A bipolar electrosurgical scissors for use in open or endoscopic surgery has a pair of opposed blade members pivotally joined to one another and to the distal end of the scissors itself by a rivet which extends through a insulated bushing member. Each of the blade members comprises a blade support and a blade itself, each fabricated from metal, such as stainless steel. The blades are affixed to their associated supports by means of a suitable adhesive or adhesive composite material such as a fiberglass reinforced epoxy exhibiting dielectric properties. Cutting is performed, steel-on-steel, without causing a short circuit between the two blade supports which themselves function as the bipolar electrodes.

Patent
   RE36795
Priority
Oct 03 1996
Filed
Oct 03 1996
Issued
Jul 25 2000
Expiry
Oct 03 2016
Assg.orig
Entity
Large
325
36
all paid
1. A bipolar electrosurgical instrument for cutting and coagulating tissue comprising:
(a) first and second blade members each, at least one comprising a laminated assembly of a metal blade defining a shearing surface, a metal blade support and an intermediate electrically insulative bonding/spacing layer for joining said blade to said blade support;
(b) means for pivotally joining said first and second blade members together with their respective shearing surfaces facing one another;
(c) means coupled to at least one of said first and second blade members for imparting a scissors-like movement relative to the other of said first and second blade members; and
(d) means for applying a voltage between the metal blade supports of said first and second blade members.
7. A bipolar electrosurgical instrument for cutting and coagulating tissue comprising, in combination:
(a) an elongated tubular member having a proximal end, a distal end and a lumen extending therebetween;
(b) first and second blade members, each at least one comprising a laminated assembly of a metal blade defining a shearing surface, a metal blade support and an intermediate electrically insulating spacing/bonding layer for joining said blade to said blade support;
(c) means for pivotally joining said first and second blade members to the distal end of said elongated tubular member with their respective shearing surfaces facing one another;
(d) a handle affixed to said proximal end of said tubular member;
(e) means coupled to said handle and extending through said lumen for imparting a scissors-like movement to at least one of said first and second blade members relative to the other; and
(f) means extending through said lumen for applying a voltage between said blade supports of said first and second blade members.
2. The bipolar electrosurgical instrument as in claim 1 wherein said shearing surfaces of said first and second blade members and said blade support are curved.
3. The bipolar electrosurgical instrument as in claim 2 wherein said intermediate, electrically insulating bonding/spacing layer is an epoxy material.
4. The bipolar electrosurgical instrument as in claim 3 wherein said epoxy material includes a fiberglass-mat of a predetermined thickness therein.
5. The bipolar electrosurgical instrument as in claim 3 wherein said epoxy material includes glass microspheres of a predetermined maximum diameter therein.
6. The bipolar electrosurgical instrument as in claim 3 wherein said metal is stainless steel.
8. The bipolar electrosurgical instrument as in claim 7 wherein said itnermediate electronically insulating bonding layer is an epoxy material.
9. The bipolar electrosurgical instrument as in claim 8 wherein said epoxy material includes a fiberglass-mat of a predetermined thickness therein.
10. The bipolar electrosurgical instrument as in claim 8 wherein said epoxy material includes glass microspheres of a predetermined maximum diameter therein.
11. The bipolar electrosurgical instrument as in claim 7 wherein said first and second blade members are curved.
12. A bipolar electrosurgical instrument for cutting and coagulating tissue comprising:
(a) first and second blade members each comprising a laminated assembly of a metal blade defining a shearing surface, a metal blade support and an intermediate electrically insulative bonding/spacing layer for joining said blade to said blade support;
(b) means for pivotally joining said first and second blade members together with their respective shearing surfaces facing one another;
(c) means coupled to at least one of said first and second blade members for imparting a scissor-like movement relative to the other of said first and second blade members; and
(d) means for applying a voltage between the metal blade supports of said first and second blade members.13. A bipolar electrosurgical instrument for cutting and coagulating tissue comprising, in combination:
(a) an elongated tubular member having a proximal end, a distal end and a lumen extending therebetween;
(b) first and second blade members, each comprising a laminated assembly of a metal blade defining a shearing surface, a metal blade support and an intermediate electrically insulating spacing/bonding layer for joining said blade to said blade support;
(c) means for pivotally joining said first and second blade members to the distal end of said elongated tubular member with their respective shearing surfaces facing one another;
(d) a handle affixed to said proximal end of said tubular member;
(e) means coupled to said handle and extending through said lumen for imparting a scissor-like movement to at least one of said first and second blade members relative to the other; and
(f) means extending through said lumen for applying to a voltage between said blade supports of said first and second blade members.14. A bipolar electrosurgical instrument for cutting and coagulating tissue, comprising:
(a) first and second blade members each having an inner shearing surface and a conductive portion, at least one of said blade members comprising a laminated assembly of an inner metal blade defining said inner shearing surface, an intermediate electrically insulative layer, and an outer metal conductive layer forming said conductive portion which is electrically insulated from said inner metal blade by said intermediate electrically insulative layer;
(b) means for pivotally joining said first and second blade members with their respective inner shearing surfaces facing one another;
(c) means coupled to at least one of said first and second blade members for imparting a scissors-like movement relative to the other of said first and second blade members; and
(d) means for applying a voltage between said conductive portions of said
first and second blade members.15. An endoscopic scissors blade for use in a bipolar endoscopic instrument, said blade comprising:
(a) an inner metal shearing surface;
(b) an intermediate electrically insulative layer;
(c) an outer metal conductive layer which is electrically insulated from said inner metal shearing surface by said intermediate electrically insulative layer; and
(d) means for coupling a source of voltage to said outer metal conductive layer.16. An endoscopic scissors blade according to claim 15, further comprising:
(e) means for pivotally mounting said scissors blade; and
(f) means for coupling said scissors blade to a means for imparting a
pivotal movement to said scissors blade.17. An endoscopic scissors blade according to claim 15, wherein:
said intermediate electrically insulative layer is a fiberglass blade support and said inner metal shearing surface and said outer metal conductive layer are laminated layers on said fiberglass blade
support.18. A bipolar electrosurgical scissors comprising:
(a) a pair of blades, at least one blade of the pair having
(i) an inner metal shearing surface;
(ii) an intermediate electrically insulative layer;
(iii) an outer metal conductive layer which is electrically insulated from said inner metal shearing surface by said intermediate electrically insulative layer; and
(b) means for coupling a source of voltage to said outer metal conductive layer.19. A bipolar electrosurgical scissors according to claim 18, further comprising:
(e) means for pivotally mounting said pair of blades; and
(f) means for coupling one of said scissors blade to a means for imparting a pivotal movement to said scissors blade.20. A bipolar electrosurgical scissors according to claim 18, wherein:
said intermediate electrically insulative layer is a fiberglass blade support and said inner metal shearing surface and said outer metal conductive layer are laminated layers on said fiberglass blade support.21. A bipolar electrosurgical instrument for cutting and coagulating tissue, comprising:
(a) first and second blade members each comprising a laminated assembly of a metal blade defining a shearing surface, an intermediate electrically insulative layer, and a metal blade support which is electrically insulated from said metal blade by said intermediate electrically insulative layer;
(b) means for pivotally joining said first and second blade members together with their respective shearing surfaces facing one another;
(c) means coupled to at least one of said first and second blade members for imparting a scissor-like movement relative to the others of said first and second blade members; and
(d) means for applying a voltage between the metal blade supports of said first and second blade members.22. A bipolar electrosurgical instrument according to claim 21, wherein:
said shearing surfaces of said first and second blade members and said blade support are curved.23. A bipolar electrosurgical instrument according to claim 22, wherein:
said metal is stainless steel.24. A bipolar electrosurgical instrument for cutting and coagulating tissue, comprising, in combination:
(a) an elongated tubular member having a proximal end, a distal end, and a lumen extending therebetween;
(b) first and second blade members, each comprising a laminated assembly of a metal blade defining an inner shearing surface, an intermediate electrically insulative layer, and a metal blade support which is electrically insulated from said metal blade by said intermediate electrically insulative layer;
(c) means for pivotally joining said first and second blade members together with their respective shearing surfaces facing one another;
(d) a handle affixed to said proximal end of said tubular member;
(e) means coupled to said handle and extending through said lumen for imparting a scissor-like movement to at least one of said first and second blade members relative to the other; and
(f) means extending through said lumen for applying a voltage between said blade supports of said first and second blade members.25. A bipolar electrosurgical instrument according to claim 24 wherein:
said inner shearing surfaces of said first and second blade members are
curved.26. A bipolar electrosurgical instrument according to claim 24, wherein:
said metal is stainless steel.27. A bipolar electrosurgical instrument for cutting and coagulating tissue, comprising, in combination:
(a) an elongated tubular member having a proximal end, a distal end, and a lumen extending therebetween;
(b) first and second blade members each having an inner shearing surface and a conductive portion, at least one of said blade members comprising a laminated assembly of an inner metal blade defining said inner shearing surface, an intermediate electrically insulative layer, and an outer metal conductive layer forming said conductive portion which is electrically insulated from said inner metal blade by said intermediate electrically insulative layer;
(c) means for pivotally joining said first and second blade members with their respective inner shearing surfaces facing one another;
(d) a handle affixed to said proximal end of said tubular member;
(e) means coupled to said handle and extending through said lumen for imparting a scissor-like movement to at least one of said first and second blade members relative to the other; and
(f) means extending through said lumen for applying a voltage between said conductive portions of said first and second blade
members.
8. A bipolar electrosurgical instrument according to claim 27, wherein:
each of said first and second blade members comprises a laminated assembly of an inner metal blade defining said inner shearing surface, an intermediate electrically insulative layer, and an outer metal conductive layer forming said conductive portion which is electrically insulated from said inner metal blade by said intermediate electrically insulative layer.29. A bipolar electrosurgical scissors comprising:
(a) first and second blade members each comprising an assembly of a metal shearing surface, an electrically conductive electrode, and an intermediate electrically insulative material disposed between and fixed to the metal shearing surface and the electrically conductive electrode;
(b) means coupled to at least one of said first and second blade members for imparting scissor-like movement relative to the other of said first and second blade members; and
(c) means for applying a voltage between the electrically conductive electrodes of said first and second blade members.30. A bipolar electrosurgical scissors according to claim 29, wherein:
said metal shearing surfaces of said first and second blade members are curved.31. A bipolar electrosurgical scissors according to claim 30, wherein:
said intermediate, electrically insulative material is an epoxy material.32. A bipolar electrosurgical scissors according to claim 31, wherein:
said epoxy material includes a fiberglass-mat of a predetermined thickness therein.33. A bipolar electrosurgical scissors according to claim 31 wherein:
at least one of said metal shearing surface and said electrically
conductive electrode is made of stainless steel.34. A bipolar electrosurgical scissors comprising:
(a) first and second blade members each comprising an assembly of a metal shearing surface, an electrically conductive electrode, and an intermediate electrically insulative layer disposed between and affixed to the metal shearing surface and the electrically conductive electrode, at least one of said first and second blade members having a pivot hole for mounting it relative to the other of said first and second blade members to allow a scissor-like movement of said at least one of said first and second blade members relative to the other of said first and second blade members;
(b) a reciprocating member coupled to said at least one of said first and second blade members and importing scissor-like movement to said at least one of said first and second blade members relative to the other of said first and second blade members; and
(c) first and second electrically conductive members coupled to respective electrically conductive electrodes and applying a voltage between the electrically conductive electrodes of said first and second blade members.35. A bipolar electrosurgical scissors according to claim 34, wherein:
said metal shearing surfaces of said first and second blade members are
curved.36. A bipolar electrosurgical scissors according to claim 35, wherein:
said intermediate, electrically insulative layer is an epoxy material layer.37. A bipolar electrosurgical scissors according to claim 36, wherein:
said epoxy material includes a fiberglass-mat of a predetermined thickness therein.38. A bipolar electrosurgical scissors according to claim 36, wherein:
at least one of said metal shearing surface and said electrically conductive electrode is made of stainless steel.

1. Field of the Invention

This invention relates generally to the design of a bipolar electrosurgical scissors, and more particularly to a surgical scissors incorporating bipolar electrodes as its blade elements, such that mechanical cutting with subsequent electrocoagulation can be achieved without requiring an instrument exchange.

2. Discussion of the Prior Art

Electrocoagulating instruments include at least one conductive electrode. Radio frequency energy is conducted through this electrode to either a remote conductive body-plate (monopolar) or to a second, closely-spaced conductive electrode (bipolar). Current passing through the gap between the two electrodes will coagulate blood and other body fluids placed between them.

Monopolar electrocautery instruments suffer from the fact that the return path between the active-electrode and the large area body-plate can be unpredictable as the electrical current seeks the return electrode through the path of least resistance. With bipolar electrosurgical instruments, however, because the two electrodes are closely spaced to one another, usually at the distal end of an instrument handle, the return path is very short and only involves the tissue and fluids in the short path between the electrodes.

There is available in the prior art a scissors-type instrument for mechanically snipping tissue during the course of an endoscopic procedure. Such a scissors comprises of pair of blades fabricated from metal and disposed at the distal end of an elongated tubular member whose outside diameter is sufficiently small to allow it to be passed through the working lumen of an endoscope, a laparoscope or other similar devices known in the art. Disposed at the proximal end of the rigid tube is a scissors-type handle having a pair of members, each with a finger-receiving loop therein which are pivotally coupled to one another. An appropriate linkage is made between the handle members and the blades so that manipulation of the handle members will result in an opening and closing of the blades relative to one another. When using a mechanical cutting scissors of this type to excise tissue, when a blood vessel is cut, bleeding results. At that point, it is generally necessary for the surgeon to remove the scissors instrument from the working lumen of the endoscope and then insert an electrocoagulator down the endoscope to the site of the bleeder. This instrument exchange is time-consuming and in a surgical procedure where moments count, it would be desirable to have a scissors-type instrument for cutting but which also incorporates the ability to coagulate blood and other body tissue using RF energy.

There is also available in the prior art monopolar scissors where both of the scissors blades form one pole and with a remote body plate being the second pole. To date, however, there is not available in the marketplace a bipolar electrosurgical scissors where its two blades are electrically isolated from one another and comprise the bipolar electrode pair. With metal-to-metal contact along the sharpened edges of the two blades, an electrical short results. Furthermore, the attempt to use a rivet or screw as the pivot point for the blades is another area where short-circuiting is likely to occur. When such a short exists, the electrical current does not flow through the blood or body tissue to effect coagulation, but instead, follows the short-circuit path from one electrode to the other.

In a copending application, Ser. No. 07/887,212, filed May 26, 1992, there is described a bipolar scissors for insertion into a laparoscope, trocar or endoscope for effecting electrocoagulation of blood and tissue during laparoscopic or other endoscopic surgery. The scissors blades at the distal tip of the instrument perform cutting of the tissue by mechanical shearing action. The two blades are effectively insulated from one another, allowing them to function as bipolar electrodes for electrocoagulating small blood vessels in the surgical field.

The instrument of the aforereferenced application includes a scissors-type handle having first and second pivoting members, each with a finger-receiving loop on one end of each and extending from the opposite end of one is an elongated, rigid tubular member of a size capable of being inserted through the trocar or endoscope. Affixed to the distal end of the rigid tubular member is a first blade composite which comprises a metal blank having a suitable ceramic layer bonded to one major surface thereof, the ceramic being honed to define a sharp cutting edge. Pivotally joined to the first blade by an insulating pivot member is a second blade composite, also having a metal blank with a ceramic substrate bonded to one major surface thereof. When the two blade blanks are pivotally joined together, the ceramic layers are in face-to-face relationship and because the cutting edges thereof are honed, the blades are capable of cutting tissue when made to move in a scissors-like manner with tissue placed between the cutting edges thereof.

Extending through the lumen of the elongated tubular member is a wire or rod which is rigid in the longitudinal direction and which is coupled at its proximal end to one of the handle members and at its other end to one of the scissors blades. By appropriately manipulating the handle members, a snipping action of the blades results.

The instrument further includes means for applying a RF voltage across the gap between the two metal blade blanks which are maintained separated from one another by the ceramic faces bonded to these blanks. As such, the blades of the instrument itself can be used as a bipolar electrocoagulation device, obviating the need for doing an instrument exchange when it is necessary to coagulate blood and tissue following the mechanical cutting thereof.

In copending application Ser. No. 08/092,076, filed Jul. 16, 1993, there is described a bipolar electrosurgical scissors having curved blades in the embodiments of each of the aforereferenced applications, the bipolar blades are constructed by appropriately adhering a specially ground ceramic insulating member defining the sheering surface and cutting edge of the scissors to metal electrodes where it is the ceramic surfaces that interact with one another to perform the cutting function as the blades are opened and closed relative to one another. While that arrangement works well in implementing a bipolar electrosurgical scissors, the cost of manufacture is relatively high because of the difficulty in working with ceramics, especially when constructing electrosurgical scissors having arcuate blades. Those skilled in the art appreciate that ceramic will readily fracture when subjected to bending forces and, hence, it is necessary to produce the requisite ceramic elements for the scissors in a series of grinding operations.

A need therefore exists for a bipolar electrosurgical scissors for use in both open and endoscopic surgical procedures where the shearing surfaces may be surgical steel, but where the blades can also be used in performing bipolar electrocoagulation as the cutting progresses.

It is accordingly a principal object of the present invention to provide a bipolar, electrocoagulating instrument having metal scissors blades for the mechanical cutting of tissue.

Another object of the present invention is to provide a pair of bipolar scissors having a miniaturized distal blade configuration that allows the instrument to be inserted through a laparoscope, trocar or the working lumen of an endoscope.

Still another object of the present invention is to provide a bipolar-type scissors instrument having metal (stainless steel) cutting surfaces and which utilizes a push rod and pivot combination to cause movement of the scissors blade through manipulation of a scissors-style handle mechanism at the proximal end of the instrument and wherein blade supports for the scissors may be simultaneously energized from a RF source to effect the electrocoagulation of cut tissue.

The foregoing object of the invention is achieved by providing an instrument having a metal blade member with a sheering surface and a honed cutting edge. The blade member is affixed to a metal blade support by an electrically insulating bonding layer which is disposed intermediate the blade member and the blade support. In forming an endoscopic scissors, this blade assembly is pivotally secured to the distal end of an elongated tube. An actuating link extends through the tube to a movable portion of a scissors handle so that when the handle is manipulated, the blades can be made to open and close relative to one another in scissors-like fashion. Also extending through the lumen from electrical terminals on the handle to the metal blade supports are conductors which permit a voltage to be applied between the two blade supports. Because the blade having the sharpened edge and shearing surface is insulated from its blade support, there will be no short circuit between the blade members due to the fact that the conductive shearing surfaces come into contact with one another along their length as the blades are closed on an object to be cut.

It has been found convenient in the manufacture of the scissors of the present invention to employ a partially cured epoxy, an epoxy impregnated fiberglass mat or a slurry of glass beads and epoxy as the bonding layer for joining the blades to their respective supports while maintaining a desired spacing therebetween. The partially cured epoxy can be die-cut to size so as to conform in shape to the interface between the blade support and the blade member. When the laminated structure is clamped together and then subjected to a heating operation, the epoxy spacer layer fully cures and creates a strong bond between the blade and its blade support, while still maintaining electrical isolation therebetween.

The foregoing features, objects and advantages of the invention will become apparent to those skilled in the art from the following detailed description of a preferred embodiment, especially when considered in conjunction with the accompanying drawings in which like numerals in the several views refer to corresponding parts.

FIG. 1 is a perspective view of an endoscopic electrosurgical scissors constructed in accordance with the present invention; and

FIG. 2 is a greatly enlarged top view of the distal end portion of the scissors of FIG. 1.

Referring to FIG. 1, there is indicated generally by numeral 10 a bipolar electrosurgical scissors for endoscopic surgery constructed in accordance with the present invention. It is seen to include an elongated tubular barrel 12 having a proximal end 14, a distal end 16 and with a lumen extending therebetween. The O.D. of the barrel is sufficiently small to be passed through the working lumen of an endoscope (laparoscope). Affixed to the proximal end 14 of the bipolar scissors 10 is a rotatable knob 18 appropriately mounted in the stationary portion 20 of a scissors handle assembly 22 so that the knob 18 can be rotated, the barrel 12 turning with it. Those desiring further details on the construction and internal workings of the handle assembly 22 are referred to applicant's earlier patent application Ser. No. 08/013,852, filed Feb. 5, 1993. That application describes in detail how manipulation of the scissors handle 22 causes blades 24 and 26 connected to the distal end 16 of the tube 12 to move in scissors-like action relative to one another. Because the novel features of the present invention center on the construction of the blades 24 and 26, there is no need to further describe the details of the handle construction.

Referring to FIG. 2, there is shown a greatly enlarged top plan view of the distal end portion of the scissors viewed along the line 2--2 in FIG. 1. Blade 24 is seen to comprise a conductive metal blade support 28, preferably fabricated from stainless steel. While the blade support 28 is illustrated as having an arcuate profile when observed from the top as in FIG. 2, it can just as well be straight. Attached to the blade support by means of a dielectric bonding agent 30 is a metal blade 32 having an arcuate shearing surface 34 and a honed cutting edge.

In adhering the cutting blade 34 to the blade support 28, it has been found convenient to employ a suitable epoxy, such as AF 125 sold by the 3M Company because of its desired dielectric characteristics. The epoxy bonding/spacing layer 30 may be obtained in a partially cured state so that it is rigid enough to hold its own shape, but can easily be die-cut to a desired size and shape characteristic. The partially cured epoxy layer is then applied against the concave surface of the blade support 28 and because in the partially cured state, the material is tacky, it will adhere to it. Next, the blade 34, itself, is pressed against the other side of the partially cured epoxy bonding layer 30 and when appropriately aligned, a suitable clamp is used to hold the assembly together. The assembly may then be placed in an oven or otherwise heated to the point where the epoxy layer becomes fully cured and hard. When the assembly is removed from the oven and the clamp is removed, it is found that a very strong bond holds the blade 34 to the support 28. The two are electrically insulated from one another, however, by the epoxy bonding layer.

To ensure that clamping and heating does not alter the width of the insulating gap, a fiberglass mat of the desired thickness can be impregnated with a B-stage type epoxy or glass beads of a diameter corresponding to the desired gap width can be mixed with the B-stage epoxy before it is interposed between the blade and its support and prior to the clamping and heat curing thereof.

The other scissors blade 26 is manufactured in much the same fashion. It includes a blade support 36 and a blade member 38 bonded together by a dielectric bonding/spacing layer 40. The dielectric bonding/spacing layer is again preferably an epoxy or a glass-filled epoxy material adhered to the convex surface of the blade support 36.

The proximal end portions 42 and 44 of the blade supports 28 and 36 each have a circular aperture extending therethrough as at 46 and fitted into each of the apertures is an insulating bushing half 48-50 allowing a steel rivet 52 to pivotally secure the blades 24 and 26 to an insulating hub 54 without creating an electrical short circuit between the blade supports 28 and 36. The hub member 54 fits within the distal end 16 of the tubular barrel 12 and is appropriately bonded or swagged so as not to come loose.

The mechanism for actuating the blades 24 and 26 in a scissors-like motion is similar to that described in applicant's earlier copending application Ser. No. 08/013,852, which is herein incorporated by reference. In that arrangement, first and second conductive rods 56 and 58 extend through the lumen of the barrel 12 from the scissors handle members to a pair of conductive links 60 and 62. The links are pivotally secured to the distal ends of the rods 58 and 60 and to the blade halves 24 and 26 by means of conductive metal rivets 64 and 66. The rivets 64 and 66 pass through apertures formed in the distal end portions of the blade halves 24 and 26 at locations that are off of center so that a lever arm is created for moving the blades as the conductive rods 56 and 58 are reciprocally, longitudinally displaced by actuation of the scissors handle 22. A slip-ring connection is provided in the handle portion 20 for allowing conductors in the insulated electrical cord 68 (FIG. 1) to join to the conductive rods 56 and 58 while still permitting the barrel 12 to be rotated upon turning the knob 18 and without twisting the conductors in lead 68. In this fashion, a predetermined RF voltage may be applied across the blade supports 28 and 36 by way of the lead 68, the conductive rods 56 and 58, the links 60 and 62 and the rivets 64 and 66. Because of the insulating layers 30 and 40 used in bonding the sharpened blades 32 and 38 to the blade supports 28 and 36, those two blades can touch one another along their entire length as the cutting motion takes place without creating an electrical short circuit therebetween. When it is desired to cauterize tissue, the RF voltage is applied to the electrosurgical scissors, thereby making the blade supports the active bipolar electrodes. When the two blade supports are brought into contact with tissue, a current flows from the first blade support, through the tissue to the second blade support, thereby effecting cauterization.

The present invention obviates the need for providing a somewhat fragile ceramic layer to define the shearing surface and cutting edges of the blades. The stainless steel blade supports and the blades themselves can be readily bent to create a curved blade without the need for expensive grinding operations heretofore necessary in creating curved ceramic pieces.

The use of a partially cured epoxy dielectric adhesive in the early stages of fabrication for adhering the blade to its support and then later fully curing the epoxy layer also greatly simplifies the steps needed to manufacture an electrosurgical scissors having bipolar electrodes.

This invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment details and operating procedures, can be accomplished without departing from the scope of the invention itself. For example, while an endoscopic scissors has been used in explaining the invention, it is equally applicable to a scissors designed for open surgery. Hence, the scope of the invention is to be determined from the appended claims.

Rydell, Mark A.

Patent Priority Assignee Title
10058376, Apr 29 2010 Covidien LP Method of manufacturing a jaw member of an electrosurgical end effector assembly
10085794, May 07 2009 Covidien LP Apparatus, system and method for performing an electrosurgical procedure
10098697, Apr 08 2011 Covidien LP Microwave tissue dissection and coagulation
10149713, May 16 2014 Applied Medical Resources Corporation Electrosurgical system
10166064, Jun 07 2010 Bolder Surgical, LLC Low-power tissue sealing device and method
10188452, Aug 19 2005 Covidien AG Single action tissue sealer
10188454, Sep 28 2009 Covidien LP System for manufacturing electrosurgical seal plates
10213250, Nov 05 2015 Covidien LP Deployment and safety mechanisms for surgical instruments
10231777, Aug 26 2014 Covidien LP Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
10251696, Apr 06 2001 Covidien AG Vessel sealer and divider with stop members
10265121, Apr 06 2001 Covidien AG Vessel sealer and divider
10278772, Jun 13 2003 Covidien AG Vessel sealer and divider
10299851, Oct 20 2011 Covidien LP Dissection scissors on surgical device
10342599, Oct 22 2010 Bolder Surgical, LLC RF generator system for surgical vessel sealing
10342604, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
10383649, Feb 22 2012 Covidien LP Trigger lockout and kickback mechanism for surgical instruments
10420603, Dec 23 2014 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
10441350, Nov 17 2003 Covidien AG Bipolar forceps having monopolar extension
10537384, Oct 04 2002 Covidien LP Vessel sealing instrument with electrical cutting mechanism
10568682, Apr 06 2001 Covidien AG Vessel sealer and divider
10631918, Aug 14 2015 Covidien LP Energizable surgical attachment for a mechanical clamp
10646267, Aug 07 2013 Covidien LP Surgical forceps
10687887, Apr 06 2001 Covidien AG Vessel sealer and divider
10792092, May 30 2014 Applied Medical Resources Corporation Electrosurgical seal and dissection systems
10799290, Apr 08 2011 Covidien LP Microwave tissue dissection and coagulation
10835309, Jun 25 2002 Covidien AG Vessel sealer and divider
10842553, Jun 13 2003 Covidien AG Vessel sealer and divider
10849681, Apr 06 2001 Covidien AG Vessel sealer and divider
10856933, Aug 02 2016 Covidien LP Surgical instrument housing incorporating a channel and methods of manufacturing the same
10874452, Oct 01 2010 Applied Medical Resources Corporation Electrosurgical instruments and connections thereto
10881453, Apr 06 2001 Covidien AG Vessel sealer and divider
10888371, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
10918407, Nov 08 2016 Covidien LP Surgical instrument for grasping, treating, and/or dividing tissue
10918435, Jun 13 2003 Covidien AG Vessel sealer and divider
10918436, Jun 25 2002 Covidien AG Vessel sealer and divider
10987159, Aug 26 2015 Covidien LP Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
10987160, Oct 04 2002 Covidien AG Vessel sealing instrument with cutting mechanism
10993762, Oct 20 2011 Covidien LP Dissection scissors on surgical device
11026741, Sep 28 2009 Covidien LP Electrosurgical seal plates
11090050, Sep 03 2019 Covidien LP Trigger mechanisms for surgical instruments and surgical instruments including the same
11166759, May 16 2017 Covidien LP Surgical forceps
11382686, Jul 22 2015 Covidien LP Surgical forceps
11399884, Jun 07 2010 Bolder Surgical, LLC Low power tissue sealing device and method
11490955, Sep 28 2009 Covidien LP Electrosurgical seal plates
11540871, Dec 23 2014 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
11660108, Jan 14 2011 Covidien LP Trigger lockout and kickback mechanism for surgical instruments
11660136, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
11672589, May 16 2014 Applied Medical Resources Corporation Electrosurgical system
11696796, Nov 16 2018 Applied Medical Resources Corporation Electrosurgical system
11793520, Sep 03 2019 Covidien LP Trigger mechanisms for surgical instruments and surgical instruments including the same
11864812, Sep 05 2018 Applied Medical Resources Corporation Electrosurgical generator control system
11864823, Oct 01 2010 Applied Medical Resources Corporation Electrosurgical instruments and connections thereto
6358268, Mar 06 2000 Aesculap AG Surgical instrument
6387094, Oct 30 1998 Karl Storz GmbH & Co. KG Medical instrument for dissecting tissue
6447511, Dec 13 1994 Symbiosis Corporation Bipolar endoscopic surgical scissor blades and instrument incorporating the same
6451018, Nov 14 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Laparoscopic bipolar electrosurgical instrument
6464704, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar electrosurgical instrument with replaceable electrodes
6506208, Mar 06 2000 Aesculap AG Surgical instrument
6511480, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Open vessel sealing forceps with disposable electrodes
6682528, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Endoscopic bipolar electrosurgical forceps
6726686, Nov 12 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Bipolar electrosurgical instrument for sealing vessels
6932810, Sep 09 1997 Sherwood Services AG Apparatus and method for sealing and cutting tissue
6960210, Nov 14 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Laparoscopic bipolar electrosurgical instrument
7033354, Dec 10 2002 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical electrode having a non-conductive porous ceramic coating
7063697, Dec 13 1994 Symbiosis Corporation Bipolar endoscopic surgical scissor blades and instrument incorporating the same
7083618, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider
7090673, Apr 06 2001 Covidien AG; TYCO HEALTHCARE GROUP AG Vessel sealer and divider
7101371, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider
7101372, Apr 06 2001 Covidien AG; TYCO HEALTHCARE GROUP AG Vessel sealer and divider
7101373, Apr 06 2001 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vessel sealer and divider
7118570, Oct 22 1999 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing forceps with disposable electrodes
7118587, Apr 06 2001 Covidien AG; TYCO HEALTHCARE GROUP AG Vessel sealer and divider
7131970, Nov 19 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Open vessel sealing instrument with cutting mechanism
7131971, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider
7135020, Nov 12 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical instrument reducing flashover
7147638, May 01 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical instrument which reduces thermal damage to adjacent tissue
7150097, Jun 13 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Method of manufacturing jaw assembly for vessel sealer and divider
7150749, Jun 13 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
7156846, Jun 13 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider for use with small trocars and cannulas
7160298, Nov 12 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical instrument which reduces effects to adjacent tissue structures
7160299, May 01 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Method of fusing biomaterials with radiofrequency energy
7179258, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar electrosurgical instrument for sealing vessels
7195631, Sep 09 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Forceps with spring loaded end effector assembly
7207990, Nov 14 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Laparoscopic bipolar electrosurgical instrument
7223265, Dec 10 2002 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical electrode having a non-conductive porous ceramic coating
7232440, Nov 17 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar forceps having monopolar extension
7241296, Nov 12 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Bipolar electrosurgical instrument for sealing vessels
7252667, Nov 19 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Open vessel sealing instrument with cutting mechanism and distal lockout
7255697, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider
7267677, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument
7270660, Sep 09 1997 Sherwood Services AG Apparatus and method for sealing and cutting tissue
7270664, Oct 04 2002 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument with electrical cutting mechanism
7276068, Oct 04 2002 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument with electrical cutting mechanism
7329256, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument
7367976, Nov 17 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar forceps having monopolar extension
7377920, Nov 14 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Laparoscopic bipolar electrosurgical instrument
7384420, Apr 06 2001 Covidien AG; TYCO HEALTHCARE GROUP AG Vessel sealer and divider
7384421, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Slide-activated cutting assembly
7435249, Nov 12 1997 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical instruments which reduces collateral damage to adjacent tissue
7442193, Nov 20 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Electrically conductive/insulative over-shoe for tissue fusion
7442194, Nov 17 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar forceps having monopolar extension
7445621, Nov 17 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar forceps having monopolar extension
7458972, Dec 10 2002 Covidien AG; TYCO HEALTHCARE GROUP AG Electrosurgical electrode having a non-conductive porous ceramic coating
7473253, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider with non-conductive stop members
7481810, Nov 17 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar forceps having monopolar extension
7491201, May 15 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Tissue sealer with non-conductive variable stop members and method of sealing tissue
7491202, Mar 31 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
7500975, Nov 19 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
7510556, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument
7513898, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument
7540872, Sep 21 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Articulating bipolar electrosurgical instrument
7553312, Mar 10 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument
7582087, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument
7594916, Nov 22 2005 Covidien AG Electrosurgical forceps with energy based tissue division
7597693, Jun 13 2003 Covidien AG Vessel sealer and divider for use with small trocars and cannulas
7628791, Aug 19 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Single action tissue sealer
7628792, Oct 08 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Bilateral foot jaws
7641653, May 04 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Open vessel sealing forceps disposable handswitch
7655007, May 01 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Method of fusing biomaterials with radiofrequency energy
7686804, Jan 14 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider with rotating sealer and cutter
7686827, Oct 21 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Magnetic closure mechanism for hemostat
7708735, May 01 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Incorporating rapid cooling in tissue fusion heating processes
7744615, Jul 18 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
7753909, May 01 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical instrument which reduces thermal damage to adjacent tissue
7766910, Jan 24 2006 Covidien LP Vessel sealer and divider for large tissue structures
7771425, Jun 13 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider having a variable jaw clamping mechanism
7776036, Mar 13 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar concentric electrode assembly for soft tissue fusion
7776037, Jul 07 2006 TYCO HEALTHCARE GROUP AG; Covidien AG System and method for controlling electrode gap during tissue sealing
7789878, Sep 30 2005 TYCO HEALTHCARE GROUP AG; Covidien AG In-line vessel sealer and divider
7799026, Nov 14 2002 TYCO HEALTHCARE GROUP AG; Covidien AG Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
7799028, Sep 21 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Articulating bipolar electrosurgical instrument
7811283, Nov 19 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
7819872, Sep 30 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Flexible endoscopic catheter with ligasure
7828798, Nov 14 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Laparoscopic bipolar electrosurgical instrument
7837685, Jul 13 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Switch mechanisms for safe activation of energy on an electrosurgical instrument
7846158, May 05 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Apparatus and method for electrode thermosurgery
7846161, Sep 30 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Insulating boot for electrosurgical forceps
7857812, Jun 13 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
7877852, Sep 20 2007 Covidien LP Method of manufacturing an end effector assembly for sealing tissue
7877853, Sep 20 2007 Covidien LP Method of manufacturing end effector assembly for sealing tissue
7879035, Sep 30 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Insulating boot for electrosurgical forceps
7887535, Oct 18 1999 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing wave jaw
7887536, Oct 23 1998 Covidien AG Vessel sealing instrument
7896878, Oct 23 1998 Covidien AG Vessel sealing instrument
7909823, Jan 14 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Open vessel sealing instrument
7922718, Nov 19 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Open vessel sealing instrument with cutting mechanism
7922953, Sep 30 2005 TYCO HEALTHCARE GROUP AG; Covidien AG Method for manufacturing an end effector assembly
7931649, Oct 04 2002 Covidien AG Vessel sealing instrument with electrical cutting mechanism
7935052, Feb 14 2007 TYCO HEALTHCARE GROUP AG; Covidien AG Forceps with spring loaded end effector assembly
7947041, Oct 23 1998 Covidien AG Vessel sealing instrument
7951149, Oct 17 2006 Covidien LP Ablative material for use with tissue treatment device
7951150, Jan 14 2005 Covidien AG Vessel sealer and divider with rotating sealer and cutter
7951165, Aug 18 2003 Boston Scientific Scimed, Inc Endoscopic medical instrument and related methods of use
7955332, Oct 08 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Mechanism for dividing tissue in a hemostat-style instrument
7963965, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Bipolar electrosurgical instrument for sealing vessels
8016827, Oct 09 2008 Covidien LP Apparatus, system, and method for performing an electrosurgical procedure
8034052, May 05 2006 Covidien AG Apparatus and method for electrode thermosurgery
8070746, Oct 03 2006 Covidien LP Radiofrequency fusion of cardiac tissue
8114107, Nov 05 2003 Applied Medical Resources Corporation Laparoscopic scissor blades
8123743, Oct 08 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Mechanism for dividing tissue in a hemostat-style instrument
8128624, May 30 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical instrument that directs energy delivery and protects adjacent tissue
8142473, Oct 03 2008 Covidien LP Method of transferring rotational motion in an articulating surgical instrument
8147489, Jan 14 2005 Covidien AG Open vessel sealing instrument
8162973, Aug 15 2008 Covidien LP Method of transferring pressure in an articulating surgical instrument
8192433, Oct 04 2002 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument with electrical cutting mechanism
8197479, Dec 10 2008 Covidien LP Vessel sealer and divider
8197633, Sep 30 2005 Covidien AG Method for manufacturing an end effector assembly
8211105, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical instrument which reduces collateral damage to adjacent tissue
8221416, Sep 28 2007 Covidien LP Insulating boot for electrosurgical forceps with thermoplastic clevis
8235992, Sep 28 2007 Covidien LP Insulating boot with mechanical reinforcement for electrosurgical forceps
8235993, Sep 28 2007 Covidien LP Insulating boot for electrosurgical forceps with exohinged structure
8236025, Sep 28 2007 Covidien LP Silicone insulated electrosurgical forceps
8241282, Jan 24 2006 Covidien LP Vessel sealing cutting assemblies
8241283, Sep 17 2008 Covidien LP Dual durometer insulating boot for electrosurgical forceps
8241284, Apr 06 2001 Covidien AG Vessel sealer and divider with non-conductive stop members
8251996, Sep 28 2007 Covidien LP Insulating sheath for electrosurgical forceps
8257352, Nov 17 2003 Covidien AG Bipolar forceps having monopolar extension
8257387, Aug 15 2008 Covidien LP Method of transferring pressure in an articulating surgical instrument
8267935, Apr 04 2007 Covidien LP Electrosurgical instrument reducing current densities at an insulator conductor junction
8267936, Sep 28 2007 Covidien LP Insulating mechanically-interfaced adhesive for electrosurgical forceps
8277447, Aug 19 2005 Covidien AG Single action tissue sealer
8277475, May 09 2008 Applied Medical Resources Corporation Laparoscopic scissors
8298228, Nov 12 1997 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical instrument which reduces collateral damage to adjacent tissue
8298232, Jan 24 2006 Covidien LP Endoscopic vessel sealer and divider for large tissue structures
8303582, Sep 15 2008 Covidien LP Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
8303586, Nov 19 2003 Covidien AG Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
8317726, May 13 2005 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
8317787, Aug 28 2008 Covidien LP Tissue fusion jaw angle improvement
8333765, Oct 04 2002 Covidien AG Vessel sealing instrument with electrical cutting mechanism
8348948, Mar 02 2004 Covidien AG Vessel sealing system using capacitive RF dielectric heating
8361071, Oct 22 1999 Covidien AG Vessel sealing forceps with disposable electrodes
8361072, Sep 30 2005 Covidien AG Insulating boot for electrosurgical forceps
8366709, Sep 21 2004 Covidien AG Articulating bipolar electrosurgical instrument
8382754, Mar 31 2005 Covidien AG Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
8394095, Sep 30 2005 Covidien AG Insulating boot for electrosurgical forceps
8394096, Nov 19 2003 Covidien AG Open vessel sealing instrument with cutting mechanism
8409197, Dec 13 1994 Boston Scientific Miami Corporation Methods of cutting tissue using a medical instrument
8425504, Oct 03 2006 Covidien LP Radiofrequency fusion of cardiac tissue
8454602, May 07 2009 Covidien LP Apparatus, system, and method for performing an electrosurgical procedure
8469956, Jul 21 2008 Covidien LP Variable resistor jaw
8469957, Oct 07 2008 Covidien LP Apparatus, system, and method for performing an electrosurgical procedure
8469993, Jun 18 2003 Boston Scientific Scimed, Inc Endoscopic instruments
8486107, Oct 20 2008 Covidien LP Method of sealing tissue using radiofrequency energy
8496656, May 15 2003 Covidien AG Tissue sealer with non-conductive variable stop members and method of sealing tissue
8518070, May 09 2008 Applied Medical Resources Corporation Laparoscopic scissors
8523893, Sep 30 2010 Applied Medical Resources Corporation Laparoscopic scissors
8523898, Jul 08 2009 Covidien LP Endoscopic electrosurgical jaws with offset knife
8535312, Sep 25 2008 Covidien LP Apparatus, system and method for performing an electrosurgical procedure
8540711, Apr 06 2001 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider
8551088, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
8551091, Oct 04 2002 Covidien AG Vessel sealing instrument with electrical cutting mechanism
8562598, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
8568411, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
8568444, Oct 03 2008 Covidien LP Method of transferring rotational motion in an articulating surgical instrument
8579894, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
8591506, Oct 23 1998 Covidien AG Vessel sealing system
8597296, Nov 17 2003 Covidien AG Bipolar forceps having monopolar extension
8597297, Aug 29 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing instrument with multiple electrode configurations
8623017, Nov 19 2003 Covidien AG Open vessel sealing instrument with hourglass cutting mechanism and overratchet safety
8623276, Feb 15 2008 Covidien LP Method and system for sterilizing an electrosurgical instrument
8636761, Oct 09 2008 Covidien LP Apparatus, system, and method for performing an endoscopic electrosurgical procedure
8641713, Sep 30 2005 Covidien AG Flexible endoscopic catheter with ligasure
8647341, Jun 13 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealer and divider for use with small trocars and cannulas
8668689, Sep 30 2005 Covidien AG In-line vessel sealer and divider
8672859, May 13 2005 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
8679114, May 01 2003 Covidien AG Incorporating rapid cooling in tissue fusion heating processes
8696667, Sep 28 2007 Covidien LP Dual durometer insulating boot for electrosurgical forceps
8721670, May 09 2008 Applied Medical Resources Corporation Laparoscopic scissors
8734443, Jan 24 2006 Covidien LP Vessel sealer and divider for large tissue structures
8740901, Oct 04 2002 Covidien AG Vessel sealing instrument with electrical cutting mechanism
8764748, Feb 06 2008 Covidien LP End effector assembly for electrosurgical device and method for making the same
8784417, Aug 28 2008 Covidien LP Tissue fusion jaw angle improvement
8795274, Aug 28 2008 Covidien LP Tissue fusion jaw angle improvement
8852183, Jun 05 2009 MICROLINE SURGICAL INC , Scissor tip for bipolar high frequency endoscope
8852228, Jan 13 2009 Covidien LP Apparatus, system, and method for performing an electrosurgical procedure
8858554, May 07 2009 Covidien LP Apparatus, system, and method for performing an electrosurgical procedure
8882766, Jan 24 2006 Covidien AG Method and system for controlling delivery of energy to divide tissue
8898888, Sep 28 2009 Covidien LP System for manufacturing electrosurgical seal plates
8915910, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
8939973, Aug 19 2005 Covidien AG Single action tissue sealer
8945125, Nov 13 2003 Covidien AG Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
8945126, Aug 19 2005 Covidien AG Single action tissue sealer
8945127, Aug 19 2005 Covidien AG Single action tissue sealer
8968314, Sep 25 2008 Covidien LP Apparatus, system and method for performing an electrosurgical procedure
9023043, Sep 28 2007 Covidien LP Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
9028493, Sep 18 2009 Covidien LP In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
9039694, Oct 22 2010 Bolder Surgical, LLC RF generator system for surgical vessel sealing
9095347, Nov 20 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Electrically conductive/insulative over shoe for tissue fusion
9107672, Oct 23 1998 TYCO HEALTHCARE GROUP AG; Covidien AG Vessel sealing forceps with disposable electrodes
9113898, Oct 09 2008 Covidien LP Apparatus, system, and method for performing an electrosurgical procedure
9113903, Jan 24 2006 Covidien LP Endoscopic vessel sealer and divider for large tissue structures
9113905, Jul 21 2008 Covidien LP Variable resistor jaw
9113940, Jan 14 2011 Covidien LP Trigger lockout and kickback mechanism for surgical instruments
9144455, Jun 07 2010 JUST RIGHT SURGICAL, LLC Low power tissue sealing device and method
9149323, May 01 2003 Covidien AG Method of fusing biomaterials with radiofrequency energy
9179929, May 09 2008 Applied Medical Resources Corporation Laparoscopic scissors
9198717, Aug 19 2005 Covidien AG Single action tissue sealer
9198724, Apr 08 2011 Covidien LP Microwave tissue dissection and coagulation
9247988, Jul 21 2008 Covidien LP Variable resistor jaw
9265552, Sep 28 2009 Covidien LP Method of manufacturing electrosurgical seal plates
9314295, Oct 20 2011 Covidien LP Dissection scissors on surgical device
9320563, Oct 01 2010 Applied Medical Resources Corporation Electrosurgical instruments and connections thereto
9345535, May 07 2009 Covidien LP Apparatus, system and method for performing an electrosurgical procedure
9364247, Jul 08 2009 Covidien LP Endoscopic electrosurgical jaws with offset knife
9375254, Sep 25 2008 Covidien LP Seal and separate algorithm
9375270, Oct 23 1998 Covidien AG Vessel sealing system
9375271, Oct 23 1998 Covidien AG Vessel sealing system
9463067, Oct 23 1998 Covidien AG Vessel sealing system
9492221, Oct 20 2011 Covidien LP Dissection scissors on surgical device
9492225, Jun 13 2003 Covidien AG Vessel sealer and divider for use with small trocars and cannulas
9539053, Jan 24 2006 Covidien LP Vessel sealer and divider for large tissue structures
9549775, Sep 30 2005 Covidien AG In-line vessel sealer and divider
9554841, Sep 28 2007 Covidien LP Dual durometer insulating boot for electrosurgical forceps
9566108, Mar 31 2008 Applied Medical Resources Corporation Electrosurgical system
9579145, Sep 30 2005 Covidien AG Flexible endoscopic catheter with ligasure
9585716, Oct 04 2002 Covidien AG Vessel sealing instrument with electrical cutting mechanism
9603652, Aug 21 2008 Covidien LP Electrosurgical instrument including a sensor
9649149, Oct 22 2010 Bolder Surgical, LLC RF generator system for surgical vessel sealing
9655674, Jan 13 2009 Covidien LP Apparatus, system and method for performing an electrosurgical procedure
9681857, Jun 18 2003 Boston Scientific Scimed, Inc. Endoscopic instruments and methods of manufacture
9737357, Apr 06 2001 Covidien AG Vessel sealer and divider
9743945, May 09 2008 Applied Medical Resources Corporation Laparoscopic scissors
9750561, Sep 28 2009 Covidien LP System for manufacturing electrosurgical seal plates
9848938, Nov 13 2003 Covidien AG Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
9861430, Apr 06 2001 Covidien AG Vessel sealer and divider
9918782, Jan 24 2006 Covidien LP Endoscopic vessel sealer and divider for large tissue structures
9931131, Sep 18 2009 Covidien LP In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
9962222, Oct 01 2010 Applied Medical Resources Corporation Electrosurgical instruments and connections thereto
9980770, Nov 20 2003 Covidien AG Electrically conductive/insulative over-shoe for tissue fusion
9987078, Jul 22 2015 Covidien LP Surgical forceps
D499181, May 15 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Handle for a vessel sealer and divider
D525361, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Hemostat style elongated dissecting and dividing instrument
D531311, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Pistol grip style elongated dissecting and dividing instrument
D533942, Jun 30 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Open vessel sealer with mechanical cutter
D535027, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Low profile vessel sealing and cutting mechanism
D541418, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Lung sealing device
D541938, Apr 09 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Open vessel sealer with mechanical cutter
D564662, Oct 13 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Hourglass-shaped knife for electrosurgical forceps
D567943, Oct 08 2004 Sherwood Services AG Over-ratchet safety for a vessel sealing instrument
D575395, Feb 15 2007 Covidien LP Hemostat style elongated dissecting and dividing instrument
D575401, Jun 12 2007 Covidien LP Vessel sealer
D625807, Apr 03 2009 KARL STORZ SE & CO KG Surgical instrument for use in single-access surgery
D625808, Apr 03 2009 KARL STORZ SE & CO KG Surgical instrument for use in single-access surgery
D626225, Apr 03 2009 KARL STORZ SE & CO KG Surgical instrument for use in single-access surgery
D626226, Apr 03 2009 KARL STORZ SE & CO KG Surgical instrument for use in single-access surgery
D626228, Apr 03 2009 KARL STORZ SE & CO KG Surgical instrument for use in single-access surgery
D626229, Apr 03 2009 KARL STORZ SE & CO KG Surgical instrument for use in single-access surgery
D639944, Dec 22 2009 KARL STORZ SE & CO KG Needle holder
D642262, May 11 2010 KARL STORZ SE & CO KG Instrument for laparoscopic procedure
D648434, May 07 2010 KARL STORZ SE & CO KG Forceps inserts for laparoscopic Procedures
D649247, May 11 2010 KARL STORZ SE & CO KG Forceps
D649249, Feb 15 2007 Covidien LP End effectors of an elongated dissecting and dividing instrument
D650076, May 11 2010 KARL STORZ SE & CO KG Instrument for laparoscopic procedure
D652924, May 11 2010 KARL STORZ SE & CO KG Forceps
D655414, May 11 2010 KARL STORZ SE & CO KG Instrument for laparoscopic procedure
D680220, Jan 12 2012 Covidien LP Slider handle for laparoscopic device
D748259, Dec 29 2014 Applied Medical Resources Corporation Electrosurgical instrument
D761961, Nov 07 2014 KARL STORZ SE & CO KG Forceps insert for laparoscopic procedures
D775332, Dec 18 2014 KARL STORZ SE & CO KG Needle holder
D789535, Jun 17 2015 KARL STORZ SE & CO KG Shaft instrument for shaving tissue
D791321, Jun 17 2015 KARL STORZ SE & CO KG Shaft instrument for shaving tissue
D904611, Oct 10 2018 Bolder Surgical, LLC Jaw design for a surgical instrument
D956973, Jun 13 2003 Covidien AG Movable handle for endoscopic vessel sealer and divider
RE44834, Sep 30 2005 Covidien AG Insulating boot for electrosurgical forceps
RE47375, May 15 2003 Coviden AG Tissue sealer with non-conductive variable stop members and method of sealing tissue
Patent Priority Assignee Title
2031682,
3920021,
4016881, Jul 04 1973 Centre de Recherche Industrielle du Quebec Instrument for use in laparoscopic tubal cauterization
4128099, Sep 22 1976 Richard Wolf GmbH Single-pole coagulation forceps
4347842, Feb 15 1980 Disposable electrical surgical suction tube and instrument
4644651, Mar 19 1984 Jacobsen Research Corp. Instrument for gripping or cutting
4819633, Sep 02 1986 RICHARD WOLF GMBH, A CORP OF GERMANY Coagulation forceps
4862890, Feb 29 1988 GYRUS ACMI, INC Electrosurgical spatula blade with ceramic substrate
4953559, Nov 16 1987 Consiglio Nazionale delle Ricerche Catheter for endocardial biopsy, which can also be used for identifying the point of origin of ventricular arrhythmia
5015227, Sep 30 1987 INTEGRA LIFESCIENCES IRELAND LTD Apparatus for providing enhanced tissue fragmentation and/or hemostasis
5026370, Mar 11 1981 Electrocautery instrument
5035248, Apr 23 1987 Polyolefin sheath and silicone O-ring for medical instrument
5082000, Nov 29 1990 Applied Medical Technology, Inc. Biopsy forceps with calde controlled jaws
5085659, Nov 21 1990 Everest Medical Corporation Biopsy device with bipolar coagulation capability
5133727, May 10 1990 SYMBIOSIS CORPORATION A CORP OF FLORIDA Radial jaw biopsy forceps
5147356, Apr 16 1991 MICROSURGE, INC Surgical instrument
5147357, Mar 18 1991 Medical instrument
5160343, Sep 09 1991 Tyco Healthcare Group LP Surgical instruments handle and forceps assembly
5171256, May 10 1990 Symbiosis Corporation Single acting disposable laparoscopic scissors
5171311, Apr 30 1990 Everest Medical Corporation Percutaneous laparoscopic cholecystectomy instrument
5174300, Apr 04 1991 Symbiosis Corporation Endoscopic surgical instruments having rotatable end effectors
5176677, Nov 17 1989 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
5197963, Dec 02 1991 GYRUS ACMI, INC Electrosurgical instrument with extendable sheath for irrigation and aspiration
5197964, Nov 12 1991 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
5207675, Jul 15 1991 AMERICAN SURGICAL INNOVATIONS, LLC Surgical coagulation device
5217458, Apr 09 1992 Everest Medical Corporation Bipolar biopsy device utilizing a rotatable, single-hinged moving element
5217460, Mar 22 1991 NUSURG MEDICAL, INC Multiple purpose forceps
5258006, Aug 21 1992 GYRUS ACMI, INC Bipolar electrosurgical forceps
5312434, Dec 21 1992 Medical instrument
5324289, Jun 07 1991 HEMOSTATIC SURGERY CORPORATION, A CAYMAN ISLANDS COMPANY Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
5330471, Jun 07 1991 HEMOSTATIC SURGERY CORPORATION, A CAYMAN ISLANDS COMPANY Bi-polar electrosurgical endoscopic instruments and methods of use
5540685, Jan 06 1995 Everest Medical Corporation Bipolar electrical scissors with metal cutting edges and shearing surfaces
5743906, Jan 20 1995 Everest Medical Corporation Endoscopic bipolar biopsy forceps
5766166, Mar 07 1995 Atricure, Inc Bipolar Electrosurgical scissors
EP517244,
EP518230,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 03 1996Everest Medical Corporation(assignment on the face of the patent)
Apr 05 2001Everest Medical CorporationGYRUS MEDICAL, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0128020936 pdf
Jul 21 2005GYRUS MEDICAL, INC The Governor and Company of the Bank of ScotlandASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0164080631 pdf
Jul 21 2005GYRUS MEDICAL, INC The Governor and Company of the Bank of ScotlandCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF DOCUMENT ERRONEOUSLY RECORDED AS AN ASSIGNMENT TO RECORDATION OF GRANT OF SECURITY INTEREST PREVIOUSLY RECORDED ON REEL 016408 FRAME 0631 ASSIGNOR S HEREBY CONFIRMS THE RECORDED DOCUMENT WAS A GRANT OF SECURITY INTEREST AND NOT AN ASSIGNMENT OF ASSIGNOR S INTERESTS 0164180162 pdf
Date Maintenance Fee Events
Jun 20 2002M181: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.
Jun 20 2002M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 02 2002R284: Refund - Payment of Maintenance Fee, 8th Yr, Small Entity.
Jul 02 2002STOL: Pat Hldr no Longer Claims Small Ent Stat
Mar 13 2006M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 25 20034 years fee payment window open
Jan 25 20046 months grace period start (w surcharge)
Jul 25 2004patent expiry (for year 4)
Jul 25 20062 years to revive unintentionally abandoned end. (for year 4)
Jul 25 20078 years fee payment window open
Jan 25 20086 months grace period start (w surcharge)
Jul 25 2008patent expiry (for year 8)
Jul 25 20102 years to revive unintentionally abandoned end. (for year 8)
Jul 25 201112 years fee payment window open
Jan 25 20126 months grace period start (w surcharge)
Jul 25 2012patent expiry (for year 12)
Jul 25 20142 years to revive unintentionally abandoned end. (for year 12)