A leadframe (10) formed by a method including providing a preform of silicon carbide, placing the preform in a mold, injecting a liquefied metal, such as aluminum, into the mold to fill the mold and infiltrate the preform, using heat and pressure. The mold defines a mounting area (12) in which the preform is positioned, and a plurality of leads (20, 22, 28, 29).
|
1. A leadframe for semiconductor devices comprising:
a semiconductor device mounting area formed of a metal impregnated silicon carbide; and a plurality of electrically conductive leads substantially comprised of a metal coupled to said mounting area.
6. A semiconductor package comprising: a semiconductor device having electrical terminals;
a leadframe including a semiconductor device mounting area with a first surface and an opposing surface, formed of a metal impregnated silicon carbide and having a coefficient of thermal expansion substantially similar to a semiconductor material and a plurality of electrically conductive leads integrally formed with said mounting area, said plurality of electrically condutuctive leads comprised substantially of a metal; the semiconductor device being mounted on the mounting area of the leadframe with at least some of the electrical terminals electrically connected to the plurality of electrically conductive leads; and an encapsulating material surrounding the device and the mounting area with leads and the opposing surface exposed.
3. A leadframe as claimed in
4. A leadframe as claimed in
5. A leadframe as claimed in
7. A semiconductor package as claimed in
8. A semiconductor package as claimed in
10. A semiconductor package as claimed in
|
This invention relates to semiconductor packaging and, more particularly, the present invention relates to an improved leadframe.
In the electronics industry a semiconductor die will often be mounted on a leadframe and encapsulated for protection from atmospheric conditions as well as mechanical damage. The leadframe may be inexpensively stamped from a sheet of electrically conductive material such as copper. The finished component is inexpensive when compared with other packaging methods, and quickly produced.
While a simple leadframe may be sufficient for some semiconductor dies, many semiconductor dies often generate heat which must be dispelled. To dispel this heat a heat sink is employed. The heat sink must be thermally conductive to carry the heat from the semiconductor die. Generally a metal is used for this element. This is where problems with current leadframes develop. In order to dispel the generated heat, the heat sink must be in contact with the semiconductor die or coupled thereto by a thermally conductive material. It is conventional practice to form a back metal on a semiconductor die so that the die can be soldered to a heat sink. Current techniques in leadframe technology utilize copper as the leadframe material, having a mounting area on which a die is mounted. Copper provides good thermal conductivity at a low cost and may act as a heat sink or couple the die to the heat sink. While the heat sink effectively carries heat from the die, the coefficient of thermal expansion (CTE) of the die is much less than the heat sink or copper mounting area. This mismatch in CTE may result in damage to the die or the bond holding the die to the heat sink during temperature cycling. In very small devices the differences in the CTE may not result in any damage, but as the size of the die increases, the mismatch in CTE becomes very important.
The problems mentioned above are prevalent in silicon semiconductor dies over 0.150 inches on a side, and are compounded when a gallium arsenide (GaAs) die is employed. GaAs dies are thin and extremely brittle. The CTE mismatch with copper causes breakage of the die as stresses are relieved and differential expansion and contraction occurs. While GaAs dies no larger than 0.050 inches on a side may be mounted on a copper leadframe, larger dies will be damaged. Due to the need for more functionality and more power, small dies are the extreme minority today.
It would be highly advantageous, therefore, to remedy the foregoing and other deficiencies inherent in the prior art.
Accordingly, it is an object of the present invention to provide a new and improved leadframe.
Another object of the present invention is to provide a leadframe having a CTE substantially matched to silicon and GaAs.
And another object of the present invention is to provide a leadframe having good thermal conductivity for high power.
Still another object of the present invention is to provide a leadframe which is relatively inexpensive.
Yet another object of the present invention is to provide a lightweight leadframe.
Yet another object of the present invention is to provide a leadframe which can be employed with GaAs dies.
Briefly, to achieve the desired objects of the present invention in accordance with a preferred embodiment thereof, provided is a method of fabricating a leadframe including the steps of providing a preform of silicon carbide, placing the preform in a mold, injecting a liquefied metal into the mold to fill the mold and infiltrate the preform, and subjecting the mold and the metal to heat and pressure. The mold defines a mounting area in which the preform is positioned, and a plurality of leads.
In a specific embodiment, a method a fabricating a semiconductor package is disclosed which includes the steps of providing a leadframe having a mounting area formed of aluminum silicon carbide with a plurality of aluminum leads, placing a semiconductor device on the mounting area, and encapsulating the semiconductor device and leadframe with the plurality of leads and an opposing surface of the mounting area exposed.
Further, a leadframe for semiconductor devices is disclosed which includes a semiconductor device mounting area formed of a metal impregnated silicon carbide and having a coefficient of thermal expansion substantially similar to a semiconductor material, and a plurality of electrically conductive leads integrally formed with the mounting area.
In a specific embodiment, a semiconductor package is disclosed including a semiconductor device, a leadframe with a semiconductor device mounting area formed of a metal impregnated silicon carbide and having a coefficient of thermal expansion substantially similar to a semiconductor material and a plurality of electrically conductive leads integrally formed with the mounting area, and an encapsulating material surrounding the device and the mounting area with leads and an opposing surface exposed.
The foregoing and further and more specific objects and advantages of the instant invention will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment thereof, taken in conjunction with the drawings, in which:
FIG. 1 is a top plan of a leadframe constructed in accordance with the teachings of the present invention;
FIG. 2 is a top plan of a mold for a plurality of leadframes, as shown in FIG. 1, in a manufacturing configuration; and
FIG. 3 is a sectional side view of a semiconductor package in accordance with the teachings of the present invention.
Turning now to the drawings in which like reference characters indicate corresponding elements throughout the several views, attention is first directed to FIG. 1 which illustrates a leadframe generally designated 10. Leadframe 10 includes a semiconductor die mounting area 12 formed of a metal impregnated material having a coefficient of thermal expansion substantially similar to a semiconductor material, such as silicon, gallium arsenide, silicon carbide, etc. Generally, the coefficient of thermal expansion of the mounting area is less than or equal to approximately 10 parts per million per degree Celsius. Also, in the preferred embodiment, mounting area 12 is formed of material which is a good heat conductor, generally greater than 170 watts per meter degree Celcius, such as silicon carbide. Leadframe 10 further includes a plurality of electrically conductive leads (to be described in more detail presently) integrally formed with or coupled to a portion of mounting area 12 and a frame 14 forming an interconnected network with the leads in order to maintain structural integrity during fabrication and assembly. After encapsulation, which will be described below, frame 14 is trimmed in a well known manner, separating individual the leads from one another.
In the specific embodiment illustrated in FIG. 1, semiconductor die mounting area 12 is substantially rectangular and preferably formed of aluminum silicon carbide (e.g., silicon carbide impregnated with aluminum) which has very good thermal conductivity and a coefficient of thermal expansion substantially similar to that of semiconductor material such as gallium arsenide, silicon, etc. Preferably, the coefficient of thermal expansion of mounting area 12 is less than approximately 8 parts per million. It will be understood that other metals, such as copper, may be employed, but it has been found that aluminum provides the desired characteristics and is therefore preferred. A pair of leads 20 and 22 extend from opposite ends of mounting area 12 and can be used as a common connection, such as ground, for circuitry formed in semiconductor dies mounted on mounting area 12.
Two bonding pads 26 and 27 are positioned with one each on opposing sides of mounting area 12 and spaced from mounting area 12, for receiving connecting wires which will be described in more detail below. Two leads 28 and 29 extend from bonding pads 26 and 27, respectively. In some embodiments, bonding pads may be positioned under, or close enough to a semiconductor die mounted on mounting area 12 to make it desirable to have a coefficient of thermal expansion similar to the semiconductor die. In the embodiment illustrated, for example, bonding pads 26 and 27 are also formed of aluminum impregnated silicon carbide so that they will not create stress on the package after encapsulation.
Each of leads 20, 22, 28 and 29 are formed of a bendable metal, preferably aluminum. While leads 20, 22, 28 and 29 and frame 10 may be formed from aluminum silicon carbide as is mounting area 12, a bendable metal is preferred because for most applications leads 20, 22, 28 and 29 are bent upon completion of a semiconductor package and for a specific application in mind. Aluminum silicon carbide, as a final product, is rigid and cannot be bent as desired, but must be formed in the desired configuration. This is however a viable option and is contemplated by this invention.
Generally, a leadframe 10 including a plurality of semiconductor die mounting areas 12, as illustrated in FIG. 2, is utilized in the manufacturing process. Preforms of a preferred material, such as silicon carbide, are formed in any convenient manner, such as molding. The preforms are relatively porous and flexible so as to be easy to handle during subsequent operations. In a preferred embodiment of the leadframe fabricating process, a plurality of preforms are positioned in a mold at various designated positions for mounting areas 12 and (in this specific embodiment) at designated positions for bonding pads 26 and 27. The mold is then closed and a selected liquefied metal, such as aluminum in a liquid state, is injected into the mold so as to infiltrate or impregnate the porous preforms and fill areas of the mold which define and leads 20, 22, 28 and 29 and frame 14. Alternatively, it is possible that the metal may be formed surrounding all of the preforms and subsequently, leads 20, 22, 28, 29 and frame 14 may be formed by stamping out portions of the metal. The stamping process is well known n the art. In a preferred embodiment, the mold is subjected to heat and pressure during the infiltration. Typical temperatures and pressures used are well known in the art and will vary depending on the size of the mold, as well as other parameters. In this embodiment, leadframe 10 is comprised of aluminum silicon carbide mounting area 12 and bonding pads 27 and aluminum leads 20, 22, 28 and 29 and frame 14.
A further specific example of a method of fabricating a semiconductor package includes providing a leadframe having a mounting area formed of aluminum silicon carbide with a plurality of aluminum leads. The leadframe may be provided by a method generally as explained above. A semiconductor die 30 is positioned on the mounting area 12 of the leadframe 10 as illustrated in FIG. 3. Semiconductor die 30 is affixed to the upper surface of mounting area 12 by any convenient means, generally known in the art. If, for example, the rear or lower surface of semiconductor die 30 forms one terminal of the device, a metal backing layer (e.g., gold or the like) is applied to semiconductor die 30 and semiconductor die 30 is soldered to mounting area 12. If the rear or lower surface of semiconductor die 30 does not form one terminal of the device, semiconductor die 30 can be attached to mounting area 12 by, for example, a thin layer of adhesive. In this instance, the adhesive should be either heat conducting or be thin enough to allow heat to travel freely from semiconductor die 30 to mounting area 12.
Other electrical terminals of electronic circuitry on semiconductor die 30, designated 32 in FIG. 3, are electrically connected to bonding pads 26 and 27 by some convenient method, such as wire bonding or the like. In the event the rear or lower surface of semiconductor die 30 is a terminal of the device or circuit, leads 20 and 22 provide an external connection thereto through the aluminum impregnated mounting area 12 and the metal backing on semiconductor die 30. Also, leads 28 and 29, which are internally connected to bonding pads 26 and 27, respectively, provide external electrical connections to the other electrical terminals of the device or circuit on semiconductor die 30.
With semiconductor die 30 fixedly and thermally attached to mounting area 12 of leadframe 10, and with the terminals electrically connected to bonding pads 26 and 27, the entire apparatus is encapsulated using some convenient material, such as plastic, in any well known method. Leads 20, 22, 28 and 29, which may be formed of bendable aluminum, extend from the package and are available for later forming, as required by the specific application of the semiconductor device or circuit. Also, in this preferred embodiment, because mounting area 12 is formed of material which is a good heat conductor, the encapsulation is performed so that an opposing, or lower, surface 35 of mounting area 12 is exposed and is not encapsulated. In applications where semiconductor die 30 includes high power devices or circuits generating large amounts of heat and power, the package can be mounted on a printed circuit board or the like with surface 35 of mounting area 12 in thermal contact with a heat sink (not shown) to aid in carrying heat from the package.
Thus, a new and improved leadframe and method of fabrication have been disclosed. The new leadframe has the advantage of a coefficient of thermal expansion which is similar to silicon and gallium arsenide, so that relatively large semiconductor chips of silicon and gallium arsenide can be affixed directly to the leadframe without danger of damage during heat cycling. Also, the new and improved leadframe has good thermal properties, generally greater than 170 watts per meter degree Celsius, which allows the leadframe either to operate directly as a heat sink or to be thermally connected to additional heat sinks. Further, because the mounting area of the leadframe is formed of a lighter material than metal, the entire structure is lighter and less expensive than prior art packages. In addition, the leadframes can be inexpensively and easily manufactured in large quantities.
Various changes and modifications to the embodiments herein chosen for purposes of illustration will readily occur to those skilled in the art. To the extent that such modifications and variations do not depart from the spirit of the invention, they are intended to be included within the scope thereof which is assessed only by a fair interpretation of the following claims.
Having fully described the invention in such clear and concise terms as to enable those skilled in the art to understand and practice the same, the invention claimed is:
Patent | Priority | Assignee | Title |
10014240, | Mar 29 2012 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Embedded component package and fabrication method |
10090228, | Mar 06 2012 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device with leadframe configured to facilitate reduced burr formation |
10096665, | Oct 30 2015 | Seiko Epson Corporation | Electro-optical device, electronic apparatus, and method of driving electro-optical device |
10410967, | Nov 29 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Electronic device comprising a conductive pad on a protruding-through electrode |
10546833, | Dec 07 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of forming a plurality of electronic component packages |
10665567, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
10811341, | Jan 05 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device with through-mold via |
11043458, | Nov 29 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of manufacturing an electronic device comprising a conductive pad on a protruding-through electrode |
11869829, | Jan 05 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD. | Semiconductor device with through-mold via |
6163956, | Feb 23 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of making chip scale package with heat spreade |
6225696, | Sep 18 1997 | Northrop Grumman Systems Corporation | Advanced RF electronics package |
6261872, | Sep 18 1997 | Northrop Grumman Systems Corporation | Method of producing an advanced RF electronic package |
6314639, | Feb 23 1998 | Micron Technology, Inc. | Chip scale package with heat spreader and method of manufacture |
6505400, | Feb 23 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of making chip scale package with heat spreader |
6735859, | Feb 23 1998 | Micron Technology, Inc. | Method of manufacturing chip scale package |
6737737, | Nov 27 2002 | Siliconware Precision Industries Co., Ltd. | Semiconductor package with chip supporting member |
6753597, | Dec 16 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Encapsulated semiconductor package including chip paddle and leads |
6844615, | Mar 13 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Leadframe package for semiconductor devices |
6846704, | Mar 27 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and method for manufacturing the same |
6870243, | Nov 27 2002 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Thin GaAs die with copper back-metal structure |
6873041, | Nov 07 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Power semiconductor package with strap |
6893900, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of making an integrated circuit package |
6953988, | Mar 25 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package |
6965157, | Nov 09 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with exposed die pad and body-locking leadframe |
6967395, | Mar 20 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Mounting for a package containing a chip |
6995459, | Sep 09 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with increased number of input and output pins |
6998702, | Sep 19 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Front edge chamfer feature for fully-molded memory cards |
7001799, | Mar 13 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of making a leadframe for semiconductor devices |
7005326, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of making an integrated circuit package |
7030474, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Plastic integrated circuit package and method and leadframe for making the package |
7045882, | Dec 29 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package including flip chip |
7045883, | Apr 04 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Thermally enhanced chip scale lead on chip semiconductor package and method of making same |
7057268, | Jan 27 2004 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Cavity case with clip/plug for use on multi-media card |
7057280, | Nov 20 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Leadframe having lead locks to secure leads to encapsulant |
7064009, | Apr 04 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Thermally enhanced chip scale lead on chip semiconductor package and method of making same |
7067908, | Oct 15 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package having improved adhesiveness and ground bonding |
7071541, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Plastic integrated circuit package and method and leadframe for making the package |
7091594, | Jan 28 2004 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Leadframe type semiconductor package having reduced inductance and its manufacturing method |
7092890, | Nov 27 2002 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for manufacturing thin GaAs die with copper-back metal structures |
7112474, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of making an integrated circuit package |
7115445, | Oct 15 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package having reduced thickness |
7138707, | Oct 21 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package including leads and conductive posts for providing increased functionality |
7144517, | Nov 07 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Manufacturing method for leadframe and for semiconductor package using the leadframe |
7170150, | Mar 27 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Lead frame for semiconductor package |
7176062, | Sep 19 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Lead-frame method and assembly for interconnecting circuits within a circuit module |
7190062, | Jun 15 2004 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Embedded leadframe semiconductor package |
7192807, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
7202554, | Aug 19 2004 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and its manufacturing method |
7211471, | Sep 09 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Exposed lead QFP package fabricated through the use of a partial saw process |
7211879, | Nov 12 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with chamfered corners and method of manufacturing the same |
7214326, | Nov 07 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Increased capacity leadframe and semiconductor package using the same |
7217991, | Oct 22 2004 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Fan-in leadframe semiconductor package |
7233056, | Feb 23 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Chip scale package with heat spreader |
7245007, | Sep 18 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Exposed lead interposer leadframe package |
7247523, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Two-sided wafer escape package |
7253503, | Nov 05 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Integrated circuit device packages and substrates for making the packages |
7312516, | Feb 23 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Chip scale package with heat spreader |
7321162, | Oct 15 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package having reduced thickness |
7332375, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of making an integrated circuit package |
7361533, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Stacked embedded leadframe |
7420272, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Two-sided wafer escape package |
7473584, | Oct 22 2004 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method for fabricating a fan-in leadframe semiconductor package |
7485952, | Sep 19 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Drop resistant bumpers for fully molded memory cards |
7507603, | Dec 02 2005 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Etch singulated semiconductor package |
7521294, | Mar 27 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Lead frame for semiconductor package |
7535085, | Oct 15 1999 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package having improved adhesiveness and ground bonding |
7560804, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Integrated circuit package and method of making the same |
7564122, | Nov 20 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and method of making using leadframe having lead locks to secure leads to encapsulant |
7572681, | Dec 08 2005 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Embedded electronic component package |
7598598, | Feb 05 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Offset etched corner leads for semiconductor package |
7687893, | Dec 27 2006 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package having leadframe with exposed anchor pads |
7687899, | Aug 07 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Dual laminate package structure with embedded elements |
7692286, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Two-sided fan-out wafer escape package |
7714431, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Electronic component package comprising fan-out and fan-in traces |
7723210, | Nov 29 2005 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Direct-write wafer level chip scale package |
7723852, | Jan 21 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Stacked semiconductor package and method of making same |
7732899, | Dec 02 2005 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Etch singulated semiconductor package |
7768135, | Apr 17 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with fast power-up cycle and method of making same |
7777351, | Oct 01 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Thin stacked interposer package |
7808084, | May 06 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with half-etched locking features |
7829990, | Jan 18 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Stackable semiconductor package including laminate interposer |
7847386, | Nov 05 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Reduced size stacked semiconductor package and method of making the same |
7847392, | Sep 30 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe with increased I/O |
7872343, | Aug 07 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Dual laminate package structure with embedded elements |
7875963, | Nov 21 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe having power bars and increased I/O |
7902660, | May 24 2006 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Substrate for semiconductor device and manufacturing method thereof |
7906855, | Jan 21 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Stacked semiconductor package and method of making same |
7928542, | Mar 27 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Lead frame for semiconductor package |
7932595, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Electronic component package comprising fan-out traces |
7956453, | Jan 16 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with patterning layer and method of making same |
7960818, | Mar 04 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Conformal shield on punch QFN semiconductor package |
7968998, | Jun 21 2006 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Side leaded, bottom exposed pad and bottom exposed lead fusion quad flat semiconductor package |
7977163, | Dec 08 2005 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Embedded electronic component package fabrication method |
7977774, | Jul 10 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Fusion quad flat semiconductor package |
7982297, | Mar 06 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Stackable semiconductor package having partially exposed semiconductor die and method of fabricating the same |
7982298, | Dec 03 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Package in package semiconductor device |
7989933, | Oct 06 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Increased I/O leadframe and semiconductor device including same |
8008758, | Oct 27 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device with increased I/O leadframe |
8026589, | Feb 23 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Reduced profile stackable semiconductor package |
8058715, | Jan 09 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Package in package device for RF transceiver module |
8067821, | Apr 10 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Flat semiconductor package with half package molding |
8072050, | Nov 18 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device with increased I/O leadframe including passive device |
8084868, | Apr 17 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with fast power-up cycle and method of making same |
8089141, | Dec 27 2006 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package having leadframe with exposed anchor pads |
8089145, | Nov 17 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including increased capacity leadframe |
8089159, | Oct 03 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with increased I/O density and method of making the same |
8102037, | Mar 27 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Leadframe for semiconductor package |
8119455, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package fabrication method |
8124460, | Jul 17 2006 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Integrated circuit package system employing an exposed thermally conductive coating |
8125064, | Jul 28 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Increased I/O semiconductor package and method of making same |
8184453, | Jul 31 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Increased capacity semiconductor package |
8188579, | Nov 21 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe having power bars and increased I/O |
8188584, | Nov 26 2005 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Direct-write wafer level chip scale package |
8227921, | Oct 03 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with increased I/O density and method of making same |
8283767, | Aug 07 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Dual laminate package structure with embedded elements |
8294276, | May 27 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device and fabricating method thereof |
8298866, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
8299602, | Sep 30 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe with increased I/O |
8304866, | Jul 10 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Fusion quad flat semiconductor package |
8318287, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Integrated circuit package and method of making the same |
8319338, | Oct 01 2007 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Thin stacked interposer package |
8324511, | Apr 06 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Through via nub reveal method and structure |
8390130, | Jan 06 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Through via recessed reveal structure and method |
8410585, | Apr 27 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Leadframe and semiconductor package made using the leadframe |
8421197, | Sep 20 2007 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Integrated circuit package system with warp-free chip |
8432023, | Oct 06 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Increased I/O leadframe and semiconductor device including same |
8440554, | Aug 02 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Through via connected backside embedded circuit features structure and method |
8441110, | Jun 21 2006 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Side leaded, bottom exposed pad and bottom exposed lead fusion quad flat semiconductor package |
8486764, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
8487420, | Dec 08 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Package in package semiconductor device with film over wire |
8487445, | Oct 05 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device having through electrodes protruding from dielectric layer |
8501543, | Nov 29 2005 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Direct-write wafer level chip scale package |
8552548, | Nov 29 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Conductive pad on protruding through electrode semiconductor device |
8558365, | Jan 09 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Package in package device for RF transceiver module |
8575742, | Apr 06 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device with increased I/O leadframe including power bars |
8648450, | Jan 27 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe with a combination of leads and lands |
8674485, | Dec 08 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe with downsets |
8680656, | Jan 05 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Leadframe structure for concentrated photovoltaic receiver package |
8691632, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
8710649, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
8729682, | Mar 04 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Conformal shield on punch QFN semiconductor package |
8729710, | Jan 16 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package with patterning layer and method of making same |
8791501, | Dec 03 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Integrated passive device structure and method |
8796561, | Oct 05 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Fan out build up substrate stackable package and method |
8823152, | Oct 27 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device with increased I/O leadframe |
8853836, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Integrated circuit package and method of making the same |
8900995, | Oct 05 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device and manufacturing method thereof |
8937381, | Dec 03 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Thin stackable package and method |
8952522, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
8963301, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Integrated circuit package and method of making the same |
8981572, | Nov 29 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Conductive pad on protruding through electrode semiconductor device |
9048298, | Mar 29 2012 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Backside warpage control structure and fabrication method |
9054117, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
9082833, | Jan 06 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Through via recessed reveal structure and method |
9129943, | Mar 29 2012 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Embedded component package and fabrication method |
9159672, | Aug 02 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Through via connected backside embedded circuit features structure and method |
9184118, | May 02 2013 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Micro lead frame structure having reinforcing portions and method |
9184148, | Oct 24 2013 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and method therefor |
9224676, | Jun 24 1998 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Integrated circuit package and method of making the same |
9275939, | Jan 27 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe with a combination of leads and lands and method |
9324614, | Apr 06 2010 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Through via nub reveal method and structure |
9355968, | Jun 13 2014 | Maxim Integrated Products, Inc | Silicon shield for package stress sensitive devices |
9362210, | Apr 27 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Leadframe and semiconductor package made using the leadframe |
9406645, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
9431323, | Nov 29 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Conductive pad on protruding through electrode |
9508631, | Jan 27 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe with a combination of leads and lands and method |
9543235, | Oct 22 2014 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor package and method therefor |
9631481, | Jan 27 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe with a combination of leads and lands and method |
9673122, | May 02 2014 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Micro lead frame structure having reinforcing portions and method |
9691734, | Dec 07 2009 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of forming a plurality of electronic component packages |
9704725, | Mar 06 2012 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device with leadframe configured to facilitate reduced burr formation |
9871015, | Nov 08 2002 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Wafer level package and fabrication method |
9935164, | Oct 30 2015 | Seiko Epson Corporation | Electro-optical device, electronic apparatus, and method of driving electro-optical device |
9947623, | Nov 29 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device comprising a conductive pad on a protruding-through electrode |
9978695, | Jan 27 2011 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device including leadframe with a combination of leads and lands and method |
Patent | Priority | Assignee | Title |
5014113, | Dec 27 1989 | Motorola, Inc. | Multiple layer lead frame |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 26 1995 | PAVIO, JEANNE S | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007346 | /0038 | |
Feb 01 1995 | Motorola, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 11 2000 | REM: Maintenance Fee Reminder Mailed. |
Mar 20 2000 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 20 2000 | M186: Surcharge for Late Payment, Large Entity. |
Jun 18 2004 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 18 1999 | 4 years fee payment window open |
Dec 18 1999 | 6 months grace period start (w surcharge) |
Jun 18 2000 | patent expiry (for year 4) |
Jun 18 2002 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 18 2003 | 8 years fee payment window open |
Dec 18 2003 | 6 months grace period start (w surcharge) |
Jun 18 2004 | patent expiry (for year 8) |
Jun 18 2006 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 18 2007 | 12 years fee payment window open |
Dec 18 2007 | 6 months grace period start (w surcharge) |
Jun 18 2008 | patent expiry (for year 12) |
Jun 18 2010 | 2 years to revive unintentionally abandoned end. (for year 12) |