In one aspect, a substrate loading station for a processing tool includes plural load ports. Each load port is operatively coupled to the processing tool and has a mechanism for opening a substrate carrier. A carrier handler transports substrate carriers from a factory exchange location to the load ports without placing the carriers on any carrier support location other than the load ports. Numerous other aspects are provided.

Patent
   7857570
Priority
Aug 28 2003
Filed
Apr 09 2008
Issued
Dec 28 2010
Expiry
Mar 22 2024

TERM.DISCL.
Extension
207 days
Assg.orig
Entity
Large
4
211
EXPIRED
17. An apparatus adapted to supply substrates to a processing tool, comprising:
a substrate carrier handler adapted to transport a substrate carrier to a first load port of the processing tool, the substrate carrier handler including an end effector adapted to support the substrate carrier, wherein the load port is free of any carrier support location other than a direct transfer location, and; and
a controller coupled to the substrate carrier handler and operative to control the substrate carrier handler such that the end effector of the substrate carrier handler disengages the substrate carrier from a substrate carrier conveyor while the substrate carrier is in motion and being transported by the substrate carrier conveyor, the controller further operative to perform the steps of:
transporting the substrate carrier from the substrate carrier conveyor directly to the direct transfer location of the first load port, wherein an absence of carrier support locations other than the direct transfer location is provided to which the substrate carrier handler is adapted to transport the substrate carrier during transporting the substrate carrier from the substrate carrier conveyor directly to the direct transfer location;
docking and opening the substrate carrier at the first load port;
undocking and closing the substrate carrier at the first load port; and
returning the substrate carrier directly to the substrate carrier conveyor from the direct transfer location, wherein an absence of carrier support locations other than the substrate carrier conveyor is provided to which the substrate carrier handler is adapted to transport the substrate carrier during returning the substrate carrier directly to the substrate carrier conveyor from the direct transfer location.
1. A method of supplying substrates to a processing tool, comprising:
providing a plurality of load ports having a plurality of direct transfer locations, each load port having a direct transfer location and having a mechanism adapted to open a substrate carrier supported at the direct transfer location, wherein each load port is free of any carrier support location other than the direct transfer location;
providing a factory exchange location at which the substrate carrier is exchanged with a substrate carrier transport device while the substrate carrier is in motion and being transported by the substrate carrier transport device;
providing a carrier handler having an end effector adapted to contact the substrate carrier and disengage the substrate carrier from the substrate carrier transport device while the substrate carrier is in motion and being transported by the substrate carrier transport device, the carrier handler being adapted to remove the substrate carrier from the factory exchange location, to place the substrate carrier only at the load port directly after removing the substrate carrier from the factory exchange location, to remove the substrate carrier from the load port, and to place the substrate carrier at only the factory exchange location directly after removing the substrate carrier from the load port;
wherein carrier support locations other than the carrier handler, the factory exchange location, and the plurality of direct transfer locations of the plurality of load ports are absent;
receiving a first plurality of substrate carriers at the factory exchange location from the substrate carrier transport device via the carrier handler; and
providing a controller programmed to perform the steps of:
for each substrate carrier of the first plurality of substrate carriers:
transporting the substrate carrier from the factory exchange location directly to the direct transfer location of a respective one of the plurality of load ports, wherein an absence of carrier support locations other than the direct transfer location is provided to which the carrier handler is adapted to transport the substrate carrier during transporting the substrate carrier from the factory exchange location directly to the direct transfer location;
docking and opening the substrate carrier at the respective load port;
undocking and closing the substrate carrier at the respective load port;
transporting the substrate carrier from the direct transfer location of the respective load port directly to the factory exchange location, wherein an absence of carrier support locations other than the factory exchange location is provided to which the carrier handler is adapted to transport the substrate carrier during transporting the substrate carrier from the direct transfer location directly to the factory exchange location; and
returning the substrate carrier to the substrate carrier transport device via the carrier handler while the substrate carrier transport device is in motion.
8. A substrate loading station for a processing tool, comprising:
a first plurality of load ports having a plurality of direct transfer locations, operatively coupled to the processing tool and each load port having a direct transfer location and having a mechanism adapted to open a substrate carrier supported at the direct transfer location, wherein each load port is free of any carrier support location other than the direct transfer location;
a factory exchange location at which the substrate carrier is exchanged with a substrate carrier transport device while the substrate carrier is in motion and being transported by the substrate carrier transport device; and
a carrier handler having an end effector adapted to contact the substrate carrier and disengage the substrate carrier from the substrate carrier transport device while the substrate carrier is in motion and being transported by the substrate carrier transport device, the carrier handler being adapted to remove the substrate carrier from the factory exchange location, to place the substrate carrier only at the load port directly after removing the substrate carrier from the factory exchange location, to remove the substrate carrier from the load port, and to place the substrate carrier at only the factory exchange location directly after removing the substrate carrier from the load port;
wherein carrier support locations other than the carrier handler, the factory exchange location, and the plurality of direct transfer locations of the plurality of load ports are absent;
wherein the factory exchange location is adapted to receive a first plurality of substrate carriers from the substrate carrier transport device via the carrier handler
wherein the carrier handler has a controller programmed to perform the steps of:
for each substrate carrier of the first plurality of substrate carriers:
transporting the substrate carrier from the factory exchange location directly to the direct transfer location of a respective one of the plurality of load ports, wherein an absence of carrier support locations other than the direct transfer location is provided to which the carrier handler is adapted to transport the substrate carrier during transporting the substrate carrier from the factory exchange location directly to the direct transfer location;
docking and opening the substrate carrier at the respective load port;
undocking and closing the substrate carrier at the respective load port;
transporting the substrate carrier from the direct transfer location of the respective load port directly to the factory exchange location, wherein an absence of carrier support locations other than the factory exchange location is provided to which the carrier handler is adapted to transport the substrate carrier during transporting the substrate carrier from the direct transfer location directly to the factory exchange location; and
returning the substrate carrier to the substrate carrier transport device via the carrier handler while the substrate carrier transport device is in motion.
2. The method of claim 1, wherein the substrate carriers are single substrate carriers.
3. The method of claim 1, wherein the step of providing a plurality of load ports comprises providing two stacks of load ports.
4. The method of claim 3, wherein the carrier handler moves the substrate carriers only within an envelope defined by footprints of the two stacks of load ports.
5. The method of claim 1, wherein the docking of each substrate carrier occurs simultaneously with opening of the respective substrate carrier.
6. The method of claim 1, wherein the factory exchange location and the load ports have substantially the same footprint.
7. The method of claim 1, wherein the factory exchange location is at a height greater than respective heights of all of the load ports.
9. The substrate loading station of claim 8, wherein the substrate carriers transported by the carrier handler are single substrate carriers.
10. The substrate loading station of claim 8, further comprising:
a second plurality of load ports, the second plurality of load ports being spaced apart from and to a side of the first plurality of load ports.
11. The substrate loading station of claim 10, wherein the carrier handler is adapted to move vertically in a space between the first and second pluralities of load ports.
12. The substrate loading station of claim 11, wherein the carrier handler is adapted to move the substrate carriers only within an envelope defined by footprints of the first and second pluralities of load ports.
13. The substrate loading station of claim 8, wherein each of the load ports is adapted to open a substrate carrier simultaneously with the substrate carrier docking with the load port.
14. The substrate loading station of claim 8, wherein the factory exchange location and the load ports have substantially the same footprint.
15. The substrate loading station of claim 8, wherein the substrate carrier transport device is a conveyor.
16. The substrate loading station of claim 8, wherein the factory exchange location is at a height greater than respective heights of all of the load ports.

This application is a continuation of and claims priority to U.S. patent application Ser. No. 10/650,479, filed Aug. 28, 2003, which claims priority to U.S. provisional application Ser. No. 60/407,336, filed Aug. 31, 2002. Each of these applications is hereby incorporated by reference herein in its entirety for all purposes.

The present application is related to the following commonly-assigned, co-pending U.S. patent applications, each of which is hereby incorporated by reference herein in its entirety:

U.S. Provisional Patent Application Ser. No. 60/407,451, filed Aug. 31, 2002 and titled “System For Transporting Wafer Carriers”;

U.S. Provisional Patent Application Ser. No. 60/407,339, filed Aug. 31, 2002 and titled “Method and Apparatus for Using Wafer Carrier Movement to Actuate Wafer Carrier Door Opening/Closing”;

U.S. Provisional Patent Application Ser. No. 60/407,474, filed Aug. 31, 2002 and titled “Method and Apparatus for Unloading Wafer Carriers from Wafer Carrier Transport System”;

U.S. Provisional Patent Application Ser. No. 60/407,452, filed Aug. 31, 2002 and titled “End Effector Having Mechanism For Reorienting A Wafer Carrier Between Vertical And Horizontal Orientations”;

U.S. Provisional Patent Application Ser. No. 60/407,337, filed Aug. 31, 2002, and titled “Wafer Loading Station with Docking Grippers at Docking Stations”;

U.S. Provisional Patent Application Ser. No. 60/407,340, filed Aug. 31, 2002 and titled “Wafer Carrier having Door Latching and Wafer Clamping Mechanism”;

U.S. Provisional Patent Application Ser. No. 60/443,087, filed Jan. 27, 2003 and titled “Methods and Apparatus for Transporting Wafer Carriers”;

U.S. Patent Application Ser. No. 60/407,463, filed Aug. 31, 2002 and titled “Wafer Carrier Handler That Unloads Wafer Carriers Directly From a Moving Conveyor”.

U.S. Patent Application Ser. No. 60/443,004, filed Jan. 27, 2003 and titled “Wafer Carrier Handler That Unloads Wafer Carriers Directly From a Moving Conveyor”.

U.S. Provisional Patent Application Ser. No. 60/443,153, filed Jan. 27, 2003 and titled “Overhead Transfer Flange and Support for Suspending Wafer Carrier”;

U.S. Provisional Patent Application Ser. No. 60/443,001, filed Jan. 27, 2003 and titled “Systems and Methods for Transferring Wafer Carriers Between Processing Tools”; and

U.S. Provisional Patent Application Ser. No. 60/443,115, filed Jan. 27, 2003 and titled “Apparatus and Method for Storing and Loading Wafer Carriers”.

The present invention relates generally to substrate processing, and more particularly to an apparatus and method for supplying substrates to a processing tool.

Semiconductor devices are made on substrates, such as silicon substrates, glass plates or the like, often termed wafers, for use in computers, monitors, and the like. These devices are made by a sequence of fabrication steps, such as thin film deposition, oxidation, etching, polishing, and thermal and lithographic processing. Although multiple fabrication steps may be performed in a single processing apparatus, substrates typically must be transported between different processing tools for at least some of the fabrication steps.

Substrates are often stored in carriers for transfer between processing tools and other locations. In order to ensure that a processing tool does not idle, a nearly continuous supply of unprocessed substrates should be available to the tool. Thus, loading and storage apparatuses are conventionally located adjacent each processing tool. Such loading and storage apparatuses generally include one or more docking stations where substrate carriers are opened and individual substrates are extracted from the carriers and transported to a processing tool, as well as including a plurality of storage shelves positioned above the docking stations, a factory load location for receiving carriers at the loading and storage apparatus, and a robot adapted to transfer carriers among the factory load location, the docking stations and the plurality of storage shelves. The robot may include an end effector coupled to a support structure. Typically the support structure comprises a vertical guide and a horizontal guide configured so that the end effector may move horizontally and vertically among the docking stations, the plurality of storage shelves and the factory load location.

The loading and storage apparatuses may be modularly designed (e.g. having components that are mounted to a frame typically extending in front of a single processing tool) or may be nonmodular in design (e.g., having components that may be mounted independently and typically having horizontal and/or vertical guides that extend in front of a plurality of processing tools).

After a carrier is received at the factory load location, it may be moved by the robot from the factory load location to one of the storage shelves. Thereafter, the carrier may be moved from the storage shelf to a docking station. After the substrates have been extracted from the carrier, processed, and returned to the carrier, the carrier may be moved by the robot from the docking station to one of the storage shelves. Thereafter, the carrier may be moved by the robot from the storage shelf to the factory load location. Shuffling of the substrate carriers among the storage shelves, the factory load location and the docking station may place a significant burden on the robot, and may extend the period of time during which the substrates in the carrier are present in the factory without being processed. It accordingly would be desirable to streamline the handling of substrate carriers.

In a first aspect of the invention, a first method is provided for supplying substrates to a processing tool. The first method includes the steps of (1) providing a plurality of load ports each having a mechanism adapted to open a substrate carrier; (2) providing a factory exchange location at which substrate carriers are exchanged with a substrate carrier transport device while the substrate carriers are in motion and being transported by the substrate carrier transport device; (3) providing a carrier handler having an end effector adapted to contact a substrate carrier, the carrier handler being adapted to transport substrate carriers between the factory exchange location and the plurality of load ports; and (4) receiving a first plurality of substrate carriers at the factory exchange location from the substrate carrier transport device. For each of the first plurality of substrate carriers, the method further includes the steps of (1) transporting the substrate carrier from the factory exchange location directly to a respective one of the plurality of load ports; (2) docking and opening the substrate carrier at the respective load port; (3) undocking and closing the substrate carrier at the respective load port; (4) transporting the substrate carrier from the respective load port directly to the factory exchange location; and (5) returning the substrate carrier to the substrate carrier transport device.

In a second aspect of the invention, a second method is provided for transferring a substrate carrier. The second method includes the steps of (1) conveying the substrate carrier on a substrate carrier conveyor positioned adjacent a substrate loading station that includes a substrate carrier handler adapted to transport the substrate carrier to a load port of a processing tool; (2) employing an end effector of the substrate carrier handler of the substrate loading station to disengage the substrate carrier from the substrate carrier conveyor while the substrate carrier is in motion and being transported by the substrate carrier conveyor; (3) transporting the substrate carrier from the substrate carrier conveyor directly to the load port; (4) docking and opening the substrate carrier at the load port; (5) undocking and closing the substrate carrier at the load port; and (6) returning the substrate carrier directly to the substrate carrier conveyor.

In a third aspect of the invention, a third method is provided for transferring a substrate carrier to a substrate loading station. The third method includes conveying the substrate carrier on a substrate carrier conveyor positioned adjacent the substrate loading station. The substrate loading station comprises a substrate carrier handler adapted to transport the substrate carrier to a first load port of a processing tool, the substrate carrier handler including (1) a vertical guide; (2) a horizontal guide coupled to the vertical guide; and (3) an end effector adapted to support the substrate carrier and to move vertically relative to the vertical guide and horizontally relative to the horizontal guide.

The third method further includes (1) employing the end effector of the substrate carrier handler of the substrate loading station to disengage the substrate carrier from the substrate carrier conveyor; (2) transporting the substrate carrier from the substrate carrier conveyor directly to the first load port; (3) docking and opening the substrate carrier at the first load port; (4) undocking and closing the substrate carrier at the first load port; and (5) returning the substrate carrier directly to the substrate carrier conveyor. Numerous other aspects are provided, as are systems and apparatus in accordance with these and other aspects of the invention. The inventive methods may similarly provide for exchange, transport and placement of individual substrates (i.e., those not in or on a substrate carrier), with use of a substrate handler having an end effector adapted to contact and transport an individual substrate.

In accordance with the inventive methods and apparatus, a substrate/substrate carrier that is supplied to a processing tool is transferred directly from the factory exchange location to a load port. The substrate/substrate carrier is transferred “directly” from the factory exchange location to a load port in the sense that it is transferred without the handler placing the substrate/substrate carrier on any support location other than a load port.

The inventive methods and apparatus provide for streamlined and highly efficient transfer of substrates and/or substrate carriers to and from processing tool load ports. Consequently, the total time required to transport and process substrates may be reduced, the costs and capital investment entailed in substrate work-in-process may be reduced, and burdens on substrate carrier handling robots may be diminished.

Further features and advantages of the present invention will become more fully apparent from the following detailed description of exemplary embodiments, the appended claims and the accompanying drawings.

FIG. 1 is a top plan view of a conventional arrangement of a processing tool and associated substrate carrier loading and storage apparatus;

FIG. 2 is a front elevational view showing the conventional loading and storage apparatus of FIG. 1;

FIGS. 3A and 3B are front elevational views showing two exemplary embodiments of a substrate carrier loading apparatus provided in accordance with the invention;

FIG. 4 is a schematic plan view illustrating footprints of stacks of load ports shown in FIG. 3A or 3B;

FIG. 5 is a schematic side view showing a substrate handler accessing load ports shown in FIG. 3A or 3B; and

FIG. 6 is a flow chart that illustrates a manner of operating the inventive substrate carrier loading apparatus of FIG. 3A or 3B and an associated processing tool.

Relevant Terminology

As used herein, the term “docking” refers to the inward motion of a substrate or substrate carrier toward a port through which a substrate is exchanged, such as a port in a clean room wall. Similarly, “undocking” refers to the outward motion of the substrate or substrate carrier away from a port through which substrates are exchanged, such as a port in a clean room wall.

A “factory exchange location” includes all points in space at which a substrate or substrate carrier is handled by a device during removal of the substrate or substrate carrier from or placement of the substrate carrier on a substrate or substrate carrier transport device.

A “substrate or substrate carrier transport device” includes a conveyor, an automatic guided vehicle (AGV) or any other device that transfers substrates or substrate carriers to or from processing tool loading locations.

A “processing tool” comprises one or more processing chambers and one or more substrate handlers for loading and unloading the processing chamber. The substrate handlers may or may not be enclosed in chambers of their own such as factory interface chambers or transfer chambers. The processing chamber may perform a vacuum, atmospheric or other process on the substrate, including for example physical vapor deposition (PVD), chemical vapor deposition (CVD), etching, metrology, cleaning, polishing, etc.

A “load port” comprises a location where substrates or substrate carriers are placed for substrate transfer to and/or from a processing tool.

System Description

FIG. 1 is a top plan view showing a conventional modular loading and storing apparatus 111 in position for storing carriers adjacent a conventional processing tool 113. FIG. 2 is a front elevational view showing the modular loading and storing apparatus 111. Referring initially to FIG. 1, a front end robot chamber 115 (or factory interface) is shown positioned between the loading and storage apparatus 111 and the processing tool 113. As shown in FIG. 1 the loading and storage apparatus 111 is positioned adjacent a first side of a clean room wall 117 and the front end robot chamber 115 is positioned adjacent a second side of the clean room wall 117. The front end robot chamber 115 contains a robot 119 that may move horizontally along a track (not shown) so as to extract substrates from the loading and storage apparatus 111 and transport them to a loadlock chamber 121 of the processing tool 113. The loading and storage apparatus 111 comprises a pair of loading stations 123 where substrate carriers are placed for substrate extraction (in this example the loading stations are equipped with docking movement and are therefore referred to as docking stations), and a plurality of storage shelves 201 (best shown in FIG. 2) positioned above (e.g., at a higher elevation than) the docking stations 123. The storage shelves 201 are mounted on a support frame 203. Also mounted on the support frame 203 is a substrate carrier handling robot 205. The robot 205 includes a vertical guide 207 on which an end effector 209 is mounted for vertical motion. The vertical guide 207 is mounted for horizontal motion along a horizontal guide 211. A factory load location 213 for receiving substrate carriers is positioned between the docking stations 123.

By virtue of the vertical guide 207 and the horizontal guide 211, the end effector 209 of the substrate carrier handling robot 205 is able to move substrate carriers among the factory load location 213, the storage shelves 201 and the docking stations 123. However, as noted before, shuffling of substrate carriers from the factory load location 213 to the storage shelves 201, then to the docking stations 123, and back to the factory load location 213 (possibly via the storage shelves 201) may result in a significant amount of time being consumed in supplying substrates to the processing tool 113, thereby increasing the quantity of work-in-process.

FIG. 3A is a schematic front elevational view of an exemplary substrate loading station provided in accordance with the present invention. Reference numeral 301 generally indicates the inventive substrate loading station. The loading station 301 includes a plurality of load ports 303. Preferably each load port 303 has a docking mechanism (not shown) such as a motorized gripper or platform adapted to support a substrate carrier and adapted to move the substrate carrier toward and away from the opening through which a substrate is to be transferred. In the particular embodiment illustrated in FIG. 3A, the load ports 303 are arranged in two stacks 305, 307 of three load ports each. Thus a total of six load ports 303 are present in the embodiment of FIG. 3A. Other numbers and/or arrangements of load ports may be employed. The stack 307 is positioned spaced apart from and to a side of the stack 305. Each load port 303 may include a mechanism, generally represented by reference number 309, for opening substrate carriers docked at the load ports 303. In one embodiment of the invention, the load ports 303 are adapted to receive single substrate carriers. The term “single substrate carrier” refers to a substrate carrier shaped and sized to contain only one substrate at a time. In general, the load ports 303 may accommodate any type of substrate carrier (e.g., a single substrate carrier, a multi-substrate carrier, a front opening substrate carrier, a front opening unified pod, a combination thereof, etc.). FIG. 3A shows substrate carriers 311 docked at two of the load ports 303.

In one embodiment, each load port 303 is adapted to open a substrate carrier 311 simultaneously with substrate carrier docking (e.g., the movement of the carrier toward the port in the clean room wall). Such opening may be achieved for example via a cam and follower arrangement. A load port of this type is disclosed in previously incorporated, co-pending U.S. patent application Ser. No. 60/407,339, filed Aug. 31, 2002 and titled “Method and Apparatus for Using Wafer Carrier Movement to Actuate Wafer Carrier Door Opening/Closing”. Alternatively, conventional door opening devices (e.g., that open a carrier after it has been docked) may be employed. Such devices conventionally employ a door receiver that unlocks the carrier door and removes it from the carrier to allow substrate extraction.

A substrate carrier transport device, such as a conveyor (schematically illustrated at 313) is configured to deliver substrate carriers to, and to remove substrate carriers from, the inventive substrate loading station 301. Associated with the inventive loading station 301 and positioned adjacent to the conveyor 313 is a substrate carrier exchange device 315 which is adapted to receive substrate carriers from the conveyor 313 and to deliver substrate carriers to the conveyor 313. Accordingly, it will be recognized that the substrate carrier exchange device 315 defines a factory exchange location 317 at which substrate carriers are exchanged with the conveyor 313. The substrate carrier exchange device 315 may be, for example, of the type shown in previously incorporated U.S. patent application Ser. No. 60/407,451, filed Aug. 31, 2002 and titled “System For Transporting Wafer Carriers” which discloses a rotating platform that rotates so as to contact and couple/decouple a substrate carrier to or from the overhead factory transport system.

As another alternative, the substrate carrier exchange device 315 may be of the type disclosed in co-pending U.S. patent application Ser. No. 09/755,394 which discloses an elevating member that extends linearly upward so as to contact and couple/decouple a substrate carrier to or from the overhead factory transport system (and which is hereby incorporated by reference herein in its entirety). As still another alternative, the substrate carrier exchange device 315 may be of the type disclosed in previously incorporated U.S. patent application Ser. No. 60/407,474, filed Aug. 31, 2002 and titled “Method and Apparatus for Unloading Wafer Carriers from Wafer Carrier Transport Systems” which discloses a rotary arm that rotates so as to contact and couple/decouple a substrate carrier to or from the overhead factory transport system. In yet a further alternative, the substrate carrier exchange device may be omitted, and the carrier handler may exchange substrate carriers with the carrier transport device 313 at the factory exchange location (e.g., any location where carriers are exchanged between the inventive loading station and the carrier transport device). Such a method is described in detail in co-pending U.S. patent application Ser. Nos. 60/407,463, filed Aug. 31, 2002 and 60/443,004, filed Jan. 27, 2003.

The substrate carrier exchange device 315 may be configured, for example, to remove substrate carriers from the conveyor 313 while the conveyor (or a carrier transported thereon) is in motion, and to deliver substrate carriers to the conveyor 313 while the conveyor (or a substrate carrier transporter traveling therealong) is in motion. Thus it may be practical to maintain the conveyor 313 in continuous motion while the semiconductor fabrication facility is in operation, thereby improving transportation of substrates through the fabrication facility, reducing the amount of time required for each particular substrate to traverse the fabrication facility, and thereby reducing the total number of substrates present as work-in-process, at any given time.

The inventive loading station 301 further includes a carrier handler 319. The carrier handler 319 includes an end effector 321 that is adapted to contact the substrate carriers 311. For example, the end effector 321 may be adapted to support the substrate carriers 311 from the bottom, or to grip the substrate carriers 311 from the top, etc.

The end effector 321 is adapted to move vertically along a vertical guide 323. The vertical guide 323, in turn, is adapted to move horizontally along a horizontal guide 325. Consequently, the end effector 321 is movable among the factory exchange location 317 and all of the load ports 303. It will also be appreciated that the end effector 321 is movable vertically in a space 327 that is between the stacks 305, 307 of load ports 303. In one alternative the vertical and horizontal guides may be repositioned as shown in FIG. 3B, such that the end effector 321 may be adapted to move horizontally along the horizontal guide 325 and such that the horizontal guide 325 moves vertically along the vertical guide 323. Though not shown in FIG. 3A or 3B, the inventive load station may include one or more storage shelves for storing substrates and/or substrate carriers.

FIG. 4 is a schematic top plan view illustrating features of the layout of the inventive loading station 301. In FIG. 4, reference numeral 117 indicates the clean room wall. Reference numeral 401 indicates the footprint of the stack 305 of load ports 303. Reference numeral 403 indicates the footprint of the stack 307 of load ports 303. It is to be understood that the “footprint” of an item is the projection of the item on the floor of the facility. Reference numeral 405 indicates an area between the footprints 401 and 403. A tool “envelope” of the inventive loading station should be understood to mean the footprints 401 and 403 plus the area 405 between the footprints 401 and 403. Reference numeral 407 indicates the tool envelope defined by the stacks 401 and 403.

The carrier handler 319 may operate such that it moves substrate carriers 311 only within the envelope defined by the footprints 401, 403 of the load port stacks 305, 307. A controller C controls the operation of the carrier handler 319 and is programmed such that the carrier handler operates in accordance with the invention as described in detail with reference to the flow chart of FIG. 6.

Referring again to FIG. 3A or 3B, it will be observed that the factory exchange location 317 is at a height that is greater than respective heights of the load ports 303. It will also be observed that the factory exchange location 317 and the stack 305 of load ports 303 have substantially the same footprint. However, other arrangements of the inventive loading station 301 are contemplated. For example, the factory exchange location 317 may be at or below the height of the load ports 303. Also, the footprint of the factory exchange location 317 may coincide with the footprint 403 (FIG. 4) of the stack 307 of load ports 303. As another alternative, the footprint of the factory exchange location 317 may not coincide with either one of the footprints 401, 403 of the stacks 305, 307 of load ports 303.

FIG. 5 is a schematic side view showing a substrate handler in relation to a conventional processing tool 113 and stacked load ports 303 of the inventive loading station 301 (FIG. 3A OR 3B). Referring to FIG. 5, reference numeral 501 indicates a substrate handler provided in accordance with the invention. The inventive substrate handler 501 may be selectively positioned at a lower position (indicated by reference numeral 503), at which the inventive substrate handler 501 can be moved horizontally to access a lowest one of the stacked load ports 303. The inventive substrate handler 501 can also be selectively positioned at an upper position (indicated in phantom and represented by reference numeral 505) at which the inventive substrate handler 501 can be moved horizontally to access the uppermost of the stacked load ports 303. It will be appreciated that the inventive substrate handler 501 may also be selectively positioned at any intermediate position (not specifically indicated in the drawing) that is between the indicated positions 503 and 505, for example, at a position at which the inventive substrate handler 501 can be moved horizontally to access a middle one of the stacked load ports 303.

As used herein, a substrate handler is said to “access” a load port when the substrate handler extends into the load port area (e.g., to transport a substrate).

It will be appreciated that, after the inventive substrate handler 501 removes a substrate (not shown) from a substrate carrier 311 (FIG. 3A OR 3B, not shown in FIG. 5) docked to one of the stacked load ports 303, the inventive substrate handler 501 may supply the substrate to the processing tool 113, or, more specifically, to a load lock chamber 121 (FIG. 1, not separately shown in FIG. 5) of the processing tool 113.

FIG. 6 is a flow chart that illustrates operation of a substrate loading station configured in accordance with the present invention, such as the inventive substrate loading station 301 of FIG. 3A or 3B. A controller C may be coupled to the substrate loading station and operative to perform one or more steps of the process of FIG. 6.

According to a first step 601 in FIG. 6, a substrate carrier 311 is received at the factory exchange location 317. In the exemplary substrate loading station 301 of FIG. 3A or 3B, for example, the carrier exchange device 315 removes a substrate carrier 311 from the conveyor 313 (e.g., via the end effector 321). This may occur, for example, while the conveyor 313 is in motion.

Following step 601 in FIG. 6 is step 603. At step 603 the carrier handler 319 transports the substrate carrier 311 from the factory exchange location 317 to one of the load ports 303. In accordance with the invention the substrate carrier 311 is transported directly from the factory exchange location 317 to one of the load ports 303. That is, the carrier handler 319 does not place the substrate carrier 311 at any carrier support location other than one of the load ports 303 after removing the substrate carrier 311 from the factory exchange location 317 and before placing the substrate carrier 311 at one of the load ports 303.

Following step 603 in FIG. 6 is step 605. At step 605, the substrate carrier 311 is docked and opened at one of the load ports 303 at which it was placed by the carrier handler 319. As noted above, the load port 303 may be adapted such that docking and opening of the substrate carrier 311 occurs simultaneously.

Step 607 follows step 605 in FIG. 6. At step 607, the substrate handler 501 extracts a substrate from the substrate carrier 311 that has been docked at and opened by one of the load ports 303. The extracted substrate is then supplied to the processing tool 113 by the substrate handler 501, and processing of the substrate (step 609) occurs within the processing tool 113.

After processing of the substrate in the processing tool 113 is complete, the substrate handler 501 returns the substrate to the substrate carrier 311 that was docked and opened at one of the load ports 303 (step 611). Then the substrate carrier 311 in which the processed substrate was inserted is closed and undocked from the load port 303 (step 613). The undocking and closing of the substrate carrier 303 may occur simultaneously. Following step 613 in FIG. 6 is step 615. At step 615 the carrier handler 319 transports the substrate carrier 311 from the load port 303 to the factory exchange location 317. According to an aspect of the invention, the substrate carrier 311 may be transported directly from the load port 303 to the factory exchange location 317. That is, the substrate carrier 311 may be transported from the load port 303 to the factory exchange location 317 without being placed on any carrier support location after being removed from the load port 303 and before being delivered to the factory exchange location 317.

Following step 615 in FIG. 6 is step 617. At step 617, the carrier exchange device 315 returns the substrate carrier 311 to the conveyor 313. In one embodiment of the invention, this may be done while the conveyor 313 is in motion. It should be noted that the steps of docking and/or opening the substrate carrier may be omitted in systems that transport individual substrates, or that do not require substrates to be docked. Accordingly steps 605 and 613 are optional. It will be understood that the inventive method may be performed with individual substrates rather than substrate carriers. Additional figures directed to the transportation of individual substrates rather than substrate carriers between the carrier transport device and the processing tool are not included so as to avoid repetition.

The methods and apparatuses of the present invention are advantageous in that transportation of the substrate carriers to and from the load ports is streamlined, so that the total time of transit of substrates through the semiconductor fabrication facility may be reduced. This, in turn, may translate into reduced work-in-process, lower capital costs, and a reduced manufacturing cost per substrate.

The foregoing description discloses only exemplary embodiments of the invention; modifications of the above disclosed methods and apparatuses which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For example, the carrier handler described above in connection with FIG. 3A or 3B includes a vertical guide that is movable horizontally along a single horizontal guide. It is, however, also contemplated to employ a carrier handler of the type in which a vertical guide is slidably mounted between two parallel horizontal guides. As still another alternative, there may be employed a carrier handler of the type in which a horizontal guide is slidably mounted on one or more vertical guides. Of course, other types of carrier handlers including those that do not use linear guides may be employed.

It is also contemplated to employ other configurations of load ports besides the two stacks of three load ports each shown in FIG. 3A or 3B. For example, there may be only two load ports in each stack of load ports, or, there may be four or more load ports in each stack of load ports. It is also not required that the same number of load ports be provided in each stack of load ports. As still another alternative, only one stack of load ports may be provided, or three or more stacks of load ports may be provided. Note also, that although each stacked loadport is shown as occupying the same footprint, other arrangements with partially overlapping footprints or non-overlapping footprints may be employed. There may be embodiments where a single load port is employed, or where two or more horizontally adjacent load ports are employed.

It is noted that FIG. 5 shows a single substrate handler that is configured to service all of the load ports in a stack of load ports. As possible alternatives, a respective substrate handler may be provided to service each load port. It is also contemplated that a single substrate handler may be employed to service all of the load ports of more than one stack of load ports. It is further contemplated that a respective substrate handler be provided for each stack of load ports.

Substrate carrier transport devices other than the conveyor 313 may be employed to bring substrate carriers to, and transport substrate carriers away from, the factory exchange location. If a conveyor is employed as the substrate carrier transport device, it may optionally be kept continuously in motion while the semiconductor fabrication facility is operating.

Although only one factory exchange location is shown in association with the inventive substrate loading station, it is contemplated to provide two or more factory exchange locations in association with the inventive substrate loading station. For example, a first factory exchange location may be employed for incoming substrate carriers, and a second factory exchange location may be employed for outbound substrate carriers. It is also contemplated that an inventive substrate loading station may be served by more than one substrate carrier transport device.

Preferably, the invention is employed in a substrate loading station that comprises a frame to which the vertical and horizontal guides are coupled. In this manner, the preferred substrate loading station is modular and may be quickly installed and calibrated. In the event the substrate loading station includes one or more storage shelves, each storage shelf also may be mounted on the frame. By mounting both the substrate carrier handler and the storage shelf or shelves to the frame, the substrate carrier handler and storage shelves have a predetermined position relative to each other. This further facilitates installation and calibration, and is another advantage of employing a modular substrate loading station. Similarly, other mechanisms such as dedicated mechanisms for loading and/or unloading substrate carriers from an overhead factory transport system may be advantageously mounted to the frame. Exemplary dedicated mechanisms may comprise rotating platforms or rotating arms, etc., as described in previously incorporated U.S. patent application Ser. Nos. 60/407,451, filed Aug. 31, 2002 and 60/407,474, filed Aug. 31, 2002.

In one aspect, the frame may be mounted to predetermined mounting locations (e.g., predrilled bolt holes, etc.) on the clean room wall, or on the front wall of a chamber (e.g., a factory interface chamber). Preferably, the wall also has predetermined mounting locations to which the docking grippers or docking platforms are mounted. Additionally, the wall may have predetermined mounting locations to which a substrate carrier opening mechanism may be mounted. When the frame, the docking mechanisms, and the substrate carrier opening mechanism are each mounted to predetermined locations on the same surface, the relative positions of each are predetermined, and installation and calibration of the substrate loading station is facilitated.

The present invention has been illustrated in connection with single substrate carriers. However, it is also contemplated to apply the present invention in connection with substrate carriers that hold more than one substrate, or to apply the invention in connection with transport of individual substrates (not transported via carriers). As will be apparent, the inventive apparatus may differ considerably from the exemplary embodiments shown and described herein. Any apparatus that operates in accordance with the method of FIG. 6 (whether or not docking and opening are performed, and whether or not substrate carriers are employed (e.g., individual substrate systems)) may fall within the scope of the present invention.

Accordingly, while the present invention has been disclosed in connection with a preferred embodiment thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.

Lowrance, Robert B., Elliott, Martin R., Hudgens, Jeffrey C., Englhardt, Eric A., Rice, Michael R.

Patent Priority Assignee Title
10381247, Sep 25 2013 Applied Materials, Inc. Gas systems and methods for chamber ports
8827621, Mar 10 2010 Sokudo Co., Ltd. Substrate processing apparatus, storage device, and method of transporting substrate storing container
9435025, Sep 25 2013 Applied Materials, Inc Gas apparatus, systems, and methods for chamber ports
9728434, Mar 10 2010 SCREEN Semiconductor Solutions Co., Ltd. Substrate processing apparatus, storage device, and method of transporting substrate storing container
Patent Priority Assignee Title
1639758,
1906036,
2153071,
2949996,
3058604,
3131801,
3184032,
3587817,
3610448,
3710921,
3710923,
3722656,
3734263,
3815723,
3901376,
3990569, Dec 18 1972 Azionaria Costruzioni Macchine Automatiche A.C.M.A. S.p.A. Apparatus for arranging, at a predetermined spacing on a reception conveyor, objects originating in a disordered manner from a delivery conveyor
4006813, Jul 09 1973 SIG Schweizerische Industrie-Gesellschaft Article separating and conveying system
4029194, Apr 23 1975 PEMCO, INC. Automatic indexing and transferring apparatus
4033403, Sep 17 1975 Seaton Engineering Company Synchronizing velocity and position control
4040302, Jan 03 1975 Mitsubishi Jukogyo Kabushiki Kaisha Chain drive for a transfer machine
4044886, Dec 29 1975 System for handling structural members
4166527, Aug 01 1977 PATHOLD INCORPORATED Device for picking up and placing articles on movable conveyors and assembly lines and to an endless construction and to an article pickup and deposit device therefor
4222479, Nov 13 1978 Aluminum Company of America Container conveying and transfer system
4261236, Feb 20 1978 Arenco-Decoufle, Societe Anonyme Francaise Device for converting the axial movement of cylindrical rod-shaped objects into a lateral translation
4266652, Nov 10 1978 MASCHINENFABRIK ALFRED SCHMERMUND GMBH & CO , Apparatus for conveying articles
4294344, Sep 21 1978 Tevopharm-Schiedam B.V. Apparatus for positioning articles between the carriers of a drag conveyor, said articles being fed in a continuous closed row
4340137, Mar 27 1978 Opcon, Inc. Cant movement and aligning mechanism
4401522, Sep 29 1980 SURFACE FINISHING TECHNOLOGIES, INC Plating method and apparatus
4450950, May 12 1981 Eastman Kodak Company Work piece transfer mechanism
4506779, Dec 12 1980 G.D. Societa per Azioni Device for transferring bar shaped articles
4524858, May 24 1983 Edger transport and position apparatus
4534843, Jan 28 1983 Technic, Inc. Apparatus for electroplating and chemically treating contact elements of encapsulated electronic components and their like
4538720, Mar 25 1983 Pet, Incorporated Apparatus for transferring articles between conveyors
4540088, Jun 20 1983 WHEELABRATOR CORPORATION, THE Component conveyor apparatus
4549647, Apr 02 1982 Biscuiterie Nantaise-BN Apparatus for the transfer of articles between two machines
4552261, Dec 27 1983 NEW STANDARD-KNAPP, INC Article grouper for case packer
4584944, Apr 25 1984 Jervis B. Webb Company Conveyor system with automatic load transfer
4585126, Oct 28 1983 SUNKIST GROWERS, INC , A CORP OF CA Method and apparatus for high speed processing of fruit or the like
4603770, Jan 18 1984 Rake conveyor apparatus
4650264, Dec 12 1983 LAUYANS & COMPANY, INC Control system for vertical storage equipment
4653630, Feb 03 1983 RUSCELLO, LORENZO, VIA DE AMICIS 49, COLLEGNO TORINO ITALY Method of and device for controlling the transfer of articles from a first conveyor belt to predetermined locations on a second conveyor belt
4667809, Oct 19 1983 SHAWMUT BANK, N A Apparatus for aligning signatures
4679685, Nov 30 1983 AB Tetra Pak Accumulating commodity conveyor
4680919, Jul 28 1983 Article delivery transferring device in a collective packing machine
4693359, Dec 06 1984 G.D. Societa per Azioni Device for transferring bar-shaped articles
4702365, Sep 10 1984 Apparatus for removing individual wafer segments from a framed carrier
4708727, Nov 14 1986 IP TECNOLOGIA VIDRIERA, LTD ; CENTRO DE TECNOLOGIA VIDRIERA, LTD ; VITRO EUROPA, LTD Method and apparatus for synchronizing the velocity of a 90 degree push-out apparatus and of the carrier converyor in an I.S. glassware forming machine
4720006, Oct 09 1985 SIG Schweizerische Industrie-Gesellschaft Apparatus for separating and conveying elongate articles
4730733, Sep 06 1985 Murata Kikai Kabushiki Kaisha System for delivering and inspecting packages
4750605, Aug 07 1985 Lamb Technicon Corp. Workpiece transfer system
4759439, Jan 29 1987 Dominion Chain Inc. Drive mechanism
4765453, Apr 27 1987 Westinghouse Electric Corp. Pellet-press-to-sintering-boat nuclear fuel pellet loading system
4775046, Jan 17 1986 FUTURE AUTOMATION, INC Transport belt for production parts
4805759, Apr 12 1985 Societe pour l'Etude et la Fabrication de Circuits Integres Speciaux Installation and method for handling delicate objects in an atmosphere having a controlled dust content
4813528, Feb 06 1987 Dominion Chain Inc. Conveyor loading system
4830180, Jan 15 1988 Key Technology, Inc. Article inspection and stabilizing system
4850102, Feb 27 1986 Honda Giken Kogyo Kabushiki Kaisha System for installing parts on workpiece
4852717, Nov 12 1986 SASIB PACKAGING NORTH AMERICA, INC Computer controlled light contact feeder
4854440, Jul 25 1987 Robert Bosch GmbH Apparatus for transferring articles to a packaging machine conveyor apparatus
4869637, Aug 27 1986 Bud Antle, Inc. Plant transfer mechanism
4898373, Jul 03 1986 High speed signature manipulating apparatus
4901843, Apr 02 1986 Graphic Packaging International, Inc Advancing motion rotary apparatus
4921092, Oct 28 1985 SASIB PACKAGING NORTH AMERICA, INC Computer controlled non-contact feeder with space-control device responsive to item-sensing device
4936438, May 31 1988 Welduction Automation Inc. Conveyor loading and unloading apparatus
4964776, Dec 01 1987 Tsubakimoto Chain Co. Article transfer and storage system
5048164, Aug 11 1989 Tokyo Electron Limited Vertical heat-treatment apparatus having boat transfer mechanism
5052544, Dec 29 1989 Douglas Machine Inc Tray loading machine
5064337, Jul 19 1988 Tokyo Electron Limited Handling apparatus for transferring carriers and a method of transferring carriers
5086909, Sep 23 1988 Powell Machinery, Inc. Gentle handling of fruit during weight sizing and other operations
5092450, Nov 23 1989 Rovema Verpackungmaschinen GmbH Method and apparatus for conveying and synchronizing the movement of articles
5099896, Apr 24 1991 U S NATURAL RESOURCES Rotary board pick/store/place method and apparatus
5110249, Oct 23 1986 Innotec Group, Inc. Transport system for inline vacuum processing
5113992, Sep 21 1989 Mitsubishi Denki Kabushiki Kaisha Vertical wafer carrying apparatus
5123518, Dec 12 1991 Apparatus for properly positioning vials
5135102, Sep 19 1989 CRISPLANT INC Sorting conveyor
5184712, Apr 12 1991 Robert Bosch GmbH Device for transporting articles to a conveyor apparatus of a packaging machine
5207309, Aug 18 1992 DAMAS CORPORATION Concomitant motion control device
5226211, Aug 04 1992 TRI-WAY MANUFACTURING TECHNOLOGIES CORP Precision guided transfer fixture
5231926, Oct 11 1991 ITS ACQUISITION, LLC; INTERNATIONAL THERMAL SYSTEMS LLC Apparatus and method for substantially reducing can spacing and speed to match chain pins
5246218, Sep 25 1992 Intel Corporation Apparatus for securing an automatically loaded wafer cassette on a wafer processing equipment
5261935, Sep 26 1990 Tokyo Electron Limited Clean air apparatus
5269119, Mar 12 1993 OSSID LLC Linearly reciprocating conveyor apparatus
5275275, Jul 29 1991 G.D Societa' Per Azioni Method of transferring products between continuously-moving conveyors
5332013, Mar 13 1992 MURATEC AUTOMATION CO , LTD Unmanned conveying device in clean room
5341915, Nov 06 1992 NATIONSBANK N A Article phasing, transfer and squaring system for packaging line
5382127, Aug 09 1992 International Business Machines Corporation Pressurized interface apparatus for transferring a semiconductor wafer between a pressurized sealable transportable container and a processing equipment
5387265, Oct 29 1991 Kokusai Electric Co., Ltd. Semiconductor wafer reaction furnace with wafer transfer means
5388945, Aug 04 1992 International Business Machines Corporation Fully automated and computerized conveyor based manufacturing line architectures adapted to pressurized sealable transportable containers
5411358, Aug 04 1992 International Business Machines Corporation Dispatching apparatus with a gas supply distribution system for handling and storing pressurized sealable transportable containers
5439091, Jul 02 1992 Utica Enterprises, Inc. Reciprocating lift mechanism
5460478, Feb 05 1992 Tokyo Electron Limited Method for processing wafer-shaped substrates
5558198, Sep 18 1995 Band transportation system
5560471, Sep 28 1994 TETRA LAVAL HOLDINGS & FINANCE S A Apparatus for transferring containers to a moving conveyor
5570990, Nov 05 1993 MURATEC AUTOMATION CO , LTD Human guided mobile loader stocker
5586585, Feb 27 1995 CROSSING AUTOMATION, INC Direct loadlock interface
5603777, Jun 27 1994 Dainippon Screen Mfg. Co., Ltd. Substrate surface treating apparatus and substrate surface treating method
5617944, Jun 15 1995 Valiant Corporation Shuttle transfer assembly
5628604, May 17 1994 ASYST SHINKO, INC Conveying system
5628614, Mar 16 1995 Douglas Machine Inc Continuous motion stacking apparatus and methods
5653327, Oct 21 1994 SIEMENS DEMATIC POSTAL AUTOMATION, L P Inserter device and a method for transposing a stream of products using the same
5664254, Feb 02 1995 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
5667056, Jun 06 1995 Sears Brands, LLC Hanger transport system
5762544, Apr 24 1996 Applied Materials, Inc. Carrier head design for a chemical mechanical polishing apparatus
5782338, Dec 23 1993 Siemens Aktiengesellschaft Transfer device for mail and the like
5788447, Aug 05 1995 KOKUSAI ELECTRIC CO , LTD Substrate processing apparatus
5797249, Nov 10 1994 Illinois Tool Works Inc Continuous motion case packing apparatus and method
5823319, May 10 1996 INTELLIGRATED HEADQUARTERS, LLC Control system for the drop-out zone of a constant speed accumulating conveyor
5827118, Aug 28 1996 SEH America, Inc. Clean storage unit air flow system
5829574, Oct 27 1994 Hitech Systems s.r.l. Machine for grouping individually-conveyed products, particularly food products, confectionery products and the like, for packaging
5829939, Apr 13 1993 Tokyo Electron Limited Treatment apparatus
5865292, Feb 06 1996 Liquid Container Corporation Method of picking blow molded articles from a blow molding machine
5884392, Dec 23 1994 International Business Machines Corporation Automatic assembler/disassembler apparatus adapted to pressurized sealable transportable containers
5887701, May 08 1996 AZIONARIA COSTRUZIONI MACCHINE AUTOMATICHE A C M A S P A Method and unit for forming and conveying groups of products
5955857, Aug 14 1995 HYUNDAI ELECTRONICS INDUSTRIES CO , LTD Wafer conveyor system
5957648, Dec 11 1996 Applied Materials, Inc. Factory automation apparatus and method for handling, moving and storing semiconductor wafer carriers
5980183, Apr 14 1997 CROSSING AUTOMATION, INC Integrated intrabay buffer, delivery, and stocker system
6026561, Jan 14 1994 GOOGLE LLC Automatic assembler/disassembler apparatus adapted to pressurized sealable transportable containers
6036426, Jan 26 1996 Creative Design Corporation Wafer handling method and apparatus
6042324, Mar 26 1999 ASM America, Inc. Multi-stage single-drive FOUP door system
6054181, Oct 29 1993 Tokyo Electron Limited Method of substrate processing to form a film on multiple target objects
6079927, Apr 22 1998 Varian Semiconductor Equipment Associates, Inc Automated wafer buffer for use with wafer processing equipment
6092979, Jan 25 1996 I.M.A. Macchine Automatiche S.p.A. Method and apparatus for taking over and piling articles supplied in a plurality of rows and for conveying obtained piles of articles to a packaging line
6142722, Jun 17 1998 GENMARK AUTOMATION, INC Automated opening and closing of ultra clean storage containers
6183186, Aug 29 1997 DAITRON, INC Wafer handling system and method
6209710, May 13 1996 IPT Weinfelden AG Method for the suspended conveying of containers and device for carrying out said method
6223887, Nov 21 1997 Daifuku Co., Ltd. Device for Transferring Products
6227345, Mar 23 1998 MURATA MANUFACTURING CO , LTD Transfer apparatus of chip components
6227346, Apr 14 1999 "Societe Nouvelle Eurocri" Europeenne de Creation et Realistations Method and device for conveying products with a particular spacing
6227348, Jan 26 1996 Elpatronic AG Method and apparatus for separating and bringing together series of container bodies
6234300, May 07 1996 De Greff's Wagen -, Carrosserie - en Machinebouw B.V. Method and device for supplying, discharging and transferring of objects, like fruits
6235634, Oct 08 1997 APPLIED KOMATSU TECHNOLOGY, INC Modular substrate processing system
6280134, Jun 17 1997 Applied Materials, Inc. Apparatus and method for automated cassette handling
6283692, Dec 01 1998 Applied Materials, Inc. Apparatus for storing and moving a cassette
6304051, Mar 15 1999 MOOG INC Self teaching robotic carrier handling system
6309279, Feb 19 1999 Novellus Systems, Inc Arrangements for wafer polishing
6379096, Feb 22 1999 SCP SERVICES, INC Buffer storage system
6435330, Dec 18 1998 MURATA MACHINERY LTD In/out load port transfer mechanism
6435331, Mar 16 2001 Lockheed Martin Corporation Dynamic gap establishing synchronous product insertion system
6439822, Sep 22 1998 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
6468021, Dec 18 1998 BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC Integrated intra-bay transfer, storage, and delivery system
6481558, Dec 18 1998 MURATA MACHINERY LTD Integrated load port-conveyor transfer system
6506009, Mar 16 2000 Applied Materials, Inc Apparatus for storing and moving a cassette
6511065, Aug 28 2001 SHANGHAI ELECTRIC GROUP CORPORATION Method for transferring signatures and gripper assembly for a matched velocity transfer device
6517304, Mar 31 1999 Canon Kabushiki Kaisha Method for transporting substrates and a semiconductor manufacturing apparatus using the method
6524463, Jul 16 2001 TECHNIC INC Method of processing wafers and other planar articles within a processing cell
6579052, Jul 11 1997 CROSSING AUTOMATION, INC SMIF pod storage, delivery and retrieval system
6581750, Jul 26 2000 Carl Strutz & Co., Inc.; CARL STRUTZ & CO , INC Method and apparatus for changing the orientation of workpieces about an angled axis for a decorator
6699329, May 25 2001 SKYLINE INDUSTRIES, INC Coating and curing system
6826986, May 05 2001 PRIMECA PTD LTD Bi-directional singulation system and method
6919001, May 01 2000 Intevac, Inc Disk coating system
6955517, Mar 16 2000 Applied Materials, Inc. Apparatus for storing and moving a cassette
7168553, Nov 13 2003 Applied Materials, Inc Dynamically balanced substrate carrier handler
7230702, Nov 13 2003 Applied Materials, Inc Monitoring of smart pin transition timing
7234584, Aug 31 2002 Applied Materials, Inc System for transporting substrate carriers
7234908, Mar 16 2000 Applied Materials, Inc. Apparatus for storing and moving a cassette
7243003, Aug 31 2002 Applied Materials, Inc Substrate carrier handler that unloads substrate carriers directly from a moving conveyor
7346431, Aug 31 2002 Applied Materials, Inc. Substrate carrier handler that unloads substrate carriers directly from a moving conveyer
7359767, Aug 31 2002 Applied Materials, Inc. Substrate carrier handler that unloads substrate carriers directly from a moving conveyor
7360981, Jun 30 2001 Applied Materials, Inc. Datum plate for use in installations of substrate handling systems
7409263, Jul 14 2004 Applied Materials, Inc Methods and apparatus for repositioning support for a substrate carrier
7527141, Aug 31 2002 Applied Materials, Inc. System for transporting substrate carriers
20010043849,
20020090282,
20030010449,
20030031538,
20030110649,
20030202865,
20030202868,
20040062633,
20040076596,
20040081538,
20040081545,
20040081546,
20040082546,
20040193300,
20050095110,
20050135903,
20050167554,
20060072986,
20070237609,
20070258796,
20070274813,
20080050217,
20080051925,
20080071417,
20080187419,
20080213068,
20080286076,
20090030547,
EP735927,
EP912426,
EP277536,
EP582019,
EP663686,
EP717717,
EP987750,
EP1134641,
JP62949,
JP335799,
JP10256346,
JP2098157,
JP63020151,
KR20000023251,
WO69724,
WO219392,
WO9709256,
WO9846503,
WO9902436,
WO9954921,
WO9960614,
WO9964207,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 09 2008Applied Materials, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
May 28 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Aug 13 2018REM: Maintenance Fee Reminder Mailed.
Feb 04 2019EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Dec 28 20134 years fee payment window open
Jun 28 20146 months grace period start (w surcharge)
Dec 28 2014patent expiry (for year 4)
Dec 28 20162 years to revive unintentionally abandoned end. (for year 4)
Dec 28 20178 years fee payment window open
Jun 28 20186 months grace period start (w surcharge)
Dec 28 2018patent expiry (for year 8)
Dec 28 20202 years to revive unintentionally abandoned end. (for year 8)
Dec 28 202112 years fee payment window open
Jun 28 20226 months grace period start (w surcharge)
Dec 28 2022patent expiry (for year 12)
Dec 28 20242 years to revive unintentionally abandoned end. (for year 12)