | Tokyo Electron Limited | Processing system |
5261935, | Sep 26 1990 | Tokyo Electron Limited | Clean air apparatus |
5357115, | Mar 01 1991 | Tokyo Electron Limited | Processing method for wafers |
5388945, | Aug 04 1992 | International Business Machines Corporation | Fully automated and computerized conveyor based manufacturing line architectures adapted to pressurized sealable transportable containers |
5388946, | Jan 20 1988 | GRAU STORAGE SYSTEMS GMBH & CO KG | Systems and methods for the automated archiving and retrieval of computer data storage cassettes |
5407449, | Mar 10 1992 | ASM INTERNATIONAL N V | Device for treating micro-circuit wafers |
5411358, | Aug 04 1992 | International Business Machines Corporation | Dispatching apparatus with a gas supply distribution system for handling and storing pressurized sealable transportable containers |
5454681, | Jan 20 1988 | GRAU STORAGE SYSTEMS GMBH & CO KG | Automated archiving and retrieval system for computer data storage cassettes |
5464313, | Feb 08 1993 | Tokyo Electron Limited | Heat treating apparatus |
5466109, | Feb 18 1994 | Daifuku Co., Ltd. | Load storing equipment |
5468112, | Oct 05 1992 | Tokyo Electron Limited | Wafer container and wafer aligning apparatus |
5592724, | Feb 14 1994 | Batesville Services, Inc | Mechanism for lifting and tilting the bed of a casket |
5718552, | Mar 22 1993 | Procedure and facility for handling and transport of wafers in ultra-clean rooms | |
5769588, | Apr 19 1990 | Lucent Technologies Inc | Dual cassette load lock |
5779425, | Mar 22 1993 | Procedure and facility for handling and transport of wafers in ultra-clean rooms | |
5947675, | Nov 13 1996 | Tokyo Electron Limited | Cassette transfer mechanism |
6014817, | Apr 28 1994 | Semitool, Inc. | Semiconductor wafer processing system |
6030208, | Jun 09 1998 | Applied Materials Inc | Thermal processor |
6079927, | Apr 22 1998 | Varian Semiconductor Equipment Associates, Inc | Automated wafer buffer for use with wafer processing equipment |
6091498, | Sep 30 1997 | Applied Materials Inc | Semiconductor processing apparatus having lift and tilt mechanism |
6099241, | Feb 24 1997 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Substrate transfer method and substrate transfer cassette |
6183186, | Aug 29 1997 | DAITRON, INC | Wafer handling system and method |
6231291, | Mar 18 1999 | Hewlett Packard Enterprise Development LP | Method and apparatus for exchanging data cartridges in a jukebox data storage system |
6273110, | Dec 19 1997 | Semitool, Inc. | Automated semiconductor processing system |
6279724, | Jul 08 1998 | Applied Materials Inc | Automated semiconductor processing system |
6318944, | Jun 15 1995 | KOKUSAI ELECTRIC CO , LTD | Semiconductor fabricating apparatus, method for modifying positional displacement of a wafer in a wafer cassette within the semiconductor fabricating apparatus and method for transferring the wafer cassette |
6454508, | Apr 19 1990 | Applied Materials, Inc. | Dual cassette load lock |
6454519, | Apr 19 1990 | Applied Materials, Inc. | Dual cassette load lock |
6506009, | Mar 16 2000 | Applied Materials, Inc | Apparatus for storing and moving a cassette |
6517303, | May 20 1998 | APPLIED KOMATSU TECHNOLOGY, INC | Substrate transfer shuttle |
6599076, | Apr 19 1990 | Applied Materials, Inc. | Dual cassette load lock |
6645355, | Sep 30 1997 | Semitool, Inc. | Semiconductor processing apparatus having lift and tilt mechanism |
6654122, | Jul 15 1996 | Semitool, Inc. | Semiconductor processing apparatus having lift and tilt mechanism |
6709522, | Jul 11 2000 | Nordson Corporation | Material handling system and methods for a multichamber plasma treatment system |
6712577, | Apr 28 1994 | Semitool, Inc. | Automated semiconductor processing system |
6723174, | Mar 26 1996 | Semitool, Inc. | Automated semiconductor processing system |
6746198, | May 20 1998 | Applied Materials, Inc. | Substrate transfer shuttle |
6833035, | Apr 28 1994 | Semitool, Inc. | Semiconductor processing system with wafer container docking and loading station |
6847730, | May 20 1998 | Applied Materials, Inc. | Automated substrate processing system |
6871655, | Apr 28 1994 | Semitool, Inc. | Automated semiconductor processing systems |
6942738, | Jul 15 1996 | Applied Materials Inc | Automated semiconductor processing system |
6955517, | Mar 16 2000 | Applied Materials, Inc. | Apparatus for storing and moving a cassette |
6960257, | Apr 28 1994 | Semitool, Inc. | Semiconductor processing system with wafer container docking and loading station |
6991710, | Feb 22 2002 | Applied Materials Inc | Apparatus for manually and automatically processing microelectronic workpieces |
7002698, | Jul 15 1996 | Semitool, Inc. | Semiconductor processing apparatus having lift and tilt mechanism |
7080652, | Apr 28 1994 | Semitool, Inc. | Automated semiconductor processing systems |
7101138, | Dec 03 2003 | Murata Machinery, Ltd | Extractor/buffer |
7134827, | Nov 13 2001 | FSI International, Inc. | Reduced footprint tool for automated processing of microelectronic substrates |
7165927, | Jun 19 2002 | Murata Machinery, Ltd | Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists |
7234908, | Mar 16 2000 | Applied Materials, Inc. | Apparatus for storing and moving a cassette |
7278813, | Jul 07 2000 | Applied Materials Inc | Automated processing system |
7334978, | Jun 23 2003 | VALTRUS INNOVATIONS LIMITED | Cartridge-handling apparatus for a media storage system |
7522969, | Feb 28 2004 | Applied Materials, Inc | Methods and apparatus for material control system interface |
7603195, | Nov 06 2003 | Applied Materials, Inc. | Methods and apparatus for integrating large and small lot electronic device fabrication facilities |
7637707, | Dec 01 1998 | Applied Materials, Inc. | Apparatus for storing and moving a cassette |
7720557, | Nov 06 2003 | Applied Materials, Inc | Methods and apparatus for enhanced operation of substrate carrier handlers |
7857570, | Aug 28 2003 | Applied Materials, Inc. | Method and apparatus for supplying substrates to a processing tool |
7908969, | Apr 15 2005 | Goss International Montataire SA | Safety system and a corresponding printing press |
8204617, | Nov 06 2003 | Applied Materials, Inc. | Methods and apparatus for enhanced operation of substrate carrier handlers |
8286528, | Jan 22 2008 | Panasonic Corporation | Robot arm |
8715417, | Oct 15 2003 | Canon Anelva Corporation | Film forming apparatus |
9056718, | May 13 2010 | Murata Machinery, Ltd | Transfer device |
9206992, | Oct 25 2007 | HANEL & CO | Storage configuration with predeterminable storage atmosphere |
9620397, | Jun 19 2002 | Murata Machinery Ltd. | Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists |
9637261, | Dec 19 2012 | Marchesini Group S.p.A. | Packing apparatus in a sterile environment with a loading and supply system of articles |
9881823, | Jun 19 2002 | Murata Machinery Ltd. | Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists |
D913980, | Feb 01 2018 | ASM IP Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
D922229, | Jun 05 2019 | ASM IP Holding B.V. | Device for controlling a temperature of a gas supply unit |
D930782, | Aug 22 2019 | ASM IP Holding B.V. | Gas distributor |
D931978, | Jun 27 2019 | ASM IP Holding B.V. | Showerhead vacuum transport |
D935572, | May 24 2019 | ASM IP Holding B.V.; ASM IP HOLDING B V | Gas channel plate |
D940837, | Aug 22 2019 | ASM IP Holding B.V. | Electrode |
D944946, | Jun 14 2019 | ASM IP Holding B.V. | Shower plate |
D947913, | May 17 2019 | ASM IP Holding B.V.; ASM IP HOLDING B V | Susceptor shaft |
D948463, | Oct 24 2018 | ASM IP Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
D949319, | Aug 22 2019 | ASM IP Holding B.V. | Exhaust duct |
D965044, | Aug 19 2019 | ASM IP Holding B.V.; ASM IP HOLDING B V | Susceptor shaft |
D965524, | Aug 19 2019 | ASM IP Holding B.V. | Susceptor support |
D975665, | May 17 2019 | ASM IP Holding B.V. | Susceptor shaft |
D979506, | Aug 22 2019 | ASM IP Holding B.V. | Insulator |
D980813, | May 11 2021 | ASM IP HOLDING B V | Gas flow control plate for substrate processing apparatus |
D980814, | May 11 2021 | ASM IP HOLDING B V | Gas distributor for substrate processing apparatus |
D981973, | May 11 2021 | ASM IP HOLDING B V | Reactor wall for substrate processing apparatus |
ER3967, | |||
ER4489, | |||
ER6015, | |||
ER6328, | |||
ER8750, |
Patent | Priority | Assignee | Title |
3185320, | |||
3822025, | |||
4016987, | May 31 1974 | Stopa Stahlbau GmbH & Co. | Storage system |
4364706, | Jun 25 1980 | MARIE-GABRIELLE KOLLER, KNIE 53, A 6850 DORNBIRN, AUSTRIA | Carrier apparatus for vertical and horizontal transportation of loads |
4659281, | Jun 10 1985 | UYEMURA INTERNATIONAL CORPORATION | Loading and unloading system for piece part carrier |
4708566, | May 11 1985 | Keuro Maschinenbau Gesellschaft mit beschrankter, Haftung & Co. | Stack conveyor and handler in the form of a crane |
4726725, | Jun 10 1986 | HARNISCHFEGER ENGINEERS INC | Load grasping apparatus for narrow aisle stacker crane |
4735539, | Apr 28 1986 | Rautaruukki Oy | Apparatus for handling sheets or the like |
4766322, | Mar 14 1986 | KABUSHIKI KAISHA TOSHIBA, A CORP OF JAPAN | Robot hand including optical approach sensing apparatus |
4770590, | May 16 1986 | AVIZA TECHNOLOGY, INC | Method and apparatus for transferring wafers between cassettes and a boat |
4775281, | Dec 02 1986 | TERADYNE LASER SYSTEMS, INC , A MA CORP | Apparatus and method for loading and unloading wafers |
4802809, | Aug 26 1985 | Asyst Technologies | Manipulator for standard mechanical interface apparatus |
4867629, | Nov 20 1986 | Shimizu Construction Co., Ltd.; Shinko Electric Co. Ltd. | Dusttight storage cabinet apparatus for use in clean rooms |
DD159317, | |||
JP124404, | |||
JP127502, | |||
JP20263, | |||
JP20268, | |||
JP48309, | |||
JP52802, | |||
NL275269, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 08 1988 | ASAKAWA, TERUO | TOKYO ELECTRON LIMITED A CORP OF JAPAN | ASSIGNMENT OF ASSIGNORS INTEREST | 005808 | /0401 | |
Jul 08 1988 | OHSAWA, TETSU | TOKYO ELECTRON LIMITED A CORP OF JAPAN | ASSIGNMENT OF ASSIGNORS INTEREST | 005808 | /0401 | |
Jul 12 1990 | Tokyo Electron Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 13 1995 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 26 1995 | ASPN: Payor Number Assigned. |
Jun 08 1999 | REM: Maintenance Fee Reminder Mailed. |
Nov 14 1999 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 12 1994 | 4 years fee payment window open |
May 12 1995 | 6 months grace period start (w surcharge) |
Nov 12 1995 | patent expiry (for year 4) |
Nov 12 1997 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 12 1998 | 8 years fee payment window open |
May 12 1999 | 6 months grace period start (w surcharge) |
Nov 12 1999 | patent expiry (for year 8) |
Nov 12 2001 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 12 2002 | 12 years fee payment window open |
May 12 2003 | 6 months grace period start (w surcharge) |
Nov 12 2003 | patent expiry (for year 12) |
Nov 12 2005 | 2 years to revive unintentionally abandoned end. (for year 12) |