Apparatus and methods are provided for use in filtering emboli from a vessel and performing thrombectomy and embolectomy, wherein a vascular device comprises one or more support hoops, each having an articulation region connected near a distal end of a guide wire, and a blood permeable sac affixed to the one or more support hoops so that the support hoops form a mouth of the blood permeable sac. Each articulation region comprises a reduced thickness region of the support hoop that prevents kinks from forming in the support hoop when the apparatus is contracted to its delivery state, and curved regions that close the mouth of the sac to prevent material escaping from the sac when the apparatus is collapsed for removal.
|
1. Apparatus suitable for filtering emboli or performing thrombectomy or embolectomy comprising:
an elongated member having a distal region; at least one support hoop attached to the distal region, each support hoop having a reduced-thickness articulation region; and a blood permeable sac affixed to the one or more support hoops so that the at least one support hoop form a mouth of the blood permeable sac.
20. A method of trapping emboli or thrombus during a medical procedure, the method comprising:
providing apparatus comprising an elongated member, at one support hoop, each of the at least one support hoop having a reduced-thickness articulation region coupled to the elongated member, and a blood permeable sac affixed to the at least one support hoop so that the at least one support hoop form a mouth of the blood permeable sac; positioning the apparatus in a contracted delivery state within a delivery sheath; advancing the delivery sheath to a desired location within a patient's vessel; and withdrawing the delivery sheath to expand the apparatus to a deployed state wherein each support hoop seals against the vessel wall.
3. The apparatus of
4. The apparatus of
5. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
16. The apparatus of
a nose cone disposed on the distal region of the elongated member distal to the support hoop or hoops; an a delivery sheath having a first lumen for accepting the elongated member, the at least one support hoop and the blood permeable sac, and a second lumen for accepting a guide wire.
17. The apparatus of
18. The apparatus of
19. The apparatus of
21. The method of
providing an interventional device comprising a guide wire lumen; percutaneously and transluminally advancing the interventional device along the elongated member to a position within the patient's vessel for performing a medical procedure at a location proximal of the apparatus; performing the medical procedure, the apparatus catching emboli released when the medical procedure is performed; retracting the apparatus into a collapsed configuration within the guide lumen of the interventional device; and removing the interventional device and apparatus from the patient's vessel.
22. The method of
23. The method of
providing a catheter having a balloon in a distal region; inserting the catheter so that the balloon is disposed proximally of a lesion; and inflating the balloon to arrest antegrade flow through the vessel, wherein advancing the delivery sheath to a desired location within a patient's vessel comprises advancing the delivery sheath through an interior lumen of the catheter so that a distal region of the delivery sheath is disposed distal to the lesion.
24. The method of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 09/364,064, filed Jul. 30, 1999.
The present invention relates to apparatus and methods for filtering or removing matter from within a vascular system. More particularly, the present invention provides a low profile self-expanding vascular device useful for capturing emboli generated during interventional procedures, and for thrombectomy and embolectomy.
Percutaneous interventional procedures to treat occlusive vascular disease, such as angioplasty, atherectomy and stenting, often dislodge material from the vessel walls. This dislodged material, known as emboli, enters the bloodstream, and may be large enough to occlude smaller downstream vessels, potentially blocking blood flow to tissue. The resulting ischemia poses a serious threat to the health or life of a patient if the blockage occurs in critical tissue, such as the heart, lungs, or brain.
The deployment of stents and stent-grafts to treat vascular disease, such as aneurysms, also involves the introduction of foreign objects into the bloodstream, and also may result in the formation of clots or release of emboli. Such particulate matter, if released into the bloodstream, also may cause infarction or stroke.
Numerous previously known methods and apparatus have been proposed to reduce the risk of embolism. Zadno-Azizi et al. U.S. Pat. No. 5,833,644, for example, describes the use of balloon-tipped catheter to temporarily occlude flow through a vessel from which a stenosis is to be removed. Stenotic material removed during a treatment procedure are evacuated from the vessel before the flow of blood is restored. A drawback of such previously known systems, however, is that occlusion of antegrade flow through the vessel may result in damage to the tissue normally fed by the blocked vessel.
U.S. Pat. No. 5,814,064 to Daniel et al. describes an emboli filter system having a radially expandable mesh filter disposed on the distal end of a guide wire. The filter is deployed distal to a region of stenosis, and any interventional devices, such as an angioplasty balloon or stent delivery system are advanced along the guide wire. The filter is designed to capture emboli generated during treatment of the stenosis while permitting blood to flow through the filter. Similar filter systems are described in Wholey et al. U.S. Pat. No. 4,723,549 and Cassell et al. U.S. Pat. No. 5,827,324.
One disadvantage of radially expandable filter systems such as described in the foregoing patents is the relative complexity of the devices, which typically comprise numerous parts. Connecting more than a minimal number of such parts to a guide wire generally reduces the ability of the guide wire to negotiate tortuous anatomy, and increases the profile of the device in its delivery configuration. Consequently, it may be difficult or impossible to use such devices in small diameter vessels such as are commonly found in the carotid artery and cerebral vasculature. Moreover, such filter devices are generally incapable of preventing material from escaping from the filter during the process of collapsing the filter for removal.
International Publication No. WO 98/39053 describes a filter system comprising an elongated member, a radially expandable hoop and a cone-shaped basket. The hoop is affixed to the elongated member, and the cone-shaped basket is attached to the hoop and the elongated member so that the hoop forms the mouth of the basket. The filter system includes a specially configured delivery catheter that retains the mouth of the basket in a radially retracted position during delivery.
While the filter system described in the foregoing International Publication reduces the number of components used to deploy the cone-shaped basket, compared to the radial strut-type filter elements described hereinabove, it too has drawbacks. Chief among these, it is expected that it will be difficult to reduce the diameter of the radially expandable hoop to its retracted position. In particular, as the hoop is contracted through smaller radii of curvature, the stiffness of the hoop is expected to increase dramatically. This increased stiffness prevents the hoop from being contracted more tightly, and is expected to result in a delivery profile too large to permit use of the device in critical regions of the body, such as the smaller coronary arteries, carotid arteries, and cerebral vasculature.
In view of the foregoing disadvantages of previously known apparatus and methods, it would be desirable to provide a vascular device, e.g., for use as a vascular filter that, overcomes such disadvantages, and employs few components.
It also would be desirable to provide a vascular device that is capable of being contracted to a small delivery profile, thus permitting use of the device in small vessels.
It further would be desirable to provide a vascular device that is capable of being contracted to a sufficiently small profile that it may be retrieved using the guide wire lumen of previously known treatment devices, and without the need for specialized delivery catheters.
It still further would be desirable to provide a vascular device that reduces the risk of emboli or thrombus removed from the vessel wall escaping from the device when the device is collapsed and removed.
In view of the foregoing, it is an object of the present invention to provide a vascular device that overcomes disadvantages of previously known vascular filters and thrombectomy/embolectomy devices, and employs few components.
It also is an object of this invention to provide a vascular device that is capable of being contracted to a small delivery profile, thus permitting use of the device in small vessels.
It is a further object of the present invention to provide a vascular device that is capable of being contracted to a sufficiently small profile that it may be retrieved using the guide wire lumen of previously known treatment devices, and without the need for specialized delivery catheters.
It is another object of this invention to provide a vascular device that reduces the risk of emboli or thrombus removed from the vessel wall escaping from the device when the device is collapsed and removed.
These and other objects of the present invention are accomplished by providing a vascular device, suitable for use as a vascular filter or thrombectomy/embolectomy device that comprises a blood permeable sac affixed at its perimeter to a support hoop having an articulation region. The support hoop is attached in a distal region of an elongated member, such as a guide wire, and supports a proximally-oriented mouth of the sac when the device is deployed in a vessel. In accordance with the principles of the present invention, the support hoop includes a reduced-thickness articulation region, generally opposite the point of attachment of the support hoop to the guide wire, that enables the support hoop to be contracted to very small radii of curvature without the problems of increased stiffness and kinking of previously known devices. In alternative embodiments, several hoops may be used in conjunction to facilitate opening and closing of the sac.
The support hoop preferably also has a curved profile, so that the articulation region is oriented in a direction approximately parallel to a vessel wall when the vascular device is deployed. This prevents the articulation region, when folded, from damaging the wall of the vessel, and permits the device to effectively contact the walls of the vessel and reduce emboli or thrombus removed from the vessel wall from bypassing the sac. Moreover, the articulation region when combined with a support hoop having a curved profile, causes the sides of the support hoop to fold inwards towards one-another when the vascular device is collapsed into a sheath for removal. This in turn closes the mouth of the sac and reduces the potential for emboli or thrombus to be released from the vascular device during removal.
Advantageously, use of an articulation region permits the vascular device of the present invention to be contracted to very small diameters, thereby enabling the use of delivery catheters having diameters less than 3 Fr. Moreover, the vascular device of the present invention may be retracted within the guide wire lumen of conventional treatment devices, such as angioplasty catheters and stent delivery systems, thereby obviating the need to re-insert a specialized delivery catheter to remove the vascular device.
In embodiments of the system of the present invention suitable for use as embolic filters, the vascular device may include a separate guide wire for introducing treatment devices proximal to the deployed vascular device, and the support hoop may form one or more additional loops or turns when deployed in a vessel to enhance the stability of the filter within the vessel. In yet other embodiments, a delivery sheath is provided that permits a lesion to first be crossed with an unencumbered guide wire, prior to passing the vascular device across the lesion. Methods of using the vascular device of the present invention are also provided, including, in the context of a vascular filter, the use of a previously known balloon catheter to arrest antegrade flow through a vessel until the vascular device of the present invention is deployed.
The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
Referring to
As described hereinabove, one difficulty with such vascular filters is that the hoop used to support the filter sac experiences increased stiffness when contracted to small diameters, i.e., due to the sharp directional change at the tip of the hoop, thereby limiting the minimum delivery profile achievable for such instruments. Although this effect may be reduced by decreasing the thickness of the wire employed in hoop 12, at the point at which the wire becomes sufficiently thin to accommodate the bending stresses, the wire is too thin to effectively radially expand and urge the filter sac into engagement with the vessel wall.
On the other hand, as shown in
In addition, when the filter is subsequently deployed in vessel V, as shown in
The vascular device of the present invention solves the above-described disadvantages, providing a vascular device, suitable for use as a vascular filter or thrombectomy/embolectomy device, with a self-expanding support hoop that is sufficiently thick to radially expand and urge a blood permeable sac into engagement with the vessel wall, but which includes an articulation region that overcomes the problems associated with kinking. In particular, the vascular device of the present invention includes a reduced thickness articulation region and a pre-formed curved profile that avoids the difficulties of previously known systems while providing a high degree of efficacy in capturing emboli or thrombus, and ease of deployment and retrieval.
Referring now to
Sac 28 preferably is constructed of a thin, flexible biocompatible material, such as polyethylene, polypropylene, polyurethane, polyester, polyethylene tetraphlalate, nylon or polytetrafluoroethylene, or combinations thereof, and includes openings or pores 30 that permit blood cells to pass through the sac substantially unhindered, while capturing any larger emboli that may be released during a procedure such as angioplasty or stent placement. In a preferred embodiment, sac 28 has openings or pores 30 in a range of about 20 to 400 microns in diameter, and more preferably, about approximately 80 microns. These pores sizes will permit red blood cells (which have a diameter of approximately 5 microns) to easily pass through the sac. If sac 28 comprises a woven material, such as formed from the above-mentioned polymers, the pore size of the sac may be determined as a function of the pattern and tightness of the weave.
Support hoop 24 comprises a hoop having a circular or rectangular cross-section that is formed of a super-elastic material, such as a nickel-titanium alloy ("nitinol"). During deployment and retrieval of vascular device 20, described hereinafter, support hoop 24 folds in half and collapses to fit within a small diameter delivery sheath. When vascular device 20 is in a deployed state, as depicted in
In accordance with the principles of the present invention, support hoop 24 includes reduced-thickness articulation region 26 disposed opposite to point 32 at which support hoop 24 is affixed to guide wire 22. More specifically, support hoop 24 is pre-formed to form a structure having curved regions 34, so that articulation region 26 is disposed in a portion of the support hoop that is approximately parallel to a vessel wall when vascular device 20 is deployed. As depicted in
In
In a preferred embodiment of the vascular device 20 of the present invention, vascular device 20 easily fits within a delivery sheath having an inner diameter of 0.033", and more preferably, may be used with a delivery sheath having an inner diameter as small as 0.026". The deployed diameter of support hoop 24 preferably is approximately 7 mm, while guide wire 22 preferably has a diameter of 0.014", and tapers at its distal end. The distal end of guide wire 22 also may be tipped with a spring section, or coil tip (not shown).
Support hoop 24 preferably is constructed of 0.0055" nitinol wire tapered (by a grinding process) to 0.0025" at articulation region 26. Specifically, articulation region 26 preferably consists of a length about 0.05" long and having a diameter of 0.0025", coupled on either side to curved regions 34. Each of curved regions 34 includes of a length of wire that is tapered from a diameter of 0.055" to a diameter of 0.0025" over a length of about 0.025". Support hoop 24 also may include radiopaque features, such as gold or platinum bands 33, spaced at intervals around the circumference of support hoop 24.
With respect to
Advantageously, use of articulation region 26 and the curved profile of support hoop 24 introduced by curved regions 34 also cause support hoop 24 to fold in half during retrieval. As shown in
Referring now to
With respect to
In
With respect to
Advantageously, the compliant design of vascular device 20 permits the device to be contracted to its delivery state within the guide wire lumen of conventional previously known interventional devices. Accordingly, unlike previously known vascular devices, which require removal of the interventional device followed by re-insertion of a specially designed catheter to retrieve the vascular device, the system of the present invention reduces the time, effort and trauma of this additional step. Instead, the vascular device may be readily closed and retrieved upon completion of the interventional procedure.
Alternatively, vascular device 20 may be used in performing thrombectomy/embolectomy. In this case, vascular device is deployed in a vessel at a location distal to a lesion, in the manner depicted in
Referring now to
In
In accordance with this aspect of the present invention, vascular device 60 may be contracted to small profile delivery state. When deployed from a delivery catheter, such as delivery sheath 40 of
Referring now to
In particular, in
In accordance with the methods of the present invention, vascular device 70 and guide wire 80 are used as follows. First, unencumbered guide wire 80 is advanced through a vessel until distal region 81 of the guide wire crosses the lesion. The proximal end of guide wire 80 then is inserted into the distal end of guide wire lumen 79 of delivery sheath 75 using previously known "over the wire" techniques.
Delivery sheath 75 then is advanced over guide wire 80, which is held stationary, until nose cone 76 and a distal portion of the delivery sheath cross the lesion. Once support hoop 72 and sac 73 of vascular device 70 are positioned distal to the lesion, delivery sheath 75 is retracted proximally, thereby deploying vascular device 70 to its deployed state. As will of course be understood, nose cone 76 remains in the vessel, distal to sac 73, during deployment of the vascular device. Upon completion of use of vascular device 70, delivery sheath 75 may once again be advanced along guide wire 71 and the support hoop and sac retracted within lumen 74 of delivery sheath 75.
Vascular device 90 of
In
Referring now to
With respect to
More particularly, with respect to
As shown in
With respect to
Referring now to
Specifically, in
Sac 156 is also attached to the distal end of guide wire 151 at point 157. Sac 156 preferably is constructed of a thin, flexible biocompatible material, as for the embodiments described hereinabove, and includes openings or pores 158 that permit blood cells to pass through the sac substantially unhindered, while capturing any larger emboli that may be released during a procedure such as angioplasty or stent placement. Pore sizes are selected as described hereinabove with respect to FIG. 2A.
Support hoops 152 and 153 comprise hoops having circular or rectangular cross-sections that are formed of a super-elastic material, such as a nickel-titanium alloy ("nitinol"). During deployment and retrieval of vascular device 150, support hoops 152 and 153 fold in half and collapse to fit within a small diameter delivery sheath. When the delivery sheath is retracted, support hoops 152 and 153 resume the preformed shape and deploy the perimeter of sac 156 into contact with the vessel walls. Support hoops 152 and 153 preferably comprise a nitinol wire, but also may be formed from a multistrand nitinol cable, or other super-elastic material.
In accordance with the principles of the present invention, support hoops 152 and 153 are affixed to guide wire 151 at ring 159 and include reduced-thickness articulation regions 154 and 155, constructed as described hereinabove. More particularly, support hoops 152 and 153 are pre-formed to form structures having curved regions 160 and 161, respectively, so that articulation regions 154 and 155 are disposed in a portion of the support hoop that is approximately parallel to a vessel wall when vascular device 150 is deployed. Articulation regions 154 and 155 and curved regions 160 and 161 thus enable support hoops 152 and 153 to fold with a pre-determined shape when vascular device 150 is collapsed to a contracted state for delivery or retrieval.
In a preferred embodiment of the vascular device 150 of the present invention, vascular device 150 easily fits within a delivery sheath having an inner diameter of 0.033", and more preferably, may be used with a delivery sheath having an inner diameter as small as 0.026". The deployed diameter of vascular device 150 preferably is approximately 7 mm.
Compared to vascular device 20 of
Referring now to
As discussed hereinabove, vascular device 170 includes articulation regions 174, 175 and 176 formed at the intersection of opposing curved regions 178, 179 and 180 of support hoops 171, 172 and 173. Support hoops 171, 172 and 173 preferably are connected to the distal end of guide wire 151 at ring 177. Sac 156 preferably also is connected to guide wire 151 at point 157. Vascular device 170 is expected to provide similar advantages to those contemplated for vascular device 150.
With reference to
Alternative embodiments of vascular devices of the present invention have been described with one to four support hoops. As will be apparent to one of ordinary skill in the art of interventional device design, any number of support hoops may be used with minor modifications to the designs described hereinabove.
Although preferred illustrative embodiments of the present invention are described above, it will be evident to one skilled in the art that various changes and modifications may be made without departing from the invention. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.
Salahieh, Amr, Khosravi, Farhad, Demond, Jackson F., Krolik, Jeff A., Hopkins, L. N.
Patent | Priority | Assignee | Title |
6432122, | Nov 07 1997 | Salviac Limited | Embolic protection device |
8852205, | Mar 09 2011 | Neuravi Limited | Clot retrieval device for removing occlusive clot from a blood vessel |
8852227, | Mar 15 2013 | Insera Therapeutics, Inc. | Woven radiopaque patterns |
8904914, | Mar 15 2013 | Insera Therapeutics, Inc. | Methods of using non-cylindrical mandrels |
8932320, | Jul 29 2013 | Insera Therapeutics, Inc. | Methods of aspirating thrombi |
Patent | Priority | Assignee | Title |
3472230, | |||
3592186, | |||
3683904, | |||
3889657, | |||
3952747, | Mar 28 1974 | BOSTON SCIENTIFIC CORPORATION, A CORP OF DE | Filter and filter insertion instrument |
3996938, | Jul 10 1975 | Expanding mesh catheter | |
4046150, | Jul 17 1975 | Baxter International Inc | Medical instrument for locating and removing occlusive objects |
4425908, | Oct 22 1981 | NITINOL MEDICAL TECHNOLGIES, INC , 7779 WILLOW GLEN ROAD, LOS ANGELES, CA 90046, A DE CORP | Blood clot filter |
4447227, | Jun 09 1982 | Endoscopy Surgical Systems, Inc. | Multi-purpose medical devices |
4580568, | Oct 01 1984 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
4590938, | May 04 1984 | BOSTON SCIENTIFIC CORPORATION, A CORP OF DE | Medical retriever device |
4619246, | May 23 1984 | William Cook, Europe A/S | Collapsible filter basket |
4631052, | Jan 03 1984 | Kensey Nash Corporation | Method and apparatus for surgically removing remote deposits |
4643184, | Sep 29 1982 | Embolus trap | |
4650466, | Nov 01 1985 | LUTHER MEDICAL PRODUCTS, INC | Angioplasty device |
4662885, | Sep 03 1985 | Becton, Dickinson and Company | Percutaneously deliverable intravascular filter prosthesis |
4705517, | Sep 03 1985 | Becton, Dickinson and Company | Percutaneously deliverable intravascular occlusion prosthesis |
4706671, | May 02 1985 | Catheter with coiled tip | |
4723549, | Sep 18 1986 | ANGIOGUARD, INC | Method and apparatus for dilating blood vessels |
4728319, | Mar 20 1986 | Intravascular catheter | |
4733665, | Nov 07 1985 | Cordis Corporation | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
4790812, | Nov 15 1985 | Apparatus and method for removing a target object from a body passsageway | |
4790813, | Jan 03 1984 | INTRAVASCULAR SURGICAL INSTRUMENTS, INC , A CORP OF PA | Method and apparatus for surgically removing remote deposits |
4794928, | Jun 10 1987 | Angioplasty device and method of using the same | |
4794931, | Feb 28 1986 | SciMed Life Systems, INC | Catheter apparatus, system and method for intravascular two-dimensional ultrasonography |
4800882, | Mar 13 1987 | Cook Incorporated | Endovascular stent and delivery system |
4807626, | Feb 14 1985 | Stone extractor and method | |
4842579, | May 14 1984 | SHIBER, SAMUEL | Atherectomy device |
4857045, | Apr 30 1987 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Atherectomy catheter |
4857046, | Oct 21 1987 | DOW CORNING ENTERPRISES | Drive catheter having helical pump drive shaft |
4867157, | Aug 13 1987 | Allegiance Corporation | Surgical cutting instrument |
4873978, | Dec 04 1987 | MICROVENTION, INC | Device and method for emboli retrieval |
4898575, | Jun 13 1986 | MEDINNOVATIONS, INC , A CORP OF MD | Guide wire following tunneling catheter system and method for transluminal arterial atherectomy |
4907336, | Mar 13 1987 | Cook Incorporated | Method of making an endovascular stent and delivery system |
4921478, | Feb 23 1988 | SAUNDERS, MYLES L , M D | Cerebral balloon angioplasty system |
4921484, | Jul 25 1988 | Cordis Corporation | Mesh balloon catheter device |
4926858, | May 30 1984 | Advanced Cardiovascular Systems, INC | Atherectomy device for severe occlusions |
4950277, | Jan 23 1989 | SciMed Life Systems, INC | Atherectomy cutting device with eccentric wire and method |
4955895, | Dec 23 1986 | Terumo Kabushiki Kaisha | Vasodilating catheter |
4957482, | May 14 1984 | SHIBER, SAMUEL | Atherectomy device with a positive pump means |
4969891, | Mar 06 1989 | Removable vascular filter | |
4979951, | May 30 1984 | Advanced Cardiovascular Systems, INC | Atherectomy device and method |
4986807, | Jan 23 1989 | SciMed Life Systems, INC | Atherectomy cutter with radially projecting blade |
4998539, | Dec 18 1987 | Method of using removable endo-arterial devices to repair detachments in the arterial walls | |
5002560, | Sep 08 1989 | ADVANCED CARDIOVASCULAR SYSTEMS, INC , P O BOX 58167 SANTA CLARA, CA 95052-8167, A CORP OF CA | Expandable cage catheter with a rotatable guide |
5007896, | May 14 1984 | Surgical Systems & Instruments, Inc.; SURGICAL SYSTEMS & INSTRUMENTS, INC , A CORP OF IL | Rotary-catheter for atherectomy |
5007917, | Mar 08 1990 | STRYKER CORPORATION, A CORP OF MI | Single blade cutter for arthroscopic surgery |
5011488, | Dec 07 1988 | MICROVENTION, INC , A CORP OF DE | Thrombus extraction system |
5019088, | Nov 07 1989 | SciMed Life Systems, INC | Ovoid atherectomy cutter |
5041126, | Mar 13 1987 | Cook Incorporated | Endovascular stent and delivery system |
5053008, | Nov 21 1990 | Intracardiac catheter | |
5053044, | Jan 11 1988 | Advanced Cardiovascular Systems, INC | Catheter and method for making intravascular incisions |
5071407, | Apr 12 1990 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Radially expandable fixation member |
5071425, | Sep 12 1988 | Advanced Cardiovascular Systems, INC | Atherectomy catheter and method of forming the same |
5085662, | Nov 13 1989 | Boston Scientific Scimed, Inc | Atherectomy catheter and related components |
5087265, | Feb 17 1989 | SUMMERS, DAVID P | Distal atherectomy catheter |
5100423, | Aug 21 1990 | Medical Engineering & Development Institute, Inc.; MED INSTITUTE MEDICAL ENGINEERING AND DEVELOPMENT INSTITUTE, INC , A CORP OF IN | Ablation catheter |
5100424, | May 21 1990 | Boston Scientific Scimed, Inc | Intravascular catheter having combined imaging abrasion head |
5100425, | Sep 14 1989 | MEDICAL INNOVATIVE TECHNOLOGIES R&D LIMITED PARTNERSHIP, A LIMITED PARTNERSHIP OF MD | Expandable transluminal atherectomy catheter system and method for the treatment of arterial stenoses |
5102415, | Sep 06 1989 | Apparatus for removing blood clots from arteries and veins | |
5104399, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Artificial graft and implantation method |
5108419, | Aug 16 1990 | EVI Corporation | Endovascular filter and method for use thereof |
5133733, | Nov 28 1989 | Cook Medical Technologies LLC | Collapsible filter for introduction in a blood vessel of a patient |
5135531, | May 14 1984 | Surgical Systems & Instruments, Inc. | Guided atherectomy system |
5152771, | Dec 31 1990 | LOUISIANA STATE UNIVERSITY AND AGRICULTURAL MECHANICAL COLLEGE | Valve cutter for arterial by-pass surgery |
5152777, | Jan 25 1989 | Uresil, LLC | Device and method for providing protection from emboli and preventing occulsion of blood vessels |
5160342, | Aug 16 1990 | Evi Corp. | Endovascular filter and method for use thereof |
5171233, | Apr 25 1990 | EV3 INC | Snare-type probe |
5190546, | Oct 14 1983 | Medtronic, Inc | Medical devices incorporating SIM alloy elements |
5195955, | Nov 14 1989 | Don Michael International, LLC | Device for removal of embolic debris |
5224953, | May 01 1992 | The Beth Israel Hospital Association | Method for treatment of obstructive portions of urinary passageways |
5306286, | Jun 25 1987 | Duke University | Absorbable stent |
5314444, | Mar 13 1987 | Cook Incorporated | Endovascular stent and delivery system |
5314472, | Oct 01 1991 | Cook Medical Technologies LLC | Vascular stent |
5318576, | Dec 16 1992 | Endovascular surgery systems | |
5329942, | Aug 14 1990 | Cook Medical Technologies LLC | Method for filtering blood in a blood vessel of a patient |
5330484, | Aug 16 1990 | Cook Medical Technologies LLC | Device for fragmentation of thrombi |
5330500, | Oct 17 1991 | Self-expanding endovascular stent with silicone coating | |
5350398, | May 13 1991 | Self-expanding filter for percutaneous insertion | |
5354310, | Mar 22 1993 | Cordis Corporation | Expandable temporary graft |
5356423, | Jan 04 1991 | AMS Research Corporation | Resectable self-expanding stent |
5366464, | Jul 22 1993 | Atherectomy catheter device | |
5366473, | Aug 18 1992 | Ultrasonic Sensing and Monitoring Systems, Inc. | Method and apparatus for applying vascular grafts |
5370657, | Mar 26 1993 | Lifescreen Sciences LLC | Recoverable thrombosis filter |
5370683, | Mar 25 1992 | Cook Medical Technologies LLC | Vascular stent |
5376100, | Dec 23 1991 | Cordis Corporation | Rotary atherectomy or thrombectomy device with centrifugal transversal expansion |
5383887, | Dec 28 1992 | B BRAUN CELSA | Device for selectively forming a temporary blood filter |
5383892, | Nov 08 1991 | MEADOX MEDICALS, INC | Stent for transluminal implantation |
5383926, | Nov 23 1992 | Children's Medical Center Corporation | Re-expandable endoprosthesis |
5387235, | Oct 25 1991 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
5395349, | Dec 13 1991 | LifeShield Sciences LLC | Dual valve reinforced sheath and method |
5397345, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Artificial graft and implantation method |
5405377, | Feb 21 1992 | LIFEPORT SCIENCES LLC | Intraluminal stent |
5409454, | Feb 19 1991 | Arrow International, Inc | Apparatus for atherectomy |
5415630, | Jul 17 1991 | Method for removably implanting a blood filter in a vein of the human body | |
5419774, | Jul 13 1993 | Boston Scientific Scimed, Inc | Thrombus extraction device |
5421832, | Dec 13 1989 | Filter-catheter and method of manufacturing same | |
5423742, | Sep 12 1989 | Schneider Europe | Method for the widening of strictures in vessels carrying body fluid |
5423885, | Jan 31 1992 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
5425765, | Jun 25 1993 | Surgical bypass method | |
5443498, | Oct 19 1991 | Cook Medical Technologies LLC | Vascular stent and method of making and implanting a vacsular stent |
5449372, | Oct 09 1990 | Boston Scientific Scimed, Inc | Temporary stent and methods for use and manufacture |
5456667, | May 20 1993 | Advanced Cardiovascular Systems, Inc. | Temporary stenting catheter with one-piece expandable segment |
5462529, | Sep 29 1993 | Advanced Cardiovascular Systems, INC | Adjustable treatment chamber catheter |
5476104, | Aug 01 1994 | Cervical and endometrial biopsy instrument | |
5484418, | Dec 13 1991 | LifeShield Sciences LLC | Dual valve reinforced sheath and method |
5507767, | Jan 15 1992 | Cook Medical Technologies LLC | Spiral stent |
5512044, | Oct 11 1994 | Embolic cutting catheter | |
5527354, | Jun 28 1991 | Cook Medical Technologies LLC | Stent formed of half-round wire |
5536242, | Jul 01 1994 | Boston Scientific Scimed, Inc | Intravascular device utilizing fluid to extract occlusive material |
5540707, | Nov 13 1992 | Boston Scientific Scimed, Inc | Expandable intravascular occlusion material removal devices and methods of use |
5549626, | Dec 23 1994 | New York Society for the Ruptured and Crippled Maintaining the Hospital for Special Surgery | Vena caval filter |
5562724, | Dec 15 1993 | Cook Medical Technologies LLC | Endovascular graft prosthesis and an implantation method for such a prosthesis |
5569274, | Feb 22 1993 | Heartport, Inc | Endoscopic vascular clamping system and method |
5569275, | Jun 11 1991 | Tyco Healthcare Group LP | Mechanical thrombus maceration device |
5634897, | Oct 08 1993 | LAKE REGION MANUFACTURING COMPANY, INC | Rheolytic occlusion removal catheter system and method |
5658296, | Nov 21 1994 | Boston Scientific Scimed, Inc | Method for making surgical retrieval baskets |
5662671, | Jul 17 1996 | Boston Scientific Scimed, Inc | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
5669933, | Jul 17 1996 | C R BARD, INC | Removable embolus blood clot filter |
5695519, | Nov 30 1995 | SUMMERS, DAVID P | Percutaneous filter for carotid angioplasty |
5709704, | Nov 30 1994 | Lifescreen Sciences LLC | Blood clot filtering |
5720764, | Jun 11 1994 | Vena cava thrombus filter | |
5728066, | Dec 10 1996 | Injection systems and methods | |
5746758, | Nov 09 1992 | EVI Corporation | Intra-artery obstruction clearing apparatus and methods |
5749848, | Nov 13 1995 | Boston Scientific Scimed, Inc | Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment |
5769816, | Nov 07 1995 | Edwards Lifesciences Corporation | Cannula with associated filter |
5779716, | Oct 06 1995 | Advanced Cardiovascular Systems, INC | Device for removing solid objects from body canals, cavities and organs |
5792300, | Jan 21 1994 | Cordis Corporation | Perfusion catheter and striped extrusion method of manufacture |
5795322, | Apr 09 1996 | Cordis Corporation | Catheter with filter and thrombus-discharge device |
5797952, | Jun 21 1996 | LocalMed, Inc.; LOCALMED, INC | System and method for delivering helical stents |
5800457, | Mar 05 1997 | Intravascular filter and associated methodology | |
5800525, | Jun 04 1997 | ST JUDE MEDICAL ATG, INC | Blood filter |
5810874, | Feb 22 1996 | Cordis Corporation | Temporary filter catheter |
5814064, | Mar 06 1997 | SciMed Life Systems, Inc. | Distal protection device |
5817102, | May 08 1992 | Schneider (USA) Inc. | Apparatus for delivering and deploying a stent |
5827324, | Mar 06 1997 | Boston Scientific Scimed, Inc | Distal protection device |
5833644, | May 20 1996 | Medtronic Ave, Inc | Method for emboli containment |
5833650, | Jun 05 1995 | KARDIAMETRICS, LLC | Catheter apparatus and method for treating occluded vessels |
5846260, | May 08 1997 | Edwards Lifesciences Corporation | Cannula with a modular filter for filtering embolic material |
5876367, | Dec 05 1996 | Edwards Lifesciences Corporation | Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries |
5893867, | Nov 06 1996 | Medtronic Ave, Inc | Stent positioning apparatus and method |
5895399, | Jul 17 1996 | Boston Scientific Scimed, Inc | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
5902263, | Feb 12 1997 | Prolifix Medical, Inc. | Apparatus and method for removing stenotic material from stents |
5906618, | Mar 20 1997 | Vanderbilt University | Microcatheter with auxiliary parachute guide structure |
5908435, | Oct 23 1997 | ENDOVENTION, INC | Expandable lumen device and method of use |
5910154, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment |
5911734, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
5916193, | Jul 16 1991 | Edwards Lifesciences, LLC | Endovascular cardiac venting catheter and method |
5925016, | Sep 27 1995 | MEDTRONIC AVE INC | Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure |
5925060, | Mar 13 1998 | B BRAUN CELSA; Scion Medical Limited | Covered self-expanding vascular occlusion device |
5925062, | Sep 02 1992 | Board of Regents, The University of Texas System | Intravascular device |
5925063, | Sep 26 1997 | Endotex Interventional Systems, Inc | Coiled sheet valve, filter or occlusive device and methods of use |
5928203, | Oct 01 1997 | Navilyst Medical, Inc | Medical fluid infusion and aspiration |
5928218, | Dec 16 1994 | Medical material removal method and associated instrumentation | |
5934284, | Aug 18 1989 | Endovascular Instruments, Inc | Method for increasing blood flow in vessels |
5935139, | May 03 1996 | Boston Scientific Corporation | System for immobilizing or manipulating an object in a tract |
5938645, | May 24 1995 | Boston Scientific Scimed, Inc | Percutaneous aspiration catheter system |
5941869, | Feb 12 1997 | PROLIFIX MEDICAL, INC | Apparatus and method for controlled removal of stenotic material from stents |
5941896, | Sep 08 1997 | Montefiore Hospital and Medical Center | Filter and method for trapping emboli during endovascular procedures |
5947995, | Jun 06 1997 | ENDOVENTION, INC | Method and apparatus for removing blood clots and other objects |
5951585, | May 23 1995 | Lifescreen Sciences LLC | Vena cava delivery system |
5954745, | May 16 1997 | Boston Scientific Scimed, Inc | Catheter-filter set having a compliant seal |
5976172, | Jul 03 1996 | Cordis Corporation | Retractable temporary vena cava filter |
5989210, | Feb 06 1998 | MEDRAD, INC | Rheolytic thrombectomy catheter and method of using same |
5989271, | Nov 09 1998 | MEDRAD, INC | Flexible tip rheolytic thrombectomy catheter and method of constructing same |
5989281, | Nov 07 1995 | Edwards Lifesciences Corporation | Cannula with associated filter and methods of use during cardiac surgery |
5993469, | Jul 17 1996 | Boston Scientific Scimed, Inc | Guiding catheter for positioning a medical device within an artery |
5997557, | May 27 1997 | Boston Scientific Scimed, Inc | Methods for aortic atherectomy |
6001118, | Mar 06 1997 | Boston Scientific Scimed, Inc | Distal protection device and method |
6007557, | Apr 29 1998 | Edwards Lifesciences Corporation | Adjustable blood filtration system |
6010522, | Jul 17 1996 | Boston Scientific Scimed, Inc | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
6013085, | Nov 07 1997 | Method for treating stenosis of the carotid artery | |
6027520, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
6051014, | Oct 13 1998 | Edwards Lifesciences Corporation | Percutaneous filtration catheter for valve repair surgery and methods of use |
6053932, | Mar 06 1997 | Boston Scientific Scimed, Inc | Distal protection device |
6059814, | Jun 02 1997 | Medtronic Ave, Inc | Filter for filtering fluid in a bodily passageway |
6068645, | Jun 07 1999 | IRVINE BIOMEDICAL, INC | Filter system and methods for removing blood clots and biological material |
6086605, | Apr 16 1997 | Edwards Lifesciences Corporation | Cannula with associated filter and methods of use during cardiac surgery |
6129739, | Jul 30 1999 | Incept LLC | Vascular device having one or more articulation regions and methods of use |
6142987, | Aug 03 1999 | Boston Scientific Scimed, Inc | Guided filter with support wire and methods of use |
6152946, | Mar 05 1998 | Boston Scientific Scimed, Inc | Distal protection device and method |
6165200, | May 08 1997 | Boston Scientific Scimed, Inc | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
6168579, | Aug 04 1999 | Boston Scientific Scimed, Inc | Filter flush system and methods of use |
6171327, | Feb 24 1999 | Boston Scientific Scimed, Inc | Intravascular filter and method |
6179851, | Jul 17 1996 | Boston Scientific Scimed, Inc | Guiding catheter for positioning a medical device within an artery |
6179859, | Jul 16 1999 | Boston Scientific Scimed, Inc | Emboli filtration system and methods of use |
6179861, | Jul 30 1999 | Incept LLC | Vascular device having one or more articulation regions and methods of use |
6203561, | Jul 30 1999 | Incept LLC | Integrated vascular device having thrombectomy element and vascular filter and methods of use |
6214026, | Jul 30 1999 | Incept LLC | Delivery system for a vascular device with articulation region |
DE2821048, | |||
DE3417738, | |||
DE4030998, | |||
EP200688, | |||
EP293605, | |||
EP411118, | |||
EP427429, | |||
EP437121, | |||
EP472334, | |||
EP472368, | |||
EP533511, | |||
EP655228, | |||
EP686379, | |||
EP696477, | |||
EP737450, | |||
EP743046, | |||
EP759287, | |||
EP771549, | |||
EP784988, | |||
EP852132, | |||
EP934729, | |||
FR2580504, | |||
FR2643250, | |||
FR2666980, | |||
FR2768326, | |||
GB2020557, | |||
JP8187294, | |||
RE33569, | May 19 1989 | Advanced Cardiovascular Systems, INC | Single lumen atherectomy catheter device |
SU764684, | |||
WO7655, | |||
WO9054, | |||
WO16705, | |||
WO49970, | |||
WO9203097, | |||
WO9414389, | |||
WO9424946, | |||
WO9601591, | |||
WO9610375, | |||
WO9619941, | |||
WO9623441, | |||
WO9633677, | |||
WO9727808, | |||
WO9742879, | |||
WO9802084, | |||
WO9802112, | |||
WO9823322, | |||
WO9833443, | |||
WO9834673, | |||
WO9836786, | |||
WO9838920, | |||
WO9838929, | |||
WO9839046, | |||
WO9839053, | |||
WO9846297, | |||
WO9847447, | |||
WO9849952, | |||
WO9850103, | |||
WO9851237, | |||
WO9855175, | |||
WO9909895, | |||
WO9922673, | |||
WO9923976, | |||
WO9925252, | |||
WO9930766, | |||
WO9940964, | |||
WO9942059, | |||
WO9944542, | |||
WO9945510, | |||
WO9955236, | |||
WO9958068, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 29 1999 | Incept LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Feb 19 2005 | 4 years fee payment window open |
Aug 19 2005 | 6 months grace period start (w surcharge) |
Feb 19 2006 | patent expiry (for year 4) |
Feb 19 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 19 2009 | 8 years fee payment window open |
Aug 19 2009 | 6 months grace period start (w surcharge) |
Feb 19 2010 | patent expiry (for year 8) |
Feb 19 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 19 2013 | 12 years fee payment window open |
Aug 19 2013 | 6 months grace period start (w surcharge) |
Feb 19 2014 | patent expiry (for year 12) |
Feb 19 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |