A valve for medical use has a cannula mounted on a hub and fixed in a fluid conduit so that the cannula points upstream. An elastomeric valve element is mounted on the hub within the conduit so as to enclose the cannula. The valve element has a first solid portion of circular cross-section disposed upstream of the cannula point which closes the conduit, a second hollow frustoconical portion within which the cannula point is disposed, and a third hollow cylindrical portion surrounding the cannula downstream from its point and fixed to the hub. The second portion has a frustoconical interior passageway. In use, the valve element is compressed by application of a medical appliance to the valve element first portion to cause the cannula point to pierce the first portion to provide a path for fluid flow through the conduit.

Patent
   5306243
Priority
Mar 11 1992
Filed
Jul 12 1993
Issued
Apr 26 1994
Expiry
Mar 11 2012

TERM.DISCL.
Assg.orig
Entity
Small
240
10
EXPIRED
1. A medical valve for use in a conduit having an inlet portion and an outlet portion comprising:
a hub;
means for fixing said hub within the conduit so as to hold a hollow cannula having a pointed end disposed within the conduit so as to point toward the conduit inlet;
an elongated flexible valve element having:
a first portion which is generally circular in cross-section and which is solid at one end thereof so as to form a first end of the valve element;
a second portion which is generally frustoconical in configuration over the majority of its length and has a longitudinal central passage extending therethrough which is axially aligned with the first portion; and
a third portion which is generally circular in cross-section and has a longitudinal central passage extending therethrough which is axially aligned with the second portion central passage and extends from said second portion away from said first portion so as to terminate in a valve element second end opposite said valve element first end; and
means for fixing the valve element within the conduit with respect to the hub so that the valve element is disposed in the conduit with the pointed end portion of the cannula contained within said central passages and so that the valve element first portion normally closes the conduit inlet portion.
12. A Y-site port medical connector of the type having a connector body with at least one inlet arm with an inlet passage terminating in an inlet and an outlet arm with an outlet passage terminating in an outlet, and in which the inlet arm passage is of generally circular cross-section over the majority of its length and extends from the inlet through the inlet arm so as to be in fluid communication with the outlet passage, and including:
a hub fixed within the inlet arm passage so as to hold a cannula within the inlet arm, the cannula thereby being axially aligned with the inlet arm, the cannula having a lumen which opens onto a point which points away from the outlet arm;
an elongated flexible valve element having:
a first portion which is generally circular in cross-section and which is solid at one end thereof so as to form a first end of the valve element;
a second portion which is generally frustoconical in configuration over the majority of its length and has a longitudinal central passage extending therethrough which is axially aligned with the first portion; and
a third portion which is generally circular in cross-section and has a longitudinal central passage extending therethrough which is axially aligned with the second portion central passage and extends from said first portion so as to terminate in a valve element second end opposite said valve element first end; and
means for fixing the valve element within the inlet arm with respect to the hub so that the valve element is disposed in the inlet passage with the pointed end portion of the cannula contained within said central passages and so that the valve element first portion normally closes the inlet passage at the inlet.
5. In a medical connector having a connector main body with an outlet and at least one inlet, and in which the inlet and the outlet each have a passage extending therefrom through the main body so as to be in communication with one another to provide a fluid passageway between the inlet and the outlet, the combination of:
a hub fixed within the fluid passageway so as to hold a cannula within the main body so that the cannula is aligned to point away from the outlet;
an elongated flexible valve element having:
a first portion which is solid over at least a substantial portion of its length and is circular in cross-section,
a second portion which is hollow and is generally frustoconical over at least the majority of its length and is axially aligned with said first portion so as extend away from said first portion; and
a third portion which is hollow and circular in cross-section and is axially aligned with and connected to said second portion so as to extend away from said second portion to a valve element outlet formed thereon remote from said second portion;
and in which the third portion has a longitudinal passage extending axially therethrough and said second portion has a longitudinal passage extending axially therethrough so as to be in direct communication with and axially aligned with said third portion passage and to extend from said third portion passage to said first portion in axial alignment with said first portion;
a rigid frustoconical sleeve disposed within the second portion passageway so as to open outwardly from the third portion toward the first portion and enclose one end of the cannula; and
means for attaching the valve element to the hub so that the valve element first portion normally closes the inlet.
2. A medical valve according to claim 1, and including a supplemental frustoconical sleeve disposed within the interior of the second valve portion passage so as to open outwardly away from the third valve portion toward the first valve portion.
3. A medical valve according to either claim 1 or claim 2, and in which the valve element is fixed with respect to the hub by the engagement of the valve element second end with the hub.
4. A medical valve according to claim 3, and in which the valve element first portion normally extends slightly beyond the inlet portion.
6. A connector according to claim 5, and in which the means for attaching the valve element to the hub includes the valve element outlet.
7. A connector according to claim 6, and in which the valve element outlet engages an annular recess formed on the hub.
8. A connector according to any of claims 5, 6 or 7, and in which the first valve portion normally extends slightly beyond the inlet.
9. A connector according to claim 8, and including a second inlet attached to the connector body and having a passage therethrough which joins the fluid passageway downstream of the hub.
10. A medical valve according to claim 3, and in which the valve element first portion is generally frustoconical and solid along at least a major part of its length and tapers from a base formed at the first end of the element to a top;
the valve element second portion is axially aligned with the first portion so as to taper from a second portion base coincident with the first portion top to a second portion top; and
the valve element third portion is generally cylindrical along at least a major part of its length and the valve element third portion longitudinal passage extends between the second end and the second portion,
and in which said second portion longitudinal passage extends therethrough in direct communication with and is axially aligned with said third portion passageway, said second portion passageway being generally frustoconical over at least a substantial part of its length so as to open outwardly from the third portion toward the first portion and contain said cannula point.
11. A medical valve according to claim 10, and in which the valve element first portion normally extends slightly beyond the inlet portion.
13. A connector according to claim 12, and including a supplemental frustoconical sleeve disposed within the interior of the second valve portion passage so as to open outwardly away from the third valve portion toward the first valve portion.
14. A connector according to either claim 12 or claim 13, and in which the valve element is fixed with respect to the hub by the engagement of the valve element second end with the hub.
15. A connector according to claim 14, and in which the valve element first portion normally extends slightly beyond the inlet portion.
16. A connector according to claim 14, and in which
the valve element first portion is generally frustoconical and solid along at least a major part of its length and tapers from a base formed at the first end of the element to a top;
the valve element second portion is axially aligned with the first portion so as to taper from a second portion base coincident with the first portion top to a second portion top; and
the valve element third portion is generally cylindrical along at least a major part of its length and the valve element third portion longitudinal passage extends between the second end and the second portion,
and in which said second portion longitudinal passage extends therethrough in direct communication with and is axially aligned with said third portion passageway, said second portion passageway being generally frustoconical over at least a substantial part of its length so as to open outwardly from the third portion toward the first portion and contain said cannula point.
17. A connector according to claim 14, and including at least one additional inlet arm attached to the connector body and having an inlet passage which joins the outlet passage upstream of the outlet and downstream of the hub.
18. A connector according to claim 16, and including at least one additional inlet arm attached to the connector body and having an inlet passage which joins the outlet passage upstream of the outlet and downstream of the hub.

This application is a continuation in part of my co-pending application Ser. No. 07/849,520, filed Mar. 11, 1992, now U.S. Pat. No. 5,273,533.

1. Field of the Invention

The present invention relates to a valve for medical use in a fluid conduit to prevent the back-flow of blood or other fluid upstream of the valve and, while it is particularly adapted for use in multiple inlet connectors such as Y-site ports, may be used in simple inlet connectors as well.

2. Description of the Prior Art

U.S. Pat. No. 4,512,766, issued Apr. 23, 1985 to Vincent L. Vailancourt, discloses a valve mechanism for catheter use to avoid fluid backflow, including an elastomeric self-sealing valve element which may be pierced by an external needle used to insert a catheter. In an alternate embodiment, the valve element is pre-slit and is opened by an internal insert tube when the valve element is compressed by an external adaptor fitted, for example, on a medication administration set.

According to the present invention, a valve for medical usage within a rigid fluid conduit has, as a first component, a hub fixed within the conduit so as to hold a cannula so that the cannula lumen opens onto a point which points away from the hub and, as a second component, an elongated flexible valve element having a first solid portion of circular cross-section which extends from a base which forms an internal seal of the conduit to a top, a second hollow portion of circular cross-section which is at least in part frustoconical with its base formed on the first element top so as to continue the frustoconical taper, and a third portion which is cylindrical and connected to the second portion so as to extend away from said second portion and terminate in a valve outlet, the first, second, and third portions being axially aligned with one another, and in which the third portion has a longitudinal passage extending therethrough so as to be in direct communication with and axially aligned with the interior of the second portion, the second portion interior being generally frustoconical so as to open outwardly between the third portion and the first portion, and within which a rigid supplementary frustoconical sleeve is disposed so as also to open outwardly between the third portion and the first portion, and in which the third portion is attached to the hub so that the valve first and second portions normally enclose the cannula and the valve third portion forms an internal seal of the conduit at the conduit inlet by extending slightly beyond the conduit inlet.

The medical valve of the invention is illustrated in the accompanying drawing, in which like numerals indicate like parts, and in which:

FIG. 1 is a isometric view of a Y-site port-type connector for use with a medical valve according to the present invention;

FIG. 2 is a cross-sectional view of a port body for the connector as shown in FIG. 1;

FIG. 3 is a cross-sectional view of a needle and hub assembly for use in a medical valve according to the present invention;

FIG. 4 is a cross-sectional view of a valve element for use in the first embodiment of the medical valve of the present invention;

FIG. 5 is a cross-sectional view of the components illustrated in FIGS. 3, and 4 assembled in the body of FIG. 2 and ready to receive a medical device having a female Luer fitting; and

FIG. 6 is a cross-sectional view of the device of FIG. 5 with the female Luer fitting attached to open the valve;

FIG. 7 is a cross-sectional view of the device shown in FIG. 5 illustrating its configuration in use for receiving an external cannula;

FIG. 8 is a cross-sectional view of a second embodiment of valve element for use in the medical valve of the present invention;

FIG. 9 is a cross-sectional view of the components of FIGS. 3 and 8 assembled in the body of FIG. 2 and ready to receive a medical device having a female luer fittings;

FIG. 10 is a cross-sectional view of the device of FIG. 9 with the female luer fitting attached to open the valve; and

FIG. 11 is a plan view of a straight-through-type connector for use with the medical valve of the present invention, utilizing the valve element of FIG. 8; and

FIG. 12 is a view, in section, taken along lines 12--12 of FIG. 11.

Referring now to FIG. 1, there is shown, in perspective, a Y-site port type connector 10 for use with a medical valve according to the present invention. The port 10 has a body 11 from which extend an outlet arm 12, a first inlet arm 14, and a second inlet arm 16. Luer-type lock lugs 18 (only one of which is shown in FIG. 1) extend outwardly from the first arm 14 for use in attaching other medical devices to the arm 14. If desired, the lugs 18 may be omitted, or similar lugs may be added to the other arms 12, 16. As is seen in FIG. 1, the first arm 14 and second arm 16 intersect one another at an acute angle and the arm 14 is generally longitudinally aligned with the outlet arm 12. Any other configuration may be equally used with respect to the present invention, or the arm 16 omitted if multiple inlets are not desired.

Referring now to FIG. 2, there is shown, in section, the body portion 11 of the port 10 shown in FIG. 1. As is seen in FIG. 2, the outlet arm 12 is hollow and generally cylindrical in cross-section with a passage 20 extending from an outlet 22 formed on the outlet arm 12 inwardly toward the inlet arms 14, 16. The inlet arm 14 has a passage 24 which extends from a first arm inlet 26 toward the outlet arm passage 20. The second inlet arm 16 has a second arm inlet 28, from which a second inlet passage 30 extends toward the outlet passage 20. The outlet passage 20 and inlet passages 24, 30 meet in a central chamber 32. For the particular embodiment shown in FIG. 2, the central chamber 32 is axially aligned with the first inlet arm passage 24 and the outlet arm passage 20. The second inlet arm passage 30 communicates with the central chamber 32 through a chamber extension 32A. Obviously, it is not necessary that the outlet arm 12 be aligned with either of the inlet passages 24, 30, so long as the three passages 20, 24 and 30 communicate directly with one another, such as by the central chamber 32 and chamber extension 32A shown in FIG. 2.

FIG. 3 is a cross-sectional view of a cannula 34 for use in the port body 11 by being fixed in the first outlet arm passage 24. As will be seen in FIG. 2, the first inlet arm passage 24 communicates with the central chamber 32 through a connecting passage 36 which tapers inwardly from the first inlet arm passage 24 to the central chamber 32. An annular lip 38 is formed in the connecting passage 36. The cannula 34 is mounted on a hub 40 which has a body portion 42 formed on the cannula opposite the cannula's point 44. The cannula has a lumen 46 which extends through the cannula from the point 44 to a cannula end 48 opposite the point 44. The hub body portion 42 has a value element locking recess 50 formed adjacent one end thereof. The other end of the hub body portion 42 is mounted about the cannula end 48 and tapers radially outwardly therefrom to a shoulder 52, on which an peripheral ring 54 is formed. As will be seen with respect to FIG. 5, the peripheral ring 54 engages the annular lip 38 on the body 11 so as to lock the hub end 40 and so the cannula 34 within the first inlet arm passage 24.

Referring now to FIG. 4, there is shown an elongated valve element 56 for use in the present invention. The valve element 56 may typically be constructed of an elastomeric material such as latex commonly used in medical applications. The valve element 56 has a first portion 58 which is generally frustoconical in shape so as to taper from a base 60 forming a first end of the valve element 56 to a top 62. The valve element 56 has a second portion 64 which is generally frustoconical in exterior configuration over the majority of its length and tapers from the top 62, which forms the base of the second portion 64, to a second portion top 66, shown in dotted lines in FIG. 4. The valve element 56 has a third portion 68 which is generally cylindrical in configuration and extends from the second portion top 66 to a second end 70 of the valve element 56 which, in operation, engages the valve element locking recess 50 on the hub body portion 42 (see FIGS. 5 and 6).

As will be seen in FIG. 4, the third portion 68 has a cylindrical passageway 74 extending therethrough from the valve element second end 70 to the second portion top 66. The second portion 64 has an interior passageway 76 which is generally frustoconical in shape over most of its length so as to taper outwardly between a shoulder 72 formed adjacent the second portion top 66 and the first portion top 62. In the particular embodiment shown, the cylindrical passage from the third portion passage 74 extends onward into the interior of the second portion 64 a short distance before opening onto the shoulder 72 in the second portion interior passageway 76. The valve portions 58, 64, 68 are axially aligned with one another and provide a central passageway consisting of the passageways 74 and 76, within which the hub 40 and cannula 34 are disposed, as shown in FIG. 5.

Seated within the cylindrical passageway 76 against the shoulder 72 is a frustoconical sleeve 78 which preferably is made of stainless steel. The frustoconical sleeve 78 has an exterior surface which conforms with the interior surface 80 of the passageway 76. Thus, as will be explained hereinafter, the frustoconical sleeve 78 serves as a supplemental sleeve to provide additional strength and an impervious inner surface for the interior surface 80 of the passageway 76.

Referring now to FIG. 5, there is shown a side elevational view of the port 10 adapted for use with respect to the attachment to the inlet arm 12 of a Luer-type fitting 82 from which a surgical tube 84 of conventional construction extends so as to selectively apply fluid to the fitting 82. The fitting 82 has a female Luer thread 86 which engages the lug 18 on the port 10 shown in FIG. 1.

The Luer-type fitting 82 has a nose 88 of conventional construction, i.e., slightly tapered, through which a passageway 90 extends in communication with the surgical tubing 84. The port 10 has a surgical-type outlet tube 92 extending through the outlet 22 of the outlet arm 12 so as to be in communication with the outlet bore 20. A surgical type inlet tube 94 is similarly connected to the second inlet arm 16 so as to provide a source of fluid to the central chamber 32.

A valve 100 according to the present invention is shown disposed within the first inlet arm bore 24. The valve 100 is seen to consist of the cannula 34 and hub 40 shown in FIG. 3 disposed within the valve element 56 shown in FIG. 4. As will be seen in FIG. 5, the valve element first portion 58 at its base 60 is at least even with and should extend slightly beyond the inlet 26 of the inlet arm 14. By slightly extending beyond the inlet 26, rather than being recessed therein as is the case in the prior art, the base 60 can be readily swabbed with disinfectant prior to use to insure sterility during the utilization of the valve 100, as described with respect to FIG. 6.

Referring now to FIG. 6, the port 10 shown in FIG. 5 is shown with the Luer fitting 82 attached to the first inlet arm 14. In the attachment process, the Luer fitting nose 88 presses against the base 60 of the valve element first portion 58 so as to compress the valve element third portion 68 against the hub 40 and the interior surface of the first inlet arm bore 24 at the connecting passage 36. This compression of the valve element third portion 68 permits the Luer fitting nose 88 to force the valve element first portion 58 onto the point 44 of the cannula 34 and, after the point 44 pierces the first portion 58, the first portion 58 is forced inwardly along the cannula 34 so as to open a path for fluid communication from the surgical tubing 84 through the passageway 90 formed in the Luer fitting 82 and the cannula lumen 46.

Because the valve element 56 is formed of a flexible and resilient material, such as latex or some similar elastomeric material, removal of the Luer fitting 82 from the first inlet arm 12 decompresses the valve element third portion 68 so that the valve element first portion 58 moves outwardly away from the hub 40 to its original position as shown in FIG. 5. The first portion 58 is made of a self-sealing material, so that the movement of the first portion 58 off of the cannula 34 and beyond the cannula point 44 then seals, once more, the fluid passageway which existed through the cannula lumen 46 in the utilization shown in FIG. 6.

For certain requirements, such as an emergency procedure utilizing a hypodermic syringe with an attached cannula to rapidly inject a fluid into the central chamber 32, it may be inappropriate to attempt to use the Luer-type fitting 82. The valve of the present invention permits the alternate use of an external cannula to provide a fluid passage through the valve element first portion 58 to the cannula lumen 46. It is desirable to be able to insert such an external cannula within the cannula lumen 46. However, the valve of the present invention obviates such a necessity while, at the same time, assisting in such an alignment if desired. In this regard, referring now to FIG. 7, there is shown a partial sectional view of the inlet arm 14 and valve 56. In FIG. 7, an external cannula 102 which may be attached, for example, to a hypodermic syringe, is shown as having been inserted into the frustoconical passageway 76 formed within the valve element second portion 64. The frustonical sleeve 78 guides the external cannula 102 to a position adjacent the valve cannula 34. In an instance, such as is illustrated in FIG. 7, whether, because of the emergency nature of the procedure being performed or otherwise, the cannula 102 is not centered in the valve element first portion 58, the piercing of the valve element second portion inner surface 80 is avoided by the sleeve 78 guiding the cannula point 104 along its inner surface to the lumen 46 of the valve cannula 34. The contents of the syringe may then be expelled through the external cannula 102 into the second element passageway 76 even if the user fails to properly align the external cannula 102 with the valve cannula lumen 46 so as to be able to directly insert the external cannula 102 into the lumen 46. The user simply need insert the external cannula 102 until resistance is felt by reason of the external cannula 102 reaching the valve cannula 34 or the frustoconical sleeve 78, and then proceed to expel the contents of the hypodermic syringe, confident that the contents will pass through the valve cannula 34 into the central chamber 32 and then out the outlet arm 20 into the outlet tube 92.

Referring now to FIG. 8, there is shown, as an alternate embodiment of a valve element for use in the present invention, a valve element 156. The valve element 156 has a first portion 158 which is of a generally cylindrical configuration in with a base 160 forming a first end of the valve element 156 and extending to a top 162 (shown in dotted lines). The valve element 156 has a second portion 164 which is generally frustoconical in exterior configuration over the majority of its length and tapers from the top 162, which forms the base of the second portion 164, to a second portion top 166, shown in dotted lines in FIG. 4. The valve element 156 has a third portion 168 which is generally cylindrical in configuration and extends from the second portion top 166 to a second end 170 of the valve element 156.

As will be seen in FIG. 8, the third portion 168 has an interior cylindrical passage 174 extending therethrough from the valve element second end 170 to the second portion top 166. The second portion 164 has an interior passage 176 which is generally frustoconical in configuration over most of its length so as to taper outwardly between a shoulder 172 formed adjacent the second portion top 166 and the first portion top 162. In the particular embodiment shown, the diameter of the passage of the third portion passage 174 is continued a short distance in the second portion passage 176 before opening onto the shoulder 172. The valve portions 158, 164, 168 are axially aligned with one another and provide a central passageway consisting of the passages 174 and 176 and a recess 161 formed in the interior of the first portion 158 adjacent the top 162, within which the hub 40 and cannula 34 are disposed, as shown in FIG. 9.

Seated within the cylindrical passage 176 against the shoulder 172 is a frustoconical sleeve 178 which is comparable to and performs the same functions as the sleeve 78. The valve element 156 has a peripheral sealing flap 179 formed on the first portion 158 adjacent the first end 160 to ensure closure at the conduit inlets as will be explained hereinafter.

Referring now to FIG. 9, there is shown a side elevational view of the port 10 adapted for use with the valve element 156 in lieu of the valve element 56 shown in FIG. 5. Like reference numerals in FIG. 5 and 10 refer to like components. A valve element 156 according to the present invention is shown disposed within the first inlet arm bore 24. The valve element 156 encloses the cannula 34 and is fixed to the hub 40 in the same manner as the valve element 56 is fixed thereto in the embodiment of FIGS. 3-7. The sealing flap 179 closes the conduit 24 at the end 26 when the connector is not in use.

Referring now to FIG. 10, the port 10 shown in FIG. 9 is shown with the Luer fitting 82 attached to the first inlet arm 14. In the attachment process, the Luer fitting nose 88 presses against the base 160 of the valve element first portion 158 so as to compress the valve element third portion 168 against the hub 40 and the interior surface of the first inlet arm bore 24 at the connecting passage 36. This compression of the valve element third portion 168 permits the Luer fitting nose 88 to force the valve element first portion 158 onto the point 44 of the cannula 34 and, after the point 44 pierces the first portion 158, the first portion 158 is forced inwardly along the cannula 34 so as to open a path for fluid communication from the surgical tubing 84 through the passageway 90 formed in the Luer fitting 82 and the cannula lumen 46. The lack of rigidity of the first portion 158, when longitudinally compressed by attachment of the Luer fitting 82 may result in the first portion 158 collapse asymmetrically, resulting in the failure of the flap 179 to the conduit 24. To avoid such a failure, if required, tapered longitudinally extending fins 190 (only one of which is shown in FIG. 8) may be utilized to provide added frigidity against lateral deflection of the valve element first portion 158, if appropriate.

Because the valve element 156 is formed of a flexible and resilient material, such as latex or some similar elastomeric material, removal of the Luer fitting 82 from the first inlet arm 12 decompresses the valve element third portion 168 so that the valve element first portion 158 moves outwardly away from the hub 40 to its original position as shown in FIG. 9. The first portion 158 is made of a self-sealing material, so that the movement of the first portion 158 off of the cannula 34 and beyond the cannula point 44 then closes, once more, the fluid passageway which existed through the cannula lumen 46 when the medical connector of the present invention was being utilized as shown in FIG. 10.

The valve assemblies have been described heretofore in a particular embodiment specifically adapted for use in a Y-site port. However the valve assemblies of the present invention, and accompanying components, may be generally the medical field in connectors for various fluid used in the medical field in connectors for various fluid transfer applications.

Referring now to FIGS. 11 and 12, there is shown an alternate embodiment of a medical connector for use with the medical valve of the present invention. FIG. 11 is plan view of a straight-through-type medical connector 200 having an inlet portion 202 and an outlet portion 204. The connector 200 has a main body portion 206. Formed on the external surface thereof are two laterally-opposed gripping surfaces 208, 210 which assist the medical personnel during the use of the device, as will be apparent to those skilled in the art. As is seen in FIG. 12, a longitudinal passage 212 extends through the interior of the inlet portion 202. The inlet portion 202 has an inlet 214, from which the longitudinal passage 212 tapers inwardly slightly over most of its length, and a male-type Luer fitting 218. The outlet portion 204 has an outlet 216 onto which a longitudinal passage 220 opens. The main body portion 206 has a longitudinal passage 236 extending therethrough and opening into the inlet passage 212 and the outlet passage 220 so that all three passages 212, 220, 236 are axially aligned so as to provide a conduit through the connector 200. Disposed between the inlet 214 and the outlet 216 in the main body passage 236 is a hub 240 having a hollow hub body portion 242 which holds a cannula 234. An annular lip 238 is formed in the longitudinal passage 236 adjacent the outlet portion 204 and engages a complementary groove 254 formed in the hub body portion 242.

The hub body portion 242 has an annular locking recess 250 formed therein for engagement with the second end 170 of the valve element 156, so as to lock the valve element 156 to the hub 240. The cannula 234 has a point 244 which is disposed within the valve element in the same manner as that described heretofore with respect to FIG. 9. Opposite the point 244, the cannula 236 has an outlet 248 which opens into the outlet portion 204. The cannula outlet 248 extends beyond the hub body portion 242 so as to facilitate engagement of a fluid outlet tube (not shown). The hollow interior of the hub body portion 242 may have a series of annular recesses 252 formed therein to facilitate the gripping of the outlet tube by the connector when the outlet tube is slipped over the cannula outlet 248. The cannula 234 has a Lumen 246 extending therethrough between the point 244 and the cannula outlet 248 so as to provide a fluid passage through the conduit when the valve element first portion 160 is pressed onto and beyond the point 244 so as to pierce the first portion 160 in the same manner as was described heretofore with respect to the embodiments of FIGS. 1 through 10.

The valve element 156 shown in FIG. 12 is the same element as the valve element 156 heretofore described with respect to FIGS. 8 through 10, and like reference numbers in FIG. 12 refer to the same components as were described heretofore. Alternatively, the valve element 56 of the embodiment of FIGS. 1 through 7 may be utilized with the straight-through-type medical connector inlet portion 202 outlet portion 204 main body portion 206 hub 240 and cannula 234, if desired, although the valve element 156 of FIGS. 8 through 10 is presently preferred with respect to the embodiment of the present invention illustrated in Figs. 11 and 12.

The various components of the medical connector of the present invention are molded from conventional medical grade plastics. For example, valve elements 56 and 156 may be molded of medical grade latex, such as 7377-30 gum formulated to 80 Shore A durometer hardness, formulated and molded by West Company of Philadelphia, Pa. The port body 11 may be injection molded from medical grade polypropylene, such as grade PD-626 Pro-fax® polypropylene distributed by Himont U.S.A., Inc. of Wilmington, Del. The sleeves 78 and 178 and cannula 34 may be made of #304 stainless steel. The needle hub 26 may be injection molded from medical grade polypropylene or from medical grade polycarbonate, such as from Calibre®200-15 polycarbonate resin manufactured by Dow Chemical Company of Midland, Mich. The foregoing materials are described by way of example only, and are not intended to constitute limitations upon the practice of the present invention, as defined in the following claims.

Bonaldo, Jean M.

Patent Priority Assignee Title
10046154, Dec 19 2008 ICU Medical, Inc. Medical connector with closeable luer connector
10105492, Dec 30 2003 ICU Medical, Inc. Medical connector with internal valve member movable within male luer projection
10156306, Sep 09 2011 ICU Medical, Inc. Axially engaging medical connector system with fluid-resistant mating interfaces
10232145, Jan 27 2014 Maddoc Medical Products, Inc. Medical device securement system and method
10238852, Oct 05 2016 Becton, Dickinson and Company Septum housing
10245416, Oct 28 2015 Becton, Dickinson and Company Intravenous catheter device with integrated extension tube
10322262, May 21 2009 C R BARD, INC Medical device securement system
10342919, Nov 03 2005 Medtronic MiniMed, Inc. Fluid delivery devices, systems and methods
10357636, Oct 28 2015 Becton, Dickinson and Company IV access device having an angled paddle grip
10398887, May 16 2007 ICU Medical, Inc. Medical connector
10426928, Oct 06 2009 Venetec International, Inc. Stabilizing device having a snap clamp
10463837, Jan 27 2014 Maddoc Medical Products, Inc. Medical device securement system and method
10525237, Oct 28 2015 Becton, Dickinson and Company Ergonomic IV systems and methods
10537714, Nov 11 2009 VENETEC INTERNATIONAL, INC Stabilizing device for an extension set
10549072, Oct 28 2015 Becton, Dickinson and Company Integrated catheter with independent fluid paths
10561815, Aug 31 2005 C. R. Bard, Inc. Anchoring system for a catheter
10561825, Jan 27 2014 Maddoc Medical Products, Inc. Medical device securement system and method
10589067, Sep 19 2008 C. R. Bard, Inc. Medical device securement system
10639455, Oct 28 2015 Becton, Dickinson and Company Closed IV access device with paddle grip needle hub and flash chamber
10695550, May 20 2011 Excelsior Medical Corporation Caps for needleless connectors
10697570, Sep 09 2011 ICU Medical, Inc. Axially engaging medical connector system with diminished fluid remnants
10716928, Dec 19 2008 ICU Medical, Inc. Medical connector with closeable luer connector
10729887, Mar 15 2013 C R BARD, INC Securement device having an integral strap and dressing
10744305, Oct 28 2015 Becton, Dickinson and Company Ergonomic IV systems and methods
10744316, Oct 14 2016 ICU Medical, Inc.; ICU Medical, Inc Sanitizing caps for medical connectors
10814106, Oct 28 2015 Becton, Dickinson and Company Soft push tabs for catheter adapter
10821278, May 02 2014 Excelsior Medical Corporation Strip package for antiseptic cap
10842982, Jul 06 2005 ICU Medical, Inc. Medical connector
11020565, Jul 30 2010 C R BARD, INC Securement device
11123523, Oct 28 2015 Becton, Dickinson and Company Intravenous catheter device with integrated extension tube
11168818, Sep 09 2011 ICU Medical, Inc. Axially engaging medical connector system that inhibits fluid penetration between mating surfaces
11266785, Dec 30 2003 ICU Medical, Inc. Medical connector with internal valve member movable within male projection
11351353, Oct 27 2008 ICU Medical, Inc Packaging container for antimicrobial caps
11389634, Jul 12 2011 ICU Medical, Inc Device for delivery of antimicrobial agent into trans-dermal catheter
11400195, Nov 07 2018 ICU Medical, Inc Peritoneal dialysis transfer set with antimicrobial properties
11420023, Oct 06 2009 Venetec International, Inc. Stabilizing device having a snap clamp
11433215, Nov 21 2018 ICU Medical, Inc Antimicrobial device comprising a cap with ring and insert
11478616, Mar 15 2013 C. R. Bard, Inc. Securement device having an integral strap and dressing
11478624, Dec 19 2008 ICU Medical, Inc. Medical connector with closeable luer connector
11497904, Oct 14 2016 ICU Medical, Inc. Sanitizing caps for medical connectors
11517732, Nov 07 2018 ICU Medical, Inc Syringe with antimicrobial properties
11517733, May 01 2017 ICU Medical, Inc. Medical fluid connectors and methods for providing additives in medical fluid lines
11534595, Nov 07 2018 ICU Medical, Inc Device for delivering an antimicrobial composition into an infusion device
11541220, Nov 07 2018 ICU Medical, Inc Needleless connector with antimicrobial properties
11541221, Nov 07 2018 ICU Medical, Inc Tubing set with antimicrobial properties
11559467, May 08 2015 ICU Medical, Inc. Medical connectors configured to receive emitters of therapeutic agents
11565083, Jan 27 2014 Maddoc Medical Products, Inc. Medical device securement system and method
11571551, Oct 28 2015 Becton, Dickinson and Company Ergonomic IV systems and methods
11633573, Sep 19 2008 C. R. Bard, Inc. Medical device securement system
11654221, Nov 05 2003 Baxter International Inc.; BAXTER HEALTHCARE SA Dialysis system having inductive heating
11771823, Nov 03 2005 Medtronic MiniMed, Inc. Fluid delivery devices, systems and methods
11786703, Oct 28 2015 Becton, Dickinson and Company Closed IV access device with paddle grip needle hub and flash chamber
11786715, May 16 2007 ICU Medical, Inc. Medical connector
11793986, Oct 05 2016 Becton, Dickinson and Company Septum housing
11808389, Sep 09 2011 ICU Medical, Inc. Medical connectors with luer-incompatible connection portions
11813407, Aug 31 2005 C. R. Bard, Inc. Anchoring system for a catheter
11826539, Jul 12 2011 ICU Medical, Inc. Device for delivery of antimicrobial agent into a medical device
5474536, Mar 11 1992 Medical valve
5509912, Oct 24 1994 HYPOGUARD USA, INC Connector
5514116, Oct 24 1994 HYPOGUARD USA, INC Connector
5669891, Oct 24 1994 FUTURA MEDICAL CORPORATION Female luer connector
5676656, Mar 16 1995 Becton Dickinson and Company Control forward introducer needle and catheter assembly
5697914, Mar 16 1995 Becton Dickinson and Company Control forward/flashback forward one hand introducer needle and catheter assembly
5699821, Oct 13 1993 Control of fluid flow
5776113, Mar 29 1996 Becton, Dickinson and Company Valved PRN adapter for medical access devices
5806831, Oct 13 1993 Control of fluid flow with internal cannula
5807347, Dec 21 1995 Medical valve element
5807348, Nov 27 1996 Elcam Plastics Needleless valve
5814024, Nov 27 1996 Elcam Plastics Needleless valve
5879334, Mar 16 1995 Becton Dickinson and Company Control forward introducer needle and catheter assembly
5935110, Mar 16 1995 Becton Dickinson and Company Control forward/flashback forward one hand introducer needle and catheter assembly
5950986, Mar 29 1996 Becton, Dickinson and Company Valved PRN adapter for medical access devices
5957898, May 20 1997 Baxter International Inc Needleless connector
6029946, Sep 15 1997 CAREFUSION 303, INC Needleless valve
6050978, May 09 1997 Becton Dickinson and Company Needleless valve connector
6068011, Oct 13 1993 Control of fluid flow
6132398, Oct 17 1997 VENETEC INTERNATIONAL, INC Medical tubing securement system
6213979, May 29 1997 VENETEC INTERNATIONAL, INC Medical line anchoring system
6224571, Nov 14 1997 VENETEC INTERNATIONAL, INC Medical line securement device
6261282, May 20 1997 Baxter International Inc. Needleless connector
6283945, Oct 17 1997 VENETEC INTERNATIONAL, INC Anchoring system for a medical article
6290206, Sep 15 1997 CAREFUSION 303, INC Needleless valve
6331176, Mar 11 1999 Advanced Cardiovascular Systems, INC Bleed back control assembly and method
6344033, May 20 1997 Baxter International, Inc. Needleless connector
6361523, Mar 27 1998 VENETEC INTERNATIONAL, INC Anchoring system for a medical article
6364869, Jun 07 2000 Halkey-Roberts Corporation Medical connector with swabbable stopper
6413240, Aug 03 2000 VENETEC INTERNATIONAL, INC Dialysis catheter anchoring system
6428516, Nov 14 1997 Venetec International, Inc. Medical line securement device
6447485, May 29 1997 Venetec International, Inc. Medical line anchoring system
6506181, May 25 2001 Becton, Dickinson and Company Catheter having a low drag septum
6541802, Sep 15 1997 CAREFUSION 303, INC Needleless valve
6663600, Aug 03 2000 Venetech International, Inc. Dialysis catheter anchoring system
6669681, May 20 1997 Baxter International Inc. Needleless connector
6689104, Nov 14 1997 Venetec International, Inc. Medical line securement device
6695820, Mar 11 1999 Advanced Cardiovascular Systems, Inc. Bleed back control assembly
6840501, Sep 15 1997 CAREFUSION 303, INC Needleless valve
6866652, Jun 08 1999 Venetec International, Inc. Medical line securement device for use with neonates
6929625, May 29 1997 Venetec International, Inc. Medical line anchoring system
6951550, Mar 27 1998 VENETEC INTERNATIONAL, INC Anchoring system for a medical article
7018362, Aug 03 2000 Venetec International, Inc. Dialysis catheter anchoring system
7153291, Nov 14 1997 Venetec International, Inc. Medical line securement device
7247150, May 29 1997 Venetec International, Inc. Medical line anchoring system
7306566, Sep 15 2004 CAREFUSION 303, INC Needle free blood collection device with male connector valve
7338465, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion device and method thereof
7354421, Oct 01 2002 VENETEC INTERNATIONAL, INC Catheter securement device
7524300, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion device
7563251, Aug 03 2000 Venetec International, Inc. Dialysis catheter anchoring system
7591803, May 29 1997 Venetec International, Inc. Medical line anchoring system
7628775, Sep 24 2004 Boston Scientific Scimed, Inc Safety Y-port adaptor and medical catheter assembly including the same
7635357, Jun 20 1994 Needleless injection site
7648492, Oct 01 2002 Venetec International, Inc. Catheter securement device
7651479, Nov 14 1997 Venetec International, Inc. Medical line securement device
7651481, Dec 30 2004 CAREFUSION 303, INC Self-sealing male connector device with collapsible body
7666167, May 29 1997 Venetec International, Inc. Medical line anchoring system
7704228, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion device
7713247, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7713248, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7713249, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7713250, Dec 07 2001 Becton, Dickinson and Company Needleless luer access connector
7717883, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7717884, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7717885, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7717886, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7717887, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7722571, May 23 2005 VENETEC INTERNATIONAL, INC Medical article anchoring system
7722575, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7722576, Dec 18 1991 ICU Medical, Inc. Medical valve and method of use
7731680, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion device
7758566, Dec 30 2003 ICU Medical, Inc Valve assembly
7803139, Jul 06 2005 ICU Medical, Inc Medical connector with closeable male luer
7803140, Jul 06 2005 ICU Medical, Inc Medical connector with closeable male luer
7806873, Jul 13 2006 VENETEC INTERNATIONAL, INC Intravenous securement device with adhesively interconnected anchoring component and permeable adhesive strip
7811258, Nov 14 1997 Venetec International, Inc. Medical line securement device
7815614, Jul 06 2005 ICU Medical, Inc Medical connector with closeable male luer
7879013, Dec 21 2005 VENETEC INTERNATIONAL, INC Intravenous catheter anchoring device
7935084, Oct 01 2002 Venetec International, Inc. Catheter securement device
7935090, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion device
7947032, Dec 07 2001 Becton, Dickinson and Company Needleless luer access connector
7985206, Jul 13 2006 Venetec International, Inc. Intravenous securement device with adhesively interconnected anchoring component and permeable adhesive strip
7998134, May 16 2007 ICU Medical, Inc Medical connector
8002765, Dec 15 1995 ICU Medical, Inc. Medical valve with fluid escape space
8016792, Jan 12 2006 VENETEC INTERNATIONAL INC Universal catheter securement device
8016793, Jan 12 2006 Venetec International, Inc. Universal catheter securement device
8025643, Oct 17 1997 Venetec International, Inc. Anchoring system for a medical article
8052648, Dec 21 2005 VENETEC INTERNATIONAL, INC Intravenous catheter anchoring device
8052649, Sep 19 2005 VENETEC INTERNATIONAL INC Medical tubing securement assembly and methods of use
8057095, Apr 23 2009 Medtronic, Inc.; Medtronic, Inc Multiple use temperature monitor adapter, system and method of using same
8066692, Dec 30 2003 ICU Medical, Inc. Medical male luer connector with increased closing volume
8105289, Aug 03 2000 Venetec International, Inc. Dialysis catheter anchoring system
8105290, Jun 01 2007 VENETEC INTERNATIONAL, INC Universal catheter securement device
8114054, May 23 2005 Venetec International, Inc. Medical article anchoring system
8146210, Jul 17 2007 C R BARD, INC Support clamp for medical line
8162898, Apr 18 2005 VENETEC INTERNATIONAL, INC Venipuncture base plate assembly and method of using same
8172807, Jul 13 2006 Venetec International, Inc. Intravenous securement device with adhesively interconnected anchoring component and permeable adhesive strip
8177756, Sep 19 2005 Venetec International, Inc. Medical tubing securement assembly and methods of use
8211063, Apr 07 2006 VENETEC INTERNATIONAL, INC Side loaded securement device
8211069, Jul 06 2005 ICU Medical, Inc. Medical connector with closeable male luer
8216208, Jul 02 2002 MEDTRONIC MINIMED, INC Method relating to infusion device
8221361, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion devices
8221362, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion device
8221386, Jul 02 2002 MEDTRONIC MINIMED, INC Method relating to infusion device
8226614, Nov 03 2005 MEDTRONIC MINIMED, INC Fluid delivery devices, systems and methods
8241253, Jul 20 2007 C R BARD, INC Securement system for a medical article
8246583, Oct 17 1997 Venetec International, Inc. Anchoring system for a medical article
8262627, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion device
8262628, Jul 06 2005 ICU Medical, Inc. Medical connector with closeable male luer
8277420, Jun 09 2008 Venetec International, Inc. Securement device with toggle clamp mechanism
8303571, Jul 30 2010 Errorless Medical, LLC Multiple-line connective devices for infusing medication
8333736, Jan 12 2006 Venetec International, Inc. Universal catheter securement device
8366683, Jul 02 2002 MEDTRONIC MINIMED, INC Infusion devices
8398599, Oct 17 1997 Venetec International, Inc. Anchoring system for a medical article
8486024, Apr 27 2011 Covidien LP Safety IV catheter assemblies
8506531, May 29 1997 Venetec International, Inc. Medical line anchoring system
8551047, Aug 22 2005 MEDTRONIC MINIMED, INC Fluid delivery devices, systems and methods
8556868, Dec 30 2003 ICU Medical, Inc. Syringe with multi-pronged actuator
8608704, Nov 14 1997 Venetec International, Inc. Medical line securement device
8628497, Sep 26 2011 KPR U S , LLC Safety catheter
8636698, Aug 03 2000 Venetec International, Inc. Dialysis catheter anchoring system
8641678, Oct 01 2002 Venetec International, Inc. Catheter securement device
8647310, May 06 2010 ICU Medical, Inc Medical connector with closeable luer connector
8679067, Sep 19 2005 Venetec International, Inc. Medical tubing securement assembly and methods of use
8679090, Dec 19 2008 ICU Medical, Inc Medical connector with closeable luer connector
8715250, Sep 26 2011 KPR U S , LLC Safety catheter and needle assembly
8734400, Sep 19 2008 C R BARD, INC Medical device securement system
8777908, Jul 06 2005 ICU Medical, Inc. Medical connector with closeable male luer
8777909, Jul 06 2005 ICU Medical, Inc. Medical connector with closeable male luer
8777925, Jul 02 2002 MEDTRONIC MINIMED, INC Methods relating to infusion device
8834422, Oct 14 2011 KPR U S , LLC Vascular access assembly and safety device
8840589, May 23 2005 Venetec International, Inc. Medical article anchoring system
8900196, Apr 21 2011 C R BARD, INC Anchoring system
8915885, Dec 21 2005 Venetec International, Inc. Intravenous catheter anchoring device
8926175, Apr 23 2009 Medtronic, Inc. Multiple use temperature monitor adapter, system and method of using same
8926563, Apr 27 2011 KPR U S , LLC Safety IV catheter assemblies
8939938, Oct 12 2006 Mozarc Medical US LLC Needle tip protector
9039660, Nov 03 2005 MEDTRONIC MINIMED, INC Fluid delivery devices, systems and methods
9056186, Jun 01 2007 Venetec International, Inc. Universal catheter securement device
9114242, May 16 2007 ICU Medical, Inc. Medical connector
9126028, May 16 2007 ICU Medical, Inc. Medical connector
9126029, May 16 2007 ICU Medical, Inc. Medical connector
9138560, Jan 12 2006 VENETEC INTERNATIONAL INC Universal catheter securement device
9168366, Dec 19 2008 ICU Medical, Inc. Medical connector with closeable luer connector
9358379, Jul 06 2005 ICU Medical, Inc. Medical connector with closeable male luer
9375552, Sep 26 2011 KPR U S , LLC Safety needle assembly
9415191, Aug 25 2009 C. R. Bard, Inc. Medical article securement device
9468740, Mar 10 2000 Venetec International, Inc. Medical anchoring system
9480821, Jun 30 2008 VENETEC INTERNATIONAL, INC Anchoring system for a medical article
9486575, Jul 02 2002 Medtronic MiniMed, Inc. Infusion device
9526871, Jan 12 2006 Venetec International, Inc. Universal catheter securement device
9561348, Aug 15 2002 Venetec International, Inc. Catheter securement device
9592344, Dec 30 2003 ICU Medical, Inc. Medical connector with internal valve member movable within male luer projection
9604034, Apr 21 2011 C. R. Bard, Inc. Anchoring system
9616200, Dec 21 2005 Venetc International, Inc. Intravenous catheter anchoring device
9636492, Jul 06 2005 ICU Medical, Inc. Medical connector with translating rigid internal valve member and narrowed passage
9642987, Aug 31 2005 C R BARD, INC Anchoring system for a catheter
9694130, Oct 06 2009 VENETEC INTERNATIONAL, INC Stabilizing device having a snap clamp
9707346, Dec 30 2003 ICU Medical, Inc. Medical valve connector
9724504, May 16 2007 ICU Medical, Inc. Medical connector
9839774, Nov 18 2013 Halkey-Roberts Corporation Medical luer connector
9895514, Jan 27 2014 MADDOC MEDICAL PRODUCTS, INC Medical device securement system and method
9913945, Dec 30 2003 ICU Medical, Inc. Medical connector with internal valve member movable within male luer projection
9933094, Sep 09 2011 ICU Medical, Inc Medical connectors with fluid-resistant mating interfaces
9974929, Jun 30 2008 Venetec International, Inc. Anchoring system for a medical article
9974939, Jul 06 2005 ICU Medical, Inc. Medical connector
9974940, Jul 06 2005 ICU Medical, Inc. Medical connector
9993619, Jul 17 2007 C R BARD, INC Securement system for a medical article
D470936, Feb 19 2002 VENETEC INTERNATIONAL, INC Anchor pad
D492411, Apr 14 2003 VENETEC INTERNATIONAL, INC Anchor pad
D503977, Jan 23 2004 VENETEC INTERNATIONAL, INC Anchor pad
D528206, Apr 14 2003 Venetec International, Inc. Anchor pad
D552732, Jul 13 2005 VENETEC INTERNATIONAL, INC Anchor pad
D569506, Dec 21 2005 VENETEC INTERNATIONAL, INC Intravenous site securement device for catheters
D577437, Jul 13 2005 Venetec International, Inc. Anchor pad
D819802, Oct 05 2016 Becton, Dickinson and Company Catheter adapter
D835262, Oct 05 2016 Becton, Dickinson and Company Intravenous catheter assembly
D837368, Oct 05 2016 Becton, Dickinson and Company Catheter adapter grip
D844781, Oct 05 2016 Becton, Dickinson and Company Needle hub
D888236, Oct 05 2016 Becton, Dickinson and Company Catheter adapter grip
D893707, Oct 05 2016 Becton, Dickinson and Company Intravenous catheter assembly
D900308, Oct 05 2016 Becton, Dickinson and Company Catheter adapter
RE43142, May 20 1997 Baxter International, Inc. Needleless connector
Patent Priority Assignee Title
4080965, Sep 30 1976 Baxter Travenol Laboratories, Inc. In-line cannula valve assembly
4121585, Jan 24 1977 Anti backflow injection device
4511359, Sep 29 1982 FUTURA MEDICAL CORPORATION Sterile connection device
4512766, Dec 08 1982 Whitman Medical Corporation Catheter valve
4617012, Oct 29 1985 MANRESA, INC , 740 HILLSDALE AVENUE, NEW JERSEY 07642 A CORP OF NEW JERSEY Sterile connector with movable connection member
4950260, Nov 02 1989 Safetyject Medical connector
5065783, Sep 20 1990 INTRAVASCULAR INCORPORATED; FAULDING MEDICAL DEVICE CO Valve with self-sealing internal cannula
5088984, Oct 03 1990 Tri-State Hospital Supply Corporation Medical connector
5122123, Jan 30 1991 VAILLANCOURT, MICHAEL J Closed system connector assembly
5154703, Oct 30 1990 CARE MEDICAL DEVICES, INC A CORP OF CALIFORNIA Bloodless catheter
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 12 1993Care Medical Devices, Inc.(assignment on the face of the patent)
Jul 12 1993BONALDO, JEAN MCARE MEDICAL DEVICES, INC A CORP OF CAASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0066300963 pdf
Date Maintenance Fee Events
Apr 26 1998EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Apr 26 19974 years fee payment window open
Oct 26 19976 months grace period start (w surcharge)
Apr 26 1998patent expiry (for year 4)
Apr 26 20002 years to revive unintentionally abandoned end. (for year 4)
Apr 26 20018 years fee payment window open
Oct 26 20016 months grace period start (w surcharge)
Apr 26 2002patent expiry (for year 8)
Apr 26 20042 years to revive unintentionally abandoned end. (for year 8)
Apr 26 200512 years fee payment window open
Oct 26 20056 months grace period start (w surcharge)
Apr 26 2006patent expiry (for year 12)
Apr 26 20082 years to revive unintentionally abandoned end. (for year 12)