An intraluminal grafting system includes a hollow graft which has a proximal staple positioned proximate its proximal end and a distal staple adapted proximate its distal end. The system includes a capsule for transporting the graft through the lumen and for positioning the proximal end of the graft upstream in a lumen which may be a blood vessel or artery. A tube is connected to the capsule and extends to exterior the vessel for manipulation by the user. A catheter is positioned within the tube to extend from the cavity and through the graft to exterior the body. The catheter has an inflatable membrane or balloon proximate the distal end thereof which is in communication via a channel with inflation and deflation means located exterior the vessel. With the inflatable membrane deflated, the capsule is positioned in the lumen and manipulated to a desired location. The inflatable membrane is manipulated by the rod away from the graft. The force exerted by the inflatable membrane and the structure of the staples urges the staples in the vessel wall, retaining the graft in position. The remainder of the intraluminal grafting system is then removed from the corporeal vessel.
|
5. A method for engrafting a prosthesis into a corporeal lumen, said prosthesis having proximal and distal ends, said prosthesis further having a proximal attachment means at the distal end, said method comprising the steps of:
(a) providing a delivery means, wherein both the proximal and distal ends of said prosthesis are removably retained within said delivery means; (b) creating an opening in the lumen for passing said delivery means and said prosthesis therethrough; (c) inserting said delivery means and said prosthesis into said opening; (d) urging said delivery means and said prosthesis to a desired location within the lumen; (e) positioning said proximal attachment means of said prosthesis at a desired location within the lumen; (f) activating said proximal attachment means to fix the proximal end of said prosthesis within the lumen; (g) activating said distal attachment means to fix the distal end of said prosthesis within the lumen; (h) removing said delivery means from the lumen; and (i) closing said opening in the lumen.
9. A method for implanting a graft in a corporeal lumen having a wall, said graft having proximal and distal ends, said graft further having proximal attachment means at the proximal end and distal attachment means at the distal end, said method comprising the steps of:
providing placement means having capsule means for receiving the proximal and distal ends of said graft and having operation means for engaging said attachment means with the lumen; inserting said placement means into the lumen; manipulating said placement means to urge said graft to a desired position within the lumen; removing the proximal end of said graft and said proximal attachment means from said placement means; activating said operation means to engage said proximal attachment means with the lumen, thereby securing the proximal end of said graft to the wall of the lumen; removing the distal end of said graft from said placement means; activating said operation means to engage said distal attachment means with the lumen, thereby securing the distal end of said graft to the wall of the lumen; and removing said placement means from the lumen.
3. A method for emplacement of a graft in a corporeal lumen having a wall, the graft having proximal and distal ends and being capable of assuming contracted and expanded positions, having anchoring means and being disposed within placement means comprising a capsule having sufficient length for receiving the proximal and distal ends of the graft, an inflatable member and shaft means coupled to the capsule and the inflatable member, said method comprising the steps of:
manipulating the placement means to advance the graft, the capsule and the inflatable member into the corporeal lumen, wherein the graft and the anchoring means are removably retained in the capsule to prevent the anchoring means from contacting the corporeal lumen wall while the graft is being advanced through the corporeal lumen; positioning the graft at a desired location in the corporeal lumen; removing the graft and anchoring means from the capsule; inflating the inflatable member to expand the graft and anchoring means so that the attachment means engages the corporeal lumen wall to retain the graft therein; deflating the inflatable member; and removing the inflatable member from the graft and from the corporeal lumen, wherein the graft is retained within the corporeal lumen.
4. A method for implanting a graft in corporeal lumen wall afflicted by an aneurysm having a proximal end, said graft having a first contracted shape and a second expanded shape, said graft further comprising a proximal anchoring means and a distal anchoring means, said method comprising the steps of:
covering said graft to prevent the proximal and distal anchoring means from contacting the lumen; introducing an inflatable member and said graft into the lumen and then along the lumen until said graft reaches the aneurysm; uncovering the proximal anchoring means when said graft is positioned in the lumen such that the proximal anchoring means is proximal to the proximal end of the aneurysm; inflating the inflatable member to expand said graft and proximal anchoring means, wherein the proximal anchoring means engages the lumen and the graft is retained therein; deflating the inflatable member; uncovering the distal anchoring means; positioning the inflatable member adjacent the distal anchoring means; inflating the inflatable member to expand the graft and distal anchoring means, wherein the distal anchoring means engages the lumen; deflating the inflatable member; and removing the inflatable member from the lumen, wherein said graft remains in the lumen.
10. A method for emplacement of a graft into a corporeal lumen having a wall, said graft having proximal and distal ends, said graft further having proximal attachment means at the proximal end and distal attachment means at the distal end, said method comprising the steps of:
providing placement means comprising manipulation means, inflation means, an inflatable membrane and a capsule configured to contain said graft; placing said graft in said capsule, wherein said graft and said proximal and distal attachment means are removably retained within said placement means; inserting said placement means into the lumen; manipulating said placement means to transport said capsule through the lumen; positioning said graft at a desired position within the lumen; manipulating said placement means to remove the proximal end of said graft and said proximal attachment means from said capsule; moving said inflatable membrane adjacent said proximal attachment means; inflating said inflatable membrane to engage said proximal attachment means with the lumen, thereby securing the proximal end of said graft to the wall of the lumen; manipulating said placement means to remove the distal end of said graft from said capsule; deflating said inflatable membrane; moving said inflatable membrane adjacent said distal attachment means; inflating said inflatable membrane to engage said distal attachment means with the lumen, thereby securing the distal end of said graft to the wall of the lumen; deflating said inflatable membrane; and removing said placement means from the lumen.
1. A method for engrafting a tubular graft into a fluid conducting corporeal lumen having an interior surface, comprising the steps of:
providing an apparatus for placement of a prosthesis in corporeal lumen, said apparatus including: a tubular graft preselected in length having proximal and distal ends, said tubular graft being deformable to conform substantially to the interior surface of the corporeal lumen, a proximal staple positioned near the proximal end of said tubular graft for urging and securing said tubular graft toward and against the interior surface of the corporeal lumen, a capsule having sufficient length for receiving the proximal and sital ends of said tubular graft and for positioning said tubular graft in the corporeal lumen, said capsule having a proximal end forming an aperture having a cross section selected for passage of the tubular graft and said proximal staple, operation means having a proximal end secured to said capsule and having a distal end extending exterior of corporeal lumen for positioning said capsule at a desired location in the corporeal lumen; making an opening in a corporeal lumen sized for passing said capsule therethrough; positioning said tubular graft with said proximal staple in said capsule; inserting said capsule into said opening and positioning capsule upstream into said corporeal lumen to a desired location therewithin by manipulating said operation means; operating the operation means to urge said tubular graft and said proximal staple through said aperture and into the corporeal lumen and urging said proximal staple against the interior surface of the corporeal lumen to secure said tubular graft thereto; removing the capsule from said corporeal lumen by manipulating the operation means; and closing said opening.
2. The method of
6. The method of
(j) placing said prosthesis into said capsule prior to performing step (c); (k) removing the proximal end of said prosthesis from said capsule just prior to performing step (f); and (l) removing the distal end of said prosthesis from said capsule after performing step (f) and just prior to performing step (g).
7. The method of
(m) positioning said inflation means within the proximal end of said prosthesis; (n) inflating said inflation means to fix said proximal attachment means to the lumen; and
step (g) further comprises the steps of: (o) deflating said inflation means; (p) positioning said inflation means within the distal end of said prosthesis; (q) inflating said inflation means to fix said distal attachment means to the lumen; (r) deflating said inflation means.
8. The method of
|
This application is a continuation of U.S. patent application Ser. No. 08/034,587 filed Mar. 22, 1993, now abandoned, which is a continuation of U.S. patent application Ser. No. 07/752,058, filed Aug. 29, 1991, now abandoned, which is a divisional of patent application Ser. No. 07/166,093, filed Mar. 9, 1988, now U.S. Pat. No. 5,104,399, which is a continuation-in-part of U.S. patent application Ser. No. 06/940,907, filed Dec. 10, 1986, entitled "Intraluminal Graft Device, System, and Method", now U.S. Pat. No. 4,787,899, which is a continuation of U.S. patent application Ser. No. 06/559,935, filed Dec. 9, 1983, also entitled "Intraluminal Graft Device, System and Method", now abandoned. The contents of each of these applications are hereby incorporated by reference.
1. Field
This invention relates to a medical prosthesis and, more particularly, to a graft prosthesis for placement within a corporeal lumen, such as the lumen of a blood vessel or artery.
2. State of the Art
Various fluid conducting body lumens, such as veins and arteries, may deteriorate or suffer trauma so that repair is necessary. For example, various types of aneurysms or other deteriorative diseases may affect the ability of the lumen to conduct fluids and in turn may be life-threatening. In some cases, the damaged lumen is repairable only with the use of prosthesis such as an artificial vessel or graft.
For repair of vital vessels such as the aorta, surgical repair is significantly life-threatening. Surgical techniques employed involve major surgery in which an artificial section of vessel is spliced into the diseased or obstructed lumen. That is, the damaged or diseased portion of the lumen may be surgically removed or bypassed and an artificial or donor graft inserted and stitched to the ends of the vessel which were created by the removal of the diseased portion. Kaj Johansen, Aneurysms, Scientific American, 247:110-125, July 1982. A variation of the typical suturing technique is described by Albert W. Krause, et al., Early Experience with Intraluminal Graft Prosthesis, American Journal of Surgery, 145:619-622, May 1983. The device illustrated in U.S. Pat. No. 3,908,662 to Razgulov, et al. is an example of a device to be used in such a surgical procedure.
Other devices for the repair of lumens or vessels such as veins and arteries include a nitinol coil with a graft. The nitinol coil is reduced in dimension when cool. When placed in the body its temperature increases, and it returns to a preselected dimension to hold a graft within the lumen of the vessel. Such devices are discussed in detail in Charles T. Dottner, et al., Transluminal Expandable Nitinol Coil Stent Grafting: Preliminary Report, Radiology 147:259-260, April 1983, and Andrew Cragg, et al., Nonsurgical Placement of Arterial Endoprostheses: A New Technique Using Nitinol Wire, Radiology 147:261-263, April 1983. The use of devices such as the previously discussed nitinol wire may not be desirable due to the danger of penetrating and damaging the vessel's wall during the emplacement process.
U.S. Pat. No. 4,140,126 to Choudhury discloses a device for intraluminal repair of an aneurysm. This device is positioned in a vessel in a collapsed form and then hooked into the vessel with hooks that are mechanically extended by the user. This device is mechanically complex and in turn is susceptible to mechanical failure.
Other intraluminal devices are known, for uses other than the repair of a diseased lumen or vessel. U.S. Pat. No. 3,874,388 to King, et al. discloses a system for closing off a septal defect or shunt in the intravascular system in the myocardial area. U.S. Pat. No. 3,334,629 to Cohn discloses a device for restricting the flow of blood. U.S. Pat. No. 4,056,854 to Boretus, et l. teaches construction and placement of an artificial aortic heart valve. U.S. Pat. No. 3,834,394 to Hunter et al. teaches construction of an intraluminal device to occlude a blood vessel. U.S. Pat. No. 3,540,431 to Mobin-Uddin teaches construction of an umbrella-like filter for intraluminal use. MEDI-TECH, Inc. of Watertown, Mass. sells a device known as the GREENFIELD Vena Cava filter for intraluminal placement. U.S. Pat. No. 3,938,528 discloses a device that is implanted into the vas-deferens or similar lumen for the splicing of the lumen parts.
None of the devices noted above disclose a reliable and quick means or method to repair a vessel intraluminally.
An artificial intraluminal prosthesis for placement in a fluid conducting corporeal lumen has a hollow graft of preselected cross-section and length. The proximal end of the graft is placed upstream within the lumen. The graft is deformable to conform substantially to the interior surface of the lumen. Staples are attached to the proximal end and preferably to the distal end of the graft for stapling the graft to the wall of the lumen.
Each staple has wall engaging members. The wall engaging members of the proximal staple are generally angulated in a downstream direction and have tips for engaging the vessel wall. The wall engaging members of the distal staple are angulated in a direction generally perpendicular to the longitudinal or central axis of the graft, and also have tips for engaging the wall.
Generally, the staples are formed into a V-shaped lattice or framework. In an alternative embodiment, the staples' framework is U-shaped or sinusoidal. The frame of the staples allows for radial deformation resulting in a spring-like effect when a compressed staple is allowed to expand within a vessel and to sustain itself in that expanded condition.
Preferably, the graft is made of a material suitable for permanent placement in the body such as nylon or dacron. Prior to emplacement, the graft is formed to be substantially cylindrical in shape and formed to have a plurality of substantially evenly placed circumferential bifolds along the length thereof. An optional radio-opaque seam on the exterior of the graft may run along the longitudinal axis of the graft in order for the user to observe graft placement through fluoroscopy or by x-ray.
The system for intraluminally engrafting the hollow graft has placement means for emplacing the graft into the lumen and positioning it at a preselected position. The placement means includes a capsule shaped and sized for positioning within the lumen. A hollow tube extends from the capsule to exterior the vessel for manipulation by the user. The graft is retained within the capsule for positioning the graft in the lumen. The placement means includes operation means for removing the graft from the capsule and for subsequently urging the staples into the wall of the lumen.
Preferably, the operation means includes a catheter slidably positioned within the hollow tube to extend from the capsule to exterior the lumen. The catheter desirably has an inflatable membrane operable by means for inflating and deflating the membrane. Pusher means is attached to the catheter and sized for passing through the capsule and for urging the hollow graft with attached staples out of the capsule through an upstream or front end aperture.
After the proximal portion of the graft is removed from the capsule, the inflatable membrane is desirably moved to within the circumference of the proximal staple and inflated to urge wall engaging members of the proximal staple into the wall.
The balloon is then deflated, and the replacement means manipulated to remove the remainder of the graft from the capsule, thus exposing the distal staple. Preferably, the distal staple is placed and affixed in a manner similar to the proximal staple.
The placement means is then removed from the lumen.
In the drawings, which illustrate the best mode presently contemplated for carrying out the invention,
FIG. 1 is a partially cut-away perspective view of an intraluminal graft system of the instant invention;
FIG. 2 is a perspective view of a slightly bent graft device of the instant invention;
FIG. 3 is an enlarged view of a proximal staple of the instant invention;
FIG. 4 is an enlarged view of a distal staple of the instant invention;
FIG. 5 is an enlarged side view of a capsule of the instant invention;
FIGS. 6, 6A and 7 are cross-sectional views of the intraluminal graft device and placement means of the instant invention showing an intraluminal graft being emplaced into a lumen;
FIG. 8 is a perspective exploded view of an alternate embodiment of the capsule;
FIG. 8A is a partial perspective view of an alternate capsule;
FIG. 9 is an enlarged view of an alternate embodiment of a proximal staple of the instant invention;
FIG. 10 is an enlarged view of an alternate embodiment of a distal staple of .the instant invention; and
FIG. 11 is an enlarged partial view of an alternate embodiment of a staple of the instant invention,
FIG. 1 illustrates a system 11 for intraluminally placing a prosthesis in a fluid conducting corporeal lumen. The system 11 includes a hollow graft 12 of preselected cross-section and length. The graft 12, as more fully shown in FIG. 2, has a proximal end 14 for placement upstream within a ,lumen such as a blood vessel. A proximal staple or anchoring element 16 is positioned proximate the proximal end 14 of the graft 12 and is here shown with portions extending through the graft 12 for stapling the graft 12 through the interior wall 13 of the graft 12 into the wall of the lumen. A distal staple or anchoring element 17 is positioned proximate the distal end 15 of the graft 12 and is here shown with portions extending through the graft 12 for stapling the graft 12 to the interior wall 13 of the graft 12 into the wall of the lumen.
The system 11 (FIG. 1) includes placement means for inserting the graft 12 into the lumen and for positioning the graft 12 at a preselected position within the lumen. The placement means includes a capsule 18 which has a front end portion 20 and a back end portion 22. A tube 26 is affixed to the back 22 of the capsule 18 and is sized in length 25 to extend exterior the body for manipulation by the user. That is, the tube 26 can be manipulated to move the capsule 18. The placement means also includes operation means, as more fully discussed hereinafter and a wire guide 24.
The capsule 18 is sized for positioning in the lumen. As can be seen in FIGS. 1, 6 and 8, the capsule is hollow and is also sized in length as indicated by the broken line 21 and in cross section by dimensioning arrows 23 to contain the graft 12 for transport through the lumen.
The operation means preferably includes a hollow catheter 27 slidably positionable over the wire guide 24. The catheter 27 has an inflatable membrane ("balloon") 30 positioned proximate the front end 29 of the catheter 27. Means to operate the membrane 30 between inflated and deflated conditions include a channel 34 formed in the wall of catheter 27 to be in fluid communication between the interior of the inflatable membrane 30 and a syringe 38. The channel 34 extends along the length 28 of the catheter 27 to the syringe 38 or other means to insert and remove fluid to inflate and deflate the membrane 30.
A pusher means here shown as a cylindrically shaped button 31 is affixed to and surrounds the catheter 27. It is placed on the catheter 27 behind or downstream of the membrane 30 as best seen in FIGS. 1 And 6. The button 31 is sized to engage the graft 12 with staples within the capsule 18 for urging the graft 12 with staples out of the capsule 18 as more fully discussed hereinafter.
As seen in FIG. 1, syringe mechanism 38 is connected through a connector 40 via an extension tube 42 to the channel 34. Those skilled in the art will recognize that the catheter 27 with the channel 34 and inflatable membrane 30 are very similar in both structure and function to a balloon dilation catheter. It should also be recognized that the syringe is preferably a conventional syringe having a sleeve 44 within which a hand actuated piston 46 is sealably and slidably movable in an inwardly and outwardly direction 48 to insert a fluid via the tube 42 and channel 34 to the membrane 30 to respectively inflate and deflate the membrane 30. The fluid inserted to inflate may be an air or saline solution or such other fluid as desired by the user. Of course the fluid may be extracted to deflate the membrane 30 by operating the piston 46 in an outward direction 48.
The artificial graft 12, shown in FIG. 2, is preferably made of a deformable material having a high tissue ingrowth rate. Various dacron, nylon and teflon materials as well as various polymer materials are regarded as suitable. At present the desired material has been found to be Plasma TFE made by Atrium Medical Corp. of Clinton Drive, Hollis, N.H. (03049).
The graft 12 is preferably formed to have a plurality of substantially evenly spaced circumferential bifolds 50 (similar to the bifolds of a bifold door) along its length 52. The bifolds 50 facilitate both axial 54 and radial 56 deformation of the graft 12. Therefore, when emplaced, the graft 12 may readily conform to the interior shape of the lumen. The length 52 of the graft 12 is selected by the user. Typically, the length 52 of the graft 12 will be selected to be longer than the portion of the lumen to be repaired. The radial 56 or cross-sectional size of the graft 12 is also selected by the user typically to conform substantially to, or be slightly larger than, the interior cross-section of the involved lumen. Since the graft 12 is made of a deformable material with bifolds, it can readily be collapsed or squeezed into the capsule 18.
As shown in FIG. 2, two staples or "securing rings" 16 and 17 are positioned about the circumference of the substantially cylindrically shaped graft 12. Preferred staples are shown in FIGS. 3, 4, 9 and 10.
The staples 16 and 17 are collapsible from an initial diameter to a second smaller diameter. The initial diameter of the staples will be generally the same as the diameters 56 of the graft 12 and the same as or slightly larger than that of the lumen into which the graft 12 with staples 16 and 17 is to be placed. The second diameter will be the same or slightly smaller than inside diameter of the capsule 18. Also, the staples 16 and 17 will generally be made of a metal suitable for use in the body or biocompatible plastic. A stainless steel wire material is presently preferred because of its excellent spring characteristics. As best seen in FIG. 2, the staples 16 and 17 are positioned within the graft 12 and may even be stitched thereto. The staples 16 and 17 are sized to urge the graft 12 outwardly against the inside surface of the lumen into which the graft 12 is placed.
In one embodiment, the proximal staple 16 (FIG. 3) has a plurality of V-shaped support members 60. Each V-shaped support member 60 has an apex 62 with two "free ends" or legs, for example 60A, 60B, 60C and 60D. A free end 61A abuts and is adjoined to the free end 61B of another V-shaped support member 60 at an abutment point 63. The plurality of at least three V-shaped support members 60 are each connected one to another in a generally circular arrangement around the longitudinal axis 67 as shown. With the use of an elastically deformable or spring material, it can be seen that the staple of FIG. 3 can be compressed to make the angle 64 smaller to in turn reduce the staple diameter to fit within the capsule 18.
A wall engaging member 70 is attached to each support member 60 generally along the length 66 of one of the legs 60A, 60B and preferably at or proximate each of at least three abutment points 63 of the proximal staple 16. The preferred wall engaging members 70 are barbs or elongated tine-like members with sharp points 71. The wall engaging members 70 are attached to the support members at an angle 75 which may vary from about 15° to about 135 degrees from the longitudinal or central axis 67 of the proximal staple 16. Preferably the wall engaging members 70 angulate away from the axis 67 in a downstream direction 100 (FIG. 6); and thus the angle 75 is preferably less than 90° and desirably in the range from about 30° to about 60°.
It should be noted that the number or quantity of support members 60 is determined by the axial length 66 of the staple as well as by the cross sectional size of the lumen and in turn the capsule 18. FIG. 3 depicts a plurality of six support members 60 which has been found to be suitable for use in the lumen of selected animals where the lumen is comparable in size to an adult aorta. That is, the lumen has an average or effective diameter of about 12 to 18 millimeters.
It should also be noted that wall engaging members 70 are used to penetrate and hook into the interior surface of the lumen to hold the graft 12 in place. Although in some cases two wall engaging members 70 may be sufficient, it is preferred that at least three be provided. If the lumen is an artery or vein, some deformation is typically experienced so that actual penetration or hooking may be difficult with only two and hooking or penetration is facilitated by the use of three or more. Of course it is most preferred that a wall engaging member be adapted to each support member to facilitate engagement with the wall and also to assist in holding the upstream or proximal end of the graft 12 more securely against the wall of the lumen to minimize fluid (e.g., blood) leakage during the post-therapy healing process.
The proximal staple 16 may be unitarily formed, or may be constructed by interconnecting separate, V-shaped support members having vessel wall engaging members 70. That is, a stainless steel spring wire may be bent to form the apexes 62 and abutment points 63 and soldered or welded at a selected point to be unending as shown. Alternately, separate legs of support members 70 may be welded, glued or soldered together as appropriate to obtain desired strength.
A preferred proximal staple 104 (FIG. 9) is also comprised of a plurality of V-shaped support members 106. Each support member 106 has an apex 108 and two free ends or legs 110. A leg 110A abuts to and is adjoined to the leg 11OB of another V-shaped support member 106A at an abutment point 112. The V-shaped support members 106 are connected one to another in a generally circular arrangement around the longitudinal axis 114 to form an unending fence-like arrangement similar to the arrangement of proximal staple 16 (FIG. 3).
In FIG. 9, wall engaging members 116 are adapted to the support members 106 at or near at least three abutment points 112 of the proximal staple 104. However, in the preferred proximal staple 104, an extension member 118 is also mounted to the staple 104 at abutment point 112. Each of these extension members 118 may have an optional and additional wall engaging member 120 attached thereto. The wall engaging members 116, 120 are all mounted to proximal staple 104 at an angle 122 comparable to angle 75 for staple 16 of FIG. 3. The preferred mounting angle of the vessel wall engaging members 106, 120 is from about 30° to about 60 degrees. For ease in insertion into wall of the lumen, wall engaging members 116, 120 are all preferably mounted generally at the same angle 122. That is, the members 116 and 120 are in reality quite small and difficult to mount with precision. Thus the angles may vary as much as 10 degrees. Further, the extension 118 is used to provide additional axial length to the staple 104 without affecting the size of the support members 106 and in turn the second or smaller diameter when collapsed in side capsule 18.
A distal staple 17 (FIG. 4) also preferably comprises a plurality of V-shaped support members 65. Each V-shaped support member is formed to have an apex 69, and two free ends or legs 71A and 71B. A free end 71A abuts and is adjoined to the free end 71B of another V-shaped support member 65 at an abutment point 73. The V-shaped support members 65 of the distal staple 17 are connected one to another in a generally circular arrangement similar to the staple shown in FIG. 3. At a plurality of the abutment points 73 wall engaging members 72 are attached generally at an angle 76 preferably perpendicular to the longitudinal axis 77 of the distal staple. The angle 76 between the wall engaging member 72 and the longitudinal axis 77 may vary between about 45 degrees and about 115 degrees. Preferably, the wall engaging members 72 of the distal staple are sufficiently short so as not to perforate the vessel wall.
A preferred distal staple 124 is depicted in FIG. 10. It has a plurality of V-shaped support members 126 formed with an apex 128 and two free legs 130A and 130B. A leg 130A abuts and is adjoined to the leg 130B of an adjacent V-shaped support member 126 at an abutment point 132. The V-shaped support members 126 of distal staple 124 connect one to another in a generally circular arrangement about axis 134 to form a fence-like arrangement similar to the staples shown in FIGS. 3 and 4.
Wall engaging members 136 are mounted at or near at least three abutment points 132 of distal staple 124. Distal staple 124 has extension members 138 mounted at a plurality of abutment points 132 with a separate wall engaging member 140 mounted thereto, all similar to that shown for staple 104 (FIG. 9). As in distal staple 17, the wall engaging members 136, 140 are mounted to the staple 124 at an angle which may vary from about 45° to about 115°. Preferably the angle varies from about 75 degrees to about 105 degrees, and is most desirably generally perpendicular to axis 134. As in proximal staple 104, both the corresponding wall engaging members 136, 140 are mounted at the same angles to the staple 124.
The support members may also be U-shaped, as shown in FIG. 11 for all of the aforementioned staples 16, 17, 104 and 124. The arrangement would thus appear generally sinusoidal. In another alternative embodiment, the vessel wall engaging members 70, 72, 116, 120, 136 and 140 of FIGS. 3, 4, 9 and 10 may be barbed like fish hooks similar to barbed member 139 shown in FIG. 11.
Referring now to FIG. 6, portions of the system 11 (FIG. 1) for intraluminal engrafting are shown cross-sectionally within a lumen 90. The system 11 including the graft 12 and capsule 18 may be constructed in a variety of different sizes in order to accommodate and be compatible with a variety of differently sized (in cross-section) corporeal lumens. In FIGS. 6 and 7, the capsule 18 is shown to be smaller than the lumen 90 so that the various surfaces may be better illustrated- Typically, the cross-sectional size (i.e., area normal to axis 54) of the pertinent system components such as the capsule 18 and graft 12 are selected to be substantially the same as or slightly smaller than the lumen 90. It should be further recognized that the corporeal lumen 90 illustrated is substantially circular in cross-section. However, lumens such as blood vessels may vary widely in cross-section along their length but will elastically deform to receive the capsule 18 and other components of the system 11. The lumens are also not straight in that they have many curves as they course throughout the body.
As shown in FIG. 5, the capsule 18 preferably has a rounded or tapered edge surface 92 between the side surface 94 and the front 20. The tapered surface 92 facilitates entry into and positioning within the lumen 90 by providing a contact surface to stretch the lumen especially in those places where the lumen 90 may be constricted or smaller in cross-section than the capsule 18 and the graft 12. A corporeal lumen such as a blood vessel or artery can stretch and deform. The tapered surface 92 can urge or force the deformation desired in order to facilitate placement as the capsule 18 is urged into and through the lumen 90 by exerting an emplacing force on the exterior end 96 of the tube 26.
The inside of the capsule 18 has a smooth bore cavity 98 (FIG. 6) formed therein sized to receive the graft 12. As can be seen, the catheter 27 may be centrally positioned within the cavity 98. Lead or guide wire 24 may be positioned within the lumen 90 in a manner known in the art and then threaded through the interior of the catheter 27. The tube 26 is affixed to the capsule 18 at its back 22 to extend rearwardly or downstream 100 through an opening 102 made in the lumen for inserting the pertinent components of the system 11. The catheter 27 can slidably mate within the hollow tube 26.
The capsule 18 as shown in FIG. 5 has an aperture 19 formed in its front end 20 which is sized for passage of the graft 12 with staples 16 and 17. That is, the graft 12 with staples 16 and 17 are urged through aperture 19 for placement in the lumen 90 as hereinafter discussed. The capsule 18 is formed of any medically acceptable material. A variety of nylon and teflon materials are known to be acceptable along with selected metals. It is here preferred to use stainless steel as the staples are easier to urge outwardly through the aperture 19. The connection means is structured to provide a smooth exterior surface as seen in FIG. 5.
As shown in FIG. 6, the graft 12 is positioned within the cavity 98 of the capsule 18. The graft 12 and staples 16 and 17 are preferably sized as hereinbefore discussed when in an undeformed condition to be slightly larger in cross-section than the cross-section of the lumen 90 and yet deformable to fit into the cavity 98. An external or radial force is thereby exerted outwardly against the interior surface 150 of the cavity 98 to retain the graft 12 within the capsule 18. Further, the lumen engaging portion of the disclosed staples may frictionally engage the interior surface 150 of the capsule 18 to further restrain and retain the graft 12 within the cavity during placement in the lumen.
As shown in FIG. 8, the capsule 18 preferably consists of two connecting tubular portions 152, 89 which mate together by connection means which are here shown to be a coacting male threaded member 101B and female threaded member 101A. Such a construction is used to aid in placing the graft 12 within the capsule 18 so as to house it within the capsule 18. The proximal portion 89 of the capsule 18 can be disconnected from the distal portion 152. The distal end 15 of graft 12 is then positioned within the distal portion 152 of the capsule 18. The proximal end 14 of the graft 12 is similarly positioned into the proximal portion 89 of the capsule which is then connected to the distal portion 152. The catheter 27 is then extended into the capsule and the graft 12. The connection means is preferably selected to minimize the amount of relative rotation between the proximal and distal portions 152, 89 to minimize twisting of the graft 12.
Whatever the form of the capsule 18, it can be seen in FIG. 6 that an opening 102 is formed in the lumen 90 such as an artery, vessel or other similar corporeal lumen. A guide wire 24 may be then sequentially inserted therethrough and manipulated to a desired location. An appropriately sized capsule 18 with graft 12 are inserted through the opening 102 and into the lumen 90 over the guide wire 24. With the graft 12 in position as shown in FIG. 6, the capsule 18 is urged in an upstream direction by exerting a positioning force on the exterior 108 of tube 26 (FIG. 1). Then the catheter 27 may be inserted. Of course, the guide wires 24, catheter 27, and tube 26 are each sized to be of sufficient length 25 and 28 so that the capsule 18 and graft 12 may be positioned through the lumen 90 to a desired position which may be some distance from the entry point 102. It will also be recognized by those skilled in the art that appropriate radiological techniques such as fluoroscopy can be used to assist the user in positioning the capsule 18 and in turn the graft 12 at a precise desired position within the lumen 90. This position, in all likelihood, would be a diseased or damaged portion of the lumen 90 which is in need of repair. Upon reaching the desired position within the lumen 90, further forward or upstream movement within the lumen 90 is stopped. A clamp or other means may be placed about the catheter 27 outside the vessel to prevent movement of the catheter 27 relative to the tube 26. The tube 26 may also be secured or held by the user as desired.
The pusher button 31 and catheter 27 are then used to urge the graft forwardly or upstream through the aperture 19. The proximal end 14 of the graft 12 first leaves the capsule 18 as the pusher button engages portions of the distal end of the compressed proximal staple 16. For purposes of this illustration staples 16 and 17 (FIGS. 3 and 4) will be used. However, staples 104 and 124 could be substituted in their place as could any other equivalent staple. The pusher button 31 has a diameter small enough to fit through the tube 26 and into the graft 12 and through aperture 19 of the capsule 18. The catheter 27 is maintained in a steady position while the tube 26 is moved downstream from the proximal staple 16. The balloon 30 may be inflated as shown in FIG. 6A to provide a holding force and resist relative movement as to the lumen 90. The pusher button 31 makes contact with pieces of the compressed proximal staple 16 urging the proximal staple through the aperture 19 of the capsule 18.
As the proximal staple 16 is pushed through the aperture 19 of the capsule 18 it springs open or expands, causing the wall engaging members 70 to contact with the wall of the lumen 90. After the proximal staple 16 has been completely removed from the capsule 18 and the wall engaging members 70 have made initial contact with the wall, the inflatable membrane 30 is moved to within the circumference of proximal staple 16 and graft 12. The inflatable membrane ("balloon") 30 is then inflated (see FIG. 7) by use of the inflation means 36 to urge the wall engaging members 70 into the wall surface of the lumen 90 to firmly lodge the proximal staple 16 and the graft 12 in place.
The capsule 18 is then moved downstream 100 even more to free the distal portion 15 of the graft 12 from the capsule 18 and exposing the distal staple 17 and wall engaging members 72 to the interior surface of the lumen 90. The balloon 30 may be deflated, moved to register with the staple 16 and inflated to ensure that the graft 12 remains securely positioned. After the distal portion 15 is free, the balloon 30 is deflated and moved to register with the distal staple 17. The balloon 30 is then reinflated to urge the wall engaging members 72 of the distal staple 17 into the wall thereby firmly securing the distal staple 17 and distal end 15 of the graft to the lumen 90. An angiogram may then be performed if desired through the balloon catheter to determine the patency and security of the graft 12. Other balloon catheters may be used which do not have the main lumen to perform the angiogram. Thus, the guide wire is not then used and a separate angiogram catheter needed to perform a subsequent angiogram.
The balloon 30 is then deflated and the tube 26 with capsule 18 is withdrawn from within the lumen 90. After removing the tube 26 in its entirety, the catheter 27 is thereafter removed and the opening 102 sealed. The back 22 of the capsule 18 may be formed to have a slightly rounded edge 89A to facilitate removal as shown in FIG. 8A.
After emplacement, it can be seen that the pressure of the lumen fluid, for example, blood, forces the graft 12 against the lumen interior surface 154, helping to hold the graft 12 in place. The bifolds 50 of the graft 12 permit deformation of the graft 12 to conform to the interior surface 154 of the lumen and provide for flexibility to bend and stretch with the natural lumen. Further, the bifolds 50 act somewhat as a mechanical labyrinth seal to reduce leakage between the interior surface 154 of the lumen and the exterior surface 84 of the graft 12. That is, the internal pressure of the fluid within the lumen 90 holds the graft 12 in place and assists the staples 16 and 17 in preventing leakage at both ends of the graft 12.
In operation, it should be noted that the system 11 with the graft 12 is inserted into the lumen 90 using accepted surgical techniques. For example, an opening could be made through the leg to reach the main artery of a human being. Thereafter, the system 11 could be used as above described to emplace an artificial graft within the main artery as far interior the body as the myocardial or great artery area. This technique therefore avoids major surgery in which the chest or abdomen is penetrated for repair of the aorta, vena cava or the like.
The components of system 11 are, of course, made of anatomically compatible substances. For example,.the tube 26 and inflatable membrane 30 are made of a substantially chemically compatible plastic. The catheter 27 is made of a material such as Teflon to be flexible and sized in appropriate diameter and length to facilitate placement of the graft 12 in the desired location within the lumen 90.
Use of the system 11 with the graft 12 herein described may preclude the need for major surgery to repair a vessel, such as a blood vessel or artery in the great artery area. It can also be used to repair other vessels or ductiles within the body of a human being or animal. Use of the system may thus reduce the morbidity rates associated with major surgery. It also facilitates rapid repair of defective or damaged vessels at relatively low cost and risk. The system is mechanically simple and reliable and also useful for treating trauma victims in an emergency context.
It may be noted that the system 11 herein described, including the graft 12, are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of those claims which themselves recite those features regarded as essential to the invention.
Patent | Priority | Assignee | Title |
10022145, | Dec 20 2000 | Covidien LP | Methods and devices for cutting tissue |
10105248, | Jun 30 2008 | Bolton Medical, Inc. | Abdominal aortic aneurysms: systems and methods of use |
10105250, | Sep 03 2003 | Bolton Medical, Inc. | Dual capture device for stent graft delivery system and method for capturing a stent graft |
10159557, | Oct 04 2007 | Endologix LLC | Modular vascular graft for low profile percutaneous delivery |
10182930, | Sep 03 2003 | Bolton Medical, Inc. | Aligning device for stent graft delivery system |
10213224, | Jun 27 2014 | Covidien LP | Cleaning device for catheter and catheter including the same |
10213291, | Sep 03 2003 | Bolto Medical, Inc. | Vascular repair devices |
10219824, | Feb 25 2008 | Methods and devices for cutting tissue | |
10285833, | Aug 10 2012 | Lombard Medical Limited | Stent delivery systems and associated methods |
10292721, | Jul 20 2015 | Covidien LP | Tissue-removing catheter including movable distal tip |
10292728, | Feb 03 2014 | Covidien LP | Tissue-removing catheter with improved angular tissue-removing positioning within body lumen |
10299951, | Apr 12 2012 | Bolton Medical, Inc. | Vascular prosthetic delivery device and method of use |
10307275, | Jun 30 2008 | Bolton Medical, Inc. | Abdominal aortic aneurysms: systems and methods of use |
10314664, | Oct 07 2015 | Covidien LP | Tissue-removing catheter and tissue-removing element with depth stop |
10314667, | Mar 25 2015 | Covidien LP | Cleaning device for cleaning medical instrument |
10335155, | Nov 30 2011 | Covidien LP | Positioning and detaching implants |
10335188, | Sep 01 2011 | Covidien LP | Methods of manufacture of catheter with helical drive shaft |
10368902, | Nov 08 2012 | Covidien LP | Tissue-removing catheter including operational control mechanism |
10390929, | Sep 03 2003 | Bolton Medical, Inc. | Methods of self-aligning stent grafts |
10406316, | Sep 13 2012 | Covidien LP | Cleaning device for medical instrument and method of use |
10434281, | Sep 13 2012 | Covidien LP | Cleaning device for medical instrument and method of use |
10499947, | Dec 02 2009 | Covidien LP | Device for cutting tissue |
10507037, | Oct 13 2008 | Covidien LP | Method for manipulating catheter shaft |
10548750, | Feb 09 1998 | Endologix LLC | Endovascular graft |
10555753, | Apr 29 2009 | Methods and devices for cutting and abrading tissue | |
10555826, | Mar 15 2013 | Bolton Medical, Inc. | Hemostasis valve and delivery systems |
10575973, | Apr 11 2018 | ABBOTT CARDIOVASCULAR SYSTEMS INC | Intravascular stent having high fatigue performance |
10588653, | May 26 2006 | Covidien LP | Catheter including cutting element and energy emitting element |
10646365, | Sep 03 2003 | Bolton Medical, Inc. | Delivery system and method for self-centering a proximal end of a stent graft |
10682222, | Oct 04 2007 | Endologix LLC | Modular vascular graft for low profile percutaneous delivery |
10751082, | Dec 11 2009 | Covidien LP | Material removal device having improved material capture efficiency and methods of use |
10864097, | Jun 30 2008 | Bolton Medical, Inc. | Abdominal aortic aneurysms: systems and methods of use |
10893868, | Jan 20 2012 | Covidien LP | Aneurysm treatment coils |
10898357, | Mar 13 2009 | Bolton Medical, Inc. | System for deploying an endoluminal prosthesis at a surgical site |
10918509, | Sep 03 2003 | Bolton Medical, Inc. | Aligning device for stent graft delivery system |
10932811, | Nov 08 2012 | Tissue-removing catheter with rotatable cutter | |
10945827, | Sep 03 2003 | Bolton Medical, Inc. | Vascular repair devices |
10952762, | Oct 28 2010 | Covidien LP | Material removal device and method of use |
11103341, | Sep 03 2003 | Bolton Medical, Inc. | Stent graft delivery device |
11129702, | May 09 2018 | Boston Scientific Scimed, Inc. | Pedal access embolic filtering sheath |
11259945, | Sep 03 2003 | Bolton Medical, Inc. | Dual capture device for stent graft delivery system and method for capturing a stent graft |
11351049, | Apr 12 2012 | BOLTON MEDICAL, INC | Vascular prosthetic delivery device and method of use |
11382779, | Jun 30 2008 | Bolton Medical, Inc. | Abdominal aortic aneurysms: systems and methods of use |
11413173, | Sep 03 2003 | Bolton Medical, Inc. | Stent graft with a longitudinal support member |
11596537, | Sep 03 2003 | Bolton Medical, Inc. | Delivery system and method for self-centering a proximal end of a stent graft |
11666355, | May 26 2006 | Covidien LP | Catheter including cutting element and energy emitting element |
11666467, | Mar 15 2013 | Bolton Medical, Inc. | Hemostasis valve and delivery systems |
11813158, | Sep 03 2003 | Bolton Medical, Inc. | Stent graft delivery device |
11890181, | Jul 22 2002 | TMT SYSTEMS, INC | Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages |
5507769, | Oct 18 1994 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method and apparatus for forming an endoluminal bifurcated graft |
5571169, | Jun 07 1993 | EndoVascular Instruments, Inc. | Anti-stenotic method and product for occluded and partially occluded arteries |
5593417, | Nov 27 1995 | MARITAL DEDUCTION TRUST | Intravascular stent with secure mounting means |
5622188, | Aug 18 1989 | EndoVascular Instruments, Inc. | Method of restoring reduced or absent blood flow capacity in an artery |
5662675, | Feb 24 1995 | INTERVASCULAR, INC | Delivery catheter assembly |
5662700, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Artificial graft and implantation method |
5662701, | Aug 18 1989 | EndoVascular Instruments, Inc. | Anti-stenotic method and product for occluded and partially occluded arteries |
5676696, | Feb 24 1995 | LIFEPORT SCIENCES LLC | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
5683449, | Feb 24 1995 | LIFEPORT SCIENCES LLC | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
5693086, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Apparatus for delivering an endoluminal stent or prosthesis |
5693088, | Nov 08 1993 | Intraluminal vascular graft | |
5695517, | Feb 10 1994 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method and apparatus for forming an endoluminal bifurcated graft |
5713948, | Jul 19 1995 | LifeShield Sciences LLC | Adjustable and retrievable graft and graft delivery system for stent-graft system |
5716365, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
5741274, | Dec 22 1995 | Medtronic Ave, Inc | Method and apparatus for laparoscopically reinforcing vascular stent-grafts |
5752966, | Mar 07 1997 | Exovascular anastomotic device | |
5769885, | Apr 11 1991 | LIFEPORT SCIENCES LLC | Bifurcated multicapsule intraluminal grafting system and method |
5769887, | Nov 09 1994 | LifeShield Sciences LLC | Delivery catheter and graft for aneurysm repair |
5776180, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
5800508, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
5824044, | May 12 1994 | LIFEPORT SCIENCES LLC | Bifurcated multicapsule intraluminal grafting system |
5824057, | Jun 07 1993 | Endo-Vascular Instruments, Inc. | Anti-stenotic method and product for occluded and partially occluded arteries |
5836316, | Jun 07 1993 | EndoVascular Instruments, Inc. | Method of restoring reduced or absent blood flow capacity |
5842479, | Jun 07 1993 | EndoVascular Instruments, Inc. | Method of restoring reduced or absent blood flow capacity |
5843165, | Mar 13 1995 | EndoVascular Instruments, Inc. | Method for increasing blood flow in vessels |
5865844, | Aug 18 1989 | EndoVascular Instruments, Inc. | Anti-stenotic method and product for occluded and partially occluded arteries |
5904146, | Jun 07 1993 | EndoVascular Instruments, Inc. | Anti-stenotic method and product for occluded and partially occluded arteries |
5910154, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment |
5911734, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
5916263, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
5934284, | Aug 18 1989 | Endovascular Instruments, Inc | Method for increasing blood flow in vessels |
5938696, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
5941908, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Artificial medical graft with a releasable retainer |
5972017, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Method of installing tubular medical graft connectors |
5976178, | Nov 07 1996 | ST JUDE MEDICAL ATG, INC | Medical grafting methods |
6001124, | Oct 09 1997 | ST JUDE MEDICAL ATG, INC | Oblique-angle graft connectors |
6010530, | Jun 07 1995 | BIOMED RESEARCH, INC | Self-expanding endoluminal prosthesis |
6017364, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Intraluminal repair device and catheter |
6026814, | Mar 06 1997 | Boston Scientific Scimed, Inc | System and method for percutaneous coronary artery bypass |
6027520, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
6035856, | Mar 06 1997 | Boston Scientific Scimed, Inc | Percutaneous bypass with branching vessel |
6036702, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Medical grafting connectors and fasteners |
6039749, | Feb 10 1994 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method and apparatus for deploying non-circular stents and graftstent complexes |
6039758, | May 12 1994 | LIFEPORT SCIENCES LLC | Method for intraluminally deploying a bifurcated graft |
6042598, | May 08 1997 | Edwards Lifesciences Corporation | Method of protecting a patient from embolization during cardiac surgery |
6048362, | Jan 12 1998 | ST JUDE MEDICAL ATG, INC | Fluoroscopically-visible flexible graft structures |
6051020, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
6068654, | Dec 23 1997 | ST JUDE MEDICAL ATG, INC | T-shaped medical graft connector |
6071307, | Sep 30 1998 | Edwards Lifesciences Corporation | Endoluminal grafts having continuously curvilinear wireforms |
6074416, | Oct 09 1997 | ST JUDE MEDICAL ATG, INC | Wire connector structures for tubular grafts |
6090135, | Jun 07 1993 | EndoVascular Instruments, Inc. | Anti-stenotic method and product for occluded and partially occluded arteries |
6092526, | Jun 19 1997 | Boston Scientific Scimed, Inc | Percutaneous chamber-to-artery bypass |
6099558, | Oct 10 1995 | W L GORE & ASSOCIATES, INC | Intraluminal grafting of a bifuricated artery |
6110191, | Sep 12 1996 | W L GORE & ASSOCIATES, INC | Endovascular delivery system |
6113612, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical anastomosis apparatus |
6117167, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Endoluminal prosthesis and system for joining |
6120432, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6152937, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical graft connector and methods of making and installing same |
6152945, | Oct 28 1997 | ST JUDE MEDICAL ATG, INC | Tubular medical graft connectors |
6152956, | Jan 28 1997 | Prosthesis for endovascular repair of abdominal aortic aneurysms | |
6155264, | Mar 06 1997 | Boston Scientific Scimed, Inc | Percutaneous bypass by tunneling through vessel wall |
6165213, | Feb 09 1994 | LIFEPORT SCIENCES LLC | System and method for assembling an endoluminal prosthesis |
6168610, | Feb 10 1994 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method for endoluminally excluding an aortic aneurysm |
6186942, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6206912, | Nov 07 1996 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6213126, | Jun 19 1997 | Boston Scientific Scimed, Inc | Percutaneous artery to artery bypass using heart tissue as a portion of a bypass conduit |
6231563, | Jan 25 1996 | W L GORE & ASSOCIATES, INC | Directional catheter |
6235050, | May 12 1994 | LIFEPORT SCIENCES LLC | System and method for intraluminally deploying a bifurcated graft |
6235054, | Feb 27 1998 | ST JUDE MEDICAL ATG, INC | Grafts with suture connectors |
6238405, | Apr 30 1999 | Edwards Lifesciences Corporation | Percutaneous material removal device and method |
6253769, | Mar 06 1997 | Boston Scientific Scimed, Inc | Method for percutaneous coronary artery bypass |
6273909, | Oct 05 1998 | Cordis Corporation | Endovascular graft system |
6283991, | Dec 01 1995 | Medtronic Ave, Inc | Endoluminal prostheses and therapies for highly variable body lumens |
6293965, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Tubular medical graft connectors |
6302905, | Nov 07 1996 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6302906, | Feb 09 1994 | LIFEPORT SCIENCES LLC | System for delivering a prosthesis |
6309416, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical anastomosis apparatus |
6322586, | Jan 10 2000 | Boston Scientific Scimed, Inc | Catheter tip designs and method of manufacture |
6322587, | May 12 1994 | LIFEPORT SCIENCES LLC | Bifurcated multicapsule intraluminal grafting system and method |
6325813, | Aug 18 1998 | Boston Scientific Scimed, Inc | Method and apparatus for stabilizing vascular wall |
6344053, | Dec 22 1993 | Medtronic Vascular, Inc | Endovascular support device and method |
6344056, | Dec 29 1999 | W L GORE & ASSOCIATES, INC | Vascular grafts for bridging a vessel side branch |
6348062, | Jul 30 1999 | Incept LLC | Vascular device having one or more articulation regions and methods of use |
6355061, | May 12 1994 | LIFEPORT SCIENCES LLC | Method for deploying bifurcated graft using a multicapsule system |
6368345, | Sep 30 1998 | W L GORE & ASSOCIATES, INC | Methods and apparatus for intraluminal placement of a bifurcated intraluminal garafat |
6371970, | Jul 30 1999 | Incept LLC | Vascular filter having articulation region and methods of use in the ascending aorta |
6371971, | Nov 15 1999 | Boston Scientific Scimed, Inc | Guidewire filter and methods of use |
6371982, | Oct 09 1997 | ST JUDE MEDICAL ATG, INC | Graft structures with compliance gradients |
6390098, | Mar 06 1997 | Boston Scientific Scimed, Inc | Percutaneous bypass with branching vessel |
6391036, | Jan 30 1998 | ST JUDE MEDICAL ATG, INC | Medical graft connector or plug structures, and methods of making and installing same |
6395019, | Feb 09 1998 | Endologix LLC | Endovascular graft |
6416535, | Apr 06 1987 | LIFEPORT SCIENCES LLC | Artificial graft and implantation method |
6440163, | Nov 06 1998 | St. Jude Medical ATG, Inc. | Medical anastomosis apparatus |
6443158, | Jun 19 1997 | Boston Scientific Scimed, Inc | Percutaneous coronary artery bypass through a venous vessel |
6451033, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Tubular medical graft connectors |
6451048, | Oct 09 1997 | ST JUDE MEDICAL ATG, INC | Wire connector structures for tubular grafts |
6475222, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Minimally invasive revascularization apparatus and methods |
6478813, | Aug 01 1997 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method for joining grafts in a common body passageway |
6482227, | Mar 30 1998 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Stent graft having improved attachment within a body vessel |
6485496, | Oct 24 1997 | INNOVATIVE INTERVENTIONAL TECHNOLOGIES B V | Mechanical anastomosis system for hollow structures |
6508252, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6508822, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical graft assembly |
6511491, | Mar 09 1999 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6514196, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6530939, | Jul 30 1999 | Incept LLC | Vascular device having articulation region and methods of use |
6533807, | Feb 05 1998 | Medtronic, Inc | Radially-expandable stent and delivery system |
6533812, | Nov 06 1998 | St. Jude Medical ATG, Inc. | Medical anastomosis apparatus |
6537295, | Mar 06 2001 | Boston Scientific Scimed, Inc | Wire and lock mechanism |
6544279, | Aug 09 2000 | Incept LLC | Vascular device for emboli, thrombus and foreign body removal and methods of use |
6544280, | Feb 24 1999 | Boston Scientific Scimed, Inc | Intravascular filter and method |
6565596, | Sep 29 1994 | W L GORE & ASSOCIATES, INC | Intraluminal graft |
6575168, | Mar 06 1997 | Boston Scientific Scimed, Inc | System and method for percutaneous coronary artery bypass |
6575994, | Feb 10 1994 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method and apparatus concerning bypass grafts |
6576007, | Sep 30 1998 | W L GORE & ASSOCIATES, INC | Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft |
6576009, | Dec 01 1995 | Medtronic AVE, Inc. | Bifurcated intraluminal prostheses construction and methods |
6582458, | Sep 30 1993 | W L GORE & ASSOCIATES, INC | Intraluminal graft |
6589263, | Jul 30 1999 | Incept LLC | Vascular device having one or more articulation regions and methods of use |
6589273, | Oct 02 2000 | Bard Peripheral Vascular, Inc | Apparatus and method for relining a blood vessel |
6599303, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical graft connector and methods of making and installing same |
6602263, | Nov 30 1999 | ST JUDE MEDICAL ATG, INC | Medical grafting methods and apparatus |
6602280, | Feb 02 2000 | Endologix LLC | Delivery system and method for expandable intracorporeal device |
6610085, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Intraluminal repair device and method |
6613073, | Sep 30 1993 | W L GORE & ASSOCIATES, INC | Intraluminal graft |
6613079, | Feb 05 1998 | Medtronic, Inc. | Radially-expandable stent with controllable force profile |
6616679, | Jul 30 1999 | Incept LLC | Rapid exchange vascular device for emboli and thrombus removal and methods of use |
6616681, | Oct 05 2000 | Boston Scientific Scimed, Inc | Filter delivery and retrieval device |
6620148, | Aug 04 1999 | Boston Scientific Scimed, Inc | Filter flush system and methods of use |
6620176, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical graft connector and methods of making and installing same |
6620182, | Jul 30 1999 | Incept LLC | Vascular filter having articulation region and methods of use in the ascending aorta |
6623495, | Apr 30 1999 | Edwards Lifesciences Corporation | Percutaneous material removal device tip |
6626938, | Nov 16 2000 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Stent graft having a pleated graft member |
6649030, | Aug 31 2000 | LifeShield Sciences LLC | Physical vapor deposition of radiopaque markings on a graft |
6652505, | Aug 03 1999 | Boston Scientific Scimed, Inc | Guided filter with support wire and methods of use |
6652567, | Nov 18 1999 | Fenestrated endovascular graft | |
6652572, | Oct 05 1998 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Endovascular graft system |
6660015, | Jan 30 1998 | ST JUDE MEDICAL ATG, INC | Medical graft connector or plug structures, and methods of making and installing same |
6663651, | Jan 16 2001 | Incept LLC | Systems and methods for vascular filter retrieval |
6663661, | Aug 24 1989 | Medtronic Vascular, Inc | Endovascular support device and method |
6663666, | May 12 1994 | LIFEPORT SCIENCES LLC | Delivery catheter for intraluminally deploying a graft |
6663667, | Dec 29 1999 | EDWARDS LIFESCIENCES CORP | Towel graft means for enhancing tissue ingrowth in vascular grafts |
6669720, | Jan 28 1997 | Prosthesis for endovascular repair of abdominal aortic aneurysms | |
6673084, | Nov 06 1998 | ST JUDE MEDICAL ATG, INC | Medical graft connector |
6673090, | Aug 04 1999 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue |
6676682, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
6682557, | Apr 11 1991 | LIFEPORT SCIENCES LLC | Bifurcated multicapsule intraluminal grafting system and method |
6685736, | Sep 30 1993 | W L GORE & ASSOCIATES, INC | Intraluminal graft |
6689151, | Jan 25 2001 | Boston Scientific Scimed, Inc | Variable wall thickness for delivery sheath housing |
6689158, | Sep 30 1993 | W L GORE & ASSOCIATES, INC | Intraluminal graft |
6699256, | Jun 04 1999 | ST JUDE MEDICAL ATG, INC | Medical grafting apparatus and methods |
6702829, | Apr 23 1997 | ST JUDE MEDICAL ATG, INC | Medical grafting connectors and fasteners |
6702844, | Mar 09 1988 | LIFEPORT SCIENCES LLC | Artificial graft and implantation method |
6712836, | May 13 1999 | ST JUDE MEDICAL ATG, INC | Apparatus and methods for closing septal defects and occluding blood flow |
6733521, | Apr 11 2001 | Endologix LLC | Delivery system and method for endovascular graft |
6755847, | Oct 05 2001 | Boston Scientific Scimed, Inc | Emboli capturing device and method of manufacture therefor |
6761733, | Apr 11 2001 | Endologix LLC | Delivery system and method for bifurcated endovascular graft |
6790215, | Apr 30 1999 | Edwards Lifesciences Corporation | Method of use for percutaneous material removal device and tip |
6790221, | Jan 10 2000 | Boston Scientific Scimed, Inc | Catheter tip designs and method of manufacture |
6805706, | Aug 15 2002 | KELLER, MICHAEL J | Stent-graft with rails |
6827733, | Aug 24 1989 | Medtronic AVE, Inc. | Endovascular support device and method |
6843802, | Nov 16 2000 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Delivery apparatus for a self expanding retractable stent |
6843803, | Dec 01 1995 | Medtronic Vascular, Inc | Bifurcated intraluminal prostheses construction and methods |
6849088, | Sep 30 1998 | EDWARDS LIFESCIENCES, CORPORATION | Aorto uni-iliac graft |
6866674, | Nov 30 1999 | St. Jude Medical ATG, Inc. | Medical grafting methods and apparatus |
6887268, | Mar 30 1998 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Extension prosthesis for an arterial repair |
6899718, | Feb 24 1995 | Heartport, Inc. | Devices and methods for performing avascular anastomosis |
6920882, | Nov 06 1998 | St. Jude Medical ATG, Inc. | Medical grafting methods and apparatus |
6939371, | Oct 05 1998 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Endovascular graft system |
6942692, | Nov 16 2000 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Supra-renal prosthesis and renal artery bypass |
6951570, | Jul 02 2001 | RUBICON MEDICAL, INC | Methods, systems, and devices for deploying a filter from a filter device |
6960219, | Mar 09 1999 | St. Jude Medical ATG, Inc. | Medical grafting methods and apparatus |
6962596, | Jan 23 1998 | System for performing vascular anastomoses | |
6962598, | Jul 02 2001 | RUBICON MEDICAL, INC | Methods, systems, and devices for providing embolic protection |
6964673, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
6966917, | Nov 09 2000 | INNOVATIVE INTERVENTIONAL TECHNOLOGIES B V | Deformable connector for mechanically connecting hollow structures |
6984238, | Feb 24 1995 | Devices and methods for performing avascular anastomosis | |
6991642, | Mar 06 2001 | Boston Scientific Scimed, Inc | Wire and lock mechanism |
6994713, | Jan 30 1998 | St. Jude Medical ATG, Inc. | Medical graft connector or plug structures, and methods of making and installing same |
6997939, | Jul 02 2001 | RUBICON MEDICAL, INC | Methods, systems, and devices for deploying an embolic protection filter |
7004175, | Mar 06 1997 | Boston Scientific Scimed, Inc | System and method for percutaneous coronary artery bypass |
7018387, | Oct 22 1998 | Innovative Interventional Technologies B.V. | Mechanical anastomosis system for hollow structures |
7022127, | Oct 24 1997 | Innovative Interventional Technologies BV | Mechanical anastomosis system for hollow structures |
7052500, | Oct 19 2001 | STRYKER EUROPEAN HOLDINGS III, LLC | Embolus extractor |
7056326, | Jan 23 1998 | Heartport, Inc. | System for performing vascular anastomoses |
7066951, | Feb 02 2000 | Endologix LLC | Delivery system and method for expandable intracorporeal device |
7081129, | Feb 09 1998 | Endologix LLC | Endovascular graft |
7087066, | Feb 24 1995 | Surgical clips and methods for tissue approximation | |
7094248, | Apr 23 1997 | St. Jude Medical ATG, Inc. | Medical grafting connectors and fasteners |
7094249, | Mar 06 1997 | Boston Scientific Scimed Inc | Distal protection device and method |
7097652, | Jan 25 2001 | Boston Scientific Scimed, Inc | Variable wall thickness for delivery sheath housing |
7105002, | Mar 09 1998 | Ethicon, Inc | Anastomosis device and method |
7112211, | Feb 24 1995 | Heartport, Inc. | Devices and methods for performing avascular anastomosis |
7112217, | Mar 16 1998 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Biluminal endovascular graft system |
7118594, | May 12 1994 | LIFEPORT SCIENCES LLC | Bifurcated multicapsule intraluminal grafting system and method |
7122044, | Jun 17 1994 | Heartport, Inc. | Surgical stapling instrument and method thereof |
7147660, | Dec 20 2001 | Endologix LLC | Advanced endovascular graft |
7147661, | Dec 20 2001 | Endologix LLC | Radially expandable stent |
7172610, | Apr 10 1998 | Covidien LP | Rotational atherectomy system with stationary cutting elements |
7204464, | Jan 21 2005 | Boston Scientific Scimed, Inc. | Medical wire holder |
7211095, | Apr 23 1997 | St. Jude Medical ATG, Inc. | Medical grafting connectors and fasteners |
7229464, | Oct 05 2000 | Boston Scientific Scimed, Inc | Filter delivery and retrieval device |
7229472, | Nov 16 2000 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Thoracic aneurysm repair prosthesis and system |
7235061, | Aug 03 1999 | Boston Scientific Scimed, Inc | Guided filter with support wire and methods of use |
7235083, | Sep 10 2003 | LifeShield Sciences LLC | Methods and devices for aiding in situ assembly of repair devices |
7235088, | Apr 10 1998 | Covidien LP | Neuro thrombectomy catheter |
7267685, | Nov 16 2000 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Bilateral extension prosthesis and method of delivery |
7314483, | Nov 16 2000 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Stent graft with branch leg |
7320697, | Jul 30 1999 | Boston Scientific Scimed, Inc | One piece loop and coil |
7320698, | Oct 05 2001 | Boston Scientific Scimed, Inc | Emboli capturing device and method of manufacture therefor |
7326226, | Aug 04 1999 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue |
7326237, | Jan 08 2002 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Supra-renal anchoring prosthesis |
7338514, | Jun 01 2001 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | Closure devices, related delivery methods and tools, and related methods of use |
7338518, | Feb 02 2000 | Endologix LLC | Delivery system and method for expandable intracorporeal device |
7410491, | Jul 30 1999 | Incept LLC | Vascular device for emboli, thrombus and foreign body removal and methods of use |
7422602, | Mar 09 1999 | St. Jude Medical ATG, Inc. | Medical grafting methods and apparatus |
7473265, | Mar 15 2004 | Boston Scientific Scimed, Inc | Filter media and methods of manufacture |
7478465, | Jan 10 2005 | Boston Scientific Scimed, Inc | Method of securing a restraining member on a medical device |
7479147, | Apr 10 1998 | Covidien LP | Rotational atherectomy device |
7491231, | Jun 13 2003 | LifeShield Sciences LLC | One-branch stent-graft for bifurcated lumens |
7500988, | Nov 16 2000 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Stent for use in a stent graft |
7510570, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
7563272, | Jul 16 1999 | Boston Scientific Scimed, Inc. | Emboli filtration system and methods of use |
7575586, | Jan 30 1998 | St. Jude Medical ATG, Inc. | Medical graft connector or plug structures, and methods of making and installing same |
7578829, | Nov 07 1996 | St. Jude Medical ATG, Inc. | Medical grafting methods and apparatus |
7594926, | Nov 09 2001 | RUBICON MEDICAL, INC | Methods, systems and devices for delivering stents |
7615071, | Feb 09 1998 | Endologix LLC | Endovascular graft |
7618433, | Feb 24 1999 | Boston Scientific Scimed, Inc | Intravascular filter and method |
7621904, | Oct 21 2004 | Boston Scientific Scimed, Inc | Catheter with a pre-shaped distal tip |
7651510, | Jan 23 1998 | Heartport, Inc. | System for performing vascular anastomoses |
7651514, | Dec 11 2003 | Boston Scientific Scimed, Inc | Nose rider improvement for filter exchange and methods of use |
7666198, | Oct 22 1998 | Innovative Interventional Technologies B.V. | Mechanical anastomosis system for hollow structures |
7691123, | May 08 1997 | Boston Scientific Scimed, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
7691128, | May 06 2002 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | PFO closure devices and related methods of use |
7695465, | Jul 30 2001 | Boston Scientific Scimed, Inc | Chronic total occlusion device with variable stiffness shaft |
7699866, | Jul 16 1999 | Boston Scientific Scimed, Inc. | Emboli filtration system and methods of use |
7708770, | Nov 09 2001 | Boston Scientific Scimed, Inc | Stent delivery device with embolic protection |
7717937, | Jun 01 2001 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | Closure devices, related delivery methods and tools, and related methods of use |
7763041, | Feb 24 1995 | Heartport, Inc. | Surgical clips and methods for tissue approximation |
7763063, | Feb 23 2004 | BOLTON MEDICAL, INC | Self-aligning stent graft delivery system, kit, and method |
7766954, | Dec 20 2001 | Endologix LLC | Advanced endovascular graft |
7771445, | Apr 10 1998 | Covidien LP | Rotational atherectomy system with stationary cutting elements |
7780611, | May 01 2003 | Boston Scientific Scimed, Inc | Medical instrument with controlled torque transmission |
7780720, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
7794472, | Aug 11 2004 | Lifescreen Sciences LLC | Single wire intravascular filter |
7803178, | Jan 30 2004 | Endologix LLC | Inflatable porous implants and methods for drug delivery |
7842055, | Apr 10 1998 | Covidien LP | Neuro thrombectomy catheter |
7850705, | Apr 23 1997 | St. Jude Medical ATG, Inc. | Medical grafting connectors and fasteners |
7862609, | Nov 16 2000 | Cordis Corporation | Stent graft having a pleated graft member |
7875050, | Sep 30 1997 | STRYKER EUROPEAN HOLDINGS III, LLC | Mechanical clot treatment device |
7896861, | Oct 21 2004 | Boston Scientific Scimed, Inc. | Catheter with a pre-shaped distal tip |
7901449, | Feb 09 1994 | LIFEPORT SCIENCES LLC | Bifurcated endoluminal prosthesis |
7901525, | Sep 03 2003 | Bolton Medical, Inc. | Method of forming a non-circular stent |
7905914, | Feb 09 1994 | SciMed Life Systems, Inc. | Bifurcated endoluminal prosthesis |
7935129, | Feb 24 1995 | Heartport, Inc. | Device for engaging tissue having a preexisting opening |
7942919, | Feb 09 1994 | STARBOARD VALUE INTERMEDIATE FUND LP, AS COLLATERAL AGENT | Bifurcated endoluminal prosthesis |
7976564, | May 06 2002 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | PFO closure devices and related methods of use |
7979108, | Aug 27 2007 | Automated vessel repair system, devices and methods | |
7998163, | Oct 02 2002 | Boston Scientific Scimed, Inc | Expandable retrieval device |
8007605, | Sep 03 2003 | BOLTON MEDICAL, INC | Method of forming a non-circular stent |
8011554, | Jan 09 2008 | Covidien LP | Raised boss for staple guide |
8038696, | Dec 06 2004 | Boston Scientific Scimed, Inc | Sheath for use with an embolic protection filter |
8052742, | Sep 30 1993 | W L GORE & ASSOCIATES, INC | Intraluminal graft |
8062345, | Sep 03 2003 | BOLTON MEDICAL, INC | Delivery systems for delivering and deploying stent grafts |
8062349, | Sep 03 2003 | BOLTON MEDICAL, INC | Method for aligning a stent graft delivery system |
8066723, | Nov 09 2000 | INNOVATIVE INTERVENTIONAL TECHNOLOGIES B V | Connector, applicator and method for mechanically connecting hollow structures, in particular small blood vessels, as well as auxiliary devices |
8066755, | Sep 26 2007 | Endologix LLC | System and method of pivoted stent deployment |
8070790, | Sep 03 2003 | BOLTON MEDICAL, INC | Capture device for stent graft delivery |
8083789, | Nov 16 2007 | Endologix LLC | Securement assembly and method for expandable endovascular device |
8109947, | Nov 06 1998 | St. Jude Medical ATG, Inc. | Medical grafting methods and apparatus |
8114102, | Jun 16 2003 | ST JUDE MEDICAL ATG, INC | Temporary hemostatic plug apparatus and method of use |
8123777, | Jul 24 2001 | Incept, LLC | Apparatus and methods for aspirating emboli |
8182498, | Oct 24 1997 | INNOVATIVE INTERVENTIONAL TECHNOLOGIES B V | Mechanical anastomosis system for hollow structures |
8192452, | May 14 2009 | Covidien LP | Easily cleaned atherectomy catheters and methods of use |
8192482, | Feb 09 1994 | STARBOARD VALUE INTERMEDIATE FUND LP, AS COLLATERAL AGENT | Endoluminal stent |
8206427, | Jun 08 1994 | Medtronic Vascular, Inc | Apparatus and methods for endoluminal graft placement |
8226674, | Dec 20 2000 | Covidien LP | Debulking catheters and methods |
8226701, | Sep 26 2007 | Endologix LLC | Stent and delivery system for deployment thereof |
8236024, | Feb 20 2001 | Boston Scientific Scimed, Inc | Low profile emboli capture device |
8241315, | Jun 24 2004 | Boston Scientific Scimed, Inc | Apparatus and method for treating occluded vasculature |
8241346, | Dec 20 2001 | Endologix LLC | Endovascular graft and method of delivery |
8246640, | Apr 22 2003 | Covidien LP | Methods and devices for cutting tissue at a vascular location |
8262690, | Mar 06 2001 | Boston Scientific Scimed, Inc | Wire and lock mechanism |
8267989, | Jan 30 2004 | Endologix LLC | Inflatable porous implants and methods for drug delivery |
8292829, | May 01 2003 | Boston Scientific Scimed, Inc. | Medical instrument with controlled torque transmission |
8292943, | Sep 03 2003 | BOLTON MEDICAL, INC | Stent graft with longitudinal support member |
8303618, | Feb 24 1999 | Boston Scientific Scimed, Inc | Intravascular filter and method |
8308750, | Mar 10 2004 | Lifescreen Sciences LLC | Removable intravascular devices and methods of making and using the same |
8308790, | Sep 03 2003 | BOLTON MEDICAL, INC | Two-part expanding stent graft delivery system |
8317854, | Jun 08 1994 | Medtronic Vascular, Inc | Apparatus and methods for endoluminal graft placement |
8328829, | Nov 02 2007 | Covidien LP | High capacity debulking catheter with razor edge cutting window |
8328860, | Mar 13 2007 | Covidien LP | Implant including a coil and a stretch-resistant member |
8328861, | Nov 16 2007 | Endologix LLC | Delivery system and method for bifurcated graft |
8342376, | Jun 10 2005 | Cook Medical Technologies LLC | Medical stapler |
8361136, | Feb 09 1998 | Endologix LLC | Endovascular graft |
8372112, | Apr 11 2003 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | Closure devices, related delivery methods, and related methods of use |
8382796, | Apr 11 2003 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and related methods of use |
8403912, | Oct 21 2004 | Boston Scientific Scimed, Inc. | Catheter with a pre-shaped distal tip |
8414604, | Oct 13 2008 | Covidien LP | Devices and methods for manipulating a catheter shaft |
8444665, | Aug 04 1999 | Boston Scientific Scimed, Inc | Filter flush system and methods of use |
8444669, | Dec 15 2008 | Boston Scientific Scimed, Inc. | Embolic filter delivery system and method |
8449595, | Sep 03 2003 | Bolton Medical, Inc. | Delivery systems for delivering and deploying stent grafts |
8460336, | Jan 16 2001 | Incept LLC | Systems and methods for vascular filter retrieval |
8468678, | Oct 02 2002 | Boston Scientific Scimed, Inc. | Expandable retrieval device |
8469979, | Nov 02 2007 | Covidien LP | High capacity debulking catheter with distal driven cutting wheel |
8480629, | Jan 28 2005 | Boston Scientific Scimed, Inc | Universal utility board for use with medical devices and methods of use |
8486104, | Sep 30 1997 | STRYKER EUROPEAN HOLDINGS III, LLC | Mechanical clot treatment device with distal filter |
8496677, | Dec 02 2009 | Covidien LP | Methods and devices for cutting tissue |
8500792, | Sep 03 2003 | BOLTON MEDICAL, INC | Dual capture device for stent graft delivery system and method for capturing a stent graft |
8535344, | Sep 12 2003 | RUBICON MEDICAL, INC | Methods, systems, and devices for providing embolic protection and removing embolic material |
8535370, | Jan 23 2003 | Endovascular Technologies, Inc. | Radiopaque markers for endovascular graft alignment |
8574249, | May 14 2009 | Covidien LP | Easily cleaned atherectomy catheters and methods of use |
8574264, | Apr 11 2003 | St. Jude Medical, Cardiology Division, Inc. | Method for retrieving a closure device |
8579926, | Sep 07 2000 | Covidien LP | Plaque removal device with rotatable cutting element |
8579957, | Nov 09 2001 | Boston Scientific Scimed, Inc. | Stent delivery device with embolic protection |
8597315, | Aug 19 1999 | Covidien LP | Atherectomy catheter with first and second imaging devices |
8617190, | Feb 24 1995 | Heartport, Inc. | Device for engaging tissue having a preexisting opening |
8617201, | Jul 30 1999 | Incept LLC | Vascular device for emboli, thrombus and foreign body removal and methods of use |
8632555, | Nov 06 1998 | St. Jude Medical, Cardiology Division, Inc. | Medical graft connector and methods of making and installing same |
8636788, | Sep 03 2003 | Bolton Medical, Inc. | Methods of implanting a prosthesis |
8663209, | Jan 24 2012 | Vessel clearing apparatus, devices and methods | |
8663309, | Sep 26 2007 | Endologix LLC | Asymmetric stent apparatus and method |
8740963, | Sep 03 2003 | BOLTON MEDICAL, INC | Methods of implanting a prosthesis and treating an aneurysm |
8777978, | Apr 17 2006 | Covidien LP | System and method for mechanically positioning intravascular implants |
8777979, | Apr 17 2006 | Covidien LP | System and method for mechanically positioning intravascular implants |
8777985, | Jun 01 2001 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
8781604, | Aug 18 2004 | Cardiac Pacemakers, Inc. | Method of implanting stimulation lead with biased curved section through the interatrial septum |
8784440, | Feb 25 2008 | Covidien LP | Methods and devices for cutting tissue |
8795320, | Apr 17 2006 | Covidien LP | System and method for mechanically positioning intravascular implants |
8795321, | Apr 17 2006 | Covidien LP | System and method for mechanically positioning intravascular implants |
8801747, | Mar 13 2007 | Covidien LP | Implant, a mandrel, and a method of forming an implant |
8801769, | Feb 09 1998 | Endologix LLC | Endovascular graft |
8808186, | Nov 11 2010 | Covidien LP | Flexible debulking catheters with imaging and methods of use and manufacture |
8821478, | Mar 04 2011 | Boston Scientific Scimed, Inc | Catheter with variable stiffness |
8845552, | May 01 2003 | Boston Scientific Scimed, Inc. | Medical instrument with controlled torque transmission |
8858613, | Sep 20 2010 | Lombard Medical Limited | Stent graft delivery systems and associated methods |
8864790, | Apr 17 2006 | Covidien LP | System and method for mechanically positioning intravascular implants |
8864814, | Dec 20 2001 | Endologix LLC | Method of delivering advanced endovascular graft and system |
8911459, | Dec 20 2000 | Covidien LP | Debulking catheters and methods |
8920450, | Oct 28 2010 | Covidien LP | Material removal device and method of use |
8961546, | Apr 22 2003 | Covidien LP | Methods and devices for cutting tissue at a vascular location |
8992591, | May 07 2008 | Cook Medical Technologies LLC | Delivery system with low longitudinal compressibility |
8992595, | Apr 04 2012 | Endologix LLC | Durable stent graft with tapered struts and stable delivery methods and devices |
8992717, | Sep 01 2011 | Covidien LP | Catheter with helical drive shaft and methods of manufacture |
8998937, | Dec 20 2000 | Covidien LP | Methods and devices for cutting tissue |
8998970, | Apr 12 2012 | BOLTON MEDICAL, INC | Vascular prosthetic delivery device and method of use |
9011480, | Jan 20 2012 | Covidien LP | Aneurysm treatment coils |
9028512, | Dec 11 2009 | Covidien LP | Material removal device having improved material capture efficiency and methods of use |
9049988, | Aug 27 2007 | Automated vessel repair system, devices and methods | |
9050095, | Sep 22 2004 | Covidien LP | Medical implant |
9078630, | Jun 01 2001 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
9101506, | Mar 13 2009 | BOLTON MEDICAL, INC | System and method for deploying an endoluminal prosthesis at a surgical site |
9119662, | Jun 14 2010 | Covidien LP | Material removal device and method of use |
9119706, | Feb 24 1999 | Boston Scientific Scimed Inc. | Intravascular filter and method |
9126024, | Nov 30 2007 | University of South Florida | Trans-endoscopic hydraulic balloon apparatus |
9173755, | Sep 03 2003 | Bolton Medical, Inc. | Vascular repair devices |
9192406, | Oct 13 2008 | Covidien LP | Method for manipulating catheter shaft |
9198665, | Sep 22 2004 | Covidien LP | Micro-spiral implantation device |
9198786, | Sep 03 2003 | BOLTON MEDICAL, INC | Lumen repair device with capture structure |
9220530, | May 14 2009 | Covidien LP | Easily cleaned atherectomy catheters and methods of use |
9220617, | Sep 03 2003 | Bolton Medical, Inc. | Dual capture device for stent graft delivery system and method for capturing a stent graft |
9241733, | Nov 02 2007 | Covidien LP | Debulking catheter |
9259222, | Jun 07 2006 | Cook Medical Technologies LLC | Medical stapler |
9283066, | Jul 30 1999 | Incept LLC | Vascular device for emboli, thrombus and foreign body removal and methods of use |
9289215, | Mar 13 2007 | Covidien LP | Implant including a coil and a stretch-resistant member |
9320631, | Sep 03 2003 | BOLTON MEDICAL, INC | Aligning device for stent graft delivery system |
9326789, | Nov 11 2010 | Covidien LP | Flexible debulking catheters with imaging and methods of use and manufacture |
9333104, | Sep 03 2003 | Bolton Medical, Inc. | Delivery systems for delivering and deploying stent grafts |
9364314, | Jun 30 2008 | BOLTON MEDICAL, INC | Abdominal aortic aneurysms: systems and methods of use |
9408734, | Sep 03 2003 | Bolton Medical, Inc. | Methods of implanting a prosthesis |
9408735, | Sep 03 2003 | Bolton Medical, Inc. | Methods of implanting a prosthesis and treating an aneurysm |
9439751, | Mar 15 2013 | BOLTON MEDICAL, INC | Hemostasis valve and delivery systems |
9445834, | Feb 25 2008 | Covidien LP | Methods and devices for cutting tissue |
9456843, | Feb 03 2014 | Covidien LP | Tissue-removing catheter including angular displacement sensor |
9486237, | Dec 20 2000 | Covidien LP | Methods and devices for cutting tissue |
9498363, | Apr 06 2012 | Endologix LLC | Delivery catheter for endovascular device |
9526519, | Feb 03 2014 | Covidien LP | Tissue-removing catheter with improved angular tissue-removing positioning within body lumen |
9532799, | Dec 20 2000 | Covidien LP | Method and devices for cutting tissue |
9532844, | Sep 13 2012 | Covidien LP | Cleaning device for medical instrument and method of use |
9554929, | Apr 12 2012 | Bolton Medical, Inc. | Vascular prosthetic delivery device and method of use |
9561124, | Sep 03 2003 | Bolton Medical, Inc. | Methods of self-aligning stent grafts |
9572652, | Dec 01 2009 | Lombard Medical Limited | Modular endograft devices and associated systems and methods |
9579104, | Nov 30 2011 | Covidien LP | Positioning and detaching implants |
9579157, | Sep 13 2012 | Covidien LP | Cleaning device for medical instrument and method of use |
9597110, | Nov 08 2012 | Covidien LP | Tissue-removing catheter including operational control mechanism |
9615850, | Aug 19 1999 | Covidien LP | Atherectomy catheter with aligned imager |
9655712, | Sep 03 2003 | Bolton Medical, Inc. | Vascular repair devices |
9687245, | Mar 23 2012 | Covidien LP | Occlusive devices and methods of use |
9687266, | Apr 29 2009 | Covidien LP | Methods and devices for cutting and abrading tissue |
9687267, | Dec 02 2009 | Covidien LP | Device for cutting tissue |
9713475, | Apr 18 2014 | Covidien LP | Embolic medical devices |
9717520, | Oct 28 2010 | Covidien LP | Material removal device and method of use |
9737426, | Mar 15 2013 | Lombard Medical Limited | Endograft device delivery systems and associated methods |
9770259, | Sep 01 2011 | Covidien LP | Catheter with helical drive shaft and methods of manufacture |
9788854, | Dec 20 2000 | Covidien LP | Debulking catheters and methods |
9801647, | May 26 2006 | Covidien LP | Catheter including cutting element and energy emitting element |
9827123, | Mar 13 2009 | Bolton Medical, Inc. | System for deploying an endoluminal prosthesis at a surgical site |
9833207, | Aug 08 2012 | Analysis and clearing module, system and method | |
9855072, | Jun 14 2010 | Covidien LP | Material removal device and method of use |
9867727, | Feb 09 1998 | Endologix LLC | Endovascular graft |
9877857, | Sep 03 2003 | BOLTON MEDICAL, INC | Sheath capture device for stent graft delivery system and method for operating same |
9907686, | Sep 03 2003 | Bolton Medical, Inc. | System for implanting a prosthesis |
9913659, | Dec 11 2009 | Covidien LP | Material removal device having improved material capture efficiency and methods of use |
9913743, | Sep 03 2003 | Bolton Medical, Inc. | Methods of implanting a prosthesis and treating an aneurysm |
9925080, | Sep 03 2003 | Bolton Medical, Inc. | Methods of implanting a prosthesis |
9943329, | Nov 08 2012 | Covidien LP | Tissue-removing catheter with rotatable cutter |
9962533, | Feb 14 2013 | Module for treatment of medical conditions; system for making module and methods of making module | |
9993302, | Aug 27 2007 | Automated vessel repair system, devices and methods | |
9999438, | Apr 22 2003 | Covidien LP | Methods and devices for cutting tissue at a vascular location |
RE38146, | Jan 08 1992 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Method and apparatus for bilateral intra-aortic bypass |
RE43882, | Jul 30 1999 | Incept, LLC | Vascular device for emboli, thrombus and foreign body removal and methods of use |
RE43902, | Jul 30 1999 | Incept, LLC | Vascular device for emboli, thrombus and foreign body removal and methods of use |
Patent | Priority | Assignee | Title |
3334629, | |||
3494006, | |||
3540431, | |||
3657744, | |||
3834394, | |||
3874388, | |||
3908662, | |||
3938499, | May 11 1973 | Implant and implanting method and tool | |
3938528, | May 11 1973 | Investors in Ventures, Inc. | Implanting and splicing articles and methods for living beings |
4006747, | Apr 23 1975 | Ethicon, Inc. | Surgical method |
4047252, | Jan 29 1976 | LifeShield Sciences LLC | Double-velour synthetic vascular graft |
4056854, | Sep 28 1976 | The United States of America as represented by the Department of Health, | Aortic heart valve catheter |
4140126, | Feb 18 1977 | HARRISON MEDICAL TECHNOLOGIES, INC | Method for performing aneurysm repair |
4198982, | Mar 31 1978 | Memorial Hospital for Cancer and Allied Diseases | Surgical stapling instrument and method |
4300244, | Sep 19 1979 | CarboMedics, Inc. | Cardiovascular grafts |
4323071, | Apr 24 1978 | ADVANCED CARDIOVASCULAR SYSTEMS, INC , | Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same |
4351341, | Aug 15 1980 | Uresil Corporation | Balloon catheter |
4402319, | Sep 14 1977 | Kuraray Co., Ltd. | Releasable balloon catheter |
4441215, | Nov 17 1980 | AORTECH, INC , A CORP OF MN | Vascular graft |
4456000, | Jun 11 1979 | SCHNEIDER U S A INC , A PFIZER COMPANY | Expandable occlusion apparatus |
4501264, | Jun 02 1978 | ROCKEY, ELAINE D , INDIVIDUALLY; ROCKEY, ARLAINE I ; COLLIAS, GINA ROCKEY; ARLAINE & GINA ROCKEY, INC | Medical sleeve |
4503569, | Mar 03 1983 | Cook Incorporated | Transluminally placed expandable graft prosthesis |
4562596, | Apr 25 1984 | WORLD MEDICAL MANUFACTURING CORPORATIO | Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair |
4577631, | Nov 16 1984 | Aneurysm repair apparatus and method | |
4580568, | Oct 01 1984 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
4592754, | Sep 09 1983 | Surgical prosthetic vessel graft and catheter combination and method | |
4617932, | Apr 25 1984 | Device and method for performing an intraluminal abdominal aortic aneurysm repair | |
4649922, | Jan 23 1986 | Catheter arrangement having a variable diameter tip and spring prosthesis | |
4662885, | Sep 03 1985 | Becton, Dickinson and Company | Percutaneously deliverable intravascular filter prosthesis |
4665771, | Oct 15 1984 | Hypocyclic drive | |
4665918, | Jan 06 1986 | Endotex Interventional Systems, Inc | Prosthesis system and method |
4681110, | Dec 02 1985 | Medtronic, Inc | Catheter arrangement having a blood vessel liner, and method of using it |
4718907, | Jun 20 1985 | ATRIUM MEDICAL CORPORATION | Vascular prosthesis having fluorinated coating with varying F/C ratio |
4728328, | Oct 19 1984 | RESEARCH CORPORATION TECHNOLOGIES, INC , A DELAWARE NONPROFIT CORP ; PENNSYLVANIA RESEARCH CORPORATION, THE | Cuffed tubular organic prostheses |
4732152, | Dec 05 1984 | AMS MEDINVENT S A | Device for implantation and a method of implantation in a vessel using such device |
4733665, | Nov 07 1985 | Cordis Corporation | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
4739762, | Nov 07 1985 | Cordis Corporation | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
4740207, | Sep 10 1986 | Intralumenal graft | |
4771773, | Jun 10 1985 | AMS MEDINVENT S A | Insertion device |
4776337, | Nov 07 1985 | Cordis Corporation | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
4787899, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Intraluminal graft device, system and method |
4793348, | Nov 15 1986 | VACTRONIX SCIENTIFIC, LLC | Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation |
4795458, | Jul 02 1987 | Stent for use following balloon angioplasty | |
4817600, | May 22 1987 | Boston Scientific Scimed, Inc | Implantable filter |
4830003, | Jun 17 1988 | Medtronic Ave, Inc | Compressive stent and delivery system |
4848343, | Oct 31 1986 | AMS MEDINVENT S A | Device for transluminal implantation |
4872874, | May 29 1987 | WORLD MEDICAL MANUFACTURING CORP | Method and apparatus for transarterial aortic graft insertion and implantation |
4875480, | Sep 30 1986 | AMS MEDINVENT S A | Device for transluminal implantation |
4878906, | Mar 25 1986 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
4892539, | Feb 08 1988 | C R BARD, INC BARD | Vascular graft |
4954126, | Apr 30 1982 | AMS MEDINVENT S A | Prosthesis comprising an expansible or contractile tubular body |
4969890, | Jul 10 1987 | Nippon Zeon Co., Ltd. | Catheter |
4994032, | Dec 01 1987 | Terumo Kabushiki Kaisha | Balloon catheter |
4994069, | Nov 02 1988 | STRYKER EUROPEAN HOLDINGS III, LLC | Vaso-occlusion coil and method |
4994071, | May 22 1989 | Cordis Corporation | Bifurcating stent apparatus and method |
5024671, | Sep 19 1988 | Edwards Lifesciences Corporation | Microporous vascular graft |
5037427, | Mar 25 1987 | Terumo Kabushiki Kaisha | Method of implanting a stent within a tubular organ of a living body and of removing same |
5041126, | Mar 13 1987 | Cook Incorporated | Endovascular stent and delivery system |
5066298, | Nov 30 1989 | United States Surgical Corporation | Article and method of sheathing angioplasty balloons |
5084065, | Jul 10 1989 | MAQUET CARDIOVASCULAR LLC | Reinforced graft assembly |
5102417, | Nov 07 1985 | Cordis Corporation | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
5104399, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Artificial graft and implantation method |
5104402, | May 25 1988 | Trustees of the University of Pennsylvania | Prosthetic vessels for stress at vascular graft anastomoses |
5123917, | Apr 27 1990 | LIFEPORT SCIENCES LLC | Expandable intraluminal vascular graft |
5133732, | Mar 22 1989 | Medtronic, Inc. | Intravascular stent |
5158548, | Apr 25 1990 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
DE8812719, | |||
EP150281, | |||
EP423916, | |||
EP461791A1, | |||
EP479557A1, | |||
WO9015582, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 29 1993 | Endovascular Technologies, Inc. | (assignment on the face of the patent) | / | |||
Dec 20 2012 | ENDOVASCULAR TECHNOLOGIES, INC | Acacia Research Group LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029967 | /0144 | |
Dec 27 2012 | Acacia Research Group LLC | LIFEPORT SCIENCES LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030003 | /0055 |
Date | Maintenance Fee Events |
Aug 17 1998 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 18 1998 | LSM1: Pat Hldr no Longer Claims Small Ent Stat as Indiv Inventor. |
Sep 13 2002 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 02 2002 | REM: Maintenance Fee Reminder Mailed. |
Oct 24 2002 | ASPN: Payor Number Assigned. |
Oct 24 2002 | RMPN: Payer Number De-assigned. |
Aug 14 2006 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 14 1998 | 4 years fee payment window open |
Sep 14 1998 | 6 months grace period start (w surcharge) |
Mar 14 1999 | patent expiry (for year 4) |
Mar 14 2001 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 14 2002 | 8 years fee payment window open |
Sep 14 2002 | 6 months grace period start (w surcharge) |
Mar 14 2003 | patent expiry (for year 8) |
Mar 14 2005 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 14 2006 | 12 years fee payment window open |
Sep 14 2006 | 6 months grace period start (w surcharge) |
Mar 14 2007 | patent expiry (for year 12) |
Mar 14 2009 | 2 years to revive unintentionally abandoned end. (for year 12) |