A surgical instrument is described that incorporates bipolar electrodes on opposing shearing members for passing a high frequency current through the tissue for causing hemostasis of the tissue and for cutting the tissue. An electrically insulating material is interposed between the shearing members so that the electrodes are spaced apart from 0.002 to 0.050 inches and the current passes between the opposing electrodes through the tissue and not between the opposing shearing surfaces. The insulating material has a higher hardness than the opposing members to reduce wear of the insulation and provide a self-sharpening feature. Methods of simultaneously causing tissue and severing tissue are also provided. The use of a constant voltage high frequency power supply to deliver current to the tissue to cause hemostasis is described in conjunction with those methods.
|
20. Apparatus for hemostatically cutting tissue, the apparatus comprising:
a first shearing member comprising an electrically non-conductive material, the first shearing member having, a first hearing surface, a first cutting edge having a length and a first exterior surface, the non-conductive material extending along substantially the entire length of the first cutting edge; a second shearing member comprising an electrically non-conductive material, the second shearing member having a second shearing surface, a second cutting edge, and a second exterior surface; means for connecting the first and second shearing members so that the first shearing surface moves relative to the second shearing surface through a range of motion in a scissors-like cutting action, wherein the first and second cutting edges close together for shearing tissue located therebetween, the scissors-like cutting action defining a cutting point located just distally of where the first and second cutting edges come together, the cutting point moving distally along where the first and second cutting edges come together through the range of motion; first and second electrodes disposed on the first and second shearing members, respectively, the first electrode comprising a first layer of electrically conductive material disposed on the first exterior surface and the second electrode comprising a second layer of electrically conductive material disposed on the second exterior surface, so that the first and second electrodes do not contact each other in the range of motion, and so that a current passes between the first and second electrodes distal to the cutting point to cause hemostasis of the tissue and not between the first and second shearing surfaces, the first and second cutting edges cutting the tissue at the cutting point.
1. Apparatus for hemostatically cutting tissue, the apparatus comprising:
a first shearing member having, a first shearing surface, a first cutting edge having a length, and a first exterior surface, a portion of the first exterior surface adjacent the first cutting edge defining a first electrode; a second shearing member having a second shearing surface, a second cutting edge, and a second exterior surface, a portion of the second shearing member adjacent the second cutting edge defining a second electrode; means for connecting the first and second shearing members so that the first shearing surface moves relative to the second shearing surface through a range of motion in a scissors-like cutting action, wherein the first and second cutting edges close together for shearing tissue located therebetween, the scissors-like cutting action defining a cutting point located just distally of where the first and second cutting edges come together, the cutting point moving distally atoms where the first and second cutting edges come together through the range of motion; and an electrically insulative material interposed between the first and second electrodes so that the first and second electrodes do not contact each other in the range of motion, and so that a current passes between the first and second electrodes distal to the cutting point to cause hemostasis of the tissue and not between the first and second shearing surfaces, the first and second cutting edges cutting the tissue at the cutting point, wherein the first and second shearing members comprises an electrically conductive material, the means for connecting the first and second shearing members comprised of a material that does not conduct electricity and the electrically insulative material comprises a first layer of material disposed on the first shearing member to form substantially the entire length of the first cutting edge and the first shearing surface.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
18. The apparatus of
19. The apparatus of
21. The apparatus of
22. The apparatus of
23. The apparatus of
24. The apparatus of
25. The apparatus of
26. The apparatus of
27. The apparatus of
28. The apparatus of
29. The apparatus of
|
This application is a continuation-in-part of commonly assigned and copending U.S. patent application Ser. No. 07/711,920, filed Jun. 7, 1991.
This invention relates to improved hemostatic electrosurgical instruments, and particularly to improved bi-polar electrosurgical instruments for severing and causing hemostasis of tissue.
The control of bleeding during surgery accounts for a major portion of the time involved in an operation. In particular, bleeding that occurs when tissue is incised or severed can obscure the surgeon's vision, prolong the operation, and adversely effect the precision of cutting. Blood loss from surgical cutting may require blood infusion, thereby increasing the risk of harm to the patient.
Hemostatic surgical techniques are known for reducing the bleeding from incised tissue prior to, during, and subsequent to incision. One such technique uses a heating element to transfer heat to the severed tissue to thermally reform collagen. Heat transferred from the instrument to the tissue produces a thin collagenous film which seals over the severed blood vessels and capillaries, thus reducing bleeding. Localized application of heat reduces tissue necrosis or damage that may retard healing.
Electrosurgical techniques that pass a high frequency or radio frequency current through the patient's tissue between two electrodes for both cutting and causing hemostasis tissue also are known. The current passing through the tissue causes joulean (ohmic) heating of the tissue as a function of the current density and the resistance of the tissue through which the current passes. Such heating denatures the tissue proteins to form a coagulum that seals the bleeding sites.
Monopolar electrosurgical devices employ a small electrode at the end of a handle in the surgeon's hand and a large electrode plate beneath and in contact with the patient. Only one of the two electrodes required to complete the electrical circuit is manipulated by the surgeon and placed on or near the tissue being operated on. The other electrode is the large plate beneath the patient. The electrosurgery power supply impresses high frequency voltage spikes of thousands of volts between these two electrodes, sufficient to cause an electric arcing from the small operating electrode the surgeon holds to the most proximate tissues, then through the patient to the large electrode plate beneath the patient. In the patient, the electrical current becomes converted to heat; hottest in the tissues immediately below the small hand-held electrode where the currents are most concentrated.
A principal disadvantage of monopolar electrocautery is that current flows completely through the patient. These high voltage electrical currents may arc from the small electrode to nearby non-targeted vital structures, or follow erratic paths as they flow through the patient's body, thus causing damage to tissues both near and at some distance from the electrode.
Another drawback of monopolar electrosurgical devices is the excessive tissue damage caused by the high voltage arc, including carbonization of the tissue, which compromises wound healing. Furthermore, monopolar devices typically create vision obscuring smoke, which must be evacuated from the surgical site.
In bipolar electrosurgical devices, two electrodes are closely spaced together and have the same surface area in contact with the tissue. The current flow is thus locally confined to the tissue that is disposed between and electrically connects the electrodes.
One difficulty encountered with prior art electrosurgical devices is that of controlling the current flow through the patient's tissue to obtain hemostasis in localized areas, without also heating and causing undesirable trauma to adjacent tissue. Although the introduction of bipolar electrosurgical devices has helped to localize current flow, previously known bipolar electrosurgical devices present difficulties in selectively applying the current flow.
For example, Hildebrandt et al. U.S. Pat. No. 3,651,811 and Soviet Union Patent Certificate 575,103 describe bipolar electrosurgical scissors having opposing cutting blades forming active electrodes. These devices enable a surgeon to sequentially coagulate the blood vessels contained in the tissue and then mechanically sever the tissue with the scissor blades. However, these devices apparently require the surgeon to cycle the power supplied to the electrodes during separate steps of obtaining hemostasis in the tissue and then cutting the tissue. In particular, these previously known devices require the surgeon to first energize the electrodes and grasp the tissue to cause hemostasis. Once the blood vessels contained within the tissue are coagulated, the electrodes are deenergized so that the scissor blades may be closed completely to sever the tissue mechanically. The scissors are then repositioned for another cut, and the power supply to the scissors cycled on and off again to congeal the tissue. Neither of these devices appear to permit the surgeon to maintain the electrodes in a continuously energized state, because the power supply would be shorted out or damaged if the blades were permitted to contact each other while energized.
Accordingly, a major drawback of previously known hemostatic bipolar electrosurgical cutting devices is that they have neither recognized the existence of, nor resolved the problem of, selectively delivering a current to obtain hemostasis at one location in the tissue, while simultaneously allowing already hemostatically heated tissue to be severed. It would therefore be desirable to provide a bipolar electrosurgical instrument that automatically and continuously adjusts the current delivery location so that it precedes the cutting point, without shorting the electrodes and interrupting the current providing hemostasis of the tissue.
Another drawback of previously known bipolar electrosurgical devices is the tendency for coagulum to build up on the electrode surfaces. Such buildup may impede the cutting ability of the device, cause sticking of the tissue to the device, and interfere with the surgeon's ability to manipulate the device at the surgical site.
Another related drawback is the tendency in previously known bipolar electrosurgical devices to experience some current leakage near the electrodes, which mat result in coagulum buildup on the non-active surfaces of the electrosurgical instrument as well.
It would therefore be desirable to provide an electrosurgical instrument wherein coagulum buildup on the surfaces of the instrument is reduced, thereby improving maneuverability of the instrument at the surgical site and reducing trauma to adjacent tissue.
Heretofore, no bipolar electrosurgical instrument for cutting and causing hemostasis of planar tissue areas has recognized or overcome the aforementioned problems. A continuing need for improved hemostatic electrosurgical scissors-like devices for simultaneously causing hemostasis in tissue and severing that tissue therefore exists.
In view of the foregoing, it is an object of the present invention to provide a bipolar electrosurgical scissors-like cutting instrument which simultaneously causes hemostasis of tissue and mechanically severs tissue in a continuous manner at a cutting point that advances along the cutting edges of the scissor members.
It is another object of the present invention to provide an electrosurgical scissors-like cutting instrument that eliminates the need for the surgeon to energize and deenergize the electrodes of the scissor members during the steps of causing hemostasis of the tissue and mechanically severing the tissue. The instrument constructed in accordance with the principles of this invention therefore reduces the likelihood that the electrodes may short circuit during cutting, thus permitting the instrument to be used for continuously hemostatically cutting tissue. The result is an instrument providing a smoother and more precise surgical cut than previously known devices, which permit hemostasis and cutting of discrete tissue sections in an intermittent, non-continuous, manner.
It is yet another object of the present invention to provide improved hemostatic electrosurgical scissors that reduce coagulum buildup and adherence of tissue to the working and non-working surfaces of the instrument.
It is still a further object of the present invention to provide methods for hemostatically severing tissue with an electrosurgical instrument, thereby reducing the number of steps required of the surgeon to employ the electrosurgical instrument in a continuous manner.
It is another object of the present invention to provide methods of using electrosurgical instruments that reduces coagulum buildup and sticking of tissue to the surfaces of the instrument.
These and other objects are accomplished in accordance with the principles of the present invention by providing a bipolar electrosurgical scissors-like instrument wherein each scissor member comprises an electrode for causing hemostasis of tissue and a shearing surface for mechanically severing the tissue. A layer of insulating material is disposed on at least one shearing surface of the scissors so that the electrically active portions of the scissor members do not contact each other at any point during operation of the instrument. Thus, current flows through tissue between the scissor members, but short circuits--which would terminate hemostasis--do not occur. With this arrangement, hemostasis and cutting occurs in a continuous manner along tissue disposed between the scissor blades.
In particular, an electrosurgical instrument constructed in accordance with the present invention comprises a scissors-like instrument including first and second scissor members. Each scissor member comprises a blade-like portion or shearing member having a shearing surface, a cutting edge and an exterior surface. The first and second scissor members are connected by connecting means so that the respective shearing surfaces move through a range of motion in a conventional scissors-like cutting action. That cutting action defines a cutting point that moves along the cutting edges of the respective shearing members through the range of motion, as is known. The instrument of the present invention further includes an electrode on each shearing member which is connected to a power supply that provides a high frequency current. An electrically insulating material is interposed between the electrodes so that the electrodes on the respective shearing members do not contact each other in the range of motion. The insulating material is disposed so that current passes between the electrodes of the respective shearing members distal to the cutting point, but not between the shearing surfaces.
In a first family of embodiments of the present invention, the first and second shearing members are made of an electrically conducting material so that they comprise, respectively, first and second electrodes. A first layer of electrically insulating material is disposed on at least one of the shearing surfaces, thereby forming the cutting edge and shearing surface of that shearing member. In these embodiments, the connecting means includes an electrically insulating material so that the shearing members are electrically isolated at the connecting means. The first layer of insulating material, whether disposed on one or both shearing surfaces, has a total thickness in the range of 0.002 to 0.050 inches, and preferably in the range of 0.003 to 0.007 inches.
To further achieve the advantages of the present invention, individual instruments of the first family of embodiments may include one or more of the following: a layer of material having a high electrical and thermal conductivity on one or both of the exterior surfaces of the shearing members; a second layer of insulating material disposed on the exterior surfaces of the shearing members, except for regions proximate the cutting edges; and a layer of abherent material disposed on the outermost tissue contacting portions of the instrument. These layers reduce coagulum buildup on the non-working surfaces of scissors, thereby reducing sticking and trauma to adjacent tissue. They also improve maneuverability of the instrument and enhance the surgeon's view of field, thereby enabling more precise surgical cutting.
A self-sharpening feature can be attained by employing a first layer of a first hardness on one of the shearing surfaces and a second layer of a second different hardness on the other shearing surface. Advantageously, the use of a harder material as one of the shearing surfaces provides for obtaining excellently mated cutting edges after a few cycles of operation and keeps the cutting edges sharp during repeated use.
In a second family of embodiments of the present invention, the first and second shearing members are made of a non-electrically conducting material, and the electrodes comprise a layer of electrically conducting material disposed on the exterior surfaces of each shearing member. In this arrangement, the electrically insulating material is comprised of the shearing members. The electrically conductive layers of the respective shearing members are spaced apart, at the cutting point, a distance in the range of from 0.002 to 0.050 inches, preferably 0.003 to 0.007 inches, as the cutting point moves through the range of motion. The layer of electrically conducting material on each shearing member may be comprised of an inner layer of a high electrical and thermal conductivity material and an outer layer of an oxidation resistant, high electrical and thermal conductivity material, the outer layer being superimposed in electrical contact over the inner layer.
Individual variations on instruments within the second family of embodiments may include an abherent layer covering the electrically conductive layer and a layer of electrically insulating material covering all of the electrically conductive layer except for a region of each shearing member proximate the cutting edge.
The present invention also includes methods of using bipolar electrosurgical instruments to simultaneously cause hemostasis in tissue while mechanically severing that tissue in a continuous manner, and without significant coagulum buildup or sticking. The methods include the steps of
(a) providing first and second shearing members, each shearing member having a shearing surface, a cutting edge and an electrode, the shearing members connected together so that the shearing surfaces move in opposition through a range of motion in a scissors-like action that defines a cutting point moving along the cutting edges through the range of motion;
(b) connecting the electrodes to a power supply;
(c) selecting and maintaining a substantially constant voltage level output across the power supply, the voltage level output independent of the impedance of the load connected across the power supply;
(d) providing an electrically insulating material between the first and second electrodes so that the electrodes do not contact each other in the range of motion;
(e) placing the electrodes in electrical contact with tissue to be cut so that high frequency current passes between the electrodes and through the tissue distal to the cutting point, but not between the shearing surfaces; and
(f) moving the first and second shearing members through the range of motion, thereby passing current through the tissue in a region distal to the cutting point, simultaneously causing hemostasis of the tissue and cutting the tissue at the cutting point.
The methods of the present invention include selecting suitable voltage and current ranges for employing the present invention. The methods further include the use of alternating current voltage waveforms having a crest factor--ratio of peak voltage to root-mean-square (RMS) voltage--near unity.
The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference numerals refer to like parts throughout, and in which:
FIG. 1 is an elevation perspective view of a scissors constructed in accordance with a typical one of a family of embodiments of the present invention;
FIG. 2 is a side view of the scissors of FIG. 1, showing tissue disposed between the shearing members;
FIG. 3 is a cross-sectional view taken along line 3--3 of FIG. 2;
FIGS. 4-8 are cross-sectional views similar to that of FIG. 2 for various alternative embodiments of the present invention.
Referring to FIGS. 1-3, bipolar electrosurgical scissors 10 for simultaneously causing hemostasis in and shearing a patient's tissue 100 is described. Scissors 10 includes first scissor half 20 and second scissor half 30 pivotally connected by fastener 40. In a first family of embodiments constructed in accordance with present invention, scissor half 20 is made of an electrically conducting material and has at one end a first shearing member 21. Shearing member 21 forms a first electrode comprising shearing surface 22, cutting edge 23 and exterior surface 24. Scissor half 20 has, at the other end, support member 25, preferably configured with a thumb or finger hole for manipulating scissors half 20, and electrical connection 26 which connects the electrode to a conventional constant voltage power supply 10 via cable 27. Scissor half 30 is likewise made of an electrically conducting material and has at one end shearing member 31. Shearing member 31 forms a second electrode comprising shearing surface 32, cutting edge 33 and exterior surface 34. Scissors half 30 also has, at the other end, support member 35, preferably configured with a thumb or finger hole for manipulating scissors half 30, and electrical connection 36 which connects to power supply 110 via cable 37.
Power supply 110 may be a high frequency voltage source having a substantially constant voltage at selectable output levels. Such devices are described, for example, in U.S. Pat. Nos. 4,092,986 and 4,969,885. The power supply used in conjunction with the present invention preferably provides an output voltage level that is substantially constant at the user selected level, and independent of the electrical resistance encountered by the electrodes.
To reduce coagulum buildup on the working surfaces of the scissors, applicant has developed power supplies providing substantially constant voltage output that is independent of the load impedance, low source impedance and a alternating-current voltage waveform having a crest factor--the ratio of peak voltage to RMS voltage--near unity. These power supplies are described in copending and commonly assigned U.S. patent application Ser. No. 07/877,533, May, 1, 1992 The present invention, when powered by such power supplies, has been observed to provide highly satisfactory hemostasis without arcing or charring of the tissue, and little coagulum buildup.
Scissor halves 20 and 30 are preferably made of a rigid, structural material capable of sustaining sharp scissors-like cutting edges 23 and 33, such as stainless steel or martensitic stainless steel. Alternatively, materials of high electrical and thermal conductivity, and structurally strong enough for shearing tissue, such as copper or copper alloys, may be used. Halves 20 and 30 are pivotally connected by fastener 40 in opposition so that shearing surfaces 22 and 32 and cutting edges 23 and 33 of the shearing members move in scissors-like opposition through a range of motion to sever tissue 100 placed therebetween.
Fastener 40 may be, for example, a screw or a rivet that electrically insulates scissor halves 20 and 30 at the pivot point. The fastener may be made of an insulating material, for example, polyamide or nylon. Alternatively, fastener 40 may comprise a combination of non-insulating and insulating materials, such as a stainless steel screw insulated from one or both scissor halves 20 and 30 by nylon bushings.
Scissor support members 25 and 35 have insulating coating 11 in regions L1 to electrically insulate the support members from each other and from the surgeon using scissors 10. Insulating coating 11, which may comprise polyvinyl chloride, nylon, or other plastic insulating material, also may be applied to those areas of scissors 10 not used for cutting tissue.
As illustrated in FIG. 3, exterior surfaces 24 and 34 of the shearing members may have a coating 12 of a high electrical and thermal conductivity material, e.g., silver or copper, other than on their respective shearing surfaces 22 and 32. Coating 12 facilitates good electrical contact between exterior surfaces 24 and 34 and the tissue that comes into contact with those surfaces as shearing members 21 and 31 are moved relative to one another.
Coating 12 reduces localized heating of the exterior surfaces 24 and 34 of shearing members 21 and 31 by dissipating the heat throughout the thermally conducting surface area of the coating. Coating 12 also reduces the likelihood that joulean heating of shearing members 21 and 31 will occur, because any localized current flow is re-distributed over the entire coating 12. Consequently, coating 12 reduces thermal decomposition and sticking of blood and tissue to exterior surfaces 24 and 34 of scissors 10 during use.
A thin coating 13 of an electrically insulating material is disposed on each of shearing surfaces 22 and 32 to cover at least as much of those shearing surfaces as could contact each other within the full range of motion of scissor halves 20 and 30. Insulating coating 13 covers cutting edges 23 and 33 so that the cutting edges are electrically inactive and non-conducting.
As shown in FIG. 4, an alternative embodiment provides insulating coating 13 only on shearing surface 32 of shearing member 31. The other shearing surface 21 and cutting edge 23 remain electrically active, i.e., conductive. In this embodiment, electrical isolation between scissor halves 20 and 30 is achieved by the single layer of insulating material.
Insulating coating 13 allows the scissor halves forming the bipolar electrodes to move relative to each other so that current flows between exterior surface 24 of shearing member 21 and exterior surface 34 of shearing member 31, while ensuring that scissor halves 20 and 30 do not electrically contact each other. This configuration enables the cutting edges to contact each other to sever tissue while preventing short circuiting, which would impede simultaneous coagulation of the blood vessels extending through the tissue. Coating 13 substantially prevents current flow directly between opposing shearing surfaces 22 and 32 when the scissor halves are closed together. Rather, the current flows through the path of least resistance between the electrodes, i.e., through the tissue in direct contact with regions 28 and 38, respectively, of exterior surfaces 24 and 34 of the shearing members. This current flow is represented schematically by flux lines 99 shown in FIGS. 3 and 4.
The arrangement of the present invention confines current flow between regions 28 and 38 of exterior surfaces 24 and 34 to region 101 (see FIG. 2), from where cutting edges 23 and 33 contact each other to a point distal to the cutting point. That distal point is where either the tissue no longer forms an electrical connection between the electrode surfaces (region 102 of FIG. 2) or the spacing between halves 20 and 30 is sufficiently large that the current density is too low to cause significant joulean heating of the tissue (region 103 of FIG. 2).
It is therefore apparent that as scissors 10 is gradually closed, the cutting point moves along cutting edges 23 and 33 of shearing members 21 and 31 distally of fastener 40 and is preceded by region 101 in which a current flows from one scissor halve to the other to achieve hemostasis of the tissue. Thus, hemostasis occurs at a location just in advance of the cutting point while cutting edges 23 and 33 simultaneously sever the hemostatically heated tissue.
The embodiment of FIG. 4 permits an asymmetrical current flow between scissor halves 20 and compared to the embodiment of FIG. 3. Specifically, proximal to the cutting point, some current may flow from the uninsulated shearing surface to tissue in contact with that surface, through the tissue, and to an uninsulated portion of the other shearing member. The applicant has determined that this asymmetry has no significant effect on the hemostatic cutting operation or the ability of the device to deliver current to the tissue relative to the embodiment of FIG. 3.
Electrically insulating layer 13 is preferably made of a material having a hardness that is greater or substantially greater than the steel or other electrically conducting material used to manufacture conventional scissors-like devices. For example, referring to the embodiment illustrated in FIG. 4, shearing members 21 and 31 may be made of a martensitic stainless steel, e.g., AISI 420. Insulating layer 13 comprises an inorganic electrically insulating material such as a glass, ceramic, nitride, boride or synthetic diamond. Depending upon the material selected, insulating layer 13 may be deposited on shearing surface 32 by conventional techniques, for example, plasma or flame-sprayed deposition. Applicant has obtained good results using ceramic materials such as alumina or zirconia.
The applied coating forms a non conductive cutting edge for that shearing member and has a greater hardness than the steel substrate and the steel of opposing shearing member 21. Consequently, as coating 13 rubs against the cutting edge 23 or shearing surface 22 of shearing member 21, steel shearing surface 22 and cutting edge 23 are mechanically ground or polished by the harder insulating material 13. Scissors 10 are therefore self-sharpening and remain sharp during continued use. Furthermore, the relatively lower hardness of steel cutting edge 23 will not wear or degrade the insulating characteristics or structure of the harder electrically insulating coating 13, thus providing a durable instrument.
The self-sharpening feature provided by the relatively greater hardness of insulating coating 13 also permits the use of less expensive materials for shearing members 21 and 31. For example, scissors 10 may be made of a material that may not retain a sharp cutting edge during repeated use absent the selfsharpening characteristic of the applied harder coating. This feature is particularly advantageous for constructing scissors 10 to be disposable, or in having disposable shearing members 21 and 31 that detach from their respective support members 25 and 35 (not shown).
Insulating coating 13 is deposited in a layer having a thickness in the range of 0.002 inches to about 0.050 inches, more preferably 0.003 to 0.007 inches. The applicant has determined that at thicknesses of 0.001 inch or less, the thickness of the insulating layer 13 is insufficient to prevent shorting of the electrodes. Insulating layer thicknesses above 0.002 inches and below 0.050 inches provide adequate hemostasis. It has been observed, however, that the greater the minimum distance between the proximate current conducting portions of the opposing electrodes in the region of current flow through the tissue, the longer the current path through the tissue and the more difficult it becomes to obtain the desired degree of hemostasis. For the ceramic insulating materials described, insulating layer thicknesses above 0.050 inches are believed to be too large for most practical applications.
Referring now to FIG. 5, another embodiment of the scissors of FIG. 1 is described. The scissors, constructed as described hereinbefore with respect to FIG. 3, have a coating 14 of an abherent material disposed on coating 12. The abherent material constituting coating 14 is capable of conducting high frequency current through its thickness and further reduces the sticking and accumulation of blood and tissue to exterior surfaces 24 and 34 of the shearing members. Suitable abherent materials for coating 14 include fluorocarbon material conductor-filled fluorocarbon coatings or thin fluorocarbon coatings less than about 0.0002 inches thick (which may otherwise be electrically insulating), e.g., Vyolex 10002, available from Du Pont.
FIG. 6 shows yet another embodiment of the bipolar electrosurgical instrument of the present invention. This embodiment is similar to that of FIG. 4, except that exterior surfaces 24 and 34 of shearing members 21 and 31 are provided only with coating 14 of an abherent material and electrically conducting coating 12 is not applied.
Referring now to FIG. 7, another alternative embodiment of the present invention is described. This embodiment is substantially the same as that described hereinbefore with respect to FIG. 4. This embodiments differs, however, in that instead of the electrically conductive coating 12 of the embodiment of FIG. 4, an electrically insulating layer 15 is disposed on exterior surfaces 24 and 34 of shearing members 21 and 31. Layer 15 is omitted from regions 28 and 38 immediately adjacent to cutting edges 23 and 33, respectively. Insulating layer 15 inhibits current flow to the tissue other than through regions 28 and 38 adjacent to cutting edges 23 and 33. Accordingly, heating of the tissue is localized to the region in and preceding the shearing region, thereby reducing joulean heating of tissue proximate to the portions of the exterior surfaces of shearing members 21 and 31 covered by insulating layer 15. Materials suitable for use in insulating layer 15 include aluminum oxide, fluorocarbons, polyamide and silicone based coatings.
Referring to FIG. 8, an embodiment representative of a second family of embodiments constructed in accordance with the present invention is described, with similar components indicated by like-primed primed members. In this embodiment, which outwardly resembles the scissors of FIG. 1, opposing shearing members 21' and 31' are made of an electrically insulating material, e.g., a ceramic material such as zirconium oxide or aluminum oxide-based ceramics. The exterior surfaces of members 21' and 31', i.e., those portions other than the shearing surfaces 22' and 32' and cutting edges 23' and 33', have a coating 16 comprising a material of high electrical and thermal conductivity, e.g., copper, silver or nickel. Coating 16 thereby provides opposing electrodes for conduction of high frequency current through tissue between coatings 16 on exterior surfaces 24' and 34' of shearing members 21' and 31'. In this embodiment, coating 16 covers most of the exterior surface of shearing members 21' and 31' such that the current carrying sections closest to cutting edges 23' and 33' are no closer than 0.002 to 0.050 inches, and more preferably 0.003 to 0.007 inches. With the configuration of the embodiment of FIG. 8, shearing members 21' and 31' provide the desired insulating material between the electrodes.
Scissors in accordance with the embodiments illustrated in FIGS. 1-3 and 4 have been constructed of a martensitic stainless steel material (Grade AISI 420) Scissor halves 20 and 30 were nominally seven inches in length with shearing members 21 and 31 extending one and one-half inches beyond fastener 40. Shearing members 21 and 31 were 0.1 to 0.3 inches wide and 0.07 to 0.10 inches thick, the smaller dimensions being distal to the pivot. An insulating coating 13 was deposited on shearing surface 32 of shearing member 31 by plasma spraying alumina to a thickness in the range of 0.003 to 0.007 inches. Coating 13 was applied along the length oil member 31 that contacts opposing member 21 in the full range of motion. Using conventional electroplating techniques, exterior surfaces 24 and 34 were provided with a coating 12 of a material having a high electrical and thermal conductivity comprising three layers:
a first layer of copper, 0.002 to 0.003 inches thick, was deposited on all surfaces except the shearing surfaces;
a second layer of nickel, 0.010 to 0.040 inches thick, was then deposited on the copper layer and;
a third layer of gold, 0.020 to 0.040 inches thick, was deposited on the nickel layer.
The nickel and gold layers provide an oxidation resistant protective outer layer for the thermally and electrically conductive sublayer of copper. Support members 25 and 35 included a coating 11 of an insulating material about 0.005 inches thick.
Experiments were performed on biological tissue and raw beefsteak using the above-described scissors in conjunction with an experimental power supply. The experimental power supply was operated at various selected constant frequencies in the range of 400 to 800 kHz and at selected levels providing a substantially constant voltage output level at the electrodes of the scissors in the range of 10 to 120 volts (RMS). This power supply had a low source impedance, and provided an alternating-current voltage waveform having a crest factor near one. The voltage waveform was maintained at a substantially constant level in the sense that the output voltage did not droop significantly at high loading.
The preferred operating range for the above-described embodiment was found to provide a voltage at the electrodes of the instrument of 10-120 volts, more preferably 30-90 volts (RMS). The instrument operated satisfactorily throughout the above range of operating conditions, causing hemostasis of tissue and cutting tissue with minimal bleeding of that tissue. Accumulation of coagulated blood and tissue on the scissors was slight.
Frequencies below 100 kHz are known to affect the neuro-muscular systems of the patients, and may cause undesired stimulation. Applicant observed that frequencies above 800 kHz provided no advantage in operation and added cost to the power supply. While applicant believes that it would be possible to use higher frequencies, up to 2 MHz, the line losses in the cable connecting the electrosurgical instrument to the power supply would make use of such frequencies impractical.
Applicant observed that voltages (at the electrodes) below 10 volts (RMS) did not produce adequate joulean heating in the tissue to cause hemostasis. While prior art bipolar electrosurgical hemostatic teachings indicated that voltages above 120 volts (RMS) would be most desirable for achieving hemostasis of tissue, applicant observed that voltages above 120 volts (RMS) caused localized overheating of the electrodes and excessive accumulation of coagulum. Above 120 volts (RMS), rapid coagulum buildup necessitated frequent cleaning of the scissors, for example, every one to three cuts.
Applicant observed that the device according to FIG. 4, which has coating 13 on only one shearing surface, provides the same level of performance as devices having insulating layers on both shearing surfaces (when operated under the same conditions). For both embodiments, the amount of heating and depth of hemostasis on both sides of the cut tissue are substantially uniform. It will of course be understood by one skilled in the art that use of a voltage level greater than the above specified ranges may be suitable for causing hemostasis in tissue having higher impedance.
The scissors of the present invention also can be used for blunt dissection, for example, by spreading the scissors as they are advanced into tissue during the raising of a skin flap. For such an embodiment, the blunt tips of the scissors are configured to cause hemostasis during the blunt dissection procedure. In such a procedure, the scissors are closed when inserted and then gradually opened, causing current flow outward of the cutting point, i.e., so that the dissected tissue hemostatically severed.
The various embodiments described herein are presented for purposes of illustration and not limitation, as the present invention can be practiced with surgical scissors-like instruments of any type or size having two cutting or shearing members movable with respect to one another. Thus, instruments constructed in accordance with the present invention may be adapted for use in cutting surface tissue, deep tissue and internal tissue, vessels, capillaries or organs, as may be required, for example, in microsurgery, macrosurgery, laparoscopy and other surgical procedures.
The present invention includes the method steps of employing an apparatus having shearing members that include electrodes, wherein operation of the apparatus simultaneously causes hemostasis of tissue and severs that tissue. As noted in the EXAMPLES provided above, applicant has observed that use of a scissors-like apparatus employing electrodes isolated by an intervening layer of insulating material at frequencies in the range of 400 to 800 kHz and 10 to 120 volts (RMS) provides satisfactory results.
The method of the present invention, suitable for use in a great variety of surgical procedures, comprises the steps of:
(a) providing first and second shearing members, each shearing member having a shearing surface, a cutting edge and an electrode, the shearing members connected together so that the shearing surfaces move in opposition through a range of motion in a scissors-like action that defines a cutting point moving along the cutting edges through the range of motion;
(b) connecting the electrodes to a power supply;
(c) selecting and maintaining a substantially constant voltage level output across the power supply, the voltage level output independent of the impedance of the load connected across the power supply;
(d) providing an electrically insulating material between the first and second electrodes so that the electrodes do not contact each other in the range of motion;
(e) placing the electrodes in electrical contact with tissue to be cut so that high frequency current passes between the electrodes and through the tissue distal to the cutting point, but not between the shearing surfaces; and
(f) moving the first and second shearing members through the range of motion, thereby passing current through the tissue in a region distal to the cutting point, simultaneously causing hemostasis of the tissue and cutting the tissue at the cutting point.
Of course, it will be apparent to one skilled in the art that steps (a) and (d) described above can be combined by simply providing an apparatus as hereinbefore described. Operation of the apparatus in the range 30 to 90 volts (RMS) will be desirable in many cases, depending upon the impedance of the tissue encountered during the surgical procedure.
The use of a power supply having a selectable substantially constant voltage level output that is independent of load impedance provides sufficient power to cause effective hemostasis. Use of constant voltage output levels lower than those generally used in previously known electrosurgical instruments reduces the power delivered to the electrodes when they are not in contact with tissue, i.e., open-circuited, and reduces the likelihood of generating a current arc when the electrodes are brought into contact with the tissue.
Use of a constant voltage level output that is independent of the load impedance inhibits excessive current flow through the tissue, as the tissue resistance increases during desiccation. Consequently, the depth of hemostasis obtained in the tissue can be more precisely controlled, and localized overheating of the electrodes better avoided. Reduced localized heating of the electrodes also inhibits coagulum buildup, which can both interfere with efficient hemostasis and impede maneuverability of the instrument.
One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, and that the present invention is limited only by the claims which follow.
Patent | Priority | Assignee | Title |
10004555, | Jun 28 2011 | Aesculap AG | Electrosurgical tissue dissecting device |
10045812, | Aug 11 2014 | Covidien LP | Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures |
10085794, | May 07 2009 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
10130411, | Mar 26 2010 | Aesculap AG | Impedance mediated control of power delivery for electrosurgery |
10149713, | May 16 2014 | Applied Medical Resources Corporation | Electrosurgical system |
10188452, | Aug 19 2005 | Covidien AG | Single action tissue sealer |
10201384, | Oct 04 2010 | Covidien LP | Vessel sealing instrument |
10213250, | Nov 05 2015 | Covidien LP | Deployment and safety mechanisms for surgical instruments |
10231777, | Aug 26 2014 | Covidien LP | Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument |
10245099, | Oct 04 2010 | Covidien LP | Vessel sealing instrument |
10251696, | Apr 06 2001 | Covidien AG | Vessel sealer and divider with stop members |
10265121, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
10278772, | Jun 13 2003 | Covidien AG | Vessel sealer and divider |
10314642, | May 12 2005 | Aesculap AG | Electrocautery method and apparatus |
10342604, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
10383649, | Feb 22 2012 | Covidien LP | Trigger lockout and kickback mechanism for surgical instruments |
10420603, | Dec 23 2014 | Applied Medical Resources Corporation | Bipolar electrosurgical sealer and divider |
10441350, | Nov 17 2003 | Covidien AG | Bipolar forceps having monopolar extension |
10537384, | Oct 04 2002 | Covidien LP | Vessel sealing instrument with electrical cutting mechanism |
10568682, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
10631918, | Aug 14 2015 | Covidien LP | Energizable surgical attachment for a mechanical clamp |
10646267, | Aug 07 2013 | Covidien LP | Surgical forceps |
10687887, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
10729488, | Oct 04 2010 | Covidien LP | Vessel sealing instrument |
10779881, | Aug 11 2014 | Covidien LP | Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures |
10792092, | May 30 2014 | Applied Medical Resources Corporation | Electrosurgical seal and dissection systems |
10835309, | Jun 25 2002 | Covidien AG | Vessel sealer and divider |
10842553, | Jun 13 2003 | Covidien AG | Vessel sealer and divider |
10849681, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
10856933, | Aug 02 2016 | Covidien LP | Surgical instrument housing incorporating a channel and methods of manufacturing the same |
10874452, | Oct 01 2010 | Applied Medical Resources Corporation | Electrosurgical instruments and connections thereto |
10881453, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
10888371, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
10918407, | Nov 08 2016 | Covidien LP | Surgical instrument for grasping, treating, and/or dividing tissue |
10918435, | Jun 13 2003 | Covidien AG | Vessel sealer and divider |
10918436, | Jun 25 2002 | Covidien AG | Vessel sealer and divider |
10987159, | Aug 26 2015 | Covidien LP | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
10987160, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with cutting mechanism |
11000330, | Oct 04 2010 | Covidien LP | Surgical forceps |
11058478, | May 02 2006 | Aesculap AG | Laparoscopic radiofrequency surgical device |
11090050, | Sep 03 2019 | Covidien LP | Trigger mechanisms for surgical instruments and surgical instruments including the same |
11166759, | May 16 2017 | Covidien LP | Surgical forceps |
11382686, | Jul 22 2015 | Covidien LP | Surgical forceps |
11540871, | Dec 23 2014 | Applied Medical Resources Corporation | Bipolar electrosurgical sealer and divider |
11660108, | Jan 14 2011 | Covidien LP | Trigger lockout and kickback mechanism for surgical instruments |
11660136, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
11672589, | May 16 2014 | Applied Medical Resources Corporation | Electrosurgical system |
11696796, | Nov 16 2018 | Applied Medical Resources Corporation | Electrosurgical system |
11779385, | Oct 04 2010 | Covidien LP | Surgical forceps |
11793520, | Sep 03 2019 | Covidien LP | Trigger mechanisms for surgical instruments and surgical instruments including the same |
11864812, | Sep 05 2018 | Applied Medical Resources Corporation | Electrosurgical generator control system |
11864823, | Oct 01 2010 | Applied Medical Resources Corporation | Electrosurgical instruments and connections thereto |
5462546, | Feb 05 1993 | GYRUS ACMI, INC | Bipolar electrosurgical forceps |
5484436, | Jun 07 1991 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
5514134, | Feb 05 1993 | GYRUS ACMI, INC | Bipolar electrosurgical scissors |
5540685, | Jan 06 1995 | Everest Medical Corporation | Bipolar electrical scissors with metal cutting edges and shearing surfaces |
5569243, | Jul 13 1993 | Symbiosis Corporation | Double acting endoscopic scissors with bipolar cautery capability |
5637111, | Jun 06 1995 | Conmed Corporation | Bipolar electrosurgical instrument with desiccation feature |
5658281, | Dec 04 1995 | Covidien AG; TYCO HEALTHCARE GROUP AG | Bipolar electrosurgical scissors and method of manufacture |
5683388, | Jan 11 1996 | Symbiosis Corporation | Endoscopic bipolar multiple sample bioptome |
5700261, | Mar 29 1996 | Ethicon Endo-Surgery, Inc. | Bipolar Scissors |
5702390, | Mar 12 1996 | Ethicon Endo-Surgery, Inc | Bioplar cutting and coagulation instrument |
5762609, | Sep 14 1992 | JB IP ACQUISITION LLC | Device and method for analysis of surgical tissue interventions |
5766166, | Mar 07 1995 | Atricure, Inc | Bipolar Electrosurgical scissors |
5769791, | Feb 26 1993 | JB IP ACQUISITION LLC | Tissue interrogating device and methods |
5769849, | Jun 07 1991 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments |
5769863, | Aug 10 1994 | Edwards Lifesciences, LLC | Surgical knot pusher and method of use |
5772597, | Sep 14 1992 | JB IP ACQUISITION LLC | Surgical tool end effector |
5776128, | Jun 07 1991 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus |
5779701, | Apr 27 1995 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
5807261, | Feb 26 1993 | JB IP ACQUISITION LLC | Noninvasive system for characterizing tissue in vivo |
5846240, | Dec 13 1994 | Symbiosis Corporation | Ceramic insulator for a bipolar push rod assembly for a bipolar endoscopic surgical instrument |
5860975, | Dec 21 1994 | Gyrus Medical Limited | Electrosurgical instrument |
5893846, | May 15 1996 | Symbiosis Corp. | Ceramic coated endoscopic scissor blades and a method of making the same |
5941876, | Feb 19 1997 | MEDICAL SCIENTIFIC, INC | Electrosurgical rotating cutting device |
5976132, | Oct 10 1997 | Bipolar surgical shears | |
6019758, | Jan 11 1996 | Symbiosis Corporation | Endoscopic bipolar multiple sample bioptome |
6030384, | May 01 1998 | PERFECT SURGICAL TECHNIQUES, INC | Bipolar surgical instruments having focused electrical fields |
6050996, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar electrosurgical instrument with replaceable electrodes |
6071283, | Jun 06 1997 | BAYER ESSURE INC | Selectively coated electrosurgical instrument |
6080152, | Jun 05 1998 | Bayer HealthCare LLC | Electrosurgical instrument |
6090108, | Jun 27 1995 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
6090109, | Nov 14 1997 | Sherwood Services AG | Laparoscopic bipolar electrosurgical instrument |
6113596, | Dec 30 1996 | Atricure, Inc | Combination monopolar-bipolar electrosurgical instrument system, instrument and cable |
6123701, | Oct 09 1997 | Aesculap AG | Methods and systems for organ resection |
6152923, | Apr 28 1999 | Covidien AG; TYCO HEALTHCARE GROUP AG | Multi-contact forceps and method of sealing, coagulating, cauterizing and/or cutting vessels and tissue |
6162220, | May 01 1998 | PERFECT SURGICAL TECHNIQUES, INC | Bipolar surgical instruments having focused electrical fields |
6179837, | Mar 07 1995 | Atricure, Inc | Bipolar electrosurgical scissors |
6187003, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar electrosurgical instrument for sealing vessels |
6206877, | Aug 27 1997 | Ethicon, Inc | Combined bipolar scissor and grasper and method of forming thereof |
6228083, | Nov 14 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Laparoscopic bipolar electrosurgical instrument |
6267761, | Sep 09 1997 | Covidien AG; TYCO HEALTHCARE GROUP AG | Apparatus and method for sealing and cutting tissue |
6270494, | Dec 26 1996 | COOPERSURGICAL, INC | Stretchable cryoprobe sheath |
6270831, | Apr 30 1998 | World Heart Corporation | Method and apparatus for providing a conductive, amorphous non-stick coating |
6277117, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing forceps with disposable electrodes |
6283963, | Oct 08 1997 | Ethicon, Inc. | Bipolar electrosurgical scissors for fine or delicate surgical dissection |
6334861, | Sep 10 1997 | Covidien AG; TYCO HEALTHCARE GROUP AG | Biopolar instrument for vessel sealing |
6350264, | Mar 07 1995 | Atricure, Inc | Bipolar electrosurgical scissors |
6355035, | May 14 1994 | WEISSELBERG, MARTIN CHRISTOPHER | Surgical cutting tool |
6391029, | Mar 07 1995 | Atricure, Inc | Bipolar electrosurgical scissors |
6406475, | Jun 29 1998 | Ethicon, Inc | Pivoting device for pivotable parts of bipolar electrosurgical equipments |
6443970, | Jan 24 2001 | SORIN GROUP USA, INC | Surgical instrument with a dissecting tip |
6447511, | Dec 13 1994 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
6451018, | Nov 14 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Laparoscopic bipolar electrosurgical instrument |
6458128, | Jan 24 2001 | SORIN GROUP USA, INC | Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element |
6458130, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Endoscopic bipolar electrosurgical forceps |
6464701, | Mar 07 1995 | Atricure, Inc | Bipolar electrosurgical scissors |
6464702, | Jan 24 2001 | SORIN GROUP USA, INC | Electrosurgical instrument with closing tube for conducting RF energy and moving jaws |
6511480, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing forceps with disposable electrodes |
6514252, | May 01 1998 | PERFECT SURGICAL TECHNIQUES, INC | Bipolar surgical instruments having focused electrical fields |
6554829, | Jan 24 2001 | SORIN GROUP USA, INC | Electrosurgical instrument with minimally invasive jaws |
6558384, | Dec 03 1998 | Aesculap AG | Surgical bipolar scissors |
6585735, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Endoscopic bipolar electrosurgical forceps |
6620161, | Jan 24 2001 | SORIN GROUP USA, INC | Electrosurgical instrument with an operational sequencing element |
6652521, | Jan 24 2001 | SORIN GROUP USA, INC | Surgical instrument with a bi-directional cutting element |
6673087, | Dec 15 2000 | MAQUET CARDIOVASCULAR LLC | Elongated surgical scissors |
6682528, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Endoscopic bipolar electrosurgical forceps |
6695840, | Jan 24 2001 | SORIN GROUP USA, INC | Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element |
6726686, | Nov 12 1997 | Covidien AG; TYCO HEALTHCARE GROUP AG | Bipolar electrosurgical instrument for sealing vessels |
6749609, | Feb 05 2002 | MAQUET CARDIOVASCULAR LLC | Electrocautery scissors |
6749610, | Aug 15 2002 | Kirwan Surgical Products LLC | Electro-surgical forceps having fully plated tines and process for manufacturing same |
6773409, | Sep 19 2001 | Ethicon Endo-Surgery, Inc | Surgical system for applying ultrasonic energy to tissue |
6773435, | Jan 24 2001 | SORIN GROUP USA, INC | Electrosurgical instrument with closing tube for conducting RF energy and moving jaws |
6790217, | Jan 24 2001 | SORIN GROUP USA, INC | Surgical instrument with a dissecting tip |
6802843, | Sep 13 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical working end with resistive gradient electrodes |
6887240, | Sep 19 1995 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealing wave jaw |
6905497, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Jaw structure for electrosurgical instrument |
6913579, | May 01 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical working end and method for obtaining tissue samples for biopsy |
6926716, | Nov 09 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument |
6929644, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical jaw structure for controlled energy delivery |
6932810, | Sep 09 1997 | Sherwood Services AG | Apparatus and method for sealing and cutting tissue |
6960210, | Nov 14 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Laparoscopic bipolar electrosurgical instrument |
6974452, | Jan 12 2000 | Clinicon Corporation | Cutting and cauterizing surgical tools |
7011657, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Jaw structure for electrosurgical instrument and method of use |
7033354, | Dec 10 2002 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical electrode having a non-conductive porous ceramic coating |
7033356, | Jul 02 2002 | GYRUS ACMI, INC | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue |
7041102, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical working end with replaceable cartridges |
7063697, | Dec 13 1994 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
7063699, | Jan 24 2001 | SORIN GROUP USA, INC | Electrosurgical instrument with minimally invasive jaws |
7070597, | Oct 18 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical working end for controlled energy delivery |
7083618, | Apr 06 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider |
7083619, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method of use |
7087054, | Oct 01 2002 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method of use |
7090673, | Apr 06 2001 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer and divider |
7101371, | Apr 06 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider |
7101372, | Apr 06 2001 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer and divider |
7101373, | Apr 06 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Vessel sealer and divider |
7103947, | Apr 06 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Molded insulating hinge for bipolar instruments |
7112201, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method of use |
7118570, | Oct 22 1999 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing forceps with disposable electrodes |
7118587, | Apr 06 2001 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer and divider |
7131970, | Nov 19 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing instrument with cutting mechanism |
7131971, | Apr 06 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider |
7135020, | Nov 12 1997 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical instrument reducing flashover |
7147638, | May 01 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
7150097, | Jun 13 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Method of manufacturing jaw assembly for vessel sealer and divider |
7150749, | Jun 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider having elongated knife stroke and safety cutting mechanism |
7156846, | Jun 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider for use with small trocars and cannulas |
7160298, | Nov 12 1997 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical instrument which reduces effects to adjacent tissue structures |
7160299, | May 01 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Method of fusing biomaterials with radiofrequency energy |
7169146, | Feb 14 2003 | Ethicon Endo-Surgery, Inc | Electrosurgical probe and method of use |
7179258, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar electrosurgical instrument for sealing vessels |
7186253, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical jaw structure for controlled energy delivery |
7189233, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument |
7195631, | Sep 09 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Forceps with spring loaded end effector assembly |
7207990, | Nov 14 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Laparoscopic bipolar electrosurgical instrument |
7223265, | Dec 10 2002 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical electrode having a non-conductive porous ceramic coating |
7232440, | Nov 17 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar forceps having monopolar extension |
7241296, | Nov 12 1997 | Covidien AG; TYCO HEALTHCARE GROUP AG | Bipolar electrosurgical instrument for sealing vessels |
7252667, | Nov 19 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing instrument with cutting mechanism and distal lockout |
7255697, | Apr 06 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider |
7267677, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument |
7270660, | Sep 09 1997 | Sherwood Services AG | Apparatus and method for sealing and cutting tissue |
7270664, | Oct 04 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
7276068, | Oct 04 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
7309849, | Nov 19 2003 | Ethicon Endo-Surgery, Inc | Polymer compositions exhibiting a PTC property and methods of fabrication |
7314479, | Oct 31 2003 | SORIN GROUP USA, INC | Space-creating retractor with vessel manipulator |
7329256, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument |
7344536, | Feb 05 2002 | MAQUET CARDIOVASCULAR LLC | Electrocautery surgical scissors |
7354440, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method of use |
7367976, | Nov 17 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar forceps having monopolar extension |
7377920, | Nov 14 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Laparoscopic bipolar electrosurgical instrument |
7381209, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument |
7384420, | Apr 06 2001 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer and divider |
7384421, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Slide-activated cutting assembly |
7419490, | Jul 27 2006 | Applied Medical Resources Corporation | Bipolar electrosurgical scissors |
7435249, | Nov 12 1997 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
7442193, | Nov 20 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrically conductive/insulative over-shoe for tissue fusion |
7442194, | Nov 17 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar forceps having monopolar extension |
7445621, | Nov 17 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar forceps having monopolar extension |
7458972, | Dec 10 2002 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical electrode having a non-conductive porous ceramic coating |
7473253, | Apr 06 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider with non-conductive stop members |
7481810, | Nov 17 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar forceps having monopolar extension |
7491201, | May 15 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
7491202, | Mar 31 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
7500975, | Nov 19 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
7510556, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument |
7513898, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument |
7540872, | Sep 21 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Articulating bipolar electrosurgical instrument |
7553312, | Mar 10 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument |
7582087, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument |
7594916, | Nov 22 2005 | Covidien AG | Electrosurgical forceps with energy based tissue division |
7597693, | Jun 13 2003 | Covidien AG | Vessel sealer and divider for use with small trocars and cannulas |
7628791, | Aug 19 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Single action tissue sealer |
7628792, | Oct 08 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bilateral foot jaws |
7632269, | Jan 16 2004 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument with replaceable cartridge |
7641651, | Jul 28 2005 | Aesculap AG | Devices and methods for mobilization of the uterus |
7641653, | May 04 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing forceps disposable handswitch |
7655007, | May 01 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Method of fusing biomaterials with radiofrequency energy |
7686804, | Jan 14 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider with rotating sealer and cutter |
7686827, | Oct 21 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Magnetic closure mechanism for hemostat |
7708735, | May 01 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Incorporating rapid cooling in tissue fusion heating processes |
7722607, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | In-line vessel sealer and divider |
7744615, | Jul 18 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
7753909, | May 01 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
7766910, | Jan 24 2006 | Covidien LP | Vessel sealer and divider for large tissue structures |
7771425, | Jun 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider having a variable jaw clamping mechanism |
7776036, | Mar 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar concentric electrode assembly for soft tissue fusion |
7776037, | Jul 07 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | System and method for controlling electrode gap during tissue sealing |
7789878, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | In-line vessel sealer and divider |
7794461, | Mar 08 2006 | Aesculap AG | Method and apparatus for surgical electrocautery |
7799026, | Nov 14 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
7799028, | Sep 21 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Articulating bipolar electrosurgical instrument |
7803156, | Mar 08 2006 | Aesculap AG | Method and apparatus for surgical electrocautery |
7811283, | Nov 19 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
7819872, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Flexible endoscopic catheter with ligasure |
7828798, | Nov 14 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Laparoscopic bipolar electrosurgical instrument |
7837685, | Jul 13 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
7846158, | May 05 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | Apparatus and method for electrode thermosurgery |
7846161, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Insulating boot for electrosurgical forceps |
7850688, | Aug 11 2004 | ERBE ELEKTROMEDIZIN GMBH | Electrosurgical instrument |
7857812, | Jun 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
7862565, | May 12 2005 | Aesculap AG | Method for tissue cauterization |
7877852, | Sep 20 2007 | Covidien LP | Method of manufacturing an end effector assembly for sealing tissue |
7877853, | Sep 20 2007 | Covidien LP | Method of manufacturing end effector assembly for sealing tissue |
7879035, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Insulating boot for electrosurgical forceps |
7887535, | Oct 18 1999 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing wave jaw |
7887536, | Oct 23 1998 | Covidien AG | Vessel sealing instrument |
7896878, | Oct 23 1998 | Covidien AG | Vessel sealing instrument |
7909823, | Jan 14 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing instrument |
7922718, | Nov 19 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Open vessel sealing instrument with cutting mechanism |
7922953, | Sep 30 2005 | TYCO HEALTHCARE GROUP AG; Covidien AG | Method for manufacturing an end effector assembly |
7931649, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
7935052, | Feb 14 2007 | TYCO HEALTHCARE GROUP AG; Covidien AG | Forceps with spring loaded end effector assembly |
7942874, | May 12 2005 | Aesculap AG | Apparatus for tissue cauterization |
7947041, | Oct 23 1998 | Covidien AG | Vessel sealing instrument |
7951142, | Jan 31 2003 | Smith & Nephew, Inc | Cartilage treatment probe |
7951149, | Oct 17 2006 | Covidien LP | Ablative material for use with tissue treatment device |
7951150, | Jan 14 2005 | Covidien AG | Vessel sealer and divider with rotating sealer and cutter |
7955331, | Mar 12 2004 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method of use |
7955332, | Oct 08 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Mechanism for dividing tissue in a hemostat-style instrument |
7963965, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Bipolar electrosurgical instrument for sealing vessels |
7981113, | Oct 22 2001 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument |
8016827, | Oct 09 2008 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8034052, | May 05 2006 | Covidien AG | Apparatus and method for electrode thermosurgery |
8066700, | Jan 31 2003 | Smith & Nephew, Inc | Cartilage treatment probe |
8070746, | Oct 03 2006 | Covidien LP | Radiofrequency fusion of cardiac tissue |
8075558, | Apr 30 2002 | Ethicon Endo-Surgery, Inc | Electrosurgical instrument and method |
8114074, | Dec 13 1994 | Boston Scientific Miami Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
8123743, | Oct 08 2004 | TYCO HEALTHCARE GROUP AG; Covidien AG | Mechanism for dividing tissue in a hemostat-style instrument |
8128624, | May 30 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
8142473, | Oct 03 2008 | Covidien LP | Method of transferring rotational motion in an articulating surgical instrument |
8147489, | Jan 14 2005 | Covidien AG | Open vessel sealing instrument |
8162973, | Aug 15 2008 | Covidien LP | Method of transferring pressure in an articulating surgical instrument |
8182478, | Feb 14 2006 | ERBE ELEKTROMEDIZIN GMBH | Electrosurgical instrument and type series for electrosurgical instruments |
8192433, | Oct 04 2002 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8197479, | Dec 10 2008 | Covidien LP | Vessel sealer and divider |
8197633, | Sep 30 2005 | Covidien AG | Method for manufacturing an end effector assembly |
8211105, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
8221416, | Sep 28 2007 | Covidien LP | Insulating boot for electrosurgical forceps with thermoplastic clevis |
8226649, | Jul 27 2006 | Applied Medical Resources Corporation | Bipolar electrosurgical scissors |
8235992, | Sep 28 2007 | Covidien LP | Insulating boot with mechanical reinforcement for electrosurgical forceps |
8235993, | Sep 28 2007 | Covidien LP | Insulating boot for electrosurgical forceps with exohinged structure |
8236025, | Sep 28 2007 | Covidien LP | Silicone insulated electrosurgical forceps |
8241282, | Jan 24 2006 | Covidien LP | Vessel sealing cutting assemblies |
8241283, | Sep 17 2008 | Covidien LP | Dual durometer insulating boot for electrosurgical forceps |
8241284, | Apr 06 2001 | Covidien AG | Vessel sealer and divider with non-conductive stop members |
8251996, | Sep 28 2007 | Covidien LP | Insulating sheath for electrosurgical forceps |
8257352, | Nov 17 2003 | Covidien AG | Bipolar forceps having monopolar extension |
8257387, | Aug 15 2008 | Covidien LP | Method of transferring pressure in an articulating surgical instrument |
8267935, | Apr 04 2007 | Covidien LP | Electrosurgical instrument reducing current densities at an insulator conductor junction |
8267936, | Sep 28 2007 | Covidien LP | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
8277447, | Aug 19 2005 | Covidien AG | Single action tissue sealer |
8292888, | Apr 20 2001 | Covidien LP | Bipolar or ultrasonic surgical device |
8298228, | Nov 12 1997 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
8298231, | Jan 31 2008 | Covidien LP | Bipolar scissors for adenoid and tonsil removal |
8298232, | Jan 24 2006 | Covidien LP | Endoscopic vessel sealer and divider for large tissue structures |
8303582, | Sep 15 2008 | Covidien LP | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
8303586, | Nov 19 2003 | Covidien AG | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
8317787, | Aug 28 2008 | Covidien LP | Tissue fusion jaw angle improvement |
8333765, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8348948, | Mar 02 2004 | Covidien AG | Vessel sealing system using capacitive RF dielectric heating |
8353907, | Dec 21 2007 | Atricure, Inc | Ablation device with internally cooled electrodes |
8361071, | Oct 22 1999 | Covidien AG | Vessel sealing forceps with disposable electrodes |
8361072, | Sep 30 2005 | Covidien AG | Insulating boot for electrosurgical forceps |
8366709, | Sep 21 2004 | Covidien AG | Articulating bipolar electrosurgical instrument |
8377058, | Jan 31 2003 | Smith & Nephew, Inc. | Cartilage treatment probe |
8382754, | Mar 31 2005 | Covidien AG | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
8394095, | Sep 30 2005 | Covidien AG | Insulating boot for electrosurgical forceps |
8394096, | Nov 19 2003 | Covidien AG | Open vessel sealing instrument with cutting mechanism |
8409197, | Dec 13 1994 | Boston Scientific Miami Corporation | Methods of cutting tissue using a medical instrument |
8419727, | Mar 26 2010 | Aesculap AG | Impedance mediated power delivery for electrosurgery |
8425504, | Oct 03 2006 | Covidien LP | Radiofrequency fusion of cardiac tissue |
8425511, | Mar 26 2010 | Covidien LP | Clamp and scissor forceps |
8454602, | May 07 2009 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8469956, | Jul 21 2008 | Covidien LP | Variable resistor jaw |
8469957, | Oct 07 2008 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8486107, | Oct 20 2008 | Covidien LP | Method of sealing tissue using radiofrequency energy |
8496656, | May 15 2003 | Covidien AG | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
8500734, | Jan 31 2003 | Smith & Nephew, Inc. | Cartilage treatment probe |
8523890, | Apr 20 2001 | Covidien LP | Bipolar or ultrasonic surgical device |
8523898, | Jul 08 2009 | Covidien LP | Endoscopic electrosurgical jaws with offset knife |
8535312, | Sep 25 2008 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
8540711, | Apr 06 2001 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider |
8551088, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
8551091, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8562598, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
8568411, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
8568444, | Oct 03 2008 | Covidien LP | Method of transferring rotational motion in an articulating surgical instrument |
8574229, | May 02 2006 | Aesculap AG | Surgical tool |
8579894, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
8591506, | Oct 23 1998 | Covidien AG | Vessel sealing system |
8597293, | Jul 27 2006 | Applied Medical Resources Corporation | Bipolar electrosurgical scissors |
8597296, | Nov 17 2003 | Covidien AG | Bipolar forceps having monopolar extension |
8597297, | Aug 29 2006 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing instrument with multiple electrode configurations |
8623017, | Nov 19 2003 | Covidien AG | Open vessel sealing instrument with hourglass cutting mechanism and overratchet safety |
8623276, | Feb 15 2008 | Covidien LP | Method and system for sterilizing an electrosurgical instrument |
8636761, | Oct 09 2008 | Covidien LP | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
8641713, | Sep 30 2005 | Covidien AG | Flexible endoscopic catheter with ligasure |
8647341, | Jun 13 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealer and divider for use with small trocars and cannulas |
8668689, | Sep 30 2005 | Covidien AG | In-line vessel sealer and divider |
8679114, | May 01 2003 | Covidien AG | Incorporating rapid cooling in tissue fusion heating processes |
8696662, | May 12 2005 | Aesculap AG | Electrocautery method and apparatus |
8696667, | Sep 28 2007 | Covidien LP | Dual durometer insulating boot for electrosurgical forceps |
8728072, | May 12 2005 | Aesculap AG | Electrocautery method and apparatus |
8734443, | Jan 24 2006 | Covidien LP | Vessel sealer and divider for large tissue structures |
8740901, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
8764748, | Feb 06 2008 | Covidien LP | End effector assembly for electrosurgical device and method for making the same |
8784417, | Aug 28 2008 | Covidien LP | Tissue fusion jaw angle improvement |
8795274, | Aug 28 2008 | Covidien LP | Tissue fusion jaw angle improvement |
8827992, | Mar 26 2010 | Aesculap AG | Impedance mediated control of power delivery for electrosurgery |
8845665, | Apr 20 2001 | Covidien LP | Bipolar or ultrasonic surgical device |
8852228, | Jan 13 2009 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8858554, | May 07 2009 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
8870867, | Feb 06 2008 | Aesculap AG | Articulable electrosurgical instrument with a stabilizable articulation actuator |
8882766, | Jan 24 2006 | Covidien AG | Method and system for controlling delivery of energy to divide tissue |
8888770, | May 12 2005 | Aesculap AG | Apparatus for tissue cauterization |
8898888, | Sep 28 2009 | Covidien LP | System for manufacturing electrosurgical seal plates |
8915878, | Dec 21 2007 | Atricure, Inc | Ablation device with internally cooled electrodes |
8915910, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
8939973, | Aug 19 2005 | Covidien AG | Single action tissue sealer |
8945125, | Nov 13 2003 | Covidien AG | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
8945126, | Aug 19 2005 | Covidien AG | Single action tissue sealer |
8945127, | Aug 19 2005 | Covidien AG | Single action tissue sealer |
8968314, | Sep 25 2008 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
8998892, | Dec 21 2007 | Atricure, Inc | Ablation device with cooled electrodes and methods of use |
9023043, | Sep 28 2007 | Covidien LP | Insulating mechanically-interfaced boot and jaws for electrosurgical forceps |
9028493, | Sep 18 2009 | Covidien LP | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
9095347, | Nov 20 2003 | TYCO HEALTHCARE GROUP AG; Covidien AG | Electrically conductive/insulative over shoe for tissue fusion |
9107672, | Oct 23 1998 | TYCO HEALTHCARE GROUP AG; Covidien AG | Vessel sealing forceps with disposable electrodes |
9113898, | Oct 09 2008 | Covidien LP | Apparatus, system, and method for performing an electrosurgical procedure |
9113903, | Jan 24 2006 | Covidien LP | Endoscopic vessel sealer and divider for large tissue structures |
9113905, | Jul 21 2008 | Covidien LP | Variable resistor jaw |
9113940, | Jan 14 2011 | Covidien LP | Trigger lockout and kickback mechanism for surgical instruments |
9149323, | May 01 2003 | Covidien AG | Method of fusing biomaterials with radiofrequency energy |
9149326, | Apr 30 2002 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument and method |
9173698, | Sep 17 2010 | Aesculap AG | Electrosurgical tissue sealing augmented with a seal-enhancing composition |
9198717, | Aug 19 2005 | Covidien AG | Single action tissue sealer |
9247988, | Jul 21 2008 | Covidien LP | Variable resistor jaw |
9277962, | Mar 26 2010 | Aesculap AG | Impedance mediated control of power delivery for electrosurgery |
9320563, | Oct 01 2010 | Applied Medical Resources Corporation | Electrosurgical instruments and connections thereto |
9339323, | May 12 2005 | Aesculap AG | Electrocautery method and apparatus |
9339327, | Jun 28 2011 | Aesculap AG | Electrosurgical tissue dissecting device |
9345534, | Oct 04 2010 | Covidien LP | Vessel sealing instrument |
9345535, | May 07 2009 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
9375254, | Sep 25 2008 | Covidien LP | Seal and separate algorithm |
9375270, | Oct 23 1998 | Covidien AG | Vessel sealing system |
9375271, | Oct 23 1998 | Covidien AG | Vessel sealing system |
9463067, | Oct 23 1998 | Covidien AG | Vessel sealing system |
9492225, | Jun 13 2003 | Covidien AG | Vessel sealer and divider for use with small trocars and cannulas |
9498278, | Sep 08 2010 | Covidien LP | Asymmetrical electrodes for bipolar vessel sealing |
9498279, | Oct 04 2010 | Covidien LP | Vessel sealing instrument |
9539053, | Jan 24 2006 | Covidien LP | Vessel sealer and divider for large tissue structures |
9549775, | Sep 30 2005 | Covidien AG | In-line vessel sealer and divider |
9554841, | Sep 28 2007 | Covidien LP | Dual durometer insulating boot for electrosurgical forceps |
9566108, | Mar 31 2008 | Applied Medical Resources Corporation | Electrosurgical system |
9585716, | Oct 04 2002 | Covidien AG | Vessel sealing instrument with electrical cutting mechanism |
9603652, | Aug 21 2008 | Covidien LP | Electrosurgical instrument including a sensor |
9655672, | Oct 04 2010 | Covidien LP | Vessel sealing instrument |
9655674, | Jan 13 2009 | Covidien LP | Apparatus, system and method for performing an electrosurgical procedure |
9662514, | Apr 20 2001 | Covidien LP | Bipolar or ultrasonic surgical device |
9737357, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
9795439, | Oct 04 2010 | Covidien LP | Vessel sealing instrument |
9814518, | Sep 08 2010 | Covidien LP | Asymmetrical electrodes for bipolar vessel sealing |
9848938, | Nov 13 2003 | Covidien AG | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
9861430, | Apr 06 2001 | Covidien AG | Vessel sealer and divider |
9872724, | Sep 26 2012 | Aesculap AG | Apparatus for tissue cutting and sealing |
9918778, | May 02 2006 | Aesculap AG | Laparoscopic radiofrequency surgical device |
9918782, | Jan 24 2006 | Covidien LP | Endoscopic vessel sealer and divider for large tissue structures |
9931131, | Sep 18 2009 | Covidien LP | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
9962222, | Oct 01 2010 | Applied Medical Resources Corporation | Electrosurgical instruments and connections thereto |
9980770, | Nov 20 2003 | Covidien AG | Electrically conductive/insulative over-shoe for tissue fusion |
9987078, | Jul 22 2015 | Covidien LP | Surgical forceps |
D424694, | Oct 23 1998 | VALLEYLAB, INC | Forceps |
D425201, | Oct 23 1998 | Covidien AG; TYCO HEALTHCARE GROUP AG | Disposable electrode assembly |
D449886, | Oct 23 1998 | Sherwood Services AG | Forceps with disposable electrode |
D457958, | Apr 06 2001 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer and divider |
D457959, | Apr 06 2001 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer |
D499181, | May 15 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Handle for a vessel sealer and divider |
D525361, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Hemostat style elongated dissecting and dividing instrument |
D531311, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Pistol grip style elongated dissecting and dividing instrument |
D533942, | Jun 30 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Open vessel sealer with mechanical cutter |
D535027, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Low profile vessel sealing and cutting mechanism |
D541418, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Lung sealing device |
D541938, | Apr 09 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Open vessel sealer with mechanical cutter |
D564662, | Oct 13 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Hourglass-shaped knife for electrosurgical forceps |
D567943, | Oct 08 2004 | Sherwood Services AG | Over-ratchet safety for a vessel sealing instrument |
D575395, | Feb 15 2007 | Covidien LP | Hemostat style elongated dissecting and dividing instrument |
D575401, | Jun 12 2007 | Covidien LP | Vessel sealer |
D649249, | Feb 15 2007 | Covidien LP | End effectors of an elongated dissecting and dividing instrument |
D670808, | Oct 01 2010 | Covidien LP | Open vessel sealing forceps |
D680220, | Jan 12 2012 | Covidien LP | Slider handle for laparoscopic device |
D748259, | Dec 29 2014 | Applied Medical Resources Corporation | Electrosurgical instrument |
D956973, | Jun 13 2003 | Covidien AG | Movable handle for endoscopic vessel sealer and divider |
RE36795, | Oct 03 1996 | The Governor and Company of the Bank of Scotland | Surgical scissors with bipolar coagulation feature |
RE44834, | Sep 30 2005 | Covidien AG | Insulating boot for electrosurgical forceps |
RE47375, | May 15 2003 | Coviden AG | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
Patent | Priority | Assignee | Title |
1586645, | |||
1798902, | |||
3651811, | |||
3685518, | |||
3730188, | |||
4092986, | Jun 14 1976 | COLTENE WHALEDENT INC | Constant output electrosurgical unit |
4232676, | Nov 16 1978 | Corning Glass Works | Surgical cutting instrument |
4271838, | Jan 26 1978 | LASCHAL SURGICAL, INC , A CORP OF PENNSYLVANIA | Suture cutter |
4353371, | Sep 24 1980 | RADIONICS, INC | Longitudinally, side-biting, bipolar coagulating, surgical instrument |
4370980, | Mar 11 1981 | Electrocautery hemostat | |
4492231, | Sep 17 1982 | Non-sticking electrocautery system and forceps | |
4590934, | May 18 1983 | VALLEY FORGE SCIENTIFIC CORP , 2570 BOULEVARD OF THE GENERALS, NORRISTOWN, PA 19403; MALIS, LEONARD I , 219-44 PECK AVENUE, HOLLIS, HILLS, NY, 11427; PACKAGING SERVICE CORPORATION OF KENTUCKY, 3001 WEST KENTUCKY STREET, LOUISVILLE, KY 40211, A KY CORP | Bipolar cutter/coagulator |
4655216, | Jul 23 1985 | OLYMPUS WINTER & IBE GMBH | Combination instrument for laparoscopical tube sterilization |
4671274, | Jan 30 1984 | KHARKOVSKY NAUCHNO-ISSLEDOVATELSKY INSTITUT OBSCHEI I NEOTLOZHNOI KHIRURGII, USSR, KHARKOV | Bipolar electrosurgical instrument |
4763669, | Jan 09 1986 | Surgical instrument with adjustable angle of operation | |
4785807, | Feb 24 1987 | MEGADYNE MEDICAL PRODUCTS, INC | Electrosurgical knife |
4848337, | Sep 10 1979 | Hemostatic Surgery Corporation | Abherent surgical instrument and method |
4887612, | Apr 27 1988 | C R BARD, INC | Endoscopic biopsy forceps |
4940468, | Jan 13 1988 | PETILLO, PHILLIP J | Apparatus for microsurgery |
4969885, | Nov 17 1987 | ERBE ELEKTROMEDIZIN GMBH | High frequency surgery device for cutting and/or coagulating biologic tissue |
4985030, | May 27 1989 | RICHARD WOLF GMBH, A WEST GERMAN CORP | Bipolar coagulation instrument |
5009656, | Aug 17 1989 | XOMED, INC | Bipolar electrosurgical instrument |
5147357, | Mar 18 1991 | Medical instrument | |
659409, | |||
EP341446, | |||
FR2536924, | |||
FR2647683, | |||
GB2037167, | |||
GB2066104, | |||
GB2161082, | |||
SU342617, | |||
SU575103, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 01 1992 | Hemostatic Surgery Corporation | (assignment on the face of the patent) | / | |||
Jul 22 1992 | EGGERS PHILIP E | Hemostatic Surgery Corporation | ASSIGNMENT OF ASSIGNORS INTEREST | 006259 | /0428 | |
May 21 1993 | HEMOSTATIC SUGERY CORPORATION | HEMAGEN PFC LIMITED | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 006568 | /0007 | |
Feb 01 1994 | HEMAGEN PFC LIMITED | HEMOSTATIC SURGERY CORPORATION, A CAYMAN ISLANDS COMPANY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006916 | /0190 |
Date | Maintenance Fee Events |
Oct 14 1997 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 04 2001 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 16 2005 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 28 1997 | 4 years fee payment window open |
Dec 28 1997 | 6 months grace period start (w surcharge) |
Jun 28 1998 | patent expiry (for year 4) |
Jun 28 2000 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 28 2001 | 8 years fee payment window open |
Dec 28 2001 | 6 months grace period start (w surcharge) |
Jun 28 2002 | patent expiry (for year 8) |
Jun 28 2004 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 28 2005 | 12 years fee payment window open |
Dec 28 2005 | 6 months grace period start (w surcharge) |
Jun 28 2006 | patent expiry (for year 12) |
Jun 28 2008 | 2 years to revive unintentionally abandoned end. (for year 12) |