A process for forming a transistor (10) begins by providing a substrate (12). Field oxide regions (14) or equivalent isolation is formed overlying or within the substrate (12). A gate oxide (16) and a conductive layer (18) are formed. A masking layer (20) is formed overlying the conductive layer (18). The masking layer (20) and the conductive layer (18) are etched to form a gate electrode and define a drain region (19) and a source region (21). spacers (22) are formed adjacent the gate electrode. first silicided regions (26) are formed over the source and drain regions (21 and 19 respectively). The masking layer prevents the gate electrode from siliciding. The masking layer (20) is removed and a second silicided region (30) is formed overlying the gate electrode. The second silicided region (30) and the silicided regions (26) are made of different silicides.

Patent
   5352631
Priority
Dec 16 1992
Filed
Dec 16 1992
Issued
Oct 04 1994
Expiry
Dec 16 2012
Assg.orig
Entity
Large
130
6
all paid
1. A method for forming a transistor comprising the steps of:
providing a substrate;
forming a control electrode overlying the substrate, the control electrode having a top portion made of a dielectric material which functions as a masking layer;
forming a sidewall spacer laterally adjacent the control electrode;
forming a source region and a drain region within the substrate and adjacent the control electrode;
forming a first silicided region over the source and the drain regions;
removing the top portion of the control electrode which functions as a masking layer selective to the sidewall spacer to form an exposed portion of the control electrode; and
forming a second silicided region over the exposed portion of the control electrode.
10. A method for forming a metal oxide semiconductor (MOS) transistor comprising the steps of:
providing a substrate;
forming a conductive control electrode layer having a top surface;
forming a dielectric layer overlying the conductive control electrode layer, the dielectric layer being a nitride material;
etching the dielectric layer and the conductive control electrode layer to form a control electrode overlying the substrate, the dielectric layer forming a masking layer over a top portion of the conductive control electrode layer;
forming a source region and a drain region within the substrate;
forming an oxide sidewall spacer laterally adjacent the conductive control electrode;
forming a first silicided region over the source and the drain regions, the first silicided regions being cobalt silicide;
removing the masking layer selective to the oxide sidewall spacer wherein a top portion of the oxide sidewall spacer extends above the top surface of the conductive control electrode; and
forming a second silicided region over the control electrode, the second silicide region being titanium silicide.
16. A method for forming a transistor comprising the steps of:
providing a substrate;
forming a control electrode overlying the substrate, the control electrode having a top portion which functions as a masking layer which prevents silicidation of the control electrode, the top portion which functions as a masking layer being a nitride dielectric material;
forming a source region and a drain region within the substrate and adjacent the control electrode;
forming an oxide sidewall spacer laterally adjacent the control electrode;
forming a first metal layer overlying the source region and the drain region;
forming a first silicided region by heating the first metal layer, the heating reacting the first metal layer with the source region an the drain region to form cobalt silicide which allows for the formation of shallow source and drain regions;
removing the top portion of the control electrode which functions as a masking layer selective to the oxide sidewall spacer wherein a portion of the oxide sidewall spacer extends above the control electrode due to the selectivity of the step of removing;
forming a second metal layer overlying the control electrode; and
forming the second silicided region, which is different form the first silicided region, by heating the second metal layer, the heating reacting the second metal layer with the control electrode to form titanium silicide which reduces lateral doping diffusion of dopant atoms in the control electrode.
2. The method of claim 1 wherein the steps of forming the second silicided region further comprises:
using the second silicided region to reduce lateral doping diffusion of dopant atoms within the control electrode.
3. The method of claim 1 wherein the step of forming the first silicided region comprises:
forming the first silicided region as cobalt salicide; and
the step of forming the second silicided region comprises:
forming the second silicided region as selective titanium salicide.
4. The method of claim 1 wherein the step of forming the first silicided region further comprises:
forming a first metal layer overlying the source and drain regions; and
forming the first silicided region by heating the first metal layer; and
the step of forming the second silicided region further comprises:
forming a second metal layer overlying the control electrode; and
forming the second silicided region by heating the second metal layer.
5. The method of claim 1 further comprising a step of:
vertically elevating the source and drain regions via a selective growth process.
6. The method of claim 1 further comprising a step of:
forming each of the source and drain regions to make the transistor a lightly doped drain (LDD) transistor.
7. The method of claim 1 wherein the step of forming a control electrode comprises:
forming a conductive control electrode layer;
forming a nitride dielectric layer overlying the conductive control electrode layer; and
etching the nitride dielectric layer and the conductive control electrode layer to form the control electrode overlying the substrate, the nitride dielectric layer being the top portion of the control electrode which functions as the masking layer.
8. The method of claim 1 wherein the step of forming the source region and the drain region comprises:
ion implanting the source region and the drain region to form the source region and the drain region self-aligned to the control electrode.
9. The method of claim 1 wherein the step of forming the source and drain regions comprises:
ion implanting the source and drain regions to form source and drain regions within the substrate and simultaneously doping the control electrode.
11. The method of claim 10 wherein the step of forming the first silicided region comprises:
using the first silicide to allow for the ion implantation and diffusion of shallow source and drain regions from the first silicide region.
12. The method of claim 10 wherein the step of forming the first silicided region further comprises:
forming a first metal layer overlying the source and drain regions; and
forming the first silicided region by heating the first metal layer; and
the step of forming the second silicided region further comprises:
forming a second metal layer overlying the control electrode; and
forming the second silicided region by heating the second metal layer.
13. The method of claim 10 further comprising a step of:
vertically elevating the source and drain regions via a selective growth process.
14. The method of claim 10 further comprising a step of:
forming each of the source region and the drain region to make the transistor a lightly doped drain (LDD) transistor.
15. The method of claim 10 wherein the step of forming the source region and the drain region comprises:
ion implanting the source region and the drain region to form both the source region and the drain region within the substrate and simultaneously doping the control electrode.
17. The method of claim 16 wherein the step of forming a control electrode further comprises:
forming a conductive control electrode layer;
forming a nitride dielectric layer overlying the conductive control electrode layer; and
etching the nitride dielectric layer and the conductive control electrode layer to form the control electrode overlying the substrate, the nitride dielectric layer being the top portion of the control electrode which functions as a masking layer.
18. The method of claim 16 wherein the step of forming the first silicided region comprises:
forming the first silicide region as selective cobalt silicide; and
the step of forming the second silicided region comprises: forming the second silicided region as selective titanium silicide.
19. The method of claim 16 wherein the step of forming the source region and the drain region comprises:
ion implanting the source region and the drain region to form the source region and the drain region within the substrate and simultaneously doping the control electrode.
20. The method of claim 16 further comprising a step of:
forming each of the source region and the drain region as a lightly doped drain (LDD) electrode.

The present invention relates generally to semiconductor technology, and more particularly, to a method for forming a transistor having silicided electrodes.

Planar transistors in the integrated circuit industry are usually manufactured onto a semiconductor substrate, such as silicon. The semiconductor substrate, even when doped, is usually more resistive than most metal-containing materials. Resistive contacts and interconnects are not desirable for electrical circuits due to the fact that resistance limits maximum current flow, may create heat, and may result in reduced circuit accuracy, consistency, and performance. Therefore, metal oxide semiconductor (MOS) transistors which have silicided or salicided source regions, drain regions, and gate regions are typically used.

One method for forming a silicided/salicided drain, source, and gate for a transistor starts by providing a substrate. A gate, usually made of polysilicon is formed overlying the substrate. Source and drain regions are ion implanted and self-aligned to the gate. A layer of refractory metal, such as titanium, tantalum, platinum, nickel, and cobalt, is sputtered or deposited over the exposed source, drain, and gate regions. A heating step ranging from 200°C to 650°C, which depends upon the type of metal used, is performed to form a self-aligned silicide region on the gate, drain, and source simultaneously. The silicide on the gate, source, and drain are all formed as the same silicide (i.e. one of either CoSi2, TiSi2, TaSi2, or the like).

There are disadvantages to forming all of a transistor's electrodes (i.e. gate, source, and drain) with a single type of silicide region. For example, some silicides, such as platinum silicide, are not stable at high temperatures and will be damaged during subsequent high temperature processing. Furthermore, one silicide region is usually not advantageous for use with both current electrodes (i.e. source and drain) and gate electrodes. For example, cobalt silicide laterally diffuse dopants quickly at high temperatures (greater than 600°C). This lateral diffusion may counter-dope or alter doping concentrations in gate regions and/or buried contact connection regions. Also, cobalt silicide is less thermally stable on polysilicon than on single crystalline silicon. Cobalt silicides degrade by agglomeration between 850°C and 900°C on polysilicon, whereas cobalt silicides are stable to 1000°C on single crystalline silicon. Therefore, cobalt silicide is not an optimal gate electrode silicide. Titanium silicide has segregation coefficients with dopants such as boron, arsenic, and phosphorus, which results in under-doped or damaged source and drain contact regions, and unwanted titanium boride and/or titanium arsenide compounds formed at the silicide-silicon interface. Therefore, titanium silicide is not optimal for use with source and drain electrodes.

To overcome some of these disadvantages, transistors were formed by another method. This alternative method involved forming one silicide overlying the gate region, and another silicide overlying the source and drain regions. The method starts by providing a silicon substrate. A gate oxide, gate electrode (i.e. polysilicon), and refractory metal stack is formed over the substrate. The gate oxide, gate electrode (i.e. polysilicon), and refractory metal stack is etched, starting with the top refractory metal layer, to define gate electrodes. A heat cycle then reacts the refractory metal layer with the gate electrode to form a first silicide region self-aligned to the gate. A second refractory deposition or sputtering step is used to form a second refractory metal layer over the source and drain regions. A second heat cycle is used to form a second silicide region over the source and drain regions.

This method of forming a first silicided region and a second silicided region for an MOS transistor has some disadvantages. One disadvantage is that the etch processing required to etch a refractory metal over polysilicon is complicated and requires multiple etch steps. The etch steps may result in undercutting of the polysilicon gate and adverse alteration of transistor channel dimensions. The chemistries required for the etching of refractory metals and polysilicon do not result in adequate selectivity in some cases. Therefore, the etch steps used to remove the refractory metal and polysilicon may not consistently end point on a thin (i.e. 40-150 Angstrom) gate oxide, and may result in pitting of the substrate. The etch step described above will leave composite polysilicon/metal stringers (i.e. unwanted spacers) which are well documented in the art. These stringers are usually removed via an isotropic etch or an overetch process. These chemistries, when removing composite stringers are complex and not always successful. In some cases, an aggressive stringer removal process will also attack/damage the silicide regions.

Therefore, the need exists for an improved process which may be used to form a first silicide region for gate electrodes and a second silicide region for source and drain electrodes.

The previously mentioned disadvantages are overcome and other advantages achieved with the present invention. In one form, the present invention comprises a method for forming a transistor. A substrate is provided. A control electrode is formed overlying the substrate. The control electrode is formed having a top portion which functions as a masking layer. A source region and a drain region are formed within the substrate. The source and drain regions are adjacent the control electrode. A first silicided region is formed over the source and the drain regions. The top portion of the control electrode which functions as a masking layer is removed. A second silicided region is formed over the control electrode.

The present invention will be more clearly understood from the detailed description below in conjunction with the accompanying drawings.

FIGS. 1-5 illustrate, in cross-sectional form, a method for forming a transistor having silicided regions in accordance with the present invention;

FIG. 6 illustrates, in cross-sectional form, another transistor having silicided regions in accordance with the present invention;

FIG. 7 illustrates, in cross-sectional form, yet another transistor having silicided regions in accordance with the present invention; and

FIG. 8 illustrates, in cross-sectional form, a magnified view of a bottom portion of a silicided region of FIG. 6.

Illustrated in FIGS. 1-5 is a method for forming a transistor 10. In FIG. 1, a substrate 12 is illustrated. Substrate 12 may be made of silicon, gallium arsenide, silicon on sapphire (SOS), epitaxial formations, germanium, germanium silicon, diamond, silicon on insulator (SOI) material, and/or like substrate materials. Preferably, the substrate 12 is made of silicon. Field oxide regions 14 are formed via conventional and widely known techniques. Other isolation schemes, such as trench isolation, may be used instead of a local oxidation of silicon (LOCOS) field oxide scheme. The dielectric layers described herein may be wet or dry silicon dioxide (SiO2), a nitride material, tetra-ethyl-ortho-silicate (TEOS) based oxides, boro-phosphate-silicate-glass (BPSG), phosphate-silicate-glass (PSG), boro-silicate-glass (BSG), oxide-nitride-oxide (ONO), tantalum pentoxide (Ta2 O5), plasma enhanced silicon nitride (P-SiNx), titanium oxide, oxynitride, and/or like dielectric materials. Specific dielectrics are noted herein when a specific dielectric material is preferred or required.

A gate oxide 16 is formed overlying the substrate 12. Gate oxide 16 is usually formed as a silicon dioxide material, but may be a composite oxide, such as TEOS and silicon dioxide, a nitrided oxide layer, or a like gate dielectric. A control electrode conductive layer 18 is formed overlying the gate oxide 16. In a preferred form, the conductive layer 18 is either polysilicon or amorphous silicon or a combination of both. In some cases, the conductive layer 18 may be made of another semiconductive or conductive material as is well known in the art. Conductive layer 18 may be in-situ doped with dopant atoms or ion implanted with dopant atoms to alter a conductivity of conductive layer 18. Typical dopant atoms are phosphorus, arsenic, and boron, but other atoms, such as germanium atoms, may be ion implanted.

A masking layer 20 is formed overlying the conductive layer 18. The masking layer 20 is preferably a dielectric material, such as nitride, but may be made of another material or a plurality of materials. In general, masking layer 20 may be any material which may be etched selective to field oxide 14 and conductive layer 18. In addition, it would be advantageous if masking layer 20 is also not capable of salicidation or silicidation.

In FIG. 1, the masking layer 20 and the conductive layer 18 are etched via conventional photolithographic, masking, and etch techniques to form a control electrode or gate electrode from conductive layer 18. The gate electrode has a self-aligned protective top portion formed by masking layer 20. The etching, which is used to form the conductive control electrode (i.e. gate), also forms a sidewall of the conductive layer 18.

In FIG. 1, a spacer 22 is formed laterally adjacent the sidewall of the conductive layer 18. A sidewall oxidation step, which is used to isolate the sidewall of the conductive layer 18, may optionally be performed before the spacer 22 is formed. In general, the spacer 22 is formed as a dielectric material which is not significantly etched in the chemistry used to etch masking layer 20. For example, the spacer 22 is a TEOS spacer or a like dielectric spacer if the masking layer 20 is a nitride material (i.e. silicon nitride). A nitride spacer may be used but will not provide the selectivity required to easily manufacture a transistor with a high yield.

Portions of the gate oxide 16 are removed to form exposed portions of the substrate 12. The exposed portions of the substrate 12 are referred to as a drain region 19 and a source region 21. The removal of portions of gate oxide 16 occurs either after the spacer 22 is formed or during formation of the spacer 22. It is known in the art that, in most cases, the source and drain are formed in a symmetrical manner and therefore may be interchanged (i.e. the source may be a drain and the drain may be a source) without affecting the transistor 10 in any manner.

In FIG. 2, a metal layer 24 is formed overlying the source and drain regions 21 and 19. The metal layer 24 is formed by one of either sputtering, chemical vapor deposition (CVD), or evaporation. The metal layer 24 may comprise any metal such as platinum, titanium, tantalum, nickel, cobalt, tungsten, and/or the like. In a preferred form, cobalt is used to form metal layer 24. Cobalt is preferred due to the fact that cobalt silicides have dopant diffusion and segregation coefficients that allow for formation of shallow conformal source and drain junctions.

In FIG. 3, a heating cycle is performed. The heating cycle is used to react the portions of metal layer 24 which overlie the source and drain regions 21 and 19 with the substrate 12. If the metal layer 24 comprises cobalt and the substrate 12 is silicon, then the cobalt reacts with the silicon within regions 21 and 19 to form cobalt silicide (CoSi2). Typical heat cycle temperatures for silicide/salicide formation range From 200°C to 700°C depending on the type of metal used. In all cases, silicided regions 26 (also referred to as salicided regions in some cases) are formed within regions 19 and 21 via the heating cycle. All unreacted portions of the metal layer 24 are removed via known etch techniques without removing the silicided regions 26. For example, cobalt may be etched using an HCl and water isotropic etch chemistry.

It is important to note that the masking layer 20 prevents the conductive layer 18 (i.e. gate) from being silicided/salicided in FIG. 3.

At this point in time, an ion implant step illustrated in FIG. 3 may be used to dope the silicide regions 26 with dopant atoms. Either boron, arsenic, or phosphorus may be used alone or in any combination as the dopant atoms. Therefore, either an N-channel transistor or a P-channel transistor may be formed. In a preferred form, the dopant atoms are ion implanted at an energy which places the dopant atoms only in the silicided regions 26. Another healing cycle is used to drive the dopant atoms from the silicided regions 26 into the substrate 12 to form current electrodes 32 (i.e. a source and a drain electrode). In another form, the ion implant of the dopant atoms may be performed at a high energy to ensure that the dopant atoms penetrate the silicided regions 26 and form current electrodes 32. It is important to note that the ion implantation of the silicided regions 26 to form current electrodes 32 may be performed at any point in time in the process of FIGS. 1-5. A self-aligned process is preferred but is optional.

In addition, the ion implant step which is used to form the current electrodes 32 may optionally be used to dope the conductive layer 18 simultaneously. In some cases, simultaneously doping the source, drain, and gale in one implant is advantageous because masking and implant steps are reduced. In other cases, the doping of the source/drain and gate are very critical to transistor performance and must be independently doped for optimal operation. The ion implanting of the gate may be performed through the masking layer 20 or may be performed after the masking layer 20 is removed (see FIG. 4).

In FIG. 4, the masking layer 20 is removed and a second metal layer 28 is formed overlying the conductive layer 18. If any stringers (not illustrated) result from the removal of the masking layer 20, a selective isotropic etch, such as hot phosphoric, may be used to remove the stringers. An optional thermal oxidation step may be used to isolate the silicided regions 26 from the metal layer 28. Metal layer 28 is formed via sputtering, chemical vapor deposition (CVD), or evaporation. In a preferred form, the metal layer 28 comprises a refractory metal such as titanium.

In the art, it is known that if an N-channel transistor is formed with an N type gate electrode, superior performance results. In a like manner, if a P-channel transistor is formed with a P type gate electrode, superior performance results. Therefore, in an ideal complementary metal oxide semiconductor (CMOS) process, the gates of P-channel transistors are doped differently from the gates of N-channel transistors. Unfortunately, silicided gate electrodes, which are usually formed in a single polysilicon level, tend to laterally diffuse dopant atoms. This lateral diffusion results in N type dopant areas counter-doping P type dopant areas and vice-versa. This counter-doping results in undesirable reduced conductivity of the gate electrode and gate interconnects and a reduction in the performance. It is known that titanium silicide reduces the unwanted lateral dopant diffusion (i.e. counter-doping). Therefore, titanium is a preferred metal for forming the metal layer 28.

In FIG. 4, the spacers 22 are illustrated as rising above a top surface of the conductive layer 18. This characteristic of spacer 22 may be advantageous due to the fact that the spacer 22, when raised vertically above a top portion of the conductive layer 18, will function to impede lateral and sidewall silicidation/salicidation and encroachment. If this characteristic of spacer 22 is not desired, a brief reactive ion etch (RIE) etch or the like may be used to shorten the height of the spacers 22.

In FIG. 5, a heating cycle is used to react the metal layer 28 with the conductive layer 18 to form a silicided region 30. It is important to note that the silicided regions 26 and the silicided region 30 are formed via different metal materials (i.e. preferably cobalt and titanium respectively). Therefore, the silicide over the gate and the silicide over the source and drain regions are optimized. Unreacted portions of metal layer 28 may be removed via an NH4 OH/H2 O2 combination.

As stated previously, there are disadvantages to forming all of the electrodes (i.e. gate, source, and drain) with a single type of silicide region. Some silicides, such as platinum silicide, are not stable at high temperatures and will be damaged during subsequent high temperature processing. Furthermore, one silicide region is usually not advantageous for use on both current electrodes (i.e. source and drain) and gate electrodes. For example, cobalt silicide laterally diffuses dopants quickly at higher temperatures, but allows for shallow, high performance source and drain formation. Therefore, cobalt silicide is not an optimal gate electrode silicide but is a good silicide region for both sources and drains when compared to other silicides. Titanium silicide has segregation coefficients with dopants such as boron, arsenic, and phosphorus, which result in under-doped or damaged source and drain contact regions. Damage may result due to the fact that standard ion implants must either go through the titanium silicide or be performed before the titanium silicide is formed, thereby resulting in substrate damage. Titanium silicide is therefore not optimal for a source/drain silicide region. Conversely, titanium silicide laterally diffuses dopant atoms less than most other silicides and is therefore a better gate silicide than most other silicides. Therefore, the process taught herein may be used to form a transistor which has superior performance over a single silicided transistor.

Furthermore, conventional processes which are used to form gate silicides which are different from source/drain silicides have various disadvantages. The other processes require complex etch processing in order to etch a refractory metal over polysilicon. Multiple etch steps and etch equipment may be required. The prior art etch steps may result in undercutting of the polysilicon gate and adverse alteration of transistor channel dimensions. The prior art chemistries required to etch the refractory metals and polysilicon do not result in adequate selectivity in some cases. Therefore, the etch steps used to remove the refractory metal and polysilicon may not consistently end point on a thin (i.e. 80-150 Angstroms) gate oxide, and may result in pitting of the substrate. The prior art etch steps will leave composite metal/polysilicon stringers (i.e. undesirable spacers) which are well documented in the art. These stringers are usually removed via an isotropic etch or overetch process. If an aggressive etch is used for stringer removal, then the silicide regions may be etched, removed, or damaged. Furthermore, removing composite stringers is difficult and not always successful.

The process taught herein allows for improved formation of the gate electrode and silicided regions (i.e. no multiple complex etch steps are required). In addition, stringers may be removed after the gate etch by using simple and repeatable etch processing, unlike the prior art. In general, the process taught herein is more reliable than existing double silicide transistor processes. Furthermore, titanium silicide and cobalt silicide are both stable at high temperatures (i.e. temperatures greater than 800°C).

FIG. 6 illustrates that the spacers 22 may be used to form lightly doped drain (LDD) regions 34. LDD regions are well known in the art and may be easily integrated into the process taught herein.

In FIG. 7, a selective or epitaxial growth step is used to vertically elevate the surface of the source and drain electrodes within regions 36. Elevated source and drain technology is well known in the art and may be easily integrated into the process taught herein.

FIG. 8 illustrates a magnified view of a portion of FIG. 6. FIG. 8 illustrates that cobalt silicide (i.e. silicided regions 26) diffuses shallow junctions into the substrate 12 (i.e. source and drain regions 32 are vertically thin). Cobalt silicide forms a rough interface with silicon, as illustrated in FIG. 8. Normally, this interface could cause difficulties when ion implanting the source and drain regions 32. If the ion implant step illustrated in FIG. 3 is of low enough energy to confine the dopant atoms to the silicide regions 26, then a heating cycle may be used to drive the dopant atoms out of the silicide to form shallow source/drain junctions as illustrated in FIG. 8. The source and drain electrodes follow the surface contour of the silicide regions 26 and form a shallow junction. In addition, by ion implanting only into the silicide regions 26, ion implant damage is localized in the silicide and no ion implant damage results within the substrate 12 or the current electrodes. Damage to the substrate 12 or the current electrodes may result in degradation of transistor performance.

It is important to note that the FIGS. 1-8 may not be completely drawn to scale. In most cases, gate oxide layers and silicided regions are thinner than illustrated.

While the present invention has been illustrated and described with reference to specific embodiments, further modifications and improvements will occur to those skilled in the art. For example, the method taught herein may be used to form devices other than transistors, such as electrically erasable programmable read only memories (EEPROMs), electrically programmable read only memories (EPROMs), flash EPROMs, thyristers, diodes, thin film transistors (TFTs), and the like. Many refractory metals and silicides exist and may be used with the process taught herein. Many different structures of transistors exist in the art and may be double salicided/silicided as taught herein. Gate electrodes may be doped prior to patterning, after patterning, or simultaneously with the source and drain. Thermal oxidation processes may be performed on the source and drain before removal of masking layers for added substrate protection. It is to be understood, therefore, that this invention is not limited to the particular forms illustrated and that it is intended in the appended claims to cover all modifications that do not depart from the spirit and scope of this invention.

Pfiester, James R., Sitaram, Arkalgud R.

Patent Priority Assignee Title
10685888, Sep 08 2016 International Business Machines Corporation Low resistance source-drain contacts using high temperature silicides
10825740, Sep 08 2016 International Business Machines Corporation Low resistance source-drain contacts using high temperature silicides
11062956, Sep 08 2016 International Business Machines Corporation Low resistance source-drain contacts using high temperature silicides
11088033, Sep 08 2016 International Business Machines Corporation Low resistance source-drain contacts using high temperature silicides
5447872, Oct 27 1993 Matsushita Electric Industrial Co., Ltd. Manufacturing method of CMOS transistor including heat treatments of gate electrodes and LDD regions at reducing temperatures
5447875, Apr 22 1993 Texas Instruments Incorporated Self-aligned silicided gate process
5468662, Oct 02 1992 Texas Instruments Incorporated Method of making thin film transistor and a silicide local interconnect
5496750, Sep 19 1994 Texas Instruments Incorporated Elevated source/drain junction metal oxide semiconductor field-effect transistor using blanket silicon deposition
5605854, Feb 20 1996 TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. Integrated Ti-W polycide for deep submicron processing
5635426, Aug 26 1993 Fujitsu Semiconductor Limited Method of making a semiconductor device having a silicide local interconnect
5641708, Jun 07 1994 SGS-Thomson Microelectronics, Inc. Method for fabricating conductive structures in integrated circuits
5661052, Mar 30 1995 NEC Electronics Corporation Method of fabricating semiconductor device having low-resistance gate electrode and diffusion layers
5672530, Mar 22 1993 Sharp Laboratories of America, Inc Method of making MOS transistor with controlled shallow source/drain junction
5686331, Dec 29 1995 LG Semicon Co., Ltd. Fabrication method for semiconductor device
5705417, Jun 19 1996 Vanguard International Semiconductor Corporation Method for forming self-aligned silicide structure
5723377, Jun 13 1995 NEC Electronics Corporation Process for manufacturing a semiconductor device including a silicidation step
5752032, Nov 21 1995 Altera Corporation Adaptive device driver using controller hardware sub-element identifier
5753557, Oct 07 1996 Vanguard International Semiconductor Company Bridge-free self aligned silicide process
5766997, Nov 30 1909 Fujitsu Semiconductor Limited Method of forming floating gate type non-volatile semiconductor memory device having silicided source and drain regions
5770512, Mar 27 1995 Kabushiki Kaisha Toshiba Semiconductor device
5773347, Mar 25 1994 Mitsubishi Denki Kabushiki Kaisha Method of maufacturing field effect transistor
5824588, Jun 27 1996 Intel Corporation Double spacer salicide MOS process and device
5824600, Jan 19 1993 LG SEMICON CO , LTD Method for forming a silicide layer in a semiconductor device
5869359, Aug 20 1997 Process for forming silicon on insulator devices having elevated source and drain regions
5872039, Dec 30 1995 NEC Electronics Corporation Semiconductor device and manufacturing method of the same
5883003, May 19 1994 Renesas Electronics Corporation Method for producing a semiconductor device comprising a refractory metal silicide layer
5883010, Aug 07 1997 National Semiconductor Corporation Method for protecting nonsilicided surfaces from silicide formation using spacer oxide mask
5891784, Nov 05 1993 Bell Semiconductor, LLC Transistor fabrication method
5918141, Jun 20 1997 National Semiconductor Corporation Method of masking silicide deposition utilizing a photoresist mask
5932913, Mar 22 1993 Sharp Laboratories of America, Inc MOS transistor with controlled shallow source/drain junction, source/drain strap portions, and source/drain electrodes on field insulation layers
5933741, Aug 18 1997 Vanguard International Semiconductor Corporation Method of making titanium silicide source/drains and tungsten silicide gate electrodes for field effect transistors
5937300, Oct 12 1994 NEC Electronics Corporation Semiconductor apparatus and fabrication method thereof
5981365, Mar 10 1998 Advanced Micro Devices, Inc. Stacked poly-oxide-poly gate for improved silicide formation
5985702, Oct 07 1994 Micron Technology, Inc, Methods of forming conductive polysilicon lines and bottom gated thin film transistors, and conductive polysilicon lines and thin film transistors
5998248, Jan 25 1999 International Business Machines Corporation Fabrication of semiconductor device having shallow junctions with tapered spacer in isolation region
5998273, Jan 25 1999 International Business Machines Corporation Fabrication of semiconductor device having shallow junctions
6004878, Feb 12 1998 National Semiconductor Corporation Method for silicide stringer removal in the fabrication of semiconductor integrated circuits
6009476, Nov 21 1995 Altera Corporation Device driver architecture supporting emulation environment
6015741, Feb 03 1998 United Microelectronics Corp. Method for forming self-aligned contact window
6020610, May 02 1997 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
6022771, Jan 25 1999 International Business Machines Corporation Fabrication of semiconductor device having shallow junctions and sidewall spacers creating taper-shaped isolation where the source and drain regions meet the gate regions
6025242, Jan 25 1999 International Business Machines Corporation Fabrication of semiconductor device having shallow junctions including an insulating spacer by thermal oxidation creating taper-shaped isolation
6054386, Aug 20 1997 Process for forming silicon-on-insulator devices using a nitriding agent
6124189, Mar 14 1997 Kabushiki Kaisha Toshiba Metallization structure and method for a semiconductor device
6137127, Aug 07 1997 FOVEON, INC Low leakage active pixel using spacer protective mask compatible with CMOS process
6153456, Jan 14 1998 NXP B V Method of selectively applying dopants to an integrated circuit semiconductor device without using a mask
6156627, Apr 13 1994 Semiconductor Energy Laboratory Co., Ltd. Method of promoting crystallization of an amorphous semiconductor film using organic metal CVD
6165826, Dec 23 1994 Intel Corporation Transistor with low resistance tip and method of fabrication in a CMOS process
6184117, Feb 03 1998 United Microelectronics Corp Method for reducing lateral silicide formation for salicide process by additional capping layer above gate
6200835, Oct 07 1994 Micron Technology, Inc. Methods of forming conductive polysilicon lines and bottom gated thin film transistors, and conductive polysilicon lines and thin film transistors
6200871, Aug 30 1994 Texas Instruments Incorporated High performance self-aligned silicide process for sub-half-micron semiconductor technologies
6204521, Aug 28 1998 Micron Technology, Inc. Thin film transistors
6211026, Dec 01 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming integrated circuitry, methods of forming elevated source/drain regions of a field effect transistor, and methods of forming field effect transistors
6238986, Nov 06 1998 GLOBALFOUNDRIES Inc Formation of junctions by diffusion from a doped film at silicidation
6239471, Dec 10 1996 Renesas Electronics Corporation MIS transistor and manufacturing method thereof
6242330, Dec 19 1997 GLOBALFOUNDRIES Inc Process for breaking silicide stringers extending between silicide areas of different active regions
6242354, Feb 12 1998 National Semiconductor Corporation Semiconductor device with self aligned contacts having integrated silicide stringer removal and method thereof
6271133, Apr 12 1999 Chartered Semiconductor Manufacturing Ltd. Optimized Co/Ti-salicide scheme for shallow junction deep sub-micron device fabrication
6281085, Jun 28 1999 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a semiconductor device
6287924, Sep 21 1998 Texas Instruments Incorporated Integrated circuit and method
6289396, Nov 21 1995 Altera Corporation Dynamic programmable mode switching device driver architecture
6342422, Apr 30 1999 ACER SEMICONDUCTOR MANUFACTURING INC ; TSMC-ACER Semiconductor Manufacturing Corporation; TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Method for forming MOSFET with an elevated source/drain
6348413, Sep 21 1998 Advanced Micro Devices, Inc. High pressure N2 RTA process for TiS2 formation
6372591, Dec 03 1997 Renesas Electronics Corporation Fabrication method of semiconductor device using ion implantation
6376342, Sep 27 2000 Vanguard International Semiconductor Corporation Method of forming a metal silicide layer on a source/drain region of a MOSFET device
6380040, Aug 02 1999 GLOBALFOUNDRIES Inc Prevention of dopant out-diffusion during silicidation and junction formation
6380057, Feb 13 2001 GLOBALFOUNDRIES U S INC Enhancement of nickel silicide formation by use of nickel pre-amorphizing implant
6391767, Feb 11 2000 Advanced Micro Devices, Inc. Dual silicide process to reduce gate resistance
6393495, Nov 21 1995 Altera Corporation Modular virtualizing device driver architecture
6423634, Apr 25 2000 Advanced Micro Devices, Inc. Method of forming low resistance metal silicide region on a gate electrode of a transistor
6444529, Dec 01 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming integrated circuitry and methods of forming elevated source/drain regions of a field effect transistor
6458678, Jul 25 2000 Advanced Micro Devices, Inc. Transistor formed using a dual metal process for gate and source/drain region
6465313, Jul 05 2001 Advanced Micro Devices, Inc. SOI MOSFET with graded source/drain silicide
6515338, Jun 30 1997 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method therefor
6518153, Jun 10 1999 Nanya Technology Corporation Method for making gate electrodes of low sheet resistance for embedded dynamic random access memory devices
6525378, Jun 13 2001 Advanced Micro Devices, Inc. Raised S/D region for optimal silicidation to control floating body effects in SOI devices
6562717, Oct 05 2000 Advanced Micro Devices, Inc. Semiconductor device having multiple thickness nickel silicide layers
6620718, Apr 25 2000 Advanced Micro Devices, Inc. Method of forming metal silicide regions on a gate electrode and on the source/drain regions of a semiconductor device
6642119, Aug 08 2002 GLOBALFOUNDRIES U S INC Silicide MOSFET architecture and method of manufacture
6660600, Jan 26 2001 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming integrated circuitry, methods of forming elevated source/drain regions of a field effect transistor, and methods of forming field effect transistors
6664592, Jun 30 1997 Kabushiki Kaisha Toshiba Semiconductor device with groove type channel structure
6737710, Jun 30 1999 BEIJING XIAOMI MOBILE SOFTWARE CO , LTD Transistor structure having silicide source/drain extensions
6767812, Jun 14 2001 LAPIS SEMICONDUCTOR CO , LTD Method of forming CVD titanium film
6815235, Nov 25 2002 GLOBALFOUNDRIES U S INC Methods of controlling formation of metal silicide regions, and system for performing same
6821887, Jul 31 2002 Advanced Micro Devices, Inc. Method of forming a metal silicide gate in a standard MOS process sequence
6822303, Aug 22 1997 Micron Technology, Inc. Titanium boride gate electrode and interconnect
6974763, Apr 13 1994 Semiconductor Energy Laboratory Co., Ltd. Method of forming semiconductor device by crystallizing amorphous silicon and forming crystallization promoting material in the same chamber
7081655, Dec 03 2003 INNOVATIVE FOUNDRY TECHNOLOGIES LLC Formation of abrupt junctions in devices by using silicide growth dopant snowplow effect
7115464, Mar 01 2002 GLOBALFOUNDRIES U S INC Semiconductor device having different metal-semiconductor portions formed in a semiconductor region and a method for fabricating the semiconductor device
7217657, Feb 28 2002 GLOBALFOUNDRIES Inc Semiconductor device having different metal silicide portions and method for fabricating the semiconductor device
7226859, Feb 28 2002 Advanced Micro Devices, Inc. Method of forming different silicide portions on different silicon-containing regions in a semiconductor device
7250667, Mar 01 2004 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Selectable open circuit and anti-fuse element
7294893, Aug 22 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Titanium silicide boride gate electrode
7306998, Dec 03 2003 INNOVATIVE FOUNDRY TECHNOLOGIES LLC Formation of abrupt junctions in devices by using silicide growth dopant snowplow effect
7446379, Mar 18 2004 Infineon Technologies AG Transistor with dopant-bearing metal in source and drain
7495290, Dec 14 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
7510943, Dec 16 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
7638427, Jan 28 2005 STMICROELECTRONICS CROLLES 2 SAS MOS transistor with fully silicided gate
7709901, Dec 06 2004 Infineon Technologies AG CMOS transistor and method of manufacture thereof
7749832, Dec 14 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
7863619, Oct 01 1993 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method for manufacturing the same
7964460, Dec 20 2004 Infineon Technologies AG Method of manufacturing an NMOS device and a PMOS device
7973369, Dec 14 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
8004047, Dec 16 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
8017484, Mar 21 2005 Infineon Technologies AG Transistor device and methods of manufacture thereof
8026135, Aug 15 2007 Texas Instruments Incorporated Formation of shallow junctions by diffusion from a dielectric doped by cluster or molecular ion beams
8053778, Oct 01 1993 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method for manufacturing the same
8169033, Dec 14 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
8178902, Jun 17 2004 Infineon Technologies AG CMOS transistor with dual high-k gate dielectric and method of manufacture thereof
8188551, Sep 30 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
8269289, Mar 21 2005 Infineon Technologies AG Transistor device and methods of manufacture thereof
8324693, Oct 01 1993 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method for manufacturing the same
8390080, Mar 18 2004 Infineon Technologies AG Transistor with dopant-bearing metal in source and drain
8399934, Dec 20 2004 Infineon Technologies AG Transistor device
8476678, Jun 17 2004 Infineon Technologies AG CMOS Transistor with dual high-k gate dielectric
8574980, Apr 27 2007 Texas Instruments Incorporated Method of forming fully silicided NMOS and PMOS semiconductor devices having independent polysilicon gate thicknesses, and related device
8580663, Aug 15 2007 Texas Instruments Incorporated Formation of shallow junctions by diffusion from a dielectronic doped by cluster or molecular ion beams
8637357, Jun 17 2004 Infineon Technologies AG CMOS Transistor with dual high-k gate dielectric and method of manufacture thereof
8669154, Dec 20 2004 Infineon Technologies AG Transistor device and method of manufacture thereof
8685814, Dec 20 2004 Infineon Technologies AG Transistor device and method of manufacture thereof
8722473, Sep 30 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
8729633, Jun 17 2004 Infineon Technologies AG CMOS transistor with dual high-k gate dielectric
8841192, Jun 26 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming silicide regions and resulting MOS devices
8975672, Nov 09 2011 United Microelectronics Corp. Metal oxide semiconductor transistor and manufacturing method thereof
9219140, Nov 09 2011 United Microelectronics Corp. Metal oxide semiconductor transistor and manufacturing method thereof
9269635, Jun 17 2004 Infineon Technologies AG CMOS Transistor with dual high-k gate dielectric
9659962, Sep 30 2005 Infineon Technologies AG Semiconductor devices and methods of manufacture thereof
9875901, Nov 09 2011 United Microelectronics Corp. Manufacturing method of metal oxide semiconductor transistor
9899494, Jun 26 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming silicide regions and resulting MOS devices
9947758, Jun 26 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Forming silicide regions and resulting MOS devices
Patent Priority Assignee Title
4877755, May 31 1988 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE Method of forming silicides having different thicknesses
4912061, Apr 04 1988 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method of forming a salicided self-aligned metal oxide semiconductor device using a disposable silicon nitride spacer
5034348, Aug 16 1990 International Business Machines Corp.; International Business Machines Corporation Process for forming refractory metal silicide layers of different thicknesses in an integrated circuit
5118639, May 29 1990 Motorola, Inc. Process for the formation of elevated source and drain structures in a semiconductor device
JP1300543,
JP60235473,
////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 10 1992PFIESTER, JAMES R Motorola, IncASSIGNMENT OF ASSIGNORS INTEREST 0063780501 pdf
Dec 10 1992SITARAM, ARKALGUD R Motorola, IncASSIGNMENT OF ASSIGNORS INTEREST 0063780501 pdf
Dec 16 1992Motorola, Inc.(assignment on the face of the patent)
Apr 04 2004Motorola, IncFreescale Semiconductor, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0156980657 pdf
Dec 01 2006Freescale Semiconductor, IncCITIBANK, N A AS COLLATERAL AGENTSECURITY AGREEMENT0188550129 pdf
Dec 01 2006FREESCALE ACQUISITION CORPORATIONCITIBANK, N A AS COLLATERAL AGENTSECURITY AGREEMENT0188550129 pdf
Dec 01 2006FREESCALE ACQUISITION HOLDINGS CORP CITIBANK, N A AS COLLATERAL AGENTSECURITY AGREEMENT0188550129 pdf
Dec 01 2006FREESCALE HOLDINGS BERMUDA III, LTD CITIBANK, N A AS COLLATERAL AGENTSECURITY AGREEMENT0188550129 pdf
Apr 13 2010Freescale Semiconductor, IncCITIBANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0243970001 pdf
Aug 14 2012Freescale Semiconductor, IncZOZO MANAGEMENT, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0340340236 pdf
Dec 19 2014ZOZO MANAGEMENT, LLCApple IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0347320019 pdf
Dec 07 2015CITIBANK, N A , AS COLLATERAL AGENTFreescale Semiconductor, IncPATENT RELEASE0373540225 pdf
Date Maintenance Fee Events
Mar 12 1998M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 28 2002M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 28 2006M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 04 19974 years fee payment window open
Apr 04 19986 months grace period start (w surcharge)
Oct 04 1998patent expiry (for year 4)
Oct 04 20002 years to revive unintentionally abandoned end. (for year 4)
Oct 04 20018 years fee payment window open
Apr 04 20026 months grace period start (w surcharge)
Oct 04 2002patent expiry (for year 8)
Oct 04 20042 years to revive unintentionally abandoned end. (for year 8)
Oct 04 200512 years fee payment window open
Apr 04 20066 months grace period start (w surcharge)
Oct 04 2006patent expiry (for year 12)
Oct 04 20082 years to revive unintentionally abandoned end. (for year 12)