An angle-dependent reflectometer or transmissometer includes an optical imaging array in the incident and reflected or transmitted light path that breaks up an incident light beam into mutually spatially incoherent light bundles. The individual light bundles are then focused to a common spot by a high numerical aperture objective lens so as to provide a range of incidence angles on a sample surface. In a reflectometer, reflected light returns through the objective lens and imaging array and is imaged onto a detector array where different incidence and reflection angles are received by different groups of detection elements. In the angle-dependent transmissometer, the imaging array and high numerical aperture focusing objective lens are used for illuminating a spot on the sample, with a second high numerical aperture collection objective lens and detector array used for receiving transmitted light over a wide range of collection angles. The angle-dependent reflectance or transmittance measurement provided by the detector array can be analyzed to determine a desired characteristic parameter of the illuminated area of the sample surface. For example, a periodic text pattern on a wafer or mask surface can be illuminated to obtain a linewidth measurement. The break up of the light by the imaging array into light bundles allows the spot size to be controlled independently of the range of illumination angles so that areas much larger than the diffraction limit can be illuminated.

Patent
   5889593
Priority
Feb 26 1997
Filed
Feb 26 1997
Issued
Mar 30 1999
Expiry
Feb 26 2017
Assg.orig
Entity
Large
255
11
all paid
1. A reflectometer, comprising
a light source providing a collimated light beam directed along a path,
an optical imaging array in the path of said collimated light beam, said imaging array including a plurality N of individual imaging elements, each element receiving a portion of said collimated light beam, the imaging array breaking the collimated light beam into N individual light bundles,
an objective lens in the path of said light bundles for focusing said bundles to a common spot on a sample surface, said objective lens and said optical imaging array also in the path of light reflected from said spot on said sample surface for collecting and imaging said reflected light, and
a detector array positioned to receive from said optical imaging array and detect reflected light corresponding to a range of incidence angles at said sample surface.
30. A method of obtaining simultaneous measurement of angle-dependent specular reflectance over a range of incidence and reflection angles, comprising
providing a collimated light beam and directing said beam along a path,
breaking said beam into a plurality of individual light bundles, wherein any spatial coherence in said collimated light beam is absent between said individual light bundles,
focusing said bundles to a common spot on a sample surface, said spot having a size that is substantially larger than a diffraction-limited spot size for a focused spatially coherent beam, said focused light bundles having a range of incidence angles on said sample surface,
collecting light reflected from said spot on said sample surface, the reflected light being collected over a range of reflection angles comparable to said range of incidence angles, and
detecting said reflected light corresponding to the different reflection angles within said range of reflection angles, the detection providing an angle-dependent measurement of reflectance from said sample surface.
5. A reflectometer, comprising
a light source providing a collimated light beam directed along a path,
an optical imaging array in the path of said collimated light beam, said imaging array including a plurality N of individual imaging elements, each element receiving a portion of said collimated light beam, the imaging array breaking the collimated light beam into N individual light bundles,
an objective lens in the path of said light bundles for focusing said bundles to a common spot on a sample surface, and also in the path of light reflected from said spot on said sample surface for collecting said reflected light, and
a detector array positioned to receive and detect reflected light corresponding to a range of incidence angles at said sample surface,
wherein said imaging array comprises a pair of identical lenslet arrays positioned two focal lengths apart with corresponding lenslets in said pair of lenslet arrays being aligned with one another, each corresponding pair of aligned lenslets of the respective lenslet arrays forming an individual imaging element of the imaging array.
25. A transmissometer, comprising
a light source providing a collimated light beam directed along a path,
an optical imaging array in the path of said collimated light beam, said imaging array including a plurality N of individual imaging elements, each element receiving a portion of said collimated light beam, the image array breaking the collimated light beam into N individual light bundles,
a first objective lens in the path of said light bundles for focusing said bundles to a common spot on a sample surface,
a second objective lens in a path of light transmitted through said sample surface from said spot for collecting said transmitted light, and
a detector array positioned to receive and detect transmitted light from said second objective lens, the received and detected transmitted light corresponding to a range of incidence angles at said sample surface,
wherein said imaging array comprises a pair of identical lenslet arrays positioned two focal lengths apart with corresponding lenslets in said pair of lenslet arrays being aligned with one another, each corresponding pair of aligned lenslets of the respective lenslet arrays forming an individual imaging element of the imaging array.
23. A transmissometer, comprising
a light source providing a collimated light beam directed along a path,
an optical imaging array in the path of said collimated light beam, said imaging array including a plurality N of individual imaging elements, each element receiving a portion of said collimated light beam, the image array breaking the collimated light beam into N individual light bundles, wherein any spatial coherence in said collimated light beam is absent between said individual light bundles,
a first objective lens in the path of said light bundles for focusing said bundles to a common spot on a sample surface, wherein the common spot of light bundles focused into said sample surface has a diameter of at least 10 μm, and the light bundles have a range of incidence angles on the sample surface from perpendicular to said surface (0°) to at least 50° from perpendicular,
a second objective lens in a path of light transmitted through said sample surface from said spot for collecting said transmitted light, and
a detector array positioned to receive and detect transmitted light from said second objective lens, the received and detected transmitted light corresponding to a range of incidence angles at said sample surface, wherein said detector array has a plurality of detection elements such that each group of at least one detection element of said detector array receives light corresponding to a particular incidence and transmission angle of light illuminating said sample surface, whereby said detector array provides a measure of transmittance through said sample surface over a range of incidence angles.
11. A reflectometer, comprising
a laser providing a collimated light beam directed along a path,
an optical imaging array in the path of said collimated light beam, said imaging array including a plurality N of individual imaging elements, each element receiving a portion of said collimated light beam, the imaging array breaking the collimated light beam into N individual light bundles, wherein spatial coherence in said collimated light beam is absent between said individual light bundles,
a high numerical aperture objective lens in the path of said light bundles for focusing said bundles to a common spot on a sample surface, the objective lens having a numerical aperture of at least 0.5, the common spot having a diameter of at least 10 μm, whereby any periodic pattern on said sample surface is illuminated over at least 10 periods of said periodic pattern and over a range of incidence angles of said light bundles,
a detector array positioned to receive and detect light reflected from said sample surface through said objective lens and said imaging array, each group of at least one detection element of said detector array corresponding to and receiving light from an individual imaging element of said imaging array and corresponding to an incidence angle of light on said sample surface, whereby said detection array provides a measure of reflectance from said periodic pattern versus incidence angle over said range of incidence angles, and
processing means for analyzing said measure of reflectance versus incidence angle received from said detector array and determining therefrom a desired parameter of said periodic pattern on said sample surface.
15. A surface inspection apparatus, comprising:
a vibration-isolation platform holding an object having a surface to be inspected on a stage and an optical head in relative optical communication therewith, the optical head including a reflectometer;
means operative on the stage and said optical head for controlling relative motion between said stage and optical head, such that said reflectometer measures angle-dependent reflectance at selected locations of the surface on said stage; and
processing means for analyzing reflectance data obtained from said reflectometer and determining therefrom a desired characteristic parameter at said selected locations of said surface;
wherein said reflectometer includes (a) a light source providing a collimated light beam directed along a path, (b) an optical imaging array in the path of said collimated light beam, said imaging array having a plurality N of individual imaging elements, each imaging element receiving a portion of said collimated light beam, the imaging array breaking the collimated light beam into N individual light bundles, wherein any spatial coherence in said collimated light beam is absent between said individual light bundles (c) an objective lens in the path of said light bundles focusing the light bundles to a common spot on a selected location of the surface, the objective lens and the optical imaging array also being in the path of light reflected from said spot on said surface for collecting and imaging said reflected light, and (d) a detector array positioned to receive from said imaging array and detect reflected light corresponding to a range of incidence angles at said surface, said detector array connected to said processing means so as to deliver angle-dependent reflectance data thereto.
21. A surface inspection apparatus, comprising:
a vibration-isolation platform holding an object having a surface to be inspected on a stare and an optical head in relative optical communication therewith. the optical head including a reflectometer;
means operative on the stage and said optical head for controlling relative motion between said stage and optical head, such that said reflectometer measures angle-dependent reflectance at selected locations on the surface while on said stage; and
processing means for analyzing reflectance data obtained from said reflectometer and determining therefrom a desired characteristic parameter at said selected locations of said surface;
wherein said reflectometer includes (a) a light source providing a collimated light beam directed along a path, (b) an optical imaging array in the path of said collimated light beam, said imaging array having a plurality N of individual imaging elements, each imaging element receiving a portion of said collimated light beam, the imaging array breaking the collimated light beam into N individual light bundles, (c) an objective lens in the path of said light bundles focusing the light bundles to a common spot on a selected location of the surface, and (d) a detector array positioned to receive and detect reflected light corresponding to a range of incidence angles at said surface, said detector array connected to said processing means so as to deliver angle-dependent reflectance data thereto,
wherein the imaging array of the reflectometer comprises a pair of identical lenslet arrays positioned two focal lengths apart with corresponding lenslets in said pair of lenslet arrays being aligned with one another, each corresponding pair of aligned lenslets of the respective lenslet arrays forming an individual imaging element of the imaging array.
2. The reflectometer of claim 1 wherein the objective lens has a numerical aperture of at least 0.5.
3. The reflectometer of claim 1 wherein the common spot of said light bundles focused onto said sample surface has a diameter of at least 10 μm, and the light bundles have a range on incidence angles on the sample surface from perpendicular to said surface (0°) to at least 50° from perpendicular.
4. The reflectometer of claim 1 wherein the common spot of said light bundles focused onto said sample surface has a size that illuminates at least ten periods of a periodic pattern on said surface.
6. The reflectometer of claim 1 wherein said imaging array comprises an optical fiber imaging bundle, each optical fiber of said bundle forming one of said individual imaging elements of the imaging array and maintaining an ordered correspondence between the individual light bundles passing through the imaging array from entry to exit of the optical fibers toward the detector array.
7. The reflectometer of claim 1 wherein said detector array has a plurality of detection elements, such that each group of at least one detection element of said detector array receives light corresponding to a particular incidence and reflection angle of light illuminating said sample surface, whereby said detector array provides a measure of reflectance from said sample surface over a range of incidence angles.
8. The reflectometer of claim 1 wherein said imaging array and said detector array are two-dimensional arrays.
9. The reflectometer of claim 1 further comprising processing means in communication with said detector array for analyzing measured reflectance versus incidence angle received from said detector array and determining therefrom a desired characteristic parameter of the illuminated area of said sample surface.
10. The reflectometer of claim 9 wherein said processing means includes comparison means fitting said measured reflectance versus incidence angle to one best curve of a library of stored curve families representing possible reflectance responses for different values of said desired characteristic parameter.
12. The reflectometer of claim 11 wherein said imaging array is a pair of identical lenslet arrays positioned two focal lengths apart with corresponding lenslets in said pair of arrays aligned with one another, each corresponding pair of aligned lenslets forming an individual imaging element of said imaging array.
13. The reflectometer of claim 11 wherein said imaging array is a fiber bundle, each optical fiber in said bundle forming one of said individual imaging elements of said imaging array.
14. The reflectometer of claim 11 wherein said imaging array and said detector array are two-dimensional arrays.
16. The apparatus of claim 15 wherein said means for controlling motion includes (i) a camera in the optical head observing an area of a wafer on the stage in a known fixed lateral displacement from the location of said common spot for said reflectometer, (ii) additional processing means receiving an image of said observed area from said camera for identifying at least one alignment mark on the observed wafer and for controlling navigation motion of the wafer by said stage to said successive selected locations, the additional processing means having memory means for storing said selected locations therein, and (iii) motion motors of said stage responsive to said additional processing means for moving said wafer in accord with said controlled navigation motion to said selected locations.
17. The apparatus of claim 15 further having autofocus means in the optical head for adjusting a focus of the objective lens of said reflectometer relative to the surface.
18. The apparatus of claim 15 wherein the processing means for analyzing reflectance data includes comparison means fitting the angle-dependent reflectance to one best curve of a library of stored curve families representing possible reflectance responses for different values of said desired characteristic parameter.
19. The apparatus of claim 15 wherein the common spot of the light bundles focused by the objective lens of the reflectometer onto the selected locations on the surface has a diameter of at least 10 μm, and the light bundles have a range of incidence angles on the surface from perpendicular to said surface (0°) to at least 50° from perpendicular.
20. The apparatus of claim 15 wherein the selected locations on the surface include a periodic surface pattern, the common spot of the light bundles focused by the objective lens of the reflectometer onto the sample surface having a size that illuminates at least ten periods of the periodic surface pattern.
22. The apparatus of claim 15 wherein said object is a semiconductor wafer.
24. The transmissometer of claim 23 wherein said first and second objective lenses both have numerical apertures of at least 0.5.
26. The transmissometer of claim 23 wherein said imaging array comprises an optical fiber bundle, each optical fiber of said bundle forming one of said individual imaging elements of the imaging array.
27. The transmissometer of claim 23 wherein said imaging array and said detector array are two-dimensional arrays.
28. The transmissometer of claim 23 further comprising processing means in communication with said detector array for analyzing measured transmittance versus incidence angle received from said detector array and determining therefrom a desired characteristic parameter of the illuminated area of said sample surface.
29. The transmissometer of claim 28 wherein said processing means includes comparison means fitting said measured transmittance versus incidence angle to one best curve of a library of stored curve families representing possible transmittance responses for different values of said desired characteristic parameter.
31. The method of claim 30 wherein said range of incidence angles for said focused light bundles and said range of reflection angles for said collected light extend from perpendicular to said sample surface (0°) to at least 50° from perpendicular.
32. The method of claim 30 wherein said light bundles are focused to a spot having a diameter of at least 10 μm.
33. The method of claim 30 wherein breaking said collimated light beam into individual light bundles includes directing said light beam through an imaging array, where each element of said imaging array receives and inverts a different portion of said light beam.
34. The method of claim 30 wherein breaking said collimated light beam into individual light bundles includes directing said light beam through a bundle of optical fibers.
35. The method of claim 30 wherein focusing said light bundles to a common spot and collecting said reflected light comprises directing said light bundles through an objective lens in a first direction and passing said reflected light back through said objective lens in a second direction.
36. The method of claim 30 wherein said collimated light beam is broken into a two-dimensional array of individual light bundles and detecting said reflected light is accomplished by a two-dimensional detector array, whereby reflectance in different planes of incidence can be measured.
37. The method of claim 30 further comprising analyzing measured angle-dependent reflectance data to determine a desired characteristic parameter of the illuminated spot on said sample surface.
38. The method of claim 37 wherein analyzing said data includes comparing said angle-dependent reflectance data with a library of stored reflectance data corresponding to known values of said desired characteristic parameter.

The present invention relates to optical systems for measuring dimensions (e.g., width or thickness) or profile of features, such as deposited and etched lines, formed on a reflective wafer surface or on a transmissive surface, and in particular, to systems that measure light reflection or transmission from periodic patterns that are formed on the surface as microscopic features or calibration reference targets or as an aid to process monitoring.

There are a variety of optical measuring and testing applications in which light is incident upon a surface and then selected parameters of the reflected or transmitted light, such as intensity or polarization, are measured. Thus, it may be desired to measure surface roughness, thin film layer thickness, etch depth of various surface structures, or linewidth. Various common techniques include spectrometry, interferometry, polarimetry, ellipsometry, scatterometry, reflectometry and transmissometry. For example, one way to measure the dimensions (width or thickness) and shape of lines formed on a generally flat, reflective semiconductor wafer surface is to provide a test pattern of such lines formed as a high frequency grating in designated areas on the wafer surface interspersed among the integrated circuit patterns, then to illuminate the test pattern with monochromatic light from a laser source, and to detect and measure the resulting reflectance at various angles. From an analysis of the measured angle-dependent reflectance data, for example by comparison with reference data obtained from either a theoretical model or previous measurements done on calibration standards, the desired line parameter or parameters can be determined.

One type of optical instrument for carrying out this measurement is described in U.S. Pat. Nos. 4,710,642 (McNeil) and 5,164,790 (McNeil et al.) and in a paper by S.S.H. Naqvi et al. in the Journal of the Optical Society of America A, vol. 11, no. 9, pages 2485-2493, September 1994. FIG. 1 illustrates the basic configuration from the Naqvi et al. paper. The measurement instrument is described as an angle-scanning scatterometer in which a spot 10 on a sample 12 is illuminated by a laser beam 14 incident at an angle θi relative to the surface normal of the sample. Normally, the laser wavelength and incidence angle are fixed for a given measurement. Scattered light 16 is detected by a photodiode 18 over a range of scattering angles θs at a constant radius from the point of incidence 10 on the sample surface, as indicated by the circular detector path 20 in FIG. 1. For this purpose, the photodiode 18 may be mounted on a rotary stage (not shown) with its rotation axis passing through the illumination spot 10. In this instrument, the specularly reflected beam 22, and usually the first order diffraction beams, are removed from the data. The photodiode output may be amplified, sampled by an analog-to-digital converter, and analyzed in a microprocessor or computer 24. This apparatus, which directs a laser beam directly on the sample surface offers the advantage of being able to control the illumination area. However, the measurement is serial in nature, and therefore slow. The above-referenced '642 McNeil patent describes a variation in which a detector array, positioned in an arc extending partially around the sample, is used instead of a movable photodiode. Here, the entire range of scattering angles is detected at one time. Additional detector arrays are provided to measure the radiation of the incident beam when the sample is not in place and also to monitor the specularly reflected light to ensure proper orientation of the sample.

Another type of instrument employing angle-dependent intensity measurements is disclosed by Gold et al. in U.S. Pat. No. 4,999,014. FIG. 2 illustrates this configuration. There the measurements are used to determine the thickness of a thin film layer 30 on the surface of a sample substrate 32. A laser 34 generates a beam 36 that is reflected downward by a beamsplitter 38 towards the sample 32. A lens 40 having a large (at least 0.5) numerical aperture ("N.A.") focuses the beam to a spot 42 on the thin film layer 30. The N.A. of the lens 40 creates a spread of incidence angles from substantially normal to the thin film surface for the central (chief) ray to at least 30° from normal for the extreme ray. A preferred embodiment has an 0.95 N.A. lens, giving a spread of greater than 70°. The incident beam is reflected upwardly by the sample back through the lens 40, through the beamsplitter 38 and onto a photodetector array 44. Each discrete detecting element of the photodetector 44 corresponds to an incidence (and reflectance) angle at the sample surface. In a preferred embodiment there are two orthogonal linear arrays of detectors corresponding to respective S and P polarization components of the light. The intensity information obtained by the detector array 44 is used by a processor 46 to calculate the thin film thickness (and index of refraction) of the layer 30 on the sample 32. The apparatus provides parallel measurement, wherein light at many angles of incidence (and reflection) are intercepted by different elements of the detector array and detected simultaneously. In addition to providing a large angular spread for the incident and reflected light, the large N.A. lens 40 also focuses the light down to a very small spot 42 on the sample surface 30, typically on the order of 1 μm diameter or less, so that only a very small area is illuminated and highly localized variations in the sample parameters can be measured. While such a small spot is highly useful for the thin film thickness measurements for which the instrument was invented, it would be completely unsuitable when line width or other parameters are to be determined from a periodic surface structure, like a test pattern. For such a measurement, a much larger illumination area, on the order of 10 μm diameter, is required, like that provided by the instrument in FIG. 1.

Serial measurement over a 50° to 60° range of reflection angles, one degree at a time, is relatively inefficient, typically taking about a minute to complete, including the time needed to physically move the detector to each measurement position. Parallel measurement by a fixed detector array would be much faster, taking as little as a millisecond to complete. Unfortunately, the diffraction properties of light create a conflict between a high N.A. objective lens used to obtain a large range of incidence and reflection (or transmission) angles over which simultaneous measurements are taken and the large illumination area needed for measurements of a periodic test pattern on a wafer surface. The spot size of a light beam at the focus is proportional to λ/N.A., where λ is the wavelength of the light and N.A. is the numerical aperture of the optical system. The proportionality constant is usually between 0.6 to 1.2, depending on the definition of beam size and other factors, such as the degree of coherence of the beam. It can be seen from this relationship between normal aperture and the beam size at the focus that the larger illumination areas required for periodic test patterns necessitates optics with a much smaller numerical aperture, or even direct laser beam illumination as in the instrument shown in FIG. 1, thereby reducing the range of angles over which a measurement is taken. Likewise, if large numerical aperture optics are used to obtain a larger range of incidence and reflection (or transmission) angles for simultaneous measurement, then a small illumination spot results. Illuminating a relatively large area, e.g., on the order of 10 μm diameter, is important in those measurement applications where the effects of light interaction with periodic surface structures are needed, and also where it is desired that the measurement be an average over the illumination area so as to be relatively insensitive to localized variations in the sample properties.

Accordingly, it is an object of the present invention to provide angle-dependent optical measurements simultaneously over a wide range of incidence and reflection (or transmission) angles for an illumination area that is many times larger than the diffraction limit of the objective lens.

The above object has been met with a reflection or transmission measurement instrument that includes an optical imaging array in the path of a collimated light beam between its light source and a high numerical aperture objective lens. The array and objective lens reconfigure the optical system into multiple apertures providing mutually spatially incoherent bundles of light to the objective lens, whereby the diffraction-dependent spot size can be controlled independently of the range of illumination angles. The individual light bundles are then focused to a common spot on the sample surface by the objective lens, with each light bundle corresponding to a particular incidence and reflection angle. The N.A. of the objective lens is preferably at least 0.7 so as to provide a range of incidence angles for the light bundles from normal (0°) to the sample surface up to 50° or more. Because the light beam has been broken up by the imaging array into light bundles, any spatial coherence in the original light beam is destroyed so as to be absent between the individual bundles of light. The common focused spot provided by the large N.A. objective lens for the many light bundles is many times larger than the area defined by the diffraction limit of the lens for a corresponding single coherent beam. In effect, the proportionality constant in the previously described relationship between spot size and numerical aperture has been substantially increased. Preferably, the common spot has a diameter of at least 10 μm, and for example can illuminate at least ten periods of a periodic surface structure on the sample surface. Thus, both a large range of illumination angles and a large illumination area is simultaneously achieved.

The measurement instrument further includes a detector array positioned to receive and detect light reflected from or transmitted through the sample surface for a range of incidence angles at the surface. In a reflectometer instrument, the reflected light passes back through the objective lens, where it is substantially collimated, passes through the individual imaging elements of the imaging array, which are aligned with corresponding light bundles of specular reflection, and then imaged onto the detector array such that each group of one or more detection elements of the detector array corresponds to a light bundle from one of the imaging elements of the imaging array and thus to a particular incidence and reflection angle. In a transmittance measuring instrument (or transmissometer), the transmitted light is collimated by a second objective lens and imaged onto the detector array which is on the opposite side of the sample surface from the illumination source. Processing means analyzes the angle-dependent reflectance or transmittance measured by the detector array to determine therefrom a desired parameter of illuminated features, such as a periodic test pattern, or the sample surface. The analysis may use either a theoretical model or measurements performed on calibration standards to arrive at the desired parameter or parameters, e.g., linewidth.

The measurement instrument may be made part of the optical head of a more comprehensive semiconductor wafer inspection apparatus. Such an apparatus would normally include a vibration isolating platform, holding a wafer stage with vacuum chuck and wafer motion elements, and which is cooperative with wafer handling equipment, such as a storage cassette and autoloader. The apparatus would further include an optical head that includes autofocus and wafer alignment sensors in addition to the reflectometer or transmissometer. Additional optical inspection and measurement devices could be included. A central processing system of the apparatus includes computer processors for controlling wafer motion by the stage as well as for acquisition and analysis of the data. An electrical power subsystem distributes power to the various electronic components and motion motors of the apparatus. The apparatus may be fully automated or allow for varying degrees of human intervention.

FIG. 1 is a perspective diagram of a first surface inspection instrument of the prior art carrying out scatterometry on a sample surface with direct collimated illumination of the surface by a light beam with controllable beam size (and hence controllable illumination area).

FIG. 2 is a side view diagram of a second surface inspection instrument of the prior art carrying out thin film reflectometry measurements on a sample surface with a highly focused small illumination area over a large spread of incidence angles provided by a high N.A. objective lens.

FIG. 3 is a side view diagram of a reflectometer in accord with the present invention, useful for carrying out linewidth measurements, and characterized by both a large spread of incidence angles of illumination and a large illumination area.

FIG. 4 is a side view of an enlarged portion of the imaging array in the reflectometer of FIG. 3.

FIG. 5 is a side view of an exemplary high N.A. objective lens for use in the reflectometer of FIG. 3.

FIG. 6 is a side view of a close-up portion of a periodic surface feature on a sample surface inspected by the reflectometer of FIG. 3, illustrating an area of illumination that encompasses several periods of the surface feature.

FIG. 7 is a side view block diagram showing various components of a wafer inspection apparatus that can incorporate the reflectometry instrument of the present invention as part of its optical head.

FIG. 8 is a side view diagram of a transmissometer embodiment in accord with the present invention.

With reference to FIG. 3, a reflectometer instrument in accord with the present invention includes a light source 50, such as a laser, emitting a beam 52 which is either already substantially collimated or may be expanded, collimated and shaped by optics 54, such as one or more lenses. The laser light source 50 could be a He--Ne laser providing red 633 nm light, a frequency-doubled Nd:YAG laser providing green 532 nm light, a laser diode or other laser, preferably one with a visible or ultraviolet wavelength. The laser light 52 is normally monochromatic and temporally (spectrally) coherent. A stable emission wavelength is desirable. The beam should have sufficiently low intensity at the sample surface 68 so as not to damage the surface or any of the intervening optics. The collimated beam 56, having a typical diameter on the order of 1 cm or more, is reflected by a beamsplitter 58 toward the sample 68. The beamsplitter 58 may be a semitransparent mirror or a cube beamsplitter. Although only a single light source is shown, another source and beamsplitter can be added to measure reflectance at a second wavelength. For example, He-Ne lasers are available that can emit at 612, 594 or 543 nm instead of 633 nm. Alternatively, a single source with multiple selectable lasing wavelengths or a wavelength-tunable laser source could be used. For example, argon lasers can emit at 528, 514, 488 and 458 nm, etc. which are selectable as to wavelength.

The beam 59 passes through an imaging array 60 where it is broken up into a plurality N of individual light bundles 62. The imaging array 60 may be located in both the illuminating and collecting light paths between the beamsplitter 58 and the objective lens 64, as shown, or alternatively may be placed between the source 50 and the beamsplitter 58 so as to be out of the reflected return path. The imaging array 60 is only needed in the illuminating light path. The imaging array 60 could be a fiber bundle, with each fiber being about 1 cm long. The lengths need not be exactly the same, as any differences in length or other light propagation parameters for the different optical fibers help to destroy any spatial coherence between the individual light bundles output from the fibers of the bundle. However, a preferred imaging array 60, instead of the aforementioned fiber bundle, is a pair of lenslet arrays, as seen in FIG. 4. The light 59 first passes through a first lenslet array 90 and then through an identical second lenslet array 92. Each lenslet array 90 and 92 has a plurality N of identical small aperture lenslets 94. The diameter D of each lenslet 94 in the arrays may range from 0.1 to 1.0 mm, and is mostly a function of the desired number N of lenslets in each array and the overall width of the light beam. Typically, there are about 100 to 120 lenslets in each array. The lens material may be glass or plastic, and may either be assembled from individual lenses or formed as a single integrated unit. Such lens arrays are commercially available. For example, lens array model no. 0100-0.5-S from Adaptive Optics Associates Inc. of Cambridge, Mass. could be used. Optically equivalent, binary or holographic, diffractive optical elements may be used in place of refractive lens elements. The lenslets are mounted in a common support to maintain their relative alignment and separation. The tolerances needed are well within the level of ordinary skill. Each lenslet 94 is a positive lens with a typical focal ratio (f/D) larger than 1, so that the focal length f of each lenslet ranges from 0.1 mm to more than 1 mm. The second lenslet array 92 is aligned with the first lenslet array 90 so that the lenslets 94 form pairs with a corresponding lenslet from each array. The second array 92 is placed at a distance equal to two focal lengths (2°f) from the first array 90 so that each pair of lenslets forms a unit magnification, afocal, inverting telescope.

The light emerges from the combination of the two arrays broken into bundles of light 62 defined by the lenslet apertures of the pair of lenslet arrays. Another significant effect of this arrangement is wavefront reversal in each individual light bundle 62, wherein the subaperture wavefront of the light of each bundle is inverted between the input of the first array 90 and the output of the second array 92. This wavefront reversal acts to diminish the light's spatial coherence, in particular the coherence between the different light bundles 62, thereby allowing an increased level of control over the light spot size at the sample 68. Inherent random variations in thickness and surface figure of the lenslets 94 also introduce random wavefront phase variations and wavefront distortions that further diminish coherence.

Returning to FIG. 3, the plurality of light bundles 62 are focused to a common spot 66 on the surface of sample 68 by a high numerical aperture lens 64. A high numerical aperture is defined as being at least 0.5. Preferably, the numerical aperture is at least 0.7 so as to provide a range of incidence angles at the focal spot 66 of at least up to 50 degrees. The central light bundles of the focused light 65 nearest the optical axis of the objective lens 64 have an incidence angle on the sample 68 close to normal incidence (0°), while the extreme light bundles nearest the edge of the lens 64 have a larger incidence angle near the maximum defined by the lens numerical aperture. The objective lens or lens system is commercially available from any of a number of optics houses, including Special Optics Manufacture and Design of Wharton, N.J. The objective lens 64 is usually not simply a single lens element, but rather is composed of a series of lens elements selected and positioned to be well corrected for aberrations. For example, one possible objective lens with a numerical aperture of about 0.73 is shown in FIG. 5. It is composed of four successive lens elements 100-103 defining eight lens surfaces 104-111. All four lens elements 100-103 are positive lenses. The first lens 100 is a biconvex or plano-convex lens, while the remaining three lenses are meniscus lenses, with each successive lens having somewhat larger surface curvatures than the preceding element, so as to allow the light to be gradually focused to ever greater angles after each successive lens. Spherical aberration correction is especially important so that all light bundles 65, whether central or extreme, come to a focus at a common spot 66 in the plane of the sample surface. Modern computerized optical design readily allows the lens system to be optimized for the desired numerical aperture.

Referring to FIG. 6, the focused light beam 65 illuminates an area of the sample 68 which may include a periodic surface structure 120, such as a test pattern with a sequence of spaced apart lines 122 of photoresist or conductive material whose parameters are to be measured. Generally, the line dimensions of the test pattern will correspond to line dimensions formed in other areas of the sample, notably those forming integrated circuits. By measuring the desired parameters for the test pattern 120, the corresponding line dimensions in other areas of the sample can be inferred with relative certainty. In the case of a periodic pattern 120 on the surface of the sample 68, the illumination area should be large enough to encompass several periods of the pattern, preferably at least 10 periods, so that an average measurement over many lines can be made. As the typical pattern has a periodicity of 1 μm or less, an illumination area on the order of 10 μm diameter or more is preferred. Even when a periodic pattern is not used, the larger illumination areas of at least 10 μm diameter are useful for obtaining an averaged reflectance measurement. Because the imaging array also modifies the irradiance distribution of the beam 56 so that it is no longer uniform when broken into bundles 62, the definition of the boundary of an illuminated spot is somewhat arbitrary. It can be defined by the region where the irradiance does not fall below about 10% of the peak irradiance near the center of the spot.

Returning to FIG. 3, light reflected from the sample returns back through the focusing objective lens 64 and is recollimated. The specularly reflected light corresponding to each incident bundle will pass through a corresponding lenslet pair of the imaging array assembly 60 on the opposite side of the system's optical axis (through the center of symmetry of the objective lens). This instrument is especially designed to work with surface structures whose periodicity is such that no diffraction orders are within the collecting cycle of the objective lens, so that the system only observes the specular reflection. The alignment tolerance to achieve passage of light bundles through corresponding lenslet pairs between incidence and reflection is 10% of the lenslet aperture or at least 1 μm, which is within the level of ordinary skill.

The light bundles 72 are partially transmitted through the beamsplitter 58 and are imaged by a CCD camera 73. The camera 73 includes a pupil imaging lens 74, a stop 76 to reduce scatter noise, and a CCD detector array 78. It is onto this detector array 78 that the light bundles from the sample surface reflection is imaged. The individual detecting elements 80 of the detector array 78 have a size that is typically about 25 to 100 μm in width. Thus, for a 1:1 correspondence between the individual light bundles 59 passing through the imaging array 60 toward the detector array 78 and the elements 80 of the detector array, the imaging lens 74 of the CCD camera 73 needs to provide a magnification ranging from about 1 to less than 1/40. Alternatively, each light bundle may be imaged onto a group of detector elements 80. A group of four detector elements 80 per light bundle is typical. A signal-to-noise ratio of about 250:1 to 300:1 is required for most applications. For relatively low reflectance samples, reducing noise from scatter and other sources may be achieved by the stop 76, and optionally a wavelength-selective bandpass filter in front of the detector array 78, as well as possibly even cooling the detector array itself. A commercially available CCD camera, such as model no. TE/CCD-576 EFT made by Princeton Instruments Inc. of Trenton, N.J., may be used. Both the imaging array 60 and the detector array 80 are normally two-dimensional arrays so that data can be collected over a full range of incidence and reflection directions (360° range of planes of incidence). This capability is advantageous because many surface features, like gratings, have preferred directions (e.g., parallel or perpendicular to surface lines). 2-D collection of reflectance data allows discrimination of these preferred directions and increases the range of analysis options that are available. Further, if the incident light is linearly polarized in some direction, 2-D collection can measure the reflectance response of the surface to different polarizations.

The detector array 78 provides reflectance data to a microprocessor 82. Each detector element 80 or group of elements corresponds to a light bundle with a particular incidence and reflectance angle at the sample surface. The data may be in the form of 12 bits per detector element, providing at least 4096 possible measured intensities from the element. The microprocessor 82 may carry out a least mean square fit to a library of stored curve families representing various possible angle-dependent reflectance responses for different sample parameters. These curves may be obtained by placing calibration standards into the apparatus and measure the real reflectance response. Alternatively, the curves may be derived from a theoretical model of angle-dependent reflectance versus linewidth and shape, etc. For example, the paper to Naqui et al., J. Opt. Soc. Am. A 11 (9), 2845 (1994), mentioned above, describes use of a partial least-squares (PLS) calibration method and a rigorous coupled-wave theory (RCWT) model to obtain theoretical scatterograms for different line thicknesses. Line widths can be obtained from the same model. U.S. Pat. No. 5,164,790 to McNeil et al. compares results obtained using a perfectly conducting model with those obtained from coupled wave analysis, and finds excellent agreement between the two. Other theoretical models and methods might also be used. The apparatus is thus useful for analyzing a variety of parameters of surface structures on a sample, such as linewidth or shape on a wafer surface.

With reference to FIG. 7, a practical apparatus for semiconductor wafer metrology integrates the angle-dependent reflectometer of the present invention within a machine that automates the measurement process. The apparatus can repeat the desired measurement or measurements at many pre-programmed locations on a wafer, and on many wafers, at a high rate with minimal intervention on the part of a human operator. The apparatus includes a platform 130, which is a stable table that provides isolation from floor vibrations by means of springs or pneumatic isolators. The platform 130 holds a wafer positioning subsystem 132 and an optical head 134 containing the reflectometer. Relative motion between those two elements 132 and 134 is held by the platform 130 during measurements to less than 2 to 5 micrometers. The platform 130 can also include means for moving the optical head 134 up and down relative to the wafer positioning assembly 132 to allow for unobstructed loading or unloading of a wafer by a wafer handler and also to provide coarse focusing in order to accommodate wafers of various thicknesses.

The apparatus' wafer positioning subsystem 132 includes or cooperates with wafer handling equipment for loading and unloading wafers onto the machine. The wafer handling equipment includes one or more wafer storage cassettes and an autoloader assembly that moves wafers between the storage cassettes and a stage. The autoloader usually forms an integral part of the overall instrument. The cassettes are typically provided separately. The wafer positioning subsystem 132 further includes a stage assembly with a vacuum chuck that holds a wafer securely and a combination of motors and slides that produce precise motion of the stage in at least two, and preferably three, axes. Fine z-axis motion (up and down), if not provided by the stage, can be provided by the optical head 134. The stage may also provide for rotational motion of the wafer.

Wafer positioning is the result of cooperation between the wafer positioning subsystem 132, a wafer alignment sensor in the optical head 134, and motion control provided by a central processing system 138. The alignment sensor is a low magnification (about 1× to 6×) camera that images a small illuminated area of a semiconductor die on the wafer. A motion control processor in the central processing system 138 receives image data from the alignment sensor, employs pattern recognition algorithms to identify unique alignment marks or recognizable pattern features on the wafer, and then controls the motion motors of the stage to automatically position the wafer at an initial point and align it with the axes of motion. The wafer can then be navigated to designated measurement positions for that wafer. A template matching technique like that described by Ramesh Jain, et al. in the book Machine Vision, published by McGraw-Hill Inc. (1995), section 15.6.1, pages 482-483, can be used to recognize a wafer's alignment mark. Measurement points relative to an initial wafer position can be designated by a user for a particular class of wafers to be inspected.

The optical head 134 includes all of the elements of the reflectometry instrument of FIG. 3 and is in optical communication 136 with the wafer on the positioning subsystem's stage. In addition, it includes the wafer alignment sensor (camera) that aids the wafer positioning subsystem 132. Further, the optical head 134 includes a focus sensor that enables automatic focusing. One commonly used focus sensor uses a light source that is focused on the wafer surface at an angle. The reflected light is detected by a bi-cell detector. As the focus varies, the detected beam will translate across the bi-cell. This type of autofocus system is described by D. H. Kim et al. in Proceedings SPIE, vol. 2726, pages 876-885 (1996). The three optical head elements, reflectometer, alignment sensor and autofocus sensor, are not optically integrated, but are physically mounted together within a single unit and have a common focus condition. While the alignment sensor normally images a slightly different location than the spot illuminated by the reflectometer, the lateral displacement is fixed and can be taken into account when positioning the wafer for measurement. Likewise, even if the autofocus sensor were to use a slightly different location on the wafer for determining the focus condition, the wafer is sufficiently flat that focus would be within the required focus tolerance for the reflectometer.

An electrical power subsystem 140 includes one or more power supplies and distribution cables to provide AC and DC power to the electronic components and motion motors of the apparatus.

The central processing system 138 includes one or more computer processors for digital motion control of the wafer positioning system 132 stage and of the optical head 134 and for data acquisition and analysis. For example, there may be several processors which are each dedicated to a particular function and a main or host processor for coordinating the separate processors. Moreover, there may be one or more data ports and a network interface processor for possible interaction via a network with a factory computer. The central processing system 132 also includes memory for storing designated measurement locations as well as actual measurement data and the analysis results.

The overall metrology apparatus provides effective automated reflectometry measurements and analysis of many wafers. The improved reflectometer improves speed and accuracy by allowing parallel measurement at many incidence and reflectance angles through a high numerical aperture objective lens and a detector array, while maintaining control over illuminated spot size by means of the imaging array. Large spot sizes allow averaged measurements and measurements of periodic wafer surface structures to be obtained.

With reference to FIG. 8, instead of the reflectometer instrument of FIG. 3, an analogous transmissometer instrument can be constructed in accord with the present invention. Like the reflectometer instrument, the transmissometer in FIG. 8 can illuminate a common spot on a sample surface with a spot size that is several times larger than the diffraction limit for coherent light beams, e.g. a diameter of 10 μm or more, with a wide range of simultaneous incidence angles at the sample surface, and can then collect and detect the light, in this case transmitted through the sample (e.g., a photomask or reticle), so as to determine dimensions of surface features formed on the sample being inspected. This instrument includes a light source 150, such as a laser, like the light source 50 of the reflectometer in FIG. 3. The light source 150 emits a beam 152 which may be expanded, shaped and collimated by optics 154 to form the collimated beam 156. The beam 156 passes through an imaging array 160, essentially identical to the imaging array 60 in FIGS. 3 and 4, where the beam 156 is broken up into a plurality N of individual, mutually spatially incoherent, light bundles 162. The plurality of light bundles 162 are focused to a common spot 166 on a sample surface 168 by means of a high numerical aperture objective lens 164. The sample 168 may be moved relative to the location of the spot 166, as indicated by arrow 169, in order to illuminate different desired areas of the sample surface. Light transmitted through the sample 168 is collected by another high numerical aperture (at least 0.5) objective lens 170 which can be, and usually is, identical to the focusing objective lens 164. However, identical lenses 164 and 170 are not essential. What matters is that lens 164 provides a large range of incidence angles for the different beamlets 162 at the illumination spot, while the lens 170 allows light collection over a wide range of transmission angles. A collection lens 170 with a numerical aperture at least as large as the focusing lens 164 allows collection of transmitted light corresponding to all of the incidence angles. A lens system like that shown in FIG. 5 can be used for either or both lenses 164 and 170. A second imaging array like array 160 is not required in the transmitted light path. The collected light 172 is received by a CCD camera 173 like the camera 73 in the reflectometer of FIG. 3. The camera 173 is located optically, but not necessarily physically, on the transmitted side of the sample 168 opposite the side containing the illumination source 150. It is well known that light paths can be folded for compactness, so that the source and camera might be physically adjacent. The camera 173 includes a pupil imaging lens 174, a stop 176 to reduce scatter noise and a CCD detector array 178 with a plurality of detecting elements 180. Each detector element 180, or group of such elements, corresponds to a light bundle 162 with a particular incidence angle and transmission angle through the sample 168 at the spot 166. The detector array 178 thus provides angle-dependent transmittance data to a microprocessor 182. As in the case with reflectometry, the transmittance data may be analyzed by comparison with a library of expected transmittance responses for various parameters of interest, derived from calibration standards or theoretical models, in order to obtain one or more desired dimensions of features on the sample 168. The apparatus of FIG. 7 can be readily adapted to include the transmissometer of FIG. 8, if desired.

Bareket, Noah

Patent Priority Assignee Title
10018815, Jun 06 2014 J.A. Woolam Co., Inc.; J A WOOLLAM CO , INC Beam focusing and reflective optics
10151584, Apr 10 2001 KLA-Tencor Corporation Periodic patterns and technique to control misalignment between two layers
10209528, Jun 09 2015 J.A. WOOLLAM CO., INC.; J A WOOLLAM CO , INC Operation of an electromagnetic radiation focusing element
10247940, Dec 07 2015 ASML Holding N.V. Objective lens system
10338362, Jun 06 2014 J.A. WOOLLAM CO., INC. Beam focusing and reflecting optics with enhanced detector system
10429320, Jun 04 2013 KLA-Tencor Corporation Method for auto-learning tool matching
10451412, Apr 22 2016 KLA-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry
10466184, May 03 2012 Phase Focus Limited Providing image data
6342707, Jun 20 2000 KATSINA OPTICS, INC Laser scatterometer with adjustable beam block
6356854, Apr 05 1999 Aptiv Technologies Limited Holographic object position and type sensing system and method
6429930, Sep 06 2000 ONTO INNOVATION INC Determination of center of focus by diffraction signature analysis
6429943, Mar 29 2000 THERMA-WAVE, INC Critical dimension analysis with simultaneous multiple angle of incidence measurements
6432729, Sep 29 1999 Lam Research Corporation; VERITY INSTRUMENTS, INC Method for characterization of microelectronic feature quality
6447370, Apr 17 2001 Novellus Systems, Inc Inline metrology device
6462817, May 12 2000 KLA-TENCOR, INC Method of monitoring ion implants by examination of an overlying masking material
6501534, Apr 30 2001 Advanced Micro Devices, Inc. Automated periodic focus and exposure calibration of a lithography stepper
6537833, Jun 19 2001 GLOBALFOUNDRIES U S INC Method and apparatus for characterizing an interconnect structure profile using scatterometry measurements
6545753, Jun 27 2001 GLOBALFOUNDRIES Inc Using scatterometry for etch end points for dual damascene process
6556291, May 31 2000 Nidek Co., Ltd. Defect inspection method and defect inspection apparatus
6587193, May 11 1999 Applied Materials, Inc Inspection systems performing two-dimensional imaging with line light spot
6590655, Apr 25 2000 J A WOOLIAM CO , INC System and method of improving electromagnetic radiation beam characteristics in ellipsometer and the like systems
6606152, Sep 06 2000 ONTO INNOVATION INC Determination of center of focus by diffraction signature analysis
6621275, Nov 28 2001 DCG Systems, Inc Time resolved non-invasive diagnostics system
6630995, Sep 07 1999 Applied Materials, Inc. Method and apparatus for embedded substrate and system status monitoring
6633831, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a critical dimension and a thin film characteristic of a specimen
6642063, Sep 29 1999 Lam Research Corporation; Verity Instruments, Inc. Apparatus for characterization of microelectronic feature quality
6648730, Oct 30 2000 Applied Materials, Inc.; Applied Materials, Inc Calibration tool
6654131, Mar 29 2000 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
6657736, Jul 09 1999 NOVA MEASURING INSTRUMENTS LTD Method and system for measuring patterned structures
6673637, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a presence of macro defects and overlay of a specimen
6678046, Aug 28 2001 KLA-Tencor Corporation Detector configurations for optical metrology
6687396, Jul 29 1998 PENTAX Corporation Optical member inspection apparatus, image-processing apparatus, image-processing method, and computer readable medium
6689519, May 04 2000 KLA-TENCOR, INC Methods and systems for lithography process control
6693708, Sep 07 1999 Applied Materials, Inc. Method and apparatus for substrate surface inspection using spectral profiling techniques
6694284, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining at least four properties of a specimen
6697517, Sep 07 1999 Applied Magerials, Inc. Particle detection and embedded vision system to enhance substrate yield and throughput
6704661, Jul 16 2001 THERMA-WAVE, INC Real time analysis of periodic structures on semiconductors
6707544, Sep 07 1999 Applied Materials, Inc Particle detection and embedded vision system to enhance substrate yield and throughput
6707545, Sep 07 1999 Applied Materials, Inc. Optical signal routing method and apparatus providing multiple inspection collection points on semiconductor manufacturing systems
6713753, Jul 03 2001 ONTO INNOVATION INC Combination of normal and oblique incidence polarimetry for the characterization of gratings
6721045, Sep 07 1999 Applied Materials, Inc. Method and apparatus to provide embedded substrate process monitoring through consolidation of multiple process inspection techniques
6735333, Jul 30 1998 NIDEK CO , LTD Pattern inspection apparatus
6750968, Oct 03 2000 ONTO INNOVATION INC Differential numerical aperture methods and device
6778268, Oct 09 2001 GLOBALFOUNDRIES Inc System and method for process monitoring of polysilicon etch
6778911, Jul 16 2001 Therma-Wave, Inc. Real time analysis of periodic structures on semiconductors
6782337, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a critical dimension an a presence of defects on a specimen
6806951, Sep 20 2000 KLA-Tencor Technologies Corp. Methods and systems for determining at least one characteristic of defects on at least two sides of a specimen
6812045, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a characteristic of a specimen prior to, during, or subsequent to ion implantation
6813032, Sep 07 1999 Applied Materials, Inc. Method and apparatus for enhanced embedded substrate inspection through process data collection and substrate imaging techniques
6813034, Feb 05 2002 KLA-TENCOR CORP Analysis of isolated and aperiodic structures with simultaneous multiple angle of incidence measurements
6818459, Sep 20 2000 KLA-Tencor Technologies Corp. Methods and systems for determining a presence of macro defects and overlay of a specimen
6819426, Feb 12 2001 Tokyo Electron Limited Overlay alignment metrology using diffraction gratings
6829057, Mar 29 2000 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
6829559, Sep 20 2000 K.L.A.-Tencor Technologies Methods and systems for determining a presence of macro and micro defects on a specimen
6831742, Oct 23 2000 Applied Materials, Inc Monitoring substrate processing using reflected radiation
6836328, Aug 28 2001 KLA-Tencor Corporation Detector configurations for optical metrology
6841787, Nov 07 2001 Applied Materials, Inc Maskless photon-electron spot-grid array printer
6842251, Aug 06 2001 Nanometrics Incorporated Configurable metrology device that operates in reflectance mode, transmittance mode, or mixed mode
6842259, Feb 05 2002 KLA-TENCOR CORP Analysis of isolated and aperiodic structures with simultaneous multiple angle of incidence measurements
6856408, Mar 02 2001 ONTO INNOVATION INC Line profile asymmetry measurement using scatterometry
6891610, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining an implant characteristic and a presence of defects on a specimen
6891627, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a critical dimension and overlay of a specimen
6898537, Apr 27 2001 ONTO INNOVATION INC Measurement of diffracting structures using one-half of the non-zero diffracted orders
6917419, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining flatness, a presence of defects, and a thin film characteristic of a specimen
6917433, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a property of a specimen prior to, during, or subsequent to an etch process
6919957, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a critical dimension, a presence of defects, and a thin film characteristic of a specimen
6930813, Apr 25 2000 J.A. Woollam Co. Inc. Spatial filter source beam conditioning in ellipsometer and the like systems
6931361, Jul 16 2001 Therma-Wave, Inc. Real time analysis of periodic structures on semiconductors
6940609, Aug 08 2001 NOVA MEASURING INSTRUMENTS, LTD ; NOVA MEASURING INSTRUMENTS LTD Method and system for measuring the topography of a sample
6946394, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a characteristic of a layer formed on a specimen by a deposition process
6946655, Nov 07 2001 Applied Materials, Inc Spot grid array electron imaging system
6947850, Jul 16 2001 Therma-Wave, Inc. Real time analysis of periodic structures on semiconductors
6949462, Apr 04 2002 ONTO INNOVATION INC Measuring an alignment target with multiple polarization states
6950196, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a thickness of a structure on a specimen and at least one additional property of the specimen
6972852, Mar 29 2000 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
6982793, Apr 04 2002 ONTO INNOVATION INC Method and apparatus for using an alignment target with designed in offset
6987568, Nov 15 2000 Rutgers, The State University of New Jersey Apparatus and method for measuring spatially varying bidirectional reflectance distribution function
6987572, May 04 2000 KLA-Tencor Technologies Corp. Methods and systems for lithography process control
6992764, Sep 30 2002 ONTO INNOVATION INC Measuring an alignment target with a single polarization state
6995842, Aug 28 2001 KLA-Tencor Corporation Detector configurations for optical metrology
7006235, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining overlay and flatness of a specimen
7012684, Sep 07 1999 Applied Materials, Inc. Method and apparatus to provide for automated process verification and hierarchical substrate examination
7027143, Oct 15 2002 KLA-Tencor Technologies Corp. Methods and systems for inspecting reticles using aerial imaging at off-stepper wavelengths
7031848, Jul 16 2001 Therma-Wave, Inc. Real time analysis of periodic structures on semiconductors
7042569, Feb 12 2001 Tokyo Electron Limited Overlay alignment metrology using diffraction gratings
7046376, Jul 05 2002 THERMA-WAVE, INC Overlay targets with isolated, critical-dimension features and apparatus to measure overlay
7053991, Oct 03 2000 Accent Optical Technologies, Inc. Differential numerical aperture methods
7061613, Jan 13 2004 Nanometrics Incorporated Polarizing beam splitter and dual detector calibration of metrology device having a spatial phase modulation
7061615, Sep 20 2001 ONTO INNOVATION INC Spectroscopically measured overlay target
7061627, Mar 13 2002 KLA-TENCOR CORP Optical scatterometry of asymmetric lines and structures
7064828, Dec 19 2001 Nanometrics Incorporated Pulsed spectroscopy with spatially variable polarization modulation element
7069153, Jan 28 2003 THERMA-WAVE INC CD metrology method
7075097, Mar 25 2004 Mitutoyo Corporation Optical path array and angular filter for translation and orientation sensing
7084966, Oct 20 2003 Polaris Innovations Limited Optical measurement of device features using lenslet array illumination
7084978, Apr 03 2003 J.A. WOOLLAM CO., INC. Sample orientation system and method
7085622, Apr 19 2002 Applied Materials, Inc Vision system
7085676, Jun 27 2003 Tokyo Electron Limited Feed forward critical dimension control
7095496, Dec 12 2001 Tokyo Electron Limited Method and apparatus for position-dependent optical metrology calibration
7106425, Sep 20 2000 KLA-Tencor Technologies Corp. Methods and systems for determining a presence of defects and a thin film characteristic of a specimen
7110099, Oct 10 2001 Nanometrics Incorporated Determination of center of focus by cross-section analysis
7115858, Sep 25 2000 ONTO INNOVATION INC Apparatus and method for the measurement of diffracting structures
7116412, Dec 27 2002 Olympus Corporation Angle detection optical system, angle detection apparatus, optical signal switch system and information recording and reproduction system
7119893, Apr 10 2003 Nanometrics Incorporated Determination of center of focus by parameter variability analysis
7123356, Oct 15 2002 KLA-Tencor Technologies Corp. Methods and systems for inspecting reticles using aerial imaging and die-to-database detection
7130029, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining an adhesion characteristic and a thickness of a specimen
7133119, Dec 17 2002 KLA-Tencor Technologies Corp. Systems for simulating high NA and polarization effects in aerial images
7136162, Oct 15 2002 J.A. WOOLLAM CO., INC. Alignment of ellipsometer beam to sample surface
7139083, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a composition and a thickness of a specimen
7145664, Apr 18 2003 THERMA-WAVE, INC Global shape definition method for scatterometry
7177025, Apr 04 2001 AGILENT TECHNOLOGIES AUSTRALIA M PTY LTD Measuring specular reflectance of a sample
7196782, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a thin film characteristic and an electrical property of a specimen
7206070, Nov 15 2004 THERMA-WAVE, INC Beam profile ellipsometer with rotating compensator
7206071, Aug 28 2001 KLA-Tencor Corporation Detector configurations for optical metrology
7215419, Dec 12 2001 Tokyo Electron Limited Method and apparatus for position-dependent optical metrology calibration
7224450, Dec 12 2001 Tokyo Electron Limited Method and apparatus for position-dependent optical metrology calibration
7230699, Oct 15 2002 J.A. WOOLLAM CO., INC. Sample orientation system and method
7230705, Apr 04 2002 Nanometrics Incorporated Alignment target with designed in offset
7233390, Mar 31 2003 THERM-WAVE, INC Scatterometry for samples with non-uniform edges
7233841, Apr 19 2002 Applied Materials, Inc. Vision system
7236244, Apr 04 2002 Nanometrics Incorporated Alignment target to be measured with multiple polarization states
7242477, Feb 22 2003 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7248375, Mar 29 2000 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
7253428, Apr 04 2000 Micron Technology, Inc. Apparatus and method for feature edge detection in semiconductor processing
7280212, Feb 22 2003 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7280229, Dec 03 2004 Tokyo Electron Limited Examining a structure formed on a semiconductor wafer using machine learning systems
7283237, Jul 05 2002 Tokyo Electron Limited Overlay targets with isolated, critical-dimension features and apparatus to measure overlay
7289213, Feb 22 2003 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7298481, Feb 22 2003 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7301634, Feb 22 2003 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7304735, Apr 02 2004 KLA-Tencor Technologies Broadband wavelength selective filter
7317531, Dec 05 2002 KLA-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry
7333198, Apr 03 2003 J A WOOLLAM CO , INC Sample orientation system and method
7349090, Sep 20 2000 KLA-TENCOR, INC Methods and systems for determining a property of a specimen prior to, during, or subsequent to lithography
7372565, Sep 25 2000 ONTO INNOVATION INC Spectrometer measurement of diffracting structures
7372583, Apr 12 2007 Tokyo Electron Limited Controlling a fabrication tool using support vector machine
7379175, Oct 15 2002 KLA-Tencor Technologies Corp. Methods and systems for reticle inspection and defect review using aerial imaging
7379183, Feb 22 2003 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7385699, Feb 22 2003 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7400403, Nov 15 2004 KLA-Tencor Corp. Beam profile ellipsometer with rotating compensator
7421414, Mar 31 2005 Tokyo Electron Limited Split machine learning systems
7430898, Sep 04 2003 KLA-Tencor Technologies Corp Methods and systems for analyzing a specimen using atomic force microscopy profiling in combination with an optical technique
7433040, Dec 05 2002 KLA-Tencor Technologies Corp. Apparatus and methods for detecting overlay errors using scatterometry
7440105, Dec 05 2002 KLA-Tencor Technologies Corporation Continuously varying offset mark and methods of determining overlay
7453571, Jan 31 2004 KLA-Tencor Corporation Dimensional calibration standards
7453584, Dec 03 2004 Tokyo Electron Limited Examining a structure formed on a semiconductor wafer using machine learning systems
7456964, Aug 28 2001 KLA-Tencor Corporation Detector configurations for optical metrology
7460981, Oct 26 2004 KLA-Tencor Technologies Corp. Methods and systems for determining a presence of macro and micro defects on a specimen
7462814, May 04 2000 KLA-Tencor Technologies Corp. Methods and systems for lithography process control
7463369, Mar 29 2006 KLA-Tencor Technologies Corp. Systems and methods for measuring one or more characteristics of patterned features on a specimen
7466852, Nov 28 2001 DCG Systems, Inc Time resolved non-invasive diagnostics system
7468794, Oct 18 1999 J.A. WOOLLAM CO., INC.; J A WOOLLAM CO , INC Rotating compensator ellipsometer system with spatial filter equivalent
7477405, Jul 09 1999 NOVA LTD Method and system for measuring patterned structures
7483133, Dec 09 2004 KLA-Tencor Technologies Corporation. Multiple angle of incidence spectroscopic scatterometer system
7483809, Apr 12 2007 Tokyo Electron Limited Optical metrology using support vector machine with profile parameter inputs
7495782, Jul 09 1999 NOVA LTD Method and system for measuring patterned structures
7502101, Feb 25 2005 ONTO INNOVATION INC Apparatus and method for enhanced critical dimension scatterometry
7502104, Aug 10 2006 KLA-Tencor Technologies Probe beam profile modulated optical reflectance system and methods
7511293, Feb 25 2005 ONTO INNOVATION INC Scatterometer having a computer system that reads data from selected pixels of the sensor array
7511835, Apr 12 2007 Tokyo Electron Limited Optical metrology using a support vector machine with simulated diffraction signal inputs
7515279, Mar 02 2001 ONTO INNOVATION INC Line profile asymmetry measurement
7523076, Mar 01 2004 Tokyo Electron Limited Selecting a profile model for use in optical metrology using a machine learning system
7554662, Jun 24 2002 J.A. WOOLLAM CO., INC.; J A WOOLLAM CO , INC Spatial filter means comprising an aperture with a non-unity aspect ratio in a system for investigating samples with electromagnetic radiation
7564557, Dec 05 2002 KLA-Tencor Technologies Corp. Apparatus and methods for detecting overlay errors using scatterometry
7567352, Apr 12 2007 Tokyo Electron Limited Controlling a fabrication tool using support vector machine
7570796, Nov 18 2005 KLA-Tencor Technologies Corporation Methods and systems for utilizing design data in combination with inspection data
7596422, Jan 12 2007 Tokyo Electron Limited Determining one or more profile parameters of a structure using optical metrology and a correlation between profile models and key profile shape variables
7613598, Apr 18 2003 KLA-Tencor Corp. Global shape definition method for scatterometry
7615752, Feb 25 2005 ONTO INNOVATION INC Apparatus and method for enhanced critical dimension scatterometry
7619752, Mar 21 2000 J A WOOLLAM CO , INC Sample orientation system and method
7626710, Jul 09 1999 Nova Measuring Instruments Ltd. Method and system for measuring patterned structures
7626711, Jul 09 1999 Nova Measuring Instruments Method and system for measuring patterned structures
7627395, Apr 19 2002 Applied Materials, Inc. Vision system
7639371, Mar 02 2001 ONTO INNOVATION INC Line profile asymmetry measurement
7646906, Jan 29 2004 KLA-Tencor Technologies Corp Computer-implemented methods for detecting defects in reticle design data
7656528, Apr 10 2001 KLA-Tencor Corporation Periodic patterns and technique to control misalignment between two layers
7663753, Dec 05 2002 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7667841, Aug 28 2001 KLA-Tencor Corporation Detector configurations for optical metrology
7671989, Jun 24 2002 J. A. Woollam Co., Inc. Information maintenance during intensity attenuation in focused beams
7676077, Nov 18 2005 KLA-Tencor Technologies Corporation Methods and systems for utilizing design data in combination with inspection data
7689966, Sep 14 2004 KLA-Tencor Technologies Corp. Methods, systems, and carrier media for evaluating reticle layout data
7699236, Apr 28 2004 Rutgers The State University Method and apparatus for making and detecting a document verification indicator using optical pattern encryption
7711514, Aug 10 2007 KLA-Tencor Technologies Corp. Computer-implemented methods, carrier media, and systems for generating a metrology sampling plan
7738093, May 07 2007 KLA-Tencor Corporation Methods for detecting and classifying defects on a reticle
7747424, Mar 17 2006 THERMA-WAVE, INC Scatterometry multi-structure shape definition with multi-periodicity
7751046, Sep 20 2000 KLA-Tencor Technologies Corp Methods and systems for determining a critical dimension and overlay of a specimen
7760368, Jul 09 1999 NOVA LTD Method and system for measuring patterned structures
7767956, May 04 2000 KLA-Tencor Technologies Corp. Methods and systems for lithography process control
7769225, Aug 02 2005 SADRA MEDICAL, INC Methods and systems for detecting defects in a reticle design pattern
7791740, Jul 09 1999 NOVA LTD Method and system for measuring patterned structures
7796804, Jul 20 2007 KLA-Tencor Corporation Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer
7864343, Jul 09 1999 NOVA LTD Method and system for measuring patterned structures
7864344, Jul 09 1999 NOVA LTD Method and system for measuring patterned structures
7869057, Sep 09 2002 Zygo Corporation Multiple-angle multiple-wavelength interferometer using high-NA imaging and spectral analysis
7876440, Dec 05 2002 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7877722, Dec 19 2006 KLA-Tencor Corporation Systems and methods for creating inspection recipes
7933016, Dec 05 2002 KLA-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
7949618, Mar 28 2007 Tokyo Electron Limited Training a machine learning system to determine photoresist parameters
7962863, May 07 2007 KLA-Tencor Corporation Computer-implemented methods, systems, and computer-readable media for determining a model for predicting printability of reticle features on a wafer
7969465, Jun 19 2001 Applied Materials, Inc. Method and apparatus for substrate imaging
7975245, Aug 20 2007 KLA-Tencor Corp. Computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects
8013996, Jun 24 2002 J.A. WOOLLAM CO., INC. Spatial filter in sample investigation system
8023122, Jul 09 1999 NOVA LTD Method and system for measuring patterned structures
8041103, Nov 18 2005 KLA-Tencor Technologies Corp. Methods and systems for determining a position of inspection data in design data space
8059276, Feb 28 2003 J.A. Woollam Co., INC; J A WOOLLAM CO , INC Ellipsometric investigation and analysis of textured samples
8112241, Mar 13 2009 KLA-Tencor Corp. Methods and systems for generating an inspection process for a wafer
8139843, Nov 18 2005 KLA-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
8139844, Apr 14 2008 KLA-Tencor Corp. Methods and systems for determining a defect criticality index for defects on wafers
8179530, Sep 20 2000 KLA-Tencor Technologies Corp. Methods and systems for determining a critical dimension and overlay of a specimen
8194968, Jan 05 2007 KLA-Tencor Corporation Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions
8204296, Jul 20 2007 KLA-Tencor Corp. Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer
8204297, Feb 27 2009 KLA-Tencor Corp. Methods and systems for classifying defects detected on a reticle
8213704, May 09 2007 KLA-Tencor Corporation Methods and systems for detecting defects in a reticle design pattern
8248607, Aug 04 2009 J.A. WOOLLAM CO., INC.; Board of Regents of Nebraska University; UNIVERSITY OF NEBRASKA BOARD REGENTS; J A WOOLLAM CO , INC Empirical correction for spectroscopic ellipsometric measurements of rough or textured surfaces
8351036, Mar 26 2009 J A WOOLLAM CO , INC System for naturally adjusting the cross-sectional area of a beam of electromagnetic radiation entered to a focusing means
8384903, Nov 18 1998 KLA-Tencor Corporation Detection system for nanometer scale topographic measurements of reflective surfaces
8446583, Apr 30 2009 Samsung Electronics Co., Ltd. Light focusing unit and spectrum measuring apparatus having the same
8502979, Sep 20 2000 KLA-Tencor Technologies Corp. Methods and systems for determining a critical dimension and overlay of a specimen
8525994, Apr 10 2001 KLA-Tencor Corporation Periodic patterns and technique to control misaligment between two layers
8531678, Jul 09 1999 Nova Measuring Instruments, Ltd. Method and system for measuring patterned structures
8570513, Feb 28 2003 J.A. WOOLLAM CO., INC. Ellipsometric investigation and analysis of textured samples
8570515, Apr 10 2001 KLA-Tencor Corporation Periodic patterns and technique to control misalignment between two layers
8686376, Jun 24 2008 Koninklijke Philips Electronics N V Microarray characterization system and method
8773646, Oct 10 2009 AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH Fiber optic scanner
8775101, Feb 13 2009 KLA-Tencor Corporation Detecting defects on a wafer
8781781, Jul 30 2010 KLA-Tencor Corporation Dynamic care areas
8826200, May 25 2012 KLA-Tencor Corporation Alteration for wafer inspection
8831334, Jan 20 2012 KLA-Tencor Corporation Segmentation for wafer inspection
8923600, Nov 18 2005 KLA-Tencor Corporation Methods and systems for utilizing design data in combination with inspection data
9030664, Dec 30 2010 CORNING PRECISION MATERIALS CO , LTD Apparatus for measuring transmissivity of patterned glass substrate
9053527, Jan 02 2013 KLA-Tencor Corporation Detecting defects on a wafer
9087367, Sep 13 2011 KLA-Tencor Corporation Determining design coordinates for wafer defects
9092846, Feb 01 2013 KLA-Tencor Corporation Detecting defects on a wafer using defect-specific and multi-channel information
9103662, Apr 10 2001 KLA-Tencor Corporation Periodic patterns and technique to control misalignment between two layers
9115987, Dec 04 2013 ONTO INNOVATION INC Optical metrology with multiple angles of incidence and/or azimuth angles
9134254, Jan 07 2013 KLA-Tencor Corporation Determining a position of inspection system output in design data space
9170211, Mar 25 2011 KLA-Tencor Corporation Design-based inspection using repeating structures
9182680, Aug 30 2000 KLA-Tencor Corporation Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
9184102, Jul 06 2000 NOVA LTD Method and system for measuring patterned structures
9189844, Oct 15 2012 KLA-Tencor Corp. Detecting defects on a wafer using defect-specific information
9234745, Apr 10 2001 KLA-Tencor Corporation Periodic patterns and techniques to control misalignment between two layers
9310320, Apr 15 2013 KLA-Tencor Corporation Based sampling and binning for yield critical defects
9311431, Nov 03 2011 KLA-Tencor Corporation Secondary target design for optical measurements
9311698, Jan 09 2013 KLA-Tencor Corporation Detecting defects on a wafer using template image matching
9347879, Aug 30 2000 KLA-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry
9476698, Apr 10 2001 KLA-Tencor Corporation Periodic patterns and technique to control misalignment between two layers
9533787, May 12 2009 KRONES AG Device for detecting elevations and/or depressions on bottles, in particular in a labeling machine
9659670, Jul 28 2008 KLA-Tencor Corporation Computer-implemented methods, computer-readable media, and systems for classifying defects detected in a memory device area on a wafer
9702693, Aug 30 2000 KLA-Tencor Corporation Apparatus for measuring overlay errors
9835447, Apr 10 2001 KLA-Tencor Corporation Periodic patterns and technique to control misalignment between two layers
9865512, Apr 08 2013 KLA-Tencor Corporation Dynamic design attributes for wafer inspection
9875419, Jan 13 2015 BOE TECHNOLOGY GROUP CO., LTD; HEFEI XINSHENG OPTOELECTRONICS TECHNOLOGY CO., LTD Recognition device and alignment system
9921395, Jun 09 2015 J.A. WOOLLAM CO., INC. Beam focusing and beam collecting optics with wavelength dependent filter element adjustment of beam area
9939386, Apr 12 2012 KLA—Tencor Corporation; KLA-Tencor Corporation Systems and methods for sample inspection and review
9945792, Dec 19 2012 KLA-Tencor Corporation Generating an array of spots on inclined surfaces
RE45245, Aug 30 2000 KLA-Tencor Corporation Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
Patent Priority Assignee Title
4619508, Apr 28 1984 Nippon Kogaku K. K. Illumination optical arrangement
4710642, Aug 20 1985 Nanometrics Incorporated Optical scatterometer having improved sensitivity and bandwidth
4999014, May 04 1989 Bankers Trust Company Method and apparatus for measuring thickness of thin films
5022087, May 03 1988 NIPPON SHEET GLASS CO , LTD , A CORP OF JAPAN Apparatus for detecting primitive patterns in an image
5028802, Jan 11 1990 SCHEPENS EYE RESEARCH INSTITUTE, INC , THE Imaging apparatus and methods utilizing scannable microlaser source
5099131, Dec 07 1990 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Acquisition and testing of latent fingerprints using upconversion
5164790, Feb 27 1991 Science & Technology Corporation @ UNM Simple CD measurement of periodic structures on photomasks
5225876, Dec 23 1989 Dornier Luftfahrt GmbH Range finding camera
5610719, Jul 10 1995 QC OPTICS, INC Displacement detection system
5699447, Nov 16 1990 Applied Materials Israel Ltd Two-phase optical inspection method and apparatus for defect detection
5701181, May 12 1995 Bayer Corporation Fiber optic diffuse light reflectance sensor utilized in the detection of occult blood
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 25 1997BAREKET, NOAHKLA Instruments CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0084400884 pdf
Feb 26 1997KLA Instruments Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 27 2002M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 16 2002REM: Maintenance Fee Reminder Mailed.
Oct 02 2006M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 30 2010M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 30 20024 years fee payment window open
Sep 30 20026 months grace period start (w surcharge)
Mar 30 2003patent expiry (for year 4)
Mar 30 20052 years to revive unintentionally abandoned end. (for year 4)
Mar 30 20068 years fee payment window open
Sep 30 20066 months grace period start (w surcharge)
Mar 30 2007patent expiry (for year 8)
Mar 30 20092 years to revive unintentionally abandoned end. (for year 8)
Mar 30 201012 years fee payment window open
Sep 30 20106 months grace period start (w surcharge)
Mar 30 2011patent expiry (for year 12)
Mar 30 20132 years to revive unintentionally abandoned end. (for year 12)