connectors are provided for attaching flexible tubular grafts to the body organ tubing of a patient at oblique angles. The connector structures may be formed from two elongated members connected by a series of struts. Wire hooks welded to the connector may be used to engage the graft and the body organ tubing when the connector is used to attach the graft to the body organ tubing. The struts are bendable so that the elongated members can be compressed toward each other when it is desired to install a graft by placing the graft and the connector in a delivery tube. When the connector and graft are released from the delivery tube at the installation site, at least the open end of the connector adjacent to the body organ tubing has an oval shape for insertion into and attachment to an oval aperture in the body organ tubing. The elongated members are longitudinally shifted relative to each other so that the connector is angled obliquely to support attachment of the graft to the body organ tubing at an oblique angle.
|
17. A connector for forming an oblique-angle connection between a flexible tubular graft and an aperture in a portion of a patient's body organ tubing, comprising:
a first elongated member; a second elongated member; and a connection structure connecting the first and second elongated members parallel to each other, the first and second elongated members being laterally spaced and longitudinally shifted with respect to each other so that the connector has at least one substantially oval open end for insertion in the aperture and supports connection of the flexible tubular graft to a portion of the body organ tubing of the patient at an oblique angle, wherein: at least one of the first and second elongated members has longitudinal slots. 18. A connector for forming an oblique-angle connection between a flexible tubular graft and an aperture in a portion of a patient's body organ tubing, comprising:
a first elongated member; a second elongated member; and a connection structure connecting the first and second elongated members parallel to each other, the first and second elongated members being laterally spaced and longitudinally shifted with respect to each other so that the connector has at least one substantially oval open end for insertion in the aperture and supports connection of the flexible tubular graft to a portion of the body organ tubing of the patient at an oblique angle, wherein: at least one of the first and second members has a continuous serpentine longitudinal slot. 16. A connector for forming an oblique-angle connection between a flexible tubular graft and an aperture in a portion of a patient's body organ tubing comprising:
a first elongated member having first and second edges; a second elongated member having first and second edges, wherein the first and second edges of the first elongated member are substantially not in contact with the first and second edges of the second elongated member; and a connection structure connecting the first and second elongated members parallel to each other, the first and second members being laterally spaced and longitudinally shifted with respect to each other so that the connector has at least one substantially oval open end for insertion in the aperture and supports connection of the flexible tubular graft to a portion of the body organ tubing of the patient at an oblique angle, wherein: at least one of the first and second elongated members has slots. 1. A connector for forming an oblique-angle connection between a flexible tubular graft and an aperture in a portion of a patient's body organ tubing wherein the connector has a length, the connector comprising:
a first elongated member extending substantially the length of the connector and having first and second edges; a second elongated member having first and second edges, wherein the first and second edges of the first elongated member are substantially not in contact with the first and second edges of the second elongated member; and a connection structure connecting the first and second elongated members parallel to each other, the first and second members being laterally spaced and longitudinally shifted with respect to each other so that the connector has at least one substantially oval open end for insertion in the aperture and supports connection of the flexible tubular graft to a portion of the body organ tubing of the patient at an oblique angle.
15. A connector for forming an oblique-angle connection between a flexible tubular graft and an aperture in a portion of a patient's body organ tubing, comprising:
a first elongated member; a second elongated member; and a connection structure connecting the first and second elongated members parallel to each other, the first and second elongated members being laterally spaced and longitudinally shifted with respect to each other so that the connector has at least one substantially oval open end for insertion in the aperture and supports connection of the flexible tubular graft to a portion of the body organ tubing of the patient at an oblique angle, wherein: the connector has two ends; and the connection structure comprises first and second pairs of struts, the first pair connecting said first and second elongated members at one end of the two ends of the connector and the second pair connecting said first and second elongated members at the other of the two ends of the connector. 2. The connector defined in
3. The connector defined in
4. The connector defined in
5. The connector defined in
6. The connector defined in
7. The connector defined in
the first and second elongated members each have two ends; and the connector further comprises attachment members connected to the first and second elongated members at both of the two ends of the first and second elongated members for engaging the flexible tubular graft and the body organ tubing.
8. The connector defined in
the first and second elongated members each have two ends; and the connector further comprises wire hooks connected to the first and second elongated members at both ends of the first and second elongated members for engaging the flexible tublar graft and the body organ tubing.
9. The connector defined in
10. The connector defined in
12. The connector defined in
13. The connector defined in
14. The connector defined in
|
This invention relates to replacing or supplementing a patient's natural body organ tubing by installing tubular graft structures. More particularly, the invention relates to connector structures for making oblique-angle connections between such tubular graft structures and body organ tubing.
A patient's weakened or diseased body organ tubing can often be repaired by replacing or supplementing the patient's existing natural body organ tubing with an artificial graft structure. One suitable type of artificial graft structure uses a tubular nitinol mesh frame covered with a silicone coating, as described in Goldsteen et al. U.S. Pat. application Ser. No. 08/745,618, filed Nov. 7, 1996. Such grafts are highly flexible, so they recover their shape after being stretched. Accordingly, a graft of this type may be stretched axially to reduce its radial dimension and then installed in a patient intraluminally (e.g., through an existing vein or artery). Once delivered to the proper location within the patient, the axially stretched graft may be released, whereupon it expands to regain its original shape.
In addition, flexible artificial grafts may be made distensible like natural body organ tubing to help reduce clot formation when used in vascular applications. Flexible artificial grafts may also be made biocompatible by adjusting their porosity and the composition of their coatings.
Various connector structures may be used to attach flexible artificial grafts to a patient's body organ tubing. For example, a graft may be surgically attached to body organ tubing with sutures. To install a graft intraluminally, a pronged ring may be expanded from within the end of the graft, thereby piercing the graft and attaching it to surrounding body organ tubing. Barbed flaps and wire hooks may also be used to attach grafts to body organ tubing. Connector structures of these types and other suitable connector structures are described in the above-mentioned Goldsteen et al. U.S. Pat. application Ser. No. 08/745,618, filed Nov. 7, 1996 and in Bachinski et al. U.S. Pat. application Ser. No. 08/839,199, filed Apr. 23, 1997. Wire-based connector structures suitable for attaching grafts to body organ tubing at oblique angles are described in Berg et al. U.S. Pat. application Ser. No. 08/946,742, filed Oct. 9, 1997.
Although connector structures of these types have various useful features, it would be desirable if other connector structures were available, particularly connectors for making oblique-angle connections between tubular grafts and body organ tubing.
It is therefore an object of the present invention to provide improved connector structures for attaching grafts to a patient's body organ tubing at oblique angles.
This and other objects of the invention are accomplished in accordance with the principles of the present invention by providing connectors for attaching flexible tubular grafts to the body organ tubing of a patient. The connectors allow grafts to be attached to body organ tubing at oblique angles (i.e., angles other than right angles).
The connector structures may be formed from two elongated members connected by a series of struts. The struts are bendable so that the elongated members can be compressed toward each other during intraluminal installation of a graft and connector (e.g., through the vascular system of a patient). During such an installation, the compressed connector and graft are placed in a delivery tube. The connector has attachment members such as heat-set nitinol wire hooks that are welded or otherwise connected to the elongated tubular members. When the graft and connector are released from the delivery tube, the hooks engage the graft and the body organ tubing of the patient, thereby attaching the graft to the body organ tubing.
At least the open end of the released connector that is adjacent to the body organ tubing has an oval shape that matches the oval shape of the body organ tubing aperture into which the connector and graft are inserted during graft installation. The elongated members of the connector are longitudinally shifted with respect to one another, so that when the oval open end of the connector is installed in the oval aperture in the body organ tubing an oblique angle is formed between the shared longitudinal axis of the graft and the connector and the longitudinal axis or surface of the body organ tubing.
Slots may be formed in the connector to make the connector distensible. The slots may be formed using laser cutting, water jet cutting, electrode discharge machining, or chemical etching. The connector may be fabricated by cutting the connector from a tube of nitinol as a single piece, shaping the connector into a desired final shape, and heat treating the connector to set the connector in the desired final shape.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
FIG. 1 is a perspective view of a graft attached to a length of body organ tubing at an oblique angle with a connector in accordance with the present invention.
FIG. 2 is a perspective view of an illustrative connector in accordance with the present invention.
FIG. 3. is a side view showing how a connector in accordance with the present invention may be cut from a metal tube as a single piece.
FIG. 4 is a side view of an illustrative connector showing how wire hooks may be provided to attach the connector to body organ tubing and a graft in accordance with the present invention.
FIG. 5a is a side view of a graft with a right-angle end for attachment to a portion of body organ tubing.
FIG. 5b is a side view of a graft with an oblique (non-right-angle) end for attachment to a portion of body organ tubing.
FIG. 6 is a sectional view of a graft attached to a portion of body organ tubing at an oblique angle using an illustrative connector in accordance with the present invention.
FIGS. 7a and 7b are sectional views of an illustrative arrangement for attaching a graft to body organ tubing using a connector in accordance with the present invention.
FIG. 8 is a flow chart of illustrative steps involved in fabricating and installing connectors in accordance with the present invention.
A graft 10 connected to body organ tubing 12 in accordance with the present invention is shown in FIG. 1. Graft 10 is preferably an artificial flexible tubular structure, although the connector arrangements of the present invention may be used with natural grafts if desired. Artificial flexible tubular graft 10 may be formed from a flexible coating 14 covering a flexible frame 16. The preferred materials for forming frame 16 are metals, although polymeric materials may also be used. The presently most preferred material is a braid of nitinol wire.
Graft 10 is connected to body organ tubing 12 using connector 18. Connectors such as connector 18 are preferably formed from the same type of flexible material as frame 16 (e.g., nitinol). Nitinol is heat sensitive, so connectors 18 of various shapes may be formed by cutting, bending, and otherwise forming the nitinol material that makes up the connector into a desired shape and applying a heat treatment to set the nitinol in that shape.
Coating 14 is preferably an elastic biocompatible material such as silicone, which fills the apertures formed by the wires in frame 16. Other materials that may be used for coating 14 include polymeric materials such as stretchable urethane, stretchable polytetrafluoroethylene (PTFE), natural rubber, and the like.
If desired, coating 14 can be formed with microscopic pores to help improve biocompatibility. A preferred method of providing a desired porosity is to make coating 14 from an elastic material that is mixed with particles of a material that can be removed (e.g., by vaporization) after coating 14 has been applied to frame 16. When the particles are removed, voids are left in coating 14 that give it porosity.
Graft 10 may be provided with additional coatings such as medicated coatings, hydrophilic coatings, smoothing coatings, collagen coatings, human cell seeding coatings, etc., as described in the above-mentioned Goldsteen et al. U.S. Pat. application Ser. No. 08/745,618, filed Nov. 7, 1996, which is hereby incorporated by reference herein in its entirety. The above-described preferred porosity of coating 12 may help graft 10 to retain these coatings.
In the illustrative example of FIG. 1, graft 10 has been used to form a connection to a tubular length of body organ tubing 12. Graft 10 may be used to connect portions of body organ tubing of any suitable shape. As defined herein, the term "body organ tubing" generally refers to elongated fluid-containing body organ tissues such as blood vessels and the like and to similar but less elongated body organ tissue structures such as portions of the heart wall. Body organ tubing 12 may be vascular tubing or any other type of body organ tubing.
Connector 18 is used to attach graft 10 to body organ tubing 12 at an oblique angle (i.e., the angle between the longitudinal axis of graft 10 and the longitudinal axis or surface of the body organ tubing 12 is not a right angle). Because the angle of attachment between graft 10 and body organ tubing 12 is oblique, the periphery 20 of the connection between graft 10 and body organ tubing 12 is shaped like an oval.
As shown in FIG. 2, the open ends 22 of connector 18 are also ovals, so that connector 18 accommodates the oval shape of periphery 20 when connector 18 is used to form an oblique-angle connection between graft 10 and body organ tubing 12. Connector 18 is formed from two elongated members 24 and 26 formed from portions of a tube. Elongated members 24 and 26 are joined by a connection structure formed from struts 28.
Members 24 and 26 have longitudinal slots 30 which may provide connector 18 with distensibility (i.e., the ability to expand and contract in response to variations in the pressure of the fluid contained within connector 18 during use). If desired, slots 30 may be continuous serpentine longitudinal slots provided in the form of continuous serpentine cut-away portions, as shown in FIG. 2.
Struts 28 are preferably integrally formed with members 24 and 26. If desired, however, struts 28 may be separate support members that are attached to members 24 and 26 (e.g., by welding).
One way in which to form members 24 and 26 and struts 28 as an integral structure is to cut connector 18 from a hollow tube of nitinol 32 in a single piece, as shown in FIG. 3. After connector 18 is cut from tube 32, it may be desirable to bend, stretch, and heat set connector 18 into the final shape shown in FIG. 2. Tube 32 does not need to be perfectly round in cross section nor do elongated members 24 and 26 need to be shaped like portions of perfectly round tubes, provided that connector 18 is deployed with one elongated member axially shifted relative to the other elongated member, so that at least one end of connector 18 is approximately oval in shape and connector 18 supports attachment of graft 10 to body organ tubing 12 at an oblique angle.
In order to attach connector 18 to body organ tubing 12 and graft 10, connector 18 is preferably provided with attachment members such as hooks 34 of FIG. 4. Hooks 34 may be formed from bent and heat-set nitinol wire strands that are attached to connector 18 by welding or other suitable attachment scheme. Hooks 34 at open end 22a of connector 18 are used to attach connector 18 to body organ tubing 12 and may help to attach graft 10 to body organ tubing 12. Hooks 34 at open end 22b of connector 18 are used to attach connector 18 to graft 10.
If desired, the end of graft 10 used in forming the connection between graft 10 and body organ tubing 12 may be formed at a right angle relative to the longitudinal axis of graft 10, as shown in FIG. 5a. Alternatively, the end of graft 10 used in forming the connection between graft 10 and body organ tubing 12 may be formed at an oblique angle relative to the longitudinal axis of graft 10, as shown in FIG. 5b. The right-angle arrangement of FIG. 5a is relatively easy to form and need not be rotationally aligned with respect to connector 18 prior to installation in a patient. With the arrangement of FIG. 5b, the longitudinally projecting tip of graft 10 must be aligned with the elongated member 24 or 26 of connector 18 that is longitudinally shifted toward the attachment site. However, the arrangement of FIG. 5b may alleviate some of the tension that might otherwise be created in graft 10 when the end of graft 10 in FIG. 5a is stretched into the shape used for an oblique-angle connection.
Regardless of the particular shape used for the end of graft 10, graft 10 is preferably attached to body organ tubing 12 as shown in FIG. 6. Prior to attachment, an aperture 36 having approximately the shape of an oval (in the dimension perpendicular to the page) is formed in the upper wall of body organ tubing 12 by any suitable technique. Graft 10 surrounds connector 18 and is attached to connector 18 by hooks 34a and 34b. If desired, hooks like hooks 34a and 34b may be provided at other axial locations on connector 18 to further secure graft 10 to connector 18. At open end 22a, hooks 34a penetrate the portion of body organ tubing 12 surrounding aperture 36, thereby attaching graft 10 and connector 18 to body organ tubing 12. Because elongated member 24 is shifted longitudinally with respect to elongated member 26, connector 18 supports attachment of graft 10 to body organ tubing 12 at an oblique angle.
If desired, graft 10 may be delivered to an attachment site in a patient intraluminally. An illustrative arrangement for attaching graft 10 to body organ tubing 14 is shown in FIGS. 7a and 7b. Prior to attachment, graft 10 is loaded into delivery tube 38 (which can be inserted into a patient intraluminally) by compressing connector 18 to reduce the lateral spacing of elongated members 24 and 26. During compression of connector 18, struts 28 bend at hinge points 40a and 40b, as shown in FIG. 7a. This allows the relative longitudinal shift of elongated members 24 and 26 to be reduced or removed entirely during compression of connector 18, so that connector 18 fits inside a delivery tube with a right-angle end. Graft 10 may be radially compressed by axial stretching. Delivery tube 38 and the compressed graft 10 and connector 18 are advanced in direction 42 through aperture 36. During insertion of delivery tube 38 into aperture 36, delivery tube 38 holds hooks 34a radially inward and out of the way.
As shown in FIG. 7b, once open end 22a of connector 18 and the associated end of graft 10 are advanced through aperture 36 in body organ tubing 12, delivery tube 38 can be drawn backward in direction 44. Drawing delivery tube 38 backward releases connector 18, which expands as struts 28 straighten to assume their normal straight configuration. Wires 34a are also released and assume their normal configuration by expanding and piercing the portion of body organ tubing 12 surrounding aperture 36 to hold graft 10 in place.
Releasing connector 18 causes elongated members 24 and 26 to axially shift relative to one another as shown by arrows 45a and 45b. Accordingly, open end 22a of connector 18 forms an oval shape and connector 18 is angled properly to support an oblique-angle connection between graft 10 and body organ tubing 12, as shown in FIG. 7b.
If the other end of graft 10 has a connector 18, the same attachment process may be performed at that end of graft 10 by inserting the preloaded delivery tube 38 through another aperture in body organ tubing 12 and removing delivery tube 38 through that aperture (rather than moving delivery tube 38 away from that aperture 36 as shown in FIGS. 7a and 7b).
Illustrative steps involved in fabricating and installing grafts 10 using connectors 18 of the present invention are shown in FIG. 8. Steps 46 are connector fabrication steps. Steps 48 are graft and connector installation steps.
Connector 18 is preferably formed by cutting connector 18 from tubing of nitinol or other suitable material as a single piece, as shown in FIG. 3. As shown in FIG. 8, such cutting may involve laser cutting (step 50), water jet cutting (step 52), electrode discharge machining (step 54), or chemical etching (step 56). Connector 18 may then be formed to its desired final shape at step 58. At step 60, a heat treatment may be applied to connector 18 to heat set connector 18 into its final shape.
At step 62, graft 10 is attached to connector 18 (e.g., using hooks 34) and placed in delivery tube 38. At step 64, graft 10 and connector 18 are inserted into aperture 36 in body organ tubing 12 and delivery tube 38 is removed to attach graft 10 and connector 18 to body organ tubing 12. Removing delivery tube 38 releases connector 18 so that the open end 22a of connector 18 forms an oval shape (as shown in FIG. 2). In addition, elongated members 24 and 26 shift longitudinally with respect to each other so that connector 18 supports an oblique-angle connection between graft 10 and body organ tubing 12 (i.e., the shared longitudinal axis of connector 18 and graft 10 is obliquely-angled relative to the longitudinal axis of body organ tubing 12).
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.
Patent | Priority | Assignee | Title |
10004507, | Jun 18 2007 | ASFORA IP, LLC | Vascular anastomosis device and method |
10206681, | Jun 18 2007 | ASFORA IP, LLC | Vascular anastomosis device and method |
10258719, | Oct 28 2010 | VACTRONIX SCIENTIFIC, LLC | Pattern transfer device for mass transfer of micro-patterns onto medical devices |
10272260, | Nov 23 2011 | BRONCUS MEDICAL INC. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
10369339, | Jul 19 2004 | BRONCUS MEDICAL INC. | Devices for delivering substances through an extra-anatomic opening created in an airway |
10631938, | May 13 2011 | BRONCUS MEDICAL INC. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
10669645, | Oct 28 2010 | VACTRONIX SCIENTIFIC, LLC | Pattern transfer device for mass transfer of micro-patterns onto medical devices |
10729540, | Apr 21 2009 | Medtronic, Inc. | Stents for prosthetic heart valves and methods of making same |
10758383, | May 19 2000 | VACTRONIX SCIENTIFIC, LLC | Method of making recessed features on inner surface of tubular structure by photolithography |
10806614, | May 19 2000 | VACTRONIX SCIENTIFIC, LLC | Method of making recessed features on inner surface of tubular structure by thermal ablation |
10881406, | Jun 18 2007 | ASFORA IP, LLC | Vascular anastomosis device and method |
11357960, | Jul 19 2004 | BRONCUS MEDICAL INC. | Devices for delivering substances through an extra-anatomic opening created in an airway |
11369381, | Jul 02 2019 | Washington University | Tailored venous anastomosis for arteriovenous grafts |
11654022, | Apr 21 2009 | Medtronic, Inc. | Stents for prosthetic heart valves and methods of making same |
11878133, | Oct 08 2019 | Medtronic, Inc. | Methods of preparing balloon expandable catheters for cardiac and vascular interventions |
6235054, | Feb 27 1998 | ST JUDE MEDICAL ATG, INC | Grafts with suture connectors |
6293955, | Sep 20 1996 | Converge Medical, Inc. | Percutaneous bypass graft and securing system |
6293965, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Tubular medical graft connectors |
6361559, | Jun 10 1998 | Converge Medical, Inc. | Thermal securing anastomosis systems |
6371964, | May 18 1999 | Aesculap AG | Trocar for use in deploying an anastomosis device and method of performing anastomosis |
6371981, | May 06 1998 | HILLVIEW PTY LIMITED | Vascular graft assemblies and methods for implanting same |
6379319, | Oct 11 1996 | Medtronic Vascular, Inc | Systems and methods for directing and snaring guidewires |
6419681, | May 18 1999 | Aesculap AG | Implantable medical device such as an anastomosis device |
6428550, | May 18 1999 | Aesculap AG | Sutureless closure and deployment system for connecting blood vessels |
6451033, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Tubular medical graft connectors |
6461320, | Aug 12 1998 | Aesculap AG | Method and system for attaching a graft to a blood vessel |
6471713, | Nov 13 2000 | Aesculap AG | System for deploying an anastomosis device and method of performing anastomosis |
6482211, | Jul 31 2000 | Advanced Cardiovascular Systems, Inc. | Angulated stent delivery system and method of use |
6491719, | Mar 10 1995 | Medtronic, Inc. | Tubular endoluminar prosthesis having oblique ends |
6494889, | Sep 01 1999 | CONVERGE MEDICAL, INC | Additional sutureless anastomosis embodiments |
6497710, | Aug 12 1998 | Aesculap AG | Method and system for attaching a graft to a blood vessel |
6508252, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6537288, | May 18 1999 | Aesculap AG | Implantable medical device such as an anastomosis device |
6582394, | Nov 14 2000 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcated vessels |
6599302, | Jun 10 1998 | Converge Medical, Inc. | Aortic aneurysm treatment systems |
6626920, | Jul 05 2001 | CONVERGE MEDICAL, INC | Distal anastomosis system |
6648900, | Dec 11 1998 | Converge Medical, Inc. | Anastomosis systems |
6648901, | Dec 11 1998 | CONVERGE MEDICAL, INC | Anastomosis systems |
6652541, | May 18 1999 | Aesculap AG | Method of sutureless closure for connecting blood vessels |
6652544, | Nov 08 1996 | PHOTOGEN TECHNOLOGIES, INC | Percutaneous bypass graft and securing system |
6673088, | May 18 1999 | Aesculap AG | Tissue punch |
6682540, | Nov 05 1999 | DVL ACQUISITION SUB, INC | Apparatus and method for placing multiple sutures |
6699256, | Jun 04 1999 | ST JUDE MEDICAL ATG, INC | Medical grafting apparatus and methods |
6702829, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Medical grafting connectors and fasteners |
6719769, | Nov 15 1999 | Aesculap AG | Integrated anastomosis tool with graft vessel attachment device and cutting device |
6740101, | Jun 10 1998 | Converge Medical, Inc. | Sutureless anastomosis systems |
6776785, | Oct 12 2000 | Aesculap AG | Implantable superelastic anastomosis device |
6786914, | May 18 1999 | Aesculap AG | Sutureless closure and deployment system for connecting blood vessels |
6805708, | Aug 12 1998 | Aesculap AG | Method and system for attaching a graft to a blood vessel |
6808498, | Feb 13 1998 | Medtronic, Inc | Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber |
6843795, | Jun 10 1998 | Converge Medical, Inc. | Anastomotic connector for sutureless anastomosis systems |
6858035, | Jul 05 2001 | CONVERGE MEDICAL, INC | Distal anastomosis system |
6869442, | Sep 27 2000 | Advanced Cardiovascular Systems, Inc. | Two stage light curable stent and delivery system |
6887249, | Jun 10 1998 | Converge Medical Inc. | Positioning systems for sutureless anastomosis systems |
6893449, | May 18 1999 | Aesculap AG | Device for cutting and anastomosing tissue |
6896687, | May 19 1997 | Connectors for hollow anatomical structures and methods of use | |
6920882, | Nov 06 1998 | St. Jude Medical ATG, Inc. | Medical grafting methods and apparatus |
6962595, | Jan 22 2002 | Aesculap AG | Integrated anastomosis system |
6972023, | Jul 05 2001 | CONVERGE MEDICAL, INC | Distal anastomosis system |
7004949, | Aug 12 1998 | Aesculap AG | Method and system for attaching a graft to a blood vessel |
7018388, | Aug 12 1998 | Aesculap AG | Method and system for attaching a graft to a blood vessel |
7025773, | Jan 15 1999 | Medtronic, Inc | Methods and devices for placing a conduit in fluid communication with a target vessel |
7029482, | Jan 22 2002 | Aesculap AG | Integrated anastomosis system |
7041110, | Aug 12 1998 | Aesculap AG | Method and system for attaching a graft to a blood vessel |
7048751, | Dec 06 2001 | Aesculap AG | Implantable medical device such as an anastomosis device |
7083631, | Nov 08 1996 | Converge Medical, Inc. | Percutaneous bypass graft and securing system |
7094248, | Apr 23 1997 | St. Jude Medical ATG, Inc. | Medical grafting connectors and fasteners |
7108702, | Aug 12 1998 | Aesculap AG | Anastomosis device having at least one frangible member |
7128749, | May 18 1999 | Aesculap AG | Sutureless closure and deployment system for connecting blood vessels |
7144405, | May 18 1999 | Aesculap AG | Tissue punch |
7172608, | May 18 1999 | Aesculap AG | Sutureless closure and deployment system for connecting blood vessels |
7175637, | May 18 1999 | Aesculap AG | Sutureless closure and deployment system for connecting blood vessels |
7175644, | Feb 14 2001 | SRONCUB, INC | Devices and methods for maintaining collateral channels in tissue |
7211095, | Apr 23 1997 | St. Jude Medical ATG, Inc. | Medical grafting connectors and fasteners |
7223274, | Jan 23 2002 | Aesculap AG | Method of performing anastomosis |
7303569, | Jun 13 2003 | Aesculap AG | Implantable superelastic anastomosis device |
7309343, | May 18 1999 | Aesculap AG | Method for cutting tissue |
7316655, | Oct 11 1996 | Medtronic Vascular, Inc | Systems and methods for directing and snaring guidewires |
7335216, | Jan 22 2002 | Aesculap AG | Tool for creating an opening in tissue |
7357807, | May 18 1999 | Aesculap AG | Integrated anastomosis tool with graft vessel attachment device and cutting device |
7422563, | Aug 05 1999 | SRONCUB, INC | Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow |
7455677, | Jan 22 2002 | Aesculap AG | Anastomosis device having a deployable section |
7462162, | Sep 04 2001 | SRONCUB, INC | Antiproliferative devices for maintaining patency of surgically created channels in a body organ |
7468066, | May 18 1999 | Aesculap AG | Trocar for use in deploying an anastomosis device and method of performing anastomosis |
7578828, | Jan 15 1999 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
7585306, | Dec 24 2003 | Maquet Cardiovascular, LLC | Anastomosis device, tools and methods of using |
7611523, | May 18 1999 | Aesculap AG | Method for sutureless connection of vessels |
7632300, | Mar 27 1998 | ev3 Inc. | Stent with dual support structure |
7708712, | Sep 04 2001 | SRONCUB, INC | Methods and devices for maintaining patency of surgically created channels in a body organ |
7815590, | Aug 05 1999 | SRONCUB, INC | Devices for maintaining patency of surgically created channels in tissue |
7850705, | Apr 23 1997 | St. Jude Medical ATG, Inc. | Medical grafting connectors and fasteners |
7938841, | Apr 29 2000 | Medtronic, Inc. | Components, systems and methods for forming anastomoses using magnetism or other coupling means |
7993356, | Feb 13 1998 | Medtronic, Inc. | Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication |
8002740, | Jul 18 2003 | SRONCUB, INC | Devices for maintaining patency of surgically created channels in tissue |
8007527, | Mar 27 1998 | Covidien LP | Stent with dual support structure |
8012164, | Jan 22 2002 | Aesculap AG | Method and apparatus for creating an opening in the wall of a tubular vessel |
8037733, | May 19 2000 | VACTRONIX SCIENTIFIC, LLC | Methods and apparatus for manufacturing an intravascular stent |
8109947, | Nov 06 1998 | St. Jude Medical ATG, Inc. | Medical grafting methods and apparatus |
8162963, | Jun 17 2004 | Maquet Cardiovascular, LLC | Angled anastomosis device, tools and method of using |
8167929, | Mar 09 2006 | Abbott Laboratories | System and method for delivering a stent to a bifurcated vessel |
8308682, | Jul 18 2003 | SRONCUB, INC | Devices for maintaining patency of surgically created channels in tissue |
8329021, | Oct 28 2010 | VACTRONIX SCIENTIFIC, LLC | Method for mass transfer of micro-patterns onto medical devices |
8361092, | Jun 18 2007 | ASFORA IP, LLC | Vascular anastomosis device and method |
8382784, | Jan 28 1998 | St. Jude Medical ATG, Inc. | Vessel cutting devices |
8409167, | Jul 19 2004 | SRONCUB, INC | Devices for delivering substances through an extra-anatomic opening created in an airway |
8512360, | Feb 13 1998 | Medtronic, Inc | Conduits for use in placing a target vessel in fluid communication with source of blood |
8512579, | May 19 2000 | VACTRONIX SCIENTIFIC, LLC | Method for making grooves on a luminal surface of an intravascular stent |
8608724, | Jul 19 2004 | SRONCUB, INC | Devices for delivering substances through an extra-anatomic opening created in an airway |
8668818, | Oct 28 2010 | VACTRONIX SCIENTIFIC, LLC | Method for mass transfer of micro-patterns onto medical devices |
8709034, | May 13 2011 | SRONCUB, INC | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
8728012, | Dec 19 2008 | ST JUDE MEDICAL, INC | Apparatus and method for measuring blood vessels |
8784400, | Jul 19 2004 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
8900289, | Mar 27 1998 | Covidien LP | Stent with dual support structure |
8905961, | Dec 19 2008 | ST JUDE MEDICAL, INC | Systems, apparatuses, and methods for cardiovascular conduits and connectors |
8920660, | May 19 2000 | VACTRONIX SCIENTIFIC, LLC | Method for making grooves on a luminal surface of an intravascular stent |
8932316, | May 13 2011 | BRONCUS MEDICAL INC. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
8961585, | Apr 25 2005 | Covidien LP | Controlled fracture connections for stents |
9345532, | May 13 2011 | BRONCUS TECHNOLOGIES, INC | Methods and devices for ablation of tissue |
9402754, | May 18 2010 | Abbott Cardiovascular Systems, Inc. | Expandable endoprostheses, systems, and methods for treating a bifurcated lumen |
9421070, | May 13 2011 | BRONCUS MEDICAL INC. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
9422633, | Oct 28 2010 | VACTRONIX SCIENTIFIC, LLC | Method for mass transfer of micro-patterns onto medical devices |
9486229, | May 13 2011 | BRONCUS TECHNOLOGIES, INC | Methods and devices for excision of tissue |
9533128, | Jul 18 2003 | BRONCUS MEDICAL INC. | Devices for maintaining patency of surgically created channels in tissue |
9561119, | Apr 21 2009 | Medtronic, Inc. | Stents for prosthetic heart valves and methods of making same |
9566146, | Dec 19 2008 | ST JUDE MEDICAL, LLC | Cardiovascular valve and valve housing apparatuses and systems |
9603732, | Apr 25 2005 | Covidien LP | Stent including sinusoidal struts |
9788980, | May 19 2000 | VACTRONIX SCIENTIFIC, LLC | Method for making grooves on a luminal surface of an intravascular stent |
9913969, | Oct 05 2006 | BRONCUS MEDICAL INC. | Devices for delivering substances through an extra-anatomic opening created in an airway |
9987398, | Oct 28 2010 | VACTRONIX SCIENTIFIC, LLC | Pattern transfer device for mass transfer of micro-patterns onto medical devices |
9993306, | May 13 2011 | BRONCUS MEDICAL INC. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
Patent | Priority | Assignee | Title |
3155095, | |||
4214587, | Feb 12 1979 | LifeShield Sciences LLC | Anastomosis device and method |
4503569, | Mar 03 1983 | Cook Incorporated | Transluminally placed expandable graft prosthesis |
4592754, | Sep 09 1983 | Surgical prosthetic vessel graft and catheter combination and method | |
4617932, | Apr 25 1984 | Device and method for performing an intraluminal abdominal aortic aneurysm repair | |
4665906, | Oct 14 1983 | Medtronic, Inc | Medical devices incorporating sim alloy elements |
4787899, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Intraluminal graft device, system and method |
5102417, | Nov 07 1985 | Cordis Corporation | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
5104399, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Artificial graft and implantation method |
5135467, | Dec 07 1989 | Medtronic, Inc.; MEDTRONIC, INC , A CORP OF MN | Implantable system and method for coronary perfusions assistance |
5211658, | Nov 05 1991 | New England Deaconess Hospital Corporation | Method and device for performing endovascular repair of aneurysms |
5211683, | Jul 03 1991 | LifeShield Sciences LLC | Method of implanting a graft prosthesis in the body of a patient |
5275622, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Endovascular grafting apparatus, system and method and devices for use therewith |
5304220, | Jul 03 1991 | LifeShield Sciences LLC | Method and apparatus for implanting a graft prosthesis in the body of a patient |
5316023, | Jan 08 1992 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method for bilateral intra-aortic bypass |
5354336, | Jan 29 1991 | C R BARD, INC | Method for bonding soft tissue with collagen-based adhesives and sealants |
5387235, | Oct 25 1991 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
5397345, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Artificial graft and implantation method |
5443497, | Nov 22 1993 | The Johns Hopkins University | Percutaneous prosthetic by-pass graft and method of use |
5456712, | Jul 03 1991 | LifeShield Sciences LLC | Graft and stent assembly |
5489295, | Apr 11 1991 | LIFEPORT SCIENCES LLC | Endovascular graft having bifurcation and apparatus and method for deploying the same |
5496365, | Jul 02 1992 | Cogent | Autoexpandable vascular endoprosthesis |
5507769, | Oct 18 1994 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method and apparatus for forming an endoluminal bifurcated graft |
5522880, | Jun 11 1990 | Method for repairing an abdominal aortic aneurysm | |
5545214, | Jul 16 1991 | Heartport, Inc | Endovascular aortic valve replacement |
5667486, | Apr 27 1993 | AMS MEDINVENT, S A | Prostatic stent |
5695504, | Feb 24 1995 | Heartport, Inc | Devices and methods for performing a vascular anastomosis |
5707387, | Mar 25 1996 | Flexible stent | |
5735871, | Dec 09 1994 | SOFRADIM PRODUCTION S A | Self-expanding endoprosthesis |
5741293, | Nov 28 1995 | Locking stent | |
5800520, | Mar 10 1995 | Medtronic Ave, Inc | Tubular endoluminar prosthesis having oblique ends |
AU670239, | |||
EP539237A1, | |||
EP637454A1, | |||
EP680734A2, | |||
EP684022A2, | |||
WO9618361, | |||
WO9713463, | |||
WO9713471, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 25 1997 | BACHINSKI, THOMAS J | VASCULAR SCIENCE INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008809 | /0634 | |
Oct 09 1997 | Vascular Science, Inc. | (assignment on the face of the patent) | / | |||
Sep 27 1999 | VASCULAR SCIENCE, INC | ST JUDE MEDICAL CARDIOVASCULAR GROUP, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 010395 | /0890 | |
Aug 23 2001 | ST JUDE MEDICAL CARDIOVASCULAR GROUP, INC | ST JUDE MEDICAL ATG, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 012691 | /0368 |
Date | Maintenance Fee Events |
Apr 03 2003 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 02 2003 | R2551: Refund - Payment of Maintenance Fee, 4th Yr, Small Entity. |
May 02 2003 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Jun 14 2007 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 14 2011 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 14 2002 | 4 years fee payment window open |
Jun 14 2003 | 6 months grace period start (w surcharge) |
Dec 14 2003 | patent expiry (for year 4) |
Dec 14 2005 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 14 2006 | 8 years fee payment window open |
Jun 14 2007 | 6 months grace period start (w surcharge) |
Dec 14 2007 | patent expiry (for year 8) |
Dec 14 2009 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 14 2010 | 12 years fee payment window open |
Jun 14 2011 | 6 months grace period start (w surcharge) |
Dec 14 2011 | patent expiry (for year 12) |
Dec 14 2013 | 2 years to revive unintentionally abandoned end. (for year 12) |