A suture locking fastener for surgical procedures. The one piece plastic molded fastener features a plurality of triangular-shaped leaves that are attached to a base. At least one of the leaves is attached to the base using a flexible hinge section thus permitting that leaf to articulate with respect to the base. The leaves are positioned at a predetermined angle relative to the horizontal that is at least 30 degrees, and, preferably, 45 degrees which permits a suture, either a thread or a plastic filament, to be held securely without deforming or cutting into it.
|
1. A suture locking apparatus for use with a suture having a diameter and a plurality of spaced apart protrusions, said suture locking apparatus comprising:
a base member having a horizontal plane and an aperture therethrough, said aperture having an attachment surface; a plurality of substantially rigid, triangular-shaped leaves, each of said leaves having a top and bottom surface, each of said triangular-shaped leaves having a base and an apex, and each of said leaves further having an attachment region, adjacent to said base; wherein, each of said leaves is attached to said base member at the attachment surface of said base member via said attachment region, such that said leaves form a polyhedron with the apex of each leaf immediately adjacent to the apex of the other, thus, said leaves providing a suture opening; and wherein at least one of said leaves articulates with said base, and with each leaf in an unstressed state having an angle defined by a plane coincident with the top surface of that leaf and said horizontal plane of said base, wherein the angle of each leaf is substantially equal to the angle of the other leaves and the angle of each leaf ranges from at least ten degrees but less than fifty degrees.
13. A method of fastening at least two tissue members during a surgical procedure comprising the steps of:
providing a suture locking fastener with at least one rigid articulated leaf set at a predetermined angle relative to a base of said suture locking fastener when said leaf is in an unstressed state; tying a series of spaced apart interference knots along a length of the suture; passing said suture through the tissue members; aligning said suture locking fastener to one of the tissue members such that said suture locking fastener is centered over a point defined by said suture exiting that tissue member and such that said can pass through said suture locking fastener when said suture locking fastener contacts that tissue member; tensioning said suture within the tissue members; sliding said suture locking fastener over said suture wherein each knot encountered by said suture locking fastener causes said articulated leaf to articulate; locking said suture locking fastener onto said suture via one of the knots such that said suture locking fastener contacts one of the tissue members and such that one knot of said suture thread firmly engages the leaf of said suture locking fastener whereby the tissue members are stably fastened together.
2. The suture locking apparatus of
4. The suture locking apparatus of
7. The suture locking apparatus of
8. The suture locking apparatus of
9. The suture locking apparatus of
10. The suture locking apparatus of
11. The suture locking apparatus of
12. A positioning tool for a suture locking apparatus as claimed in
a handle having a top end and a bottom end, also having an axial length with an opening therethrough, an extension tube having a suture end and a handle end, also having an axial length with an opening therethrough, wherein said opening of said handle and the opening of said extension tube communicates with one another, the handle end of said extension tube being attached to the bottom end of said handle; an apparatus holder having a top end and a bottom end, the top end being attached to the suture end of said extension tube, said holder having a suture locking apparatus recess adjacent to the bottom end, and also having an opening extending from the bottom end to the top end and in communication with the opening of said extension tube, said holder also having a first recess that corresponds to the geometry of the base member of said suture locking apparatus and a second recess that corresponds to the polyhedron formed by said leaves, wherein the first recess is dimensioned to releasably hold said suture locking apparatus such that said suture locking apparatus will be held while said suture locking apparatus is being positioned but will be easily released once said suture locking apparatus has been positioned, and wherein the second recess is dimensioned to be sufficiently larger than the polyhedron formed by said leaves such that said leaves are free to articulate with said base member of said suture locking apparatus when a suture is passed through the bottom of said holder through the suture opening of said suture locking apparatus, through said extension tube and handle, and exits the top end of said handle.
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
|
1. Field of the Invention
The invention relates to surgical fasteners and method of using same.
2. Description of the Related Art
Advances in surgical techniques to repair orthopedic injuries have been exponential over the last decade. Arthroscopic surgery of knee injuries which used to cause the patient months of incapacitation and recuperation can now be accomplished with surgical procedures that are minimally invasive that result in a rapid recuperation. As a consequence, evaluation of all aspects of this type of surgery have been undertaken.
For example, it has recently been learned that menisci play an important role in having a fully functional knee joint, including tibiofemoral load transmission, shock absorption, lubrication, and passive stabilization of the knee joint. While it used to be commonplace to remove the menisci in a typical surgical procedure involving the knee when the menisci have been torn, surgeons today, recognizing the vital role of the menisci as an essential component of a normal knee, are aggressive in their attempts to conserve as much meniscal tissue as possible during any knee surgery. As a consequence, the efficient and rapid repair of meniscal tears is the uppermost goal of a surgeon performing such surgery.
The menisci are crescent shaped structures that are located medially and laterally in the knee joint, having bony attachments to the tibia at the anterior and posterior horns. Collagen fibers within the peripheral portion of the meniscus play a critical role in load transmission. The most peripheral portion of the meniscus is the meniscosynovial junction, which extends from the anterior to posterior horns. The orientation of the collagen fibers within the meniscus makes this structure particularly vulnerable to tearing when the knee joint is rotated and at the same time axially compressed, i.e., a "football" or "skiing" injury. Depending on the orientation of the patient's leg during the injury, the tear can damage either the transverse collagen fibers causing a longitudinal tear or the circumferential fibers causing a radial tear.
Surgical repair of the menisci is difficult due to several factors. The healing potential is dependent upon the vascular pathway that is present or that can be stimulated. Clearly, any surgical procedure that minimizes the involvement of tissues outside of the tear zone is likely to enjoy a better prognosis with respect to vascular supply than a procedure that is more invasive. Longitudinal tears in the vascular periphery of either meniscus have been found to heal and, thus, provide significant retention of the beneficial properties discussed above. However, repairs outside this region are inconclusive. While healing may occur, it is uncertain as to whether mechanical function can be restored as well.
The conditions necessary to heal a tear in a meniscal lesion are basically the same as with any repair of a musculoskeletal tissue. Thus, the surgeon will stabilize the torn area through suturing so that the tear does not increase and to successfully coapt the edges of the tear. Then, the injured limb is externally immobilized until the tear is healed.
To prevent neurovascular complications that can occur in such surgery, various surgical techniques have been explored. The "open" technique is suitable only for tears that are within 2 mm of the meniscosynovial junction. Most tears are repaired using arthroscopic techniques, categorized as either "outside-in", "inside-out" or "all inside". The "inside-out" technique was developed first. This procedure requires the surgeon to place spinal needles using arthroscopic visualization through both meniscal fragments and then out through the joint to exit percutaneously. The needles are used to introduce sutures that are used to stabilize the tear while it heals. While this procedure is usually quite successful, a small percentage of neurovascular complications was experienced as well as it requires a large incision.
The "outside-in" approach was developed to eliminate this problem. In this procedure, the surgeon utilizes spinal needles as in the "inside-out" technique. However, in this technique, safe passage of the needles is more easily controlled using knowledge of anatomical landmarks to avoid the peroneal nerve, for example. For a more detailed discussion of the meniscal anatomy and surgery, see, Principles and Decision Making in Meniscal Surgery, Alan P. Newman et al., Arthroscopy: The Journal of Arthroscopic and Related Surgery 9(1):33-51, incorporated herein by reference.
Common to these techniques is the placement of sutures that bring the two surfaces of the torn meniscus together so that healing may occur. As can be easily envisioned, tying knots in sutures while operating in extremely confined environment provided by the hollow needles requires incredible dexterity. Indeed, a substantial portion of the time required for the procedure is due to the time that it takes to place the sutures. Also, any method or apparatus that simplify and facilitates this procedure would significantly encourage more physicians to perform this type of surgery.
The typical "outside-in" procedure begins by directing a spinal needle from a percutaneous suturing "portal" that is "outside", and, then, directing the spinal needle through the capsule and both sides of the meniscus tear. The surgeon is able to view "inside" via an arthroscope inserted through a viewing "portal". Once the spinal needle spans the tear as seen through the arthroscope, an absorbable suture is delivered across the tear inside the knee through the needle. An "interference" knot is tied on the suture. An "interference" knot is several knots tied onto a knot such that the resulting knot is sufficiently large to prevent it from pulling from the opening in the tissue made by the needle. Next, the needle is removed with the suture left in place and the interference knot is pulled back into the knee through the suturing "portal" until the knot is positioned against the tear site. The process is then repeated several times until the tear is stabilized. The procedure is completed by tying all of the suture tails together through an incision under the skin outside of the knee joint. Tying the suture tails together, however, can place unwanted tension on the meniscus and could possibly cause further damage to the torn meniscus.
An alternative to the use of interference knots would be to retrieve the end of the suture in the joint by pulling the suture out through a second cannula and then tying the two ends.
Another alternative is the "all inside" technique involves either placing several interference knot or several T-FIX along the peripheral rim with two suture strands tied together using an arthroscopic knot passer. This is extremely technically demanding procedure. For a detailed discussion of these well known techniques, see Arthroscopic "Outside-to-Inside" Meniscus Repair Technique, Craig D. Morgan, Techniques in Orthopaedics, 8(2):99-104, incorporated herein by reference.
To increase the speed of this procedure as well as any surgical procedure where two or more tissue members must be fastened together, various surgical fasteners have been developed. To replace the "interference" knot, U.S. Pat. No. 4,669,473, issued to Richards et al. on Jun. 2, 1987, discloses a T-bar fastener that is attached to a suture. The T-bar fastener is designed to anchor into bone using a special tool.
U.S. Pat. No. 5,258,015, issued to Li et al., discloses another surgical device that is intended to be used for such procedures. The device is designed to be used with a smooth surface plastic fastener such as taught in U.S. Pat. No. 4,669,473. The device features at least one, but preferably two locking flaps, with each locking flap having a series of engaging teeth at its locking end. The device is mounted upon the smooth surfaced plastic fastener with the fastener tensioned against the device. A special tool depresses the locking flaps inwardly thus causing the teeth to engage the plastic fastener and deforming it. Foot members on the bottom of the device keep the device from rotating once in position. This device is not suitable for use with suture threads. Moreover, since the plastic fastener must be less dense than the locking flaps in order for the device to hold, the strength of either the plastic fastener or the locking flaps must be compromised.
U.S. Pat. No. 5,372,146, issued to Branch, discloses another variation of a tissue fastening apparatus. In this device, a plurality of spherical protrusions are spaced along a smooth filament. A head member has a flange that deforms to permit the device to move in one direction only. As found with the Li apparatus, the use of a plastic fastener is essential. As sutures must be extremely small in cross-sectional diameter, any small variation or imperfection in the construction of the plastic fastener will result in a weak spot that easily breaks. Tests of all such plastic fastener members have found them to be unreliable and, therefore, not suitable for use in surgery since a broken "suture" can mean the difference between a successful operation and one that has to be redone.
Still another variation is the slotted suture anchor disclosed in U.S. Pat. No. 5,269,809, issued to Hayhurst et al. on Dec. 14, 1993. This disclosure is a variation of the T-fastener discussed above. This device features a hollow cylindrical sleeve with a slot extending about half the length of the sleeve. The slot serves to hold a suture thread or a plastic fastener and provide a T-shaped structure that anchors the suture in the tissue. The suture is fed into the sleeve and exits the slot. The thread is prevented from exiting by the use of one or more interference knots. Similarly, the plastic filament or braided multi-filament is held within the sleeve via a locking washer that is molded into the plastic fastener.
There is not found in the prior art a suture locking apparatus that can be used with a standard suture and that meets the critical size, strength, and ease of use requirements that must be met with arthroscopic surgery, particularly surgery of the knee calling for meniscus repair.
It is an aspect of the invention to provide a suture locking apparatus that eliminates the need for tying knots during surgery, particularly arthroscopic surgery.
It is another aspect of the invention to provide a suture locking apparatus that grips the suture as a result of the structure of the apparatus.
It is still another aspect of the invention to provide a suture locking apparatus that will easily pass a series of knots on a suture or a series of "beads" or other protrusions on a suture in one direction but will not pass the knots or "beads" in reverse direction.
Another aspect of the invention is to provide a suture locking apparatus that can be used with a suture having pretied knots that will secure two or more tissue members together.
It is another aspect of the invention to provide a suture locking apparatus that can be used with mono-filament or multi-filament or silk sutures, either fitted with knots or a plastic protrusions, which will serve to lock the filament to the suture locking apparatus thus holding two or more tissue members together.
It is still another aspect of the invention to provide a suture locking apparatus that has at least one rigid articulating leaf such that when the suture or filament is tensioned against the leaf, the leaf collapses toward the center of the suture locking apparatus thus providing a greater gripping force of the suture or filament.
It is still another aspect of the invention to provide a suture locking apparatus with a plurality of leaves at a substantial positive angle measured from the horizontal base of the apparatus when the leaves is locked holding a suture or a filament.
Another aspect of the invention is to provide a suture locking apparatus that has four leaves.
Another aspect of the invention is to provide a tool holder for the suture locking apparatus tool such that the tool holder can easily maneuver the suture locking apparatus into position.
Another aspect of the invention is to provide a suture locking apparatus that joins the leaves to the apparatus via a flexible hinging section.
Another aspect of the invention is to provide a suture locking apparatus where each leaf has a structure where the leaf engages the suture or filament that increases the "grabbing" ability of the leaf to hold the suture or filament.
It is an aspect of the invention to provide a suture locking apparatus that features a cone-shaped structure on the under side surface of the apparatus which serves to lead the suture or filament into the opening of the apparatus.
Finally, it is an aspect of the invention to provide a method of suturing that is suitable for use where standard sutures are preferred but are difficult to use due to the limited space available for the tying of knots.
The invention is a suture locking apparatus that replaces the need to tie knots during surgery, particularly arthroscopic surgery. A series of knots are pre-tied on a standard suture thread during manufacture. The knots spaced at approximately 1 to 1.5 mm apart. The suture can be mono-filament, multi-filament, or silk. "Beads" or other protrusions can be used in the place of knots and the use of the term "knot(s)" is meant to include such structures. The "beads" or other protrusions can be either molded as an integral part of a "plastic" suture or added to an existing suture by techniques known in the art. The positioning of the knot section, the length of the knot section, and even the number of knot sections and spacing on a suture will be determined in accordance with the type of surgical procedure that is to be preformed. Also, the distal end can be fitted with a T-FIX or other anchoring device well known in the art, if desired. The suture locking apparatus has a base, defining a horizontal plane. The cross-sectional shape of the base is not critical and the base itself can be round, octagonal, hexagonal etc., as long as it provides an annulus in which one or more rigid leaves may be fastened thereto. The rigid leaves are preferably attached to the base via a flexible hinging section to permit flexing. Each leaf is preferably triangular shaped defining a funnel shaped suture lead-in cone at the bottom surface of the leaves. At the apex of the triangle, the leaves define an area that is designed to hold a suture having a series of knots that is fed therethrough. Alternatively, a suture having a series of protrusions such as "beads", either molded in or attached thereto can also be used. The funnel-shaped cone makes it easy to spread the leaves to feed the knotted suture through the apparatus. Preferably, the apex may be fitted with a slight radius, corresponding to the diameter of the suture such that leaves when fitted together will hold the knotted suture securely without deforming or cutting into the suture so as to cause it break prematurely. Each leaf is mounted on the base at a substantial positive angle measured from the horizontal plane by the bottom surface of the base. The angle ranges from 10 degrees to 50 degrees but is preferably about 30 degrees, although an approximately 45 degrees is expected to provide the maximum holding strength. The 30 degree angle is preferable because it reduces the overall height of apparatus. Use of an alternative embodiment which reduces the overall height of the apparatus may result in the use of the 45 degree angle as preferable for that variation. An optional plurality of spikes on the bottom surface of the base may be used to prevent the apparatus from rotating once it is positioned.
In use, the knotted suture will easily pass through the apparatus in one direction but will be locked when the apparatus is tensioned because the leaves collapse in tension against the tissue via the knotted suture. In use, the knotted suture is placed in the tissue members that are to be fastened together with the distal end attached thereto. The proximal end of the suture is then fed through the suture locking apparatus which is held in the suture locking apparatus tool which is used to place the suture locking apparatus against the surface of the proximal tissue that is to be fastened. The surgeon then tensions the suture to the desired amount, and, then, uses the tool to slide the suture locking apparatus down the suture until it is positioned against the tissue with a knot locking the apparatus on the suture. Then, the tool is removed, and the suture is trimmed to a desired length.
The use of invention makes any meniscal repair easier for the above-described arthroscopic meniscal repair, that is, "outside" etc. with advantage minimizes incision size and eliminates knots. During the procedure to repair the meniscal tear, the surgeon passes a suture through the margins of the tear that are to be fastened together. The suture has a series of spaced apart interference knots. The suture locking fastener will have at least one rigid articulated leaf set at a predetermined angle relative to the suture locking fastener. The suture locking fastener is aligned to one of the tissue members such that said suture locking fastener is centered over a point defined by said suture exiting that tissue member and such that said suture can pass through said suture locking fastener when said suture locking fastener contacts that tissue member. The surgeon then tensions the suture within the tissue members. Next, the surgeon slides the suture locking fastener over the suture. As each knot encounters the suture locking fastener, the knot causes the articulated leaf of the fastener to articulate. Finally, the fastener is locked onto the suture via one of the knots such that said suture locking fastener contacts one of the tissue members and such that one knot of said suture thread firmly engages the leaf of said suture locking fastener whereby the tissue members are stably fastened together. The suture locking apparatus is also useful for any surgical technique in soft tissue, ligament, tendon or bone repair.
FIG. 1 is a side view of the preferred embodiment of the suture locking apparatus.
FIG. 2 is a top view of the suture locking apparatus.
FIG. 3 is bottom view of the suture locking apparatus.
FIG. 4 is a cross-sectional view of the preferred embodiment across section lines 4--4 in FIG. 2.
FIG. 5 is a side view of an alternative embodiment of the suture locking apparatus.
FIG. 6 is a top view of the alternative embodiment.
FIG. 7 is bottom view of the alternative embodiment.
FIG. 8 is a cross-sectional view of the alternative embodiment across section lines 8--8 in FIG. 6.
FIG. 9 is a cross-sectional view of another alternative embodiment.
FIG. 10 is a cross-sectional view of the suture locking apparatus being placed in position via the corresponding suture locking apparatus placement tool.
FIG. 11 is a detailed cross-sectional view of the placement tool.
FIG. 12 is an illustration of the suture locking apparatus being used to suture a typical meniscal repair.
FIG. 13 is an isometric view of a modified suture grabber for use with the suture locking apparatus.
FIG. 14 is a cross-sectional illustration of surgical repair of a meniscus with one suture in place and the second suture about to be positioned.
FIG. 15 is an illustration of the three suture locking apparatus in a locked position before the knotted suture thread has been trimmed.
FIG. 16 is a top view of single leaf alternative embodiment of the suture locking apparatus.
FIG. 17 is a top view of triple leaf embodiment for use with a plastic filament fastener.
Referring now to FIGS. 1-4, the preferred embodiment of the invention is described. The following dimensions represent the preferred value for the invention when sized to meet the requirements of arthroscopic meniscal repair. However, a different surgical procedure for this type of injury or a surgical procedure involving different tissue members may require changing these dimensions accordingly. Invention 10 is preferable square-shaped where side 14 is about 120 thousands of an inch as shown in FIGS. 2 and 3. Sides 14 meet in radius 27 which is preferably about 30 thousandths of an inch. However, other shapes are also acceptable such as round, octagonal, hexagonal, etc. Invention 10 is preferably injection molded using an absorbable plastic such as polylactide copolymer or a glycide copolymer that are well known in the art. If a non-absorbable plastic is preferred, then invention 10 may be fabricated from any suitable medical grade plastic.
Base 12 defines a horizontal plane along bottom 13. Base 12 preferably has a thickness 33 that is 25 thousandths of an inch. In the preferred embodiment, four substantially identical leaves 15 are attached to base 12 via flexible hinging section 31. While the number of leaves is preferably four, as noted below one leaf (shown in FIG. 16), two leaves (not shown), or three leaves (shown in FIG. 17) could also be utilized. One or more of the leaves can be non-articulating as discussed below (FIG. 16) or free to articulate as in the preferred embodiment. Leaves 15 are attached at angle 26 to form a pyramidal structure. Regardless of the number of leaves 15, and irrespective as to whether or not one or more is articulating, leaves 15 will always form a polyhedron shape. While the exact number of degrees of angle 26 is not critical, it should be greater than 10 degrees but less than 50, with 45 degrees being expected to provide the greatest holding power, yet 30 degrees being preferable for this embodiment due to the lower profile provided. Spacing 16 between the respective leaves 15 is preferably about 7 thousandths of an inch. Chamfer 18 is preferably about 0.01×45 degrees. As shown in FIG. 2, the apex 17 of leaves 15 are pointed and leave a space 24 that is approximately 10 thousandths of an inch which is preferable for small diameter suture threads. However, if larger diameter sutures are used, apex 17 could also be radiused to match the diameter of the suture such as radius 94 as shown in FIG. 17. Space 24 would, therefore, be adjusted accordingly.
Cone 20 is provided by the bottom surfaces 32 of leaves 15. Cone 20 serves to help lead the knotted suture threads through invention 10. Once a knot in the suture contacts cone 20, leaves 15 are spread apart and the knotted suture thread passes easily therethrough. Base 34 of cone 20 is preferably about 30 thousandths of an inch in diameter.
The principle difficulty with many prior art devices that have been tried for such purposes is that the devices have failed to hold the suture. As noted above, the angle 26 must be greater than 10. Another critical aspect of invention 10 is the use of section 31 to connect the leaves 15 to base 12. The flexing of hinge 31 occurs at approximately 16 thousandths of an inch from the bottom 13 with leaves 15 being rigid. Radius 28 is preferably about 20 thousandths of an inch, while radius 36 is preferably 10 thousandths of an inch. Hinge 31 is consequently about 15 thousandths of an inch thick in region 30. The width 38 of top recess is preferably about 20 thousandths of an inch. Constructed in this manner, hinge 31 can be flexed easily.
Referring now to FIGS. 5-8, an alternative embodiment of invention 10 is shown. In this embodiment, base 12 is now shown as circular having a preferable radius of about 60 thousandths of an inch. The other dimensions concerning the leaves, base thickness, flexible hinge section, etc. remain as above. This embodiment also shows the addition of a plurality of cone-shaped teeth 40. Each tooth 40 has a preferable diameter of about 30 thousandths of an inch. While teeth 40 are shown in this embodiment, teeth 40 could also be used with the preferred embodiment as depicted in FIGS. 1-4. Also, the shape of teeth 40 could be changed as long as teeth 40 prevent invention 10 from rotating while invention 10 is locked in position holding a knotted suture thread.
FIG. 9 is a cross-sectional view of another alternative embodiment. In this embodiment, base 12 has been configured to eliminate much of recess 41 (shown in FIGS. 4 and 8), thus reducing the overall height of invention 10 to approximately 36 thousandths of an inch. Sufficient room must still be provided to allow for clearance so that the leaves 15 can flex. If recess 41 is eliminated, then, the overall outside dimension of invention 10 must be correspondingly increased. The expected remaining dimensions of the remaining components would remain as substantially as specified for the preferred embodiment. Angle 26 for this embodiment could extended beyond 30 degrees to increase the holding power but not exceeding 45 degrees.
Referring now to FIGS. 10 and 11, a cross-sectional view of tool 48 is provided. The purpose of tool 48 is to hold invention 10 so that the surgeon can accurately position invention 10 against tissue member 64 that is being sutured to tissue member 66. As shown, suture thread 58 is provided with a series of spaced knots 59. One of knots 59 will serve to lock invention 10 firmly to suture 58 thus keeping tissues 64 and 66 in close proximity to one another so that healing may occur. In this example, the distal end of suture 58 is held by use of T-FIX 68. Handle 50 features recess 54 which permits suture 58 to be threaded through. Handle 50 is sized to be comfortable to hold. Since tool 48 is to be used in a surgical environment, all materials used must be capable of being cleaned and sterilized. Inserted into recess 54 is extension tube 52. The length of tube 52 must be long enough to keep the suture relatively straight as it passses through the suture locking apparatus. Fitted on the end of extension tube 52 is the suture locking apparatus holder 56. Holder 56 has a centered recess 62 which is dimensioned to correspond to base 12 of invention 10. An easily releasable fit between invention 10 and recess 62 is required so that invention 10 will stay within tool 48 until it is placed in position but can be easily released once suture 58 has been tensioned against T-FIX 68. Recess 60 is immediately adjacent to recess 62 and is dimensioned to provide sufficient room to allow for the leaf structure to flex as the suture knot 59 is pulled through invention 10.
FIG. 12 is cross-sectional illustration of the suture locking apparatus being used to suture a typical meniscal repair. As noted above, the preferable method for repairing a meniscal tear is the "outside-to-inside" technique. The use of invention 10 eliminates the need for the surgeon to tie any knots. Cannula 82 is inserted into the knee 83. Cannula 84 is then inserted into approximate center of the meniscal tear 85, just outside of the meniscus 86. Through the cannula 82, suture 58, which is fitted with a series of knots 59 as described above with T-FIX 68 attached at the distal end, is inserted through the tear 85. Through the cannula 84, a suture grabber 92 (shown in FIG. 13) is inserted and the free end of the suture thread 58 is picked up and brought within close proximity to the cannula 82. Since suture grabber 92 must be able to penetrate the tissue of meniscus, suture grabber 92 must be provided with sharpened point 93 at the end. Then, the proximal end of the suture 58 is inserted through the suture locking apparatus 10 out the handle 50 of the placement tool 48 (shown in FIG. 10). Then, the surgeon can fasten the suture locking apparatus 10 as described above. Note that suture locking apparatus 10 can be fastened on the opposite side of the tear as T-FIX 68, shown on the left, or on the same side of the tear as T-FIX 68 as shown on the right.
FIG. 14 is cross-sectional view with one suture in place and a second one about to be fastened. In this situation, both sutures have been fastened using a suture locking apparatus 10 on each end, i.e., the T-FIX 68 has been eliminated. Instead of suture thread, plastic filament 58' with protrusions 59' are used or beads are molded onto an existing suture, either a monofilament or a multi-filament. In FIG. 15, an illustration of the three suture locking apparatus 10 is shown in position along a meniscus tear prior to trimming sutures 58.
FIG. 16 is a top view of a single leaf embodiment of invention 10. In this embodiment, the leaf 15 is the only leaf that is permitted to articulate via a flexible hinge section. Leaves 15' are attached to another along joints 101 and 103 and therefore held in place. As with the other embodiment, dimensions are adjusted to meet the expected size of suture thread that is to be used. FIG. 17 is a top view of a three leafed suture locking apparatus with the apex of the leaves radiused to accommodate a larger sized suture thread. Either one, two, or three leaves could be articulating, that is, attached to base 12 using a flexible hinge section. While it is expected that the device will most commonly be used with knotted suture thread, it is not so limited as shown in FIG. 14.
If a filament is developed that eliminates the breaking problems discussed above, then such a filament could be used with the invention, providing the dimensions of the leaves, space between the leaves at the apex, geometry of the leaf apex were adjusted using the principles described herein to enable the invention to hold such a filament.
While there have been described what are at present considered to be the preferred embodiments of this invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the invention and it is, therefore, aimed to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Ryan, James P., Moser, Thomas V.
Patent | Priority | Assignee | Title |
10004489, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10004493, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
10004588, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
10016193, | Nov 18 2013 | Edwards Lifesciences AG | Multiple-firing crimp device and methods for using and manufacturing same |
10022118, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10039543, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
10058393, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
10076377, | Jan 05 2013 | P Tech, LLC | Fixation systems and methods |
10092288, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10098629, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10105132, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10130353, | Jun 29 2012 | TELEFLEX LIFE SCIENCES LLC | Flexible system for delivering an anchor |
10136886, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
10143461, | May 20 2005 | Teleflex Life Sciences Limited | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
10149767, | May 28 2009 | Biomet Manufacturing, LLC | Method of implanting knee prosthesis assembly with ligament link |
10154837, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10178989, | Oct 26 2010 | Ziptek LLC. | Surgical suture system, tissue restraints, and tissue anchors |
10188383, | Dec 24 2014 | Edwards Lifesciences Corporation | Suture clip deployment devices |
10188392, | Dec 19 2014 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
10195014, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10238378, | Oct 26 2004 | P Tech, LLC | Tissue fixation system and method |
10238494, | Jun 29 2015 | EVALVE, INC.; Evalve, Inc | Self-aligning radiopaque ring |
10238495, | Oct 09 2015 | Evalve, Inc | Delivery catheter handle and methods of use |
10245037, | Dec 07 2011 | Edwards Lifesciences Corporation | Self-cinching surgical clips and delivery system |
10251637, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
10258321, | Dec 27 2012 | MEDOS INTERNATIONAL SÀRL | Surgical constructs and methods for securing tissue |
10265061, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Latching anchor device |
10265064, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
10265128, | Mar 20 2002 | P Tech, LLC | Methods of using a robotic spine system |
10265159, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
10271833, | May 07 2012 | MEDOS INTERNATIONAL SÀRL | Systems, devices, and methods for securing tissue using snare assemblies and soft anchors |
10292695, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
10292703, | Dec 15 2011 | Ethicon Endo-Surgery, Inc | Devices and methods for endoluminal plication |
10292801, | Mar 29 2012 | TELEFLEX LIFE SCIENCES LLC | System for delivering anchors for treating incontinence |
10299780, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
10314573, | Dec 22 2011 | Edwards Lifesciences Corporation | Suture clip deployment devices |
10314586, | Dec 13 2016 | EVALVE, INC. | Rotatable device and method for fixing tricuspid valve tissue |
10321906, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
10327758, | Nov 18 2013 | Syntheon Cardiology, LLC; Edwards Lifesciences AG | Multiple-firing suture fixation device and methods for using and manufacturing same |
10327759, | Nov 18 2013 | Edwards Lifesciences AG | Multiple-firing suture fixation device and methods for using and manufacturing same |
10342528, | Aug 28 2014 | Covidien LP | Surgical suturing instrument |
10349931, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10349932, | Mar 15 2013 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery system |
10363028, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
10363138, | Nov 09 2016 | Evalve, Inc | Devices for adjusting the curvature of cardiac valve structures |
10368856, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
10368924, | May 03 2006 | P Tech, LLC | Methods and devices for trauma welding |
10368953, | Mar 20 2002 | P Tech, LLC | Robotic system for fastening layers of body tissue together and method thereof |
10376259, | Oct 05 2005 | P Tech, LLC | Deformable fastener system |
10376673, | Jun 19 2015 | EVALVE, INC. | Catheter guiding system and methods |
10390817, | Feb 13 2007 | P Tech, LLC | Tissue fixation system and method |
10390943, | Mar 17 2014 | EVALVE, INC. | Double orifice device for transcatheter mitral valve replacement |
10398428, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
10398430, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
10398553, | Nov 11 2016 | EVALVE, INC. | Opposing disk device for grasping cardiac valve tissue |
10413408, | Aug 06 2015 | Evalve, Inc | Delivery catheter systems, methods, and devices |
10426458, | Jul 11 2013 | Edwards Lifesciences Corporation | Knotless suture fastener installation system |
10426509, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Median lobe destruction apparatus and method |
10426616, | Nov 17 2016 | EVALVE, INC.; Evalve, Inc | Cardiac implant delivery system |
10441264, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
10441269, | Oct 05 2005 | P Tech, LLC | Deformable fastener system |
10441275, | Dec 21 2012 | Edwards Lifesciences Corporation | Systems for securing sutures |
10470759, | Mar 16 2015 | Edwards Lifesciences Corporation | Suture securement devices |
10492792, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10517584, | Feb 13 2007 | P Tech, LLC | Tissue fixation system and method |
10517587, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
10517714, | Sep 29 2006 | Biomet Sports Medicine, LLC | Ligament system for knee joint |
10524776, | Nov 08 2016 | Arthrex, Inc. | Soft suture anchor assembly with barbed suture and attached tissue fixation disk |
10524777, | May 07 2012 | MEDOS INTERNATIONAL SÀRL | Systems, devices, and methods for securing tissue |
10524912, | Apr 02 2015 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
10542967, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10575844, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10595851, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10595852, | Mar 21 2012 | Cilag GmbH International | Methods and devices for creating tissue plications |
10603029, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
10610217, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
10624618, | Jun 27 2001 | EVALVE, INC. | Methods and devices for capturing and fixing leaflets in valve repair |
10624630, | Dec 10 2014 | Syntheon Cardiology, LLC | Multiple-firing securing device and methods for using and manufacturing same |
10631848, | Mar 15 2013 | MEDOS INTERNATIONAL SÀRL | Surgical constructs with collapsing suture loop and methods for securing tissue |
10631871, | May 19 2003 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
10646229, | May 19 2003 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
10653427, | Jun 27 2001 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
10667804, | Mar 17 2014 | EVALVE, INC. | Mitral valve fixation device removal devices and methods |
10667815, | Jul 21 2015 | EVALVE, INC. | Tissue grasping devices and related methods |
10667823, | May 19 2003 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
10675073, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for sternal closure |
10687803, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10687808, | Dec 15 2011 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
10695045, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for attaching soft tissue to bone |
10695047, | Sep 20 2012 | MEDOS INTERNATIONAL SARL | Systems, devices, and methods for securing tissue using hard anchors |
10695052, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10702259, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
10716557, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
10729421, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
10729423, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
10729430, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10736632, | Jul 06 2016 | Evalve, Inc | Methods and devices for valve clip excision |
10743856, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
10743876, | Sep 13 2011 | Abbott Cardiovascular Systems Inc. | System for fixation of leaflets of a heart valve |
10743925, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10751041, | Mar 30 2012 | MEDOS INTERNATIONAL SARL | Surgical filament assemblies |
10758221, | Mar 14 2013 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
10765484, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
10779837, | Dec 08 2016 | EVALVE, INC. | Adjustable arm device for grasping tissues |
10786244, | May 30 2014 | Edwards Lifesciences Corporation | Systems for securing sutures |
10792039, | Sep 13 2011 | Abbott Cardiovascular Systems Inc. | Gripper pusher mechanism for tissue apposition systems |
10806443, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
10813764, | Oct 26 2004 | P Tech, LLC | Expandable introducer system and methods |
10828042, | May 19 2003 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
10835231, | Dec 23 2010 | MEDOS INTERNATIONAL SÀRL | Adjustable anchor systems and methods |
10835232, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10856988, | Jun 29 2015 | EVALVE, INC. | Self-aligning radiopaque ring |
10863980, | Dec 28 2016 | Edwards Lifesciences Corporation | Suture fastener having spaced-apart layers |
10869728, | Mar 20 2002 | P Tech, LLC | Robotic surgery |
10893941, | Apr 02 2015 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
10912549, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
10912551, | Mar 31 2015 | Biomet Sports Medicine, LLC | Suture anchor with soft anchor of electrospun fibers |
10912637, | Mar 14 2013 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
10925587, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery system |
10932770, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
10932869, | Mar 20 2002 | P Tech, LLC | Robotic surgery |
10939905, | Aug 26 2016 | Edwards Lifesciences Corporation | Suture clips, deployment devices therefor, and methods of use |
10945719, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
10959791, | Mar 20 2002 | P Tech, LLC | Robotic surgery |
10966711, | Dec 24 2014 | Edwards Lifesciences Corporation | Suture clip deployment devices |
10973507, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10987099, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
11006956, | Dec 19 2014 | Abbott Cardiovascular Systems Inc. | Grasping for tissue repair |
11013504, | Aug 12 2008 | Covidien LP | Medical device for wound closure and method of use |
11013542, | Feb 22 2005 | P Tech, LLC | Tissue fixation system and method |
11020104, | Feb 15 2008 | Rex Medical L.P. | Vascular hole closure delivery device |
11039826, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11039827, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
11064986, | Feb 15 2008 | REX MEDICAL, L P | Vascular hole closure device |
11065103, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
11065119, | May 12 2017 | EVALVE, INC. | Long arm valve repair clip |
11071564, | Oct 05 2016 | EVALVE, INC.; Evalve, Inc | Cardiac valve cutting device |
11090036, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
11090053, | Dec 07 2011 | Edwards Lifesciences Corporation | Methods of deploying self-cinching surgical clips |
11096684, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11096691, | Jul 21 2015 | EVALVE, INC. | Tissue grasping devices and related methods |
11109857, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
11109863, | Dec 19 2014 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
11109972, | Oct 09 2015 | EVALVE, INC. | Delivery catheter handle and methods of use |
11116495, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
11123059, | Feb 15 2008 | Rex Medical, L.P. | Vascular hole closure delivery device |
11129608, | Mar 15 2013 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery system |
11129645, | Feb 07 2006 | P Tech, LLC | Methods of securing a fastener |
11134995, | Feb 07 2006 | P Tech, LLC | Method and devices for intracorporeal bonding of implants with thermal energy |
11172924, | Dec 10 2014 | Edwards Lifesciences AG | Multiple-firing suture fixation device and methods for using and manufacturing same |
11185320, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
11185321, | Dec 22 2011 | Edwards Lifesciences Corporation | Suture clip deployment devices |
11219443, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
11219446, | Oct 05 2005 | P Tech, LLC | Deformable fastener system |
11229435, | Dec 19 2014 | Abbott Cardiovascular Systems Inc. | Grasping for tissue repair |
11241305, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
11246638, | May 03 2006 | P Tech, LLC | Methods and devices for utilizing bondable materials |
11253296, | Feb 07 2006 | P Tech, LLC | Methods and devices for intracorporeal bonding of implants with thermal energy |
11259792, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
11259794, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
11272915, | May 07 2012 | MEDOS INTERNATIONAL SARL | Systems, devices, and methods for securing tissue using snare assemblies and soft anchors |
11278331, | Feb 07 2006 | P TECH LLC | Method and devices for intracorporeal bonding of implants with thermal energy |
11284884, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11298115, | Aug 03 2020 | TELEFLEX LIFE SCIENCES LLC | Handle and cartridge system for medical interventions |
11304715, | Sep 27 2004 | EVALVE, INC. | Methods and devices for tissue grasping and assessment |
11311287, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
11317907, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11317974, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
11331093, | Jun 29 2012 | TELEFLEX LIFE SCIENCES LLC | Flexible system for delivering an anchor |
11344304, | Jul 01 2005 | Abbott Laboratories | Clip applier and methods of use |
11369354, | Feb 15 2008 | Rex Medical L.P. | Vascular hole closure delivery device |
11369361, | Dec 27 2012 | MEDOS INTERNATIONAL SARL | Surgical constructs and methods for securing tissue |
11376115, | Sep 29 2006 | Biomet Sports Medicine, LLC | Prosthetic ligament system for knee joint |
11382616, | Dec 21 2012 | Edwards Lifesciences Corporation | Systems for securing sutures |
11395650, | May 30 2014 | Edwards Life Sciences Corporation | Systems for securing sutures |
11406388, | Dec 13 2016 | EVALVE, INC. | Rotatable device and method for fixing tricuspid valve tissue |
11439378, | Jan 09 2009 | Abbott Cardiovascular Systems, Inc. | Closure devices and methods |
11439383, | Aug 20 2019 | Abbott Cardiovascular Systems, Inc.; ABBOTT CARDIOVASCULAR SYSTEMS, INC | Self locking suture and self locking suture mediated closure device |
11446019, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11457958, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
11471147, | May 29 2009 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11471148, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
11471150, | Nov 18 2013 | Edwards Lifesciences AG | Multiple-firing suture fixation device and methods for using and manufacturing same |
11484331, | Sep 27 2004 | EVALVE, INC. | Methods and devices for tissue grasping and assessment |
11504105, | Jan 25 2019 | REX MEDICAL L P | Vascular hole closure device |
11504149, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Median lobe destruction apparatus and method |
11534157, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
11534159, | Aug 22 2008 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11553908, | Jul 11 2013 | Edwards Lifesciences Corporation | Knotless suture fastener installation system |
11564676, | May 07 2012 | MEDOS INTERNATIONAL SARL | Systems, devices, and methods for securing tissue |
11589856, | Jan 30 2003 | Integrated Vascular Systems, Inc. | Clip applier and methods of use |
11589859, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
11612391, | Jan 15 2008 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11617572, | Jan 16 2007 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11648004, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
11653947, | Oct 05 2016 | EVALVE, INC. | Cardiac valve cutting device |
11666433, | Mar 17 2014 | EVALVE, INC. | Double orifice device for transcatheter mitral valve replacement |
11672518, | Dec 21 2012 | Abbott Cardiovascular Systems, Inc. | Articulating suturing device |
11672520, | Dec 23 2017 | TELEFLEX LIFE SCIENCES LLC | Expandable tissue engagement apparatus and method |
11672522, | Mar 15 2013 | MEDOS INTERNATIONAL SARL | Surgical constructs with collapsing suture loop and methods for securing tissue |
11672523, | Sep 20 2012 | MEDOS INTERNATIONAL SARL | Systems, devices, and methods for securing tissue using hard anchors |
11672527, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
11684430, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
11690613, | Dec 24 2014 | Edwards Lifesciences Corporation | Suture clip deployment device |
11707280, | Dec 07 2011 | Edwards Lifesciences Corporation | Methods of deploying self-cinching surgical clips |
11723648, | Feb 03 2003 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
11730464, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
11744651, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
11759200, | Mar 16 2015 | Edwards Lifesciences Corporation | Suture securement devices |
11759209, | Jul 21 2015 | EVALVE, INC. | Tissue grasping devices and related methods |
11771414, | Mar 30 2012 | MEDOS INTERNATIONAL SARL | Surgical filament assemblies |
11786236, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
11801041, | Aug 03 2020 | TELEFLEX LIFE SCIENCES LLC | Handle and cartridge system for medical interventions |
11801044, | Feb 13 2007 | P Tech, LLC | Tissue fixation system and method |
11819205, | Jan 16 2007 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11850140, | Mar 14 2013 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
11896210, | Jan 15 2008 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
6010525, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method and apparatus for securing a suture |
6015428, | Jun 03 1997 | ANCEL SURGICAL R & D, INC | Integrally formed suture and suture lock |
6159234, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method and apparatus for securing a suture |
6231592, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method and apparatus for securing a suture |
6238418, | Dec 23 1998 | Depuy Orthopaedics, Inc. | Meniscal repair device |
6306159, | Dec 23 1998 | Ethicon, Inc | Meniscal repair device |
6319271, | Dec 30 1998 | DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC | Suture locking device |
6468293, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method and apparatus for securing a suture |
6569187, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method and apparatus for securing a suture |
6755338, | Aug 29 2001 | RICHARD A HILLSTEAD, INC | Medical instrument |
6830174, | Aug 30 2000 | RICHARD A HILLSTEAD, INC | Medical instrument |
6932835, | Aug 01 1997 | ADVANCED SKELETAL INNOVATIONS LLC; Bonutti Skeletal Innovations LLC | Suture securing tool |
7048754, | Mar 01 2002 | Evalve, Inc | Suture fasteners and methods of use |
7108710, | Nov 26 2002 | Abbott Laboratories | Multi-element biased suture clip |
7147652, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method and apparatus for securing a suture |
7150757, | Jun 11 2003 | MedicineLodge, Inc | Adjustable line locks and methods |
7163563, | Jul 16 2001 | Depuy Synthes Products, LLC | Unitary surgical device and method |
7309337, | Nov 08 2001 | Smith & Nephew, Inc. | Tissue repair system |
7354627, | Dec 22 2004 | DEPUY PRODUCTS, INC | Method for organizing the assembly of collagen fibers and compositions formed therefrom |
7416556, | Jun 06 2002 | Abbott Laboratories | Stop-cock suture clamping system |
7494496, | May 17 2002 | UCL Biomedica PLC | Device for transfixing and joining tissue |
7503474, | Aug 30 2000 | RICHARD A HILLSTEAD, INC | Medical instrument |
7534248, | Jun 06 2003 | Olympus Corporation | Anastomosing instrument |
7563267, | Apr 09 1999 | Evalve, Inc | Fixation device and methods for engaging tissue |
7566339, | Jun 11 2003 | IMDS. | Adjustable line locks and methods |
7569233, | May 04 2004 | Depuy Synthes Products, LLC | Hybrid biologic-synthetic bioabsorbable scaffolds |
7594923, | Jun 11 2003 | Medicine Lodge, Inc; MedicineLodge, Inc | Line lock suture attachment systems and methods |
7595062, | Jul 28 2005 | Depuy Synthes Products, LLC | Joint resurfacing orthopaedic implant and associated method |
7601165, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable suture loop |
7604646, | Apr 09 1999 | Evalve, Inc | Locking mechanisms for fixation devices and methods of engaging tissue |
7608092, | Feb 20 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for performing meniscus repair |
7608098, | Nov 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Bone fixation device |
7641694, | Jan 06 2005 | IMDS, Inc.; MedicineLodge, Inc | Line lock graft retention system and method |
7651509, | Dec 02 1999 | Smith & Nephew, Inc. | Methods and devices for tissue repair |
7655015, | Apr 09 1999 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
7658751, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
7722644, | Jun 11 2003 | Medicine Lodge, Inc.; MedicineLodge, Inc | Compact line locks and methods |
7736388, | Apr 09 1999 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
7749250, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
7753923, | Apr 09 1999 | EVALVE, INC. | Leaflet suturing |
7758594, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
7766923, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Integrated handle assembly for anchor delivery system |
7780682, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
7806904, | Dec 07 2000 | INTEGRATED VASCULAR SYSTEMS, INC | Closure device |
7806909, | Jun 11 2003 | Medicine Lodge Inc.; MedicineLodge, Inc | Line lock threading systems and methods |
7811296, | Apr 09 1999 | EVALVE, INC. | Fixation devices for variation in engagement of tissue |
7815655, | May 20 2005 | Teleflex Life Sciences Limited | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
7819895, | Jan 05 2000 | Integrated Vascular Systems, Inc. | Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use |
7819918, | Jul 16 2001 | Depuy Synthes Products, LLC | Implantable tissue repair device |
7828817, | Jan 05 2000 | Integrated Vascular Systems, Inc. | Apparatus and methods for delivering a closure device |
7841502, | Dec 18 2007 | Abbott Laboratories | Modular clip applier |
7842068, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Apparatus and methods for providing tactile feedback while delivering a closure device |
7846181, | Dec 30 1998 | DePuy Mitek, LLC | Suture locking device |
7850709, | Jun 04 2002 | Abbott Vascular Inc | Blood vessel closure clip and delivery device |
7850797, | Dec 17 2003 | Integrated Vascular Systems, Inc. | Methods for manufacturing a clip and clip |
7854750, | Aug 27 2002 | Bonutti Skeletal Innovations LLC | Apparatus and method for securing a suture |
7854810, | Dec 31 2002 | Integrated Vascular Systems, Inc. | Methods for manufacturing a clip and clip |
7857828, | Jan 30 2003 | INTEGRATED VASCULAR SYSTEMS, INC | Clip applier and methods of use |
7857830, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair and conduit device |
7862584, | May 07 2003 | ANPA MEDICAL, INC | Suture lock |
7867249, | Jan 30 2003 | INTEGRATED VASCULAR SYSTEMS, INC | Clip applier and methods of use |
7867251, | Nov 08 2001 | Smith & Nephew, Inc | Reattachment of tissue to base tissue |
7871440, | Dec 11 2006 | Depuy Synthes Products, LLC | Unitary surgical device and method |
7879071, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
7879072, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method for implanting a flowable fastener |
7887551, | Dec 02 1999 | Smith & Nephew, Inc | Soft tissue attachment and repair |
7887555, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
7887563, | Jan 22 2003 | INTECH DIRECT, INC | Surgical staple |
7896891, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
7901428, | Jan 05 2000 | INTEGRATED VASCULAR SYSTEMS, INC | Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use |
7905889, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Integrated handle assembly for anchor delivery system |
7905900, | Jan 30 2003 | INTEGRATED VASCULAR SYSTEMS, INC | Clip applier and methods of use |
7905903, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
7905904, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
7909836, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Multi-actuating trigger anchor delivery system |
7909851, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
7914539, | Nov 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Tissue fixation device |
7914542, | May 20 2005 | Teleflex Life Sciences Limited | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
7914808, | Jul 16 2001 | Depuy Synthes Products, LLC | Hybrid biologic/synthetic porous extracellular matrix scaffolds |
7922742, | Aug 30 2000 | RICHARD A HILLSTEAD, INC | Medical instrument |
7931669, | Jan 05 2000 | Integrated Vascular Systems, Inc. | Integrated vascular device with puncture site closure component and sealant and methods of use |
7951158, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
7959650, | Sep 29 2006 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
7967820, | May 03 2006 | P Tech, LLC | Methods and devices for trauma welding |
7981123, | Sep 12 1997 | EVALVE, INC. | Surgical device for connecting soft tissue |
7981139, | Mar 01 2002 | Evalve, Inc | Suture anchors and methods of use |
7998151, | Apr 09 1999 | EVALVE, INC. | Leaflet suturing |
8007503, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
8007512, | Feb 21 2002 | BLACKROCK ADVISORS, LLC | Plunger apparatus and methods for delivering a closure device |
8012205, | Jul 16 2001 | Depuy Synthes Products, LLC | Cartilage repair and regeneration device |
8025896, | Jul 16 2001 | Depuy Synthes Products, LLC | Porous extracellular matrix scaffold and method |
8029518, | Apr 09 1999 | EVALVE, INC. | Methods and devices for capturing and fixing leaflets in valve repair |
8034090, | Nov 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Tissue fixation device |
8043309, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
8043328, | Aug 29 2001 | RICHARD A HILLSTEAD, INC | Medical instrument |
8052592, | Sep 27 2005 | EVALVE, INC. | Methods and devices for tissue grasping and assessment |
8057493, | Apr 09 1999 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
8062333, | Feb 17 2005 | ANPA MEDICAL, INC | Suture retainer with multiple circumferentially spaced attachment points and suture retention method |
8088130, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8092529, | Jul 16 2001 | Depuy Synthes Products, LLC | Meniscus regeneration device |
8109968, | May 07 2003 | ANPA MEDICAL, INC | Suture lock |
8118836, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8123703, | Apr 09 1999 | EVALVE, INC. | Steerable access sheath and methods of use |
8128644, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
8128658, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8137382, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8157815, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Integrated handle assembly for anchor delivery system |
8162977, | Aug 27 2002 | Bonutti Skeletal Innovations LLC | Method for joining implants |
8187299, | Apr 09 1999 | EVALVE, INC. | Methods and apparatus for cardiac valve repair |
8211118, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
8216254, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery system with replaceable cartridge |
8216256, | Apr 09 1999 | EVALVE, INC. | Detachment mechanism for implantable fixation devices |
8221454, | Feb 20 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Apparatus for performing meniscus repair |
8231654, | Sep 29 2006 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
8236026, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
8251998, | Aug 16 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Chondral defect repair |
8273106, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair and conduit device |
8292921, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8298262, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
8303604, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
8308757, | Aug 30 2000 | Richard A. Hillstead, Inc. | Hydraulically actuated robotic medical instrument |
8313497, | Jul 01 2005 | Abbott Laboratories | Clip applier and methods of use |
8313509, | Jan 19 2010 | Covidien LP | Suture and retainer assembly and SULU |
8313523, | May 07 2003 | VACTRONIX SCIENTIFIC, LLC | Metallic implantable grafts and method of making same |
8317825, | Nov 09 2004 | Biomet Sports Medicine, LLC | Soft tissue conduit device and method |
8323315, | Dec 30 1998 | DePuy Mitek, Inc. | Suture locking device |
8333776, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery system |
8337525, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8337537, | Jul 16 2001 | Depuy Synthes Products, LLC | Device from naturally occurring biologically derived materials |
8343174, | Apr 09 1999 | EVALVE, INC. | Locking mechanisms for fixation devices and methods of engaging tissue |
8343187, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
8343227, | May 28 2009 | Biomet Manufacturing, LLC | Knee prosthesis assembly with ligament link |
8361113, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8366744, | Dec 02 1999 | Smith & Nephew, Inc. | Apparatus for tissue repair |
8388655, | Jun 11 2003 | IMDS Corporation | Compact line locks and methods |
8394110, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
8394113, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Coiled anchor device |
8409253, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
8409273, | Apr 09 1999 | Abbott Vascular Inc | Multi-catheter steerable guiding system and methods of use |
8425535, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Multi-actuating trigger anchor delivery system |
8435254, | Jan 19 2010 | Covidien LP | Suture and retainer assembly and sulu |
8454650, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
8454655, | Aug 05 2004 | TELEFLEX LIFE SCIENCES LLC | Method for anchoring suture and approximating tissue |
8460339, | Nov 26 2002 | Abbott Laboratories | Multi element biased suture clip |
8486092, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
8486108, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
8491606, | Dec 22 2005 | TELEFLEX LIFE SCIENCES LLC | Median lobe retraction apparatus and method |
8496657, | Feb 07 2006 | P Tech, LLC | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
8500761, | Apr 09 1999 | Abbott Vascular | Fixation devices, systems and methods for engaging tissue |
8500818, | Sep 29 2006 | Biomet Manufacturing, LLC | Knee prosthesis assembly with ligament link |
8506597, | Oct 25 2011 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for interosseous membrane reconstruction |
8512374, | Dec 30 1998 | DePuy Mitek, LLC | Soft tissue locking device |
8512375, | Dec 02 1999 | Smith & Nephew, Inc | Closure device and method for tissue repair |
8529584, | Dec 27 2010 | TELEFLEX LIFE SCIENCES LLC | Median lobe band implant apparatus and method |
8551140, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8562645, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
8562647, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for securing soft tissue to bone |
8574235, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for trochanteric reattachment |
8579932, | Feb 21 2002 | Integrated Vascular Systems, Inc. | Sheath apparatus and methods for delivering a closure device |
8590760, | May 25 2004 | Abbott Vascular Inc | Surgical stapler |
8597327, | Feb 03 2006 | Biomet Manufacturing, LLC | Method and apparatus for sternal closure |
8603106, | May 20 2005 | Teleflex Life Sciences Limited | Integrated handle assembly for anchor delivery system |
8603136, | Dec 07 2000 | Integrated Vascular Systems, Inc. | Apparatus and methods for providing tactile feedback while delivering a closure device |
8608777, | Feb 03 2006 | Biomet Sports Medicine | Method and apparatus for coupling soft tissue to a bone |
8617185, | Feb 13 2007 | P Tech, LLC | Fixation device |
8617208, | Mar 13 2000 | P Tech, LLC | Method of using ultrasonic vibration to secure body tissue with fastening element |
8628542, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Median lobe destruction apparatus and method |
8632569, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8636780, | Jan 06 2005 | IMDS Corporation | Line lock graft retention system and method |
8647363, | Aug 30 2000 | Richard A. Hillstead, Inc. | Robotically controlled hydraulic end effector system |
8652171, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
8652172, | Feb 03 2006 | Biomet Sports Medicine, LLC | Flexible anchors for tissue fixation |
8663243, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
8668705, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Latching anchor device |
8672968, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
8672969, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
8690910, | Dec 07 2000 | INTEGRATED VASCULAR SYSTEMS, INC | Closure device and methods for making and using them |
8715239, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
8715298, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
8721684, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8734468, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
8734505, | Apr 09 1999 | EVALVE, INC. | Methods and apparatus for cardiac valve repair |
8740918, | Sep 12 1997 | EVALVE, INC. | Surgical device for connecting soft tissue |
8740920, | Apr 09 1999 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
8747439, | Mar 13 2000 | Bonutti Skeletal Innovations LLC | Method of using ultrasonic vibration to secure body tissue with fastening element |
8758366, | Jul 09 2007 | TELEFLEX LIFE SCIENCES LLC | Multi-actuating trigger anchor delivery system |
8758396, | Jan 05 2000 | Integrated Vascular Systems, Inc. | Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use |
8771316, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8771352, | May 17 2011 | Biomet Sports Medicine, LLC | Method and apparatus for tibial fixation of an ACL graft |
8777956, | Aug 16 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Chondral defect repair |
8777992, | Mar 14 2002 | Teleflex Life Sciences Limited | Methods for anchoring suture and approximating tissue |
8784447, | Sep 08 2000 | Abbott Vascular Inc | Surgical stapler |
8790370, | Mar 30 2012 | MEDOS INTERNATIONAL SARL | Surgical filament assemblies |
8801783, | Sep 29 2006 | Biomet Sports Medicine, LLC | Prosthetic ligament system for knee joint |
8808329, | Feb 06 1998 | ADVANCED SKELETAL INNOVATIONS LLC; Bonutti Skeletal Innovations LLC | Apparatus and method for securing a portion of a body |
8814902, | May 03 2000 | Bonutti Skeletal Innovations LLC | Method of securing body tissue |
8814905, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
8821543, | Dec 23 2010 | MEDOS INTERNATIONAL SÀRL | Adjustable anchor systems and methods |
8821544, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
8821545, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
8834492, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Continuous indentation lateral lobe apparatus and method |
8840645, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8845686, | Oct 26 2010 | ZipTek LLC | Surgical suture system |
8845687, | Aug 19 1996 | Bonutti Skeletal Innovations LLC | Anchor for securing a suture |
8845699, | Aug 09 1999 | Bonutti Skeletal Innovations LLC | Method of securing tissue |
8888799, | May 20 2005 | Teleflex Life Sciences Limited | Coiled anchor device |
8893947, | Dec 17 2007 | Abbott Laboratories | Clip applier and methods of use |
8894683, | Dec 29 2005 | Ethicon, Inc. | Device for attaching, relocating and reinforcing tissue and methods of using same |
8894684, | May 07 2012 | MEDOS INTERNATIONAL SÀRL | Systems, devices, and methods for securing tissue using a suture having one or more protrusions |
8900252, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
8900314, | May 28 2009 | Biomet Manufacturing, LLC | Method of implanting a prosthetic knee joint assembly |
8905937, | Feb 26 2009 | INTEGRATED VASCULAR SYSTEMS, INC | Methods and apparatus for locating a surface of a body lumen |
8926633, | Jun 24 2005 | Abbott Laboratories | Apparatus and method for delivering a closure element |
8932330, | Feb 17 2004 | Bonutti Skeletal Innovations LLC | Method and device for securing body tissue |
8932331, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8936609, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Apparatus and method for manipulating or retracting tissue and anatomical structure |
8936621, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
8939996, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Anchor delivery System |
8940001, | May 20 2005 | Teleflex Life Sciences Limited | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
8945152, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Multi-actuating trigger anchor delivery system |
8956388, | Jan 05 2000 | Integrated Vascular Systems, Inc. | Integrated vascular device with puncture site closure component and sealant |
8968336, | Dec 07 2011 | Edwards Lifesciences Corporation | Self-cinching surgical clips and delivery system |
8968364, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
8974495, | Dec 23 2010 | Medos International Sàrl | Adjustable anchor systems and methods |
8992547, | Mar 21 2012 | Cilag GmbH International | Methods and devices for creating tissue plications |
8998949, | Nov 09 2004 | Biomet Sports Medicine, LLC | Soft tissue conduit device |
9005287, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for bone reattachment |
9017347, | Dec 22 2011 | Edwards Lifesciences Corporation | Suture clip deployment devices |
9017381, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
9034001, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Slotted anchor device |
9034013, | May 07 2012 | MEDOS INTERNATIONAL SÀRL | Systems, devices, and methods for securing tissue using a suture having one or more protrusions |
9044246, | Apr 09 1999 | ABBOTT VASCULAR INC. | Methods and devices for capturing and fixing leaflets in valve repair |
9050087, | Jan 05 2000 | Integrated Vascular Systems, Inc. | Integrated vascular device with puncture site closure component and sealant and methods of use |
9060762, | Nov 08 2001 | Smith & Nephew, Inc. | Reattachment of tissue to base tissue |
9060763, | May 07 2012 | MEDOS INTERNATIONAL SÀRL | Systems, devices, and methods for securing tissue |
9060764, | May 07 2012 | MEDOS INTERNATIONAL SÀRL | Systems, devices, and methods for securing tissue |
9060767, | Apr 30 2003 | P Tech, LLC | Tissue fastener and methods for using same |
9060769, | Sep 08 2000 | ABBOTT VASCULAR INC. | Surgical stapler |
9067362, | Mar 13 2000 | Bonutti Skeletal Innovations LLC | Method of using ultrasonic vibration to secure body tissue with fastening element |
9078644, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9089323, | Feb 22 2005 | P Tech, LLC | Device and method for securing body tissue |
9089324, | May 04 2009 | AEGIS MEDICAL INNOVATIONS INC | Suture locks and suture lock systems |
9089674, | Oct 06 2000 | Integrated Vascular Systems, Inc. | Apparatus and methods for positioning a vascular sheath |
9095331, | Dec 23 2010 | MEDOS INTERNATIONAL SÀRL | Adjustable anchor systems and methods |
9113866, | Dec 15 2011 | Ethicon Endo-Surgery, Inc | Devices and methods for endoluminal plication |
9113867, | Dec 15 2011 | Ethicon Endo-Surgery, Inc | Devices and methods for endoluminal plication |
9113868, | Dec 15 2011 | Ethicon Endo-Surgery, Inc | Devices and methods for endoluminal plication |
9113879, | Dec 15 2011 | Ethicon Endo-Surgery, Inc | Devices and methods for endoluminal plication |
9119615, | Dec 15 2011 | Ethicon Endo-Surgery, Inc | Devices and methods for endoluminal plication |
9131939, | Feb 27 2008 | Edwards Lifesciences Corporation | Device for percutaneously delivering a cardiac implant through the application of direct actuation forces external to the body |
9132001, | May 07 2003 | VACTRONIX SCIENTIFIC, LLC | Metallic implantable grafts and method of making same |
9138222, | Feb 17 2004 | Bonutti Skeletal Innovations LLC | Method and device for securing body tissue |
9149266, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Deforming anchor device |
9149267, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9149281, | Mar 20 2002 | P Tech, LLC | Robotic system for engaging a fastener with body tissue |
9155544, | Mar 20 2002 | P Tech, LLC | Robotic systems and methods |
9161749, | Apr 14 2011 | TELEFLEX LIFE SCIENCES LLC | Method and apparatus for treating sexual dysfunction |
9173647, | Feb 22 2005 | P Tech, LLC | Tissue fixation system |
9173650, | May 03 2006 | P Tech, LLC | Methods and devices for trauma welding |
9173651, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9173657, | Dec 15 2011 | Ethicon Endo-Surgery, Inc | Devices and methods for endoluminal plication |
9179908, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
9186134, | Jan 19 2010 | Covidien LP | Suture and retainer assembly and SULU |
9192373, | Dec 27 2012 | MEDOS INTERNATIONAL SÀRL | Surgical constructs and methods for securing tissue |
9192395, | Mar 20 2002 | P Tech, LLC | Robotic fastening system |
9198653, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
9216078, | May 17 2011 | Biomet Sports Medicine, LLC | Method and apparatus for tibial fixation of an ACL graft |
9220494, | Dec 02 1999 | Smith & Nephew, Inc. | Methods for tissue repair |
9226828, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
9259217, | Jan 03 2012 | Biomet Manufacturing, LLC | Suture Button |
9265498, | Jun 11 2003 | IMDS Corporation | Compact line locks and methods |
9271713, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for tensioning a suture |
9271716, | Dec 27 2012 | MEDOS INTERNATIONAL SÀRL | Surgical constructs and methods for securing tissue |
9271741, | Mar 20 2002 | P Tech, LLC | Robotic ultrasonic energy system |
9271766, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
9271779, | Mar 20 2002 | P Tech, LLC | Methods of using a robotic spine system |
9295461, | Dec 02 1999 | Smith & Nephew, Inc. | Methods for tissue repair |
9314235, | Feb 05 2003 | Smith & Nephew, Inc. | Tissue anchor and insertion tool |
9314241, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
9320511, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Multi-actuating trigger anchor delivery system |
9345468, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
9345567, | May 07 2012 | MEDOS INTERNATIONAL SÀRL | Systems, devices, and methods for securing tissue using snare assemblies and soft anchors |
9351719, | Nov 01 2012 | Zone 2 Surgical, Inc. | Self locking knotless suture |
9357991, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
9357992, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
9364212, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Suture anchoring devices and methods for use |
9370350, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
9381013, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
9402621, | Feb 03 2006 | Biomet Sports Medicine, LLC. | Method for tissue fixation |
9402625, | Sep 08 2000 | ABBOTT VASCULAR INC. | Surgical stapler |
9402668, | Feb 13 2007 | P Tech, LLC | Tissue fixation system and method |
9402711, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Median lobe band implant apparatus and method |
9414833, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
9414837, | Dec 22 2011 | Edwards Lifesciences Corporation | Suture clip deployment devices |
9414925, | Sep 29 2006 | Biomet Manufacturing, LLC | Method of implanting a knee prosthesis assembly with a ligament link |
9421005, | Feb 07 2006 | P Tech, LLC | Methods and devices for intracorporeal bonding of implants with thermal energy |
9433407, | Jan 03 2012 | Biomet Manufacturing, LLC | Method of implanting a bone fixation assembly |
9439642, | May 03 2006 | P Tech, LLC | Methods and devices for utilizing bondable materials |
9445827, | Oct 25 2011 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for intraosseous membrane reconstruction |
9463012, | Oct 05 2005 | P Tech, LLC | Apparatus for guiding and positioning an implant |
9468433, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
9486211, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
9486227, | Mar 20 2002 | P Tech, LLC | Robotic retractor system |
9492158, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9492160, | Dec 02 1999 | Smith & Nephew, Inc. | Closure device and method for tissue repair |
9498202, | Jul 10 2012 | Edwards Lifesciences Corporation | Suture securement devices |
9498204, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
9504460, | Nov 05 2004 | Biomet Sports Medicine, LLC. | Soft tissue repair device and method |
9504461, | May 20 2005 | Teleflex Life Sciences Limited | Anchor delivery system |
9510819, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9510821, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
9510829, | Apr 09 1999 | EVALVE, INC. | Fixation devices, systems and methods for engaging tissue |
9510837, | Sep 12 1997 | EVALVE, INC. | Surgical device for connecting soft tissue |
9532777, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9532778, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
9538998, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fracture fixation |
9539003, | Sep 29 2006 | Biomet Sports Medicine, LLC. | Method and apparatus for forming a self-locking adjustable loop |
9539004, | Mar 08 2013 | ZONE 2 SURGICAL, INC | Collapsible locking suture |
9545251, | Dec 02 1999 | Smith & Nephew, Inc. | Apparatus for tissue repair |
9545268, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
9549730, | Dec 22 2011 | Edwards Lifesciences Corporation | Suture clip deployment devices |
9549739, | May 20 2005 | TELEFLEX LIFE SCIENCES LLC | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
9561025, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9572655, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9579091, | Jan 05 2000 | INTEGRATED VASCULAR SYSTEMS, INC | Closure system and methods of use |
9579129, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
9585654, | May 01 2012 | Dean & Webb, LLC; DEAN & WEBB LLC | Segmentally rigid suture and suturing technique |
9585725, | Mar 20 2002 | P Tech, LLC | Robotic arthroplasty system |
9592047, | Dec 21 2012 | Edwards Lifesciences Corporation | System for securing sutures |
9592048, | Jul 11 2013 | Edwards Lifesciences Corporation | Knotless suture fastener installation system |
9603591, | Feb 03 2006 | Biomet Sports Medicine, LLC | Flexible anchors for tissue fixation |
9610073, | Feb 07 2006 | P Tech, LLC | Methods and devices for intracorporeal bonding of implants with thermal energy |
9615822, | May 30 2014 | Biomet Sports Medicine, LLC | Insertion tools and method for soft anchor |
9622736, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9629687, | Mar 20 2002 | P Tech, LLC | Robotic arthroplasty system |
9636103, | Aug 28 2014 | Covidien LP | Surgical suturing instrument |
9642661, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and Apparatus for Sternal Closure |
9668739, | Dec 07 2011 | Edwards Lifesciences Corporation | Self-cinching surgical clips and delivery system |
9681940, | Sep 29 2006 | Biomet Sports Medicine, LLC | Ligament system for knee joint |
9700291, | Jun 03 2014 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Capsule retractor |
9700305, | Mar 12 2013 | ZipTek LLC | Method for securing tissue |
9724090, | Sep 29 2006 | Biomet Manufacturing, LLC | Method and apparatus for attaching soft tissue to bone |
9737293, | Mar 15 2013 | MEDOS INTERNATIONAL SÀRL | Surgical constructs with collapsing suture loop and methods for securing tissue |
9743963, | May 03 2006 | P Tech, LLC | Methods and devices for trauma welding |
9750496, | Aug 27 2002 | P TECH LLC | System for securing a portion of a body |
9757116, | May 07 2012 | MEDOS INTERNATIONAL SÁRL | Systems, devices, and methods for securing tissue |
9757119, | Mar 08 2013 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Visual aid for identifying suture limbs arthroscopically |
9757122, | Mar 12 2013 | ZipTek LLC | Fastener |
9763655, | Sep 20 2012 | MEDOS INTERNATIONAL SARL | Systems, devices, and methods for securing tissue using hard anchors |
9763656, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
9770238, | Dec 03 2001 | P Tech, LLC | Magnetic positioning apparatus |
9788838, | Oct 11 2011 | ZONE 2 SURGICAL, INC | Tissue device |
9788876, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9795373, | May 07 2012 | MEDOS INTERNATIONAL SÀRL | Systems, devices, and methods for securing tissue using a suture having one or more protrusions |
9801620, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
9801708, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9808318, | Mar 20 2002 | P Tech, LLC | Robotic arthroplasty system |
9814453, | Oct 05 2005 | P Tech, LLC | Deformable fastener system |
9833229, | Dec 23 2010 | MEDOS INTERNATIONAL SÀRL | Adjustable anchor systems and methods |
9833230, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9833231, | Dec 02 1999 | Smith & Nephew, Inc. | Apparatus for tissue repair |
9855033, | Mar 12 2013 | ZipTek LLC | Apparatus and method for securing tissue |
9861351, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
9867706, | Oct 26 2004 | P Tech, LLC | Tissue fastening system |
9872678, | Mar 30 2012 | MEDOS INTERNATIONAL SARL | Surgical filament assemblies |
9877793, | Mar 20 2002 | P Tech, LLC | Robotic arthroplasty system |
9884451, | Mar 13 2000 | Bonutti Skeletal Innovations LLC | Method of using ultrasonic vibration to secure body tissue |
9888916, | Mar 09 2004 | P Tech, LLC | Method and device for securing body tissue |
9895145, | Nov 23 2010 | MEDOS INTERNATIONAL SÀRL | Surgical filament snare assemblies |
9918826, | Sep 29 2006 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
9918827, | Mar 14 2013 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
9955980, | Feb 24 2015 | Biomet Sports Medicine, LLC | Anatomic soft tissue repair |
9962162, | Apr 30 2003 | P Tech, LLC | Tissue fastener and methods for using same |
9980716, | Mar 21 2012 | Cilag GmbH International | Methods and devices for creating tissue plications |
9980717, | Feb 22 2005 | P Tech, LLC | Device and method for securing body tissue |
9980761, | Feb 22 2005 | P Tech, LLC | Tissue fixation system and method |
9986994, | Mar 13 2000 | P Tech, LLC | Method and device for securing body tissue |
9993241, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
9999449, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
D587807, | Feb 09 2008 | Surgical suture anchor | |
D611144, | Jun 28 2006 | Abbott Laboratories | Apparatus for delivering a closure element |
D819432, | Mar 11 2014 | ZipTek LLC | Screw |
RE47209, | Jul 10 2012 | Edwards Lifesciences Corporation | Suture securement devices |
Patent | Priority | Assignee | Title |
4741330, | May 20 1982 | Method and apparatus for anchoring and manipulating cartilage | |
5258015, | May 03 1991 | Smith & Nephew, Inc | Locking filament caps |
5370661, | Nov 06 1990 | Method and apparatus for re-approximating tissue |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 15 1995 | M & R Medical, Inc. | (assignment on the face of the patent) | / | |||
Feb 19 1996 | MOSER, THOMAS V | M&R MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007987 | /0591 | |
Feb 19 1996 | RYAN, JAMES P | M&R MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 007987 | /0591 |
Date | Maintenance Fee Events |
Apr 29 1998 | ASPN: Payor Number Assigned. |
Sep 06 2001 | M283: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Sep 12 2001 | RMPN: Payer Number De-assigned. |
Sep 28 2005 | REM: Maintenance Fee Reminder Mailed. |
Mar 10 2006 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 10 2001 | 4 years fee payment window open |
Sep 10 2001 | 6 months grace period start (w surcharge) |
Mar 10 2002 | patent expiry (for year 4) |
Mar 10 2004 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 10 2005 | 8 years fee payment window open |
Sep 10 2005 | 6 months grace period start (w surcharge) |
Mar 10 2006 | patent expiry (for year 8) |
Mar 10 2008 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 10 2009 | 12 years fee payment window open |
Sep 10 2009 | 6 months grace period start (w surcharge) |
Mar 10 2010 | patent expiry (for year 12) |
Mar 10 2012 | 2 years to revive unintentionally abandoned end. (for year 12) |