A semiconductor package and a method for fabricating the package are provided. The package includes multiple substrates in a stacked configuration, each having a semiconductor die mounted thereon. Each substrate includes matching patterns of external contacts and contact pads formed on opposing sides of the substrate, and interconnected by interlevel conductors through the substrate. In the package, the external contacts on a first substrate are bonded to the contact pads on an adjacent second substrate, so that all of the dice in the package are interconnected. The fabrication process includes forming multiple substrates on a panel, mounting the dice to the substrates, stacking and bonding the panels to one another, and then separating the substrates from the stacked panels to form the packages.
|
11. A semiconductor package comprising:
a panel comprising a plurality of substrates configured for separation into separate packages, each substrate comprising a plurality of conductors and first contacts on a first side thereof, a plurality of second contacts on an opposing second side thereof having a same pattern as the first contacts, a plurality of holes through the substrate at least partially filled with a conductive material electrically connecting the first contacts and the second contacts, a first cavity on the first side, a second cavity on the second side, and an opening between the first cavity and the second cavity; a semiconductor die in the second cavity of each substrate; a plurality of wires extending through the opening and bonded to the conductors and to the bond dads of each substrate; and an encapsulant within the first cavity encapsulating the wires of each substrate.
20. A semiconductor package comprising:
a substrate comprising a first side and an opposing second side; a plurality of first contacts on the first sides a first cavity on the first side; a plurality of pads within the first cavity in electrical communication with the first contacts; a die mounting cavity on the second side having a die mounted thereto; an opening in the substrate extending from the first cavity to the die mounting cavity; a plurality of electrical paths formed through the opening between the die and the pads; a plurality of second contacts on the second side having a pattern substantially matching the first contacts; a plurality of holes in the substrate at least partially filled with a conductive material electrically connecting the first contacts and the second contacts; a planarized encapsulant within the first cavity encapsulating the electrical paths; and a second substrate substantially identical to the substrate and having a second die mounted thereto, the second substrate stacked on the substrate with the second contacts thereon bonded to the first contacts on the substrate.
6. A semiconductor package comprising:
a first substrate comprising a plurality of conductors and first contacts on a first side thereof, a plurality of second contacts on an opposing second side thereof having a same pattern as the first contacts, a plurality of holes through the substrate at least partially filled with a conductive material electrically connecting the first contacts and the second contacts, a first cavity on the first side, a second cavity on the second side, and an opening between the first cavity and the second cavity; a first semiconductor die in the second cavity comprising a plurality of bond pads aligned with the opening; a plurality of electrical paths extending through the opening in electrical communication with the conductors and the bond pads; an encapsulant within the first cavity substantially planar to the first side encapsulating the electrical paths; and a second substrate and a second semiconductor die substantially identical to the first substrate and the first semiconductor die stacked on the first substrate with the second contacts on the second substrate bonded to the first contacts on the first substrate.
1. A semiconductor package comprising:
a substrate comprising a plurality of first contacts on a first side thereof, a plurality of second contacts on an opposing second side thereof having a same pattern as the first contacts, a plurality of holes through the substrate at least partially filled with a conductive material electrically connecting the first contacts and the second contacts, a first cavity on the first side, a plurality of first pads within the first cavity in electrical communication with the first contacts, a second cavity on the second side, and an opening between the first cavity and the second cavity; a semiconductor die in the second cavity comprising a plurality of second dads aligned with the opening; a plurality of wires extending through the opening and bonded to the first pads and the second dads; an encapsulant within the first cavity encapsulating the wires; and a second substrate having a substantially same configuration as the substrate with a second semiconductor die mounted thereon, the second substrate stacked on the substrate with the second contacts on the second substrate bonded to the first contacts on the substrate.
14. A semiconductor package comprising:
a first substrate comprising a first side and an opposing second side: a first cavity in the first side; a second cavity in the second side; a plurality of first contacts on the first side in electrical communication with a plurality of first bond pads within the first cavity; an opening in the substrate extending from the first cavity to the second cavity; a first die in the second cavity comprising a plurality of second bond pads aligned with the opening; a plurality of wires within the first cavity extending through the opening and bonded to the first bond pads and to the second bond pads; an encapsulant within the first cavity substantially planar to the first side encapsulating the wires; a plurality of second contacts on the second side; a plurality of holes in the substrate at least partially filled with a conductive material electrically connecting the first contacts and the second contacts; and a second substrate having a substantially same configuration as the first substrate and having a second die mounted thereto, the second substrate stacked on the first substrate with the second contacts thereon bonded to the first contacts on the first substrate.
2. The package of
3. The package of
4. The package of
7. The package of
8. The package of
9. The package of
12. The package of
15. The package of
16. The package of
17. The package of
18. The package of
23. The package of
|
This invention relates generally to semiconductor packaging. More particularly, this invention relates to an improved semiconductor package having a stacked configuration and containing multiple semiconductor dice, and to a method for fabricating the package.
Semiconductor dice or chips are typically contained in semiconductor packages. This is sometimes referred to as the first level of packaging. The package is required to support, protect, and dissipate heat from a die, and to provide a lead system for power and signal distribution to the die. The package is also useful for performing burn-in and full functionality testing of the die.
In general, conventional plastic and ceramic packages incorporate several common elements. These common elements include a sealed package enclosure, a die attachment area, bond wires for establishing electrical communication with bond pads on the die, and a lead system for the package. One shortcoming of a conventional semiconductor package is that a peripheral outline (i.e., footprint) of the package is typically much larger than that of the die contained within the package (e.g., 10× or more). In addition, the manufacturing processes for conventional packages are relatively complicated, and require large capital expenditures.
Another type of package is referred to as a ball grid array (BGA) package. With this type of package, a substrate formed of a glass filled resin, or similar material, includes patterns of conductors in electrical communication with arrays of external contacts. One or more dice can be wire bonded to the conductors, and protected by a plastic material, such as a glob top encapsulant. A ball grid array package has a peripheral outline that is on the order of two to eight times that of the die. While the size is an improvement over conventional packages, this type of package also requires relatively complicated manufacturing processes, and has not received widespread acceptance in the industry.
Yet another type of package is referred to as a chip scale package. Typically, a chip scale package includes a substrate bonded to a face of a single die. The substrate includes external contacts for the package, such as solder balls in a ball grid array (BGA), or in a fine ball grid array (FBGA). The substrate for a chip scale package can comprise a flexible material, such as a polymer tape, or a rigid material, such as silicon, ceramic, or a glass filled resin. A chip scale package has a peripheral outline that is about the same as that of the die contained within the package (e.g., 1.2×). However, volume manufacture of chip scale packages has proven to be difficult. In particular forming reliable electrical connections between the die and substrate requires specialized equipment and techniques.
The present invention is directed to a semiconductor package that is simpler in construction, and cheaper to volume manufacture than any of the above conventional packages. In addition, the package has a relatively small peripheral outline, but is designed for fabrication in a stacked configuration, in which multiple dice can be contained in the same package.
In accordance with the present invention, a stacked semiconductor package, and a method for fabricating the package are provided. The package comprises a plurality of separate substrates, each having a semiconductor die mounted thereon, in electrical communication with external contacts and contact pads on opposing sides of the substrate. The substrates are configured for stacking to one another with the external contacts on a first substrate, bonded to the contact pads on an adjacent second substrate. In addition, the substrates are configured to provide a small outline package but with multiple semiconductor dice packaged in a high density configuration.
In an illustrative embodiment a first side of a substrate includes a wire bonding cavity having conductors in electrical communication with a pattern of contact pads A second side of the substrate includes a die mounting cavity, and a matching pattern of external contacts. An interconnect opening is formed through the substrate to provide access for wire bonding to bond pads on the die, and to the conductors on the first side of the substrate. In addition, an encapsulant can be formed within the wire bonding cavity to encapsulate and protect the wire bonds and associated wires. Preferably the encapsulant and the wire bonding cavity are configured to provide a planar surface to facilitate stacking of the substrate. In a similar manner, the die and the die mounting cavity can be configured to provide a planar surface for stacking of the substrate.
The substrate also includes interlevel conductors for electrically interconnecting the contact pads on the first side of the substrate to the external contacts on the second side of the substrate. The interlevel conductors comprise holes through the substrate and containing a metal, or a conductive elastomeric material.
The external contacts are configured for bonding to the contact pads of the adjacent stacked substrate. For example, the external contacts can be formed of a bondable material such as a solder, and the contact pads can be formed of a solder wettable material such as copper. Alternately, the external contacts can comprise a conductive elastomer deposited as a viscous paste, and then cured to form an electrically conductive bond with the contact pads. A conductive elastomer can also be placed between the external contacts and contact pads to form a conductive bond therebetween.
The method of fabrication can be performed using panels containing multiple substrates. Exemplary materials for fabricating the panels include glass filled resins, plastics, ceramic and silicon. Following fabrication of the panels, semiconductor dice can be adhesively bonded to the die mounting cavities on the first sides of the panels, and then wire bonded to the conductors on the second sides of the panels. Following encapsulation of the wire bonds, two or more panels can be stacked to one another, with the external contacts and contact pads on adjacent stacked panels in physical contact. Using a bonding process, such as a solder reflow, or a conductive elastomer curing process, the external contacts and contact pads on the adjacent stacked panels can then be bonded to one another. Following bonding, the stacked panels can be separated into separate packages using a cutting, shearing or breaking process.
FIG. 1 is a schematic plan view of a panel suitable for fabricating semiconductor packages in accordance with the method of the invention;
FIGS. 2A-2D are schematic cross sectional views illustrating steps in the method of the invention;
FIG. 3 is a schematic plan view of a semiconductor package taken along section line 3--3 of FIG. 2C; and
FIG. 4 is a schematic bottom view of the semiconductor package taken along section line 4--4 of FIG. 2C.
Referring to FIG. 1, a panel 10 includes a plurality of substrates 12 adapted to construct stacked semiconductor packages 14 (FIG. 2D) in accordance with the invention. In the illustrative embodiment the panel 10 contains thirty six substrates 12. However, the panel 10 can be formed with any convenient number of substrates 12. The substrates 12 can be formed on the panel using processes to be hereinafter described.
In the illustrative embodiment, the panel 10 comprises a glass filled resin such as an epoxy glass (FR-4), a polyimide glass or a cyanate-glass material. In addition to being electrically insulating and structurally rigid, these materials can be laminated, cured, and then metallized using deposition and photolithography processes. Also, required features can be punched or machined using processes employed in the fabrication of printed circuit boards (PCB), and other electronic devices.
Alternately, rather than the above materials, the panel 10 can comprise an electronics grade plastic, such as polyetherimide (PES), polyethersulfone (PES), polyether-ether ketone (PEEK), polyphenylene sulfide (PPS), or a liquid crystal polymer (LCP). With these plastics the panel 10 and substrates 12 can be shaped and metallized using a molding process such as 3-D injection molding.
Alternately, the panel 10 can comprise ceramic. With ceramic, a ceramic lamination and metallization process can be used to construct the panel 10 and substrates 12.
As another alternative, the panel 10 can comprise silicon, or other semiconducting material. With silicon, etching, micromachining, and metallization processes used for semiconductor circuit fabrication can be used to construct the panel 10 and substrates 12. One advantage of silicon is that a coefficient of thermal expansion (CTE) of the substrates 12 will exactly match the CTE of a silicon die.
The panel 10 can include boundary lines 16 for defining the peripheral outlines of the substrates 12. The boundary lines 16 can be configured to facilitate separation of the substrates 12 from the panel 10. For example, to facilitate separation, the boundary lines 16 can include perforations through the panel 10, similar to perforations for separating crackers. Alternately, the boundary lines 16 can be similar to scribe lines on semiconductor wafers, such as areas wherein the panel 10 is adapted to be cut, or sheared, using a suitable mechanism, such as a saw. The boundary lines 16 can also be omitted and the separation process used to define the peripheral outlines of the substrates 12.
Referring to FIGS. 2A-2D, steps in the method for fabricating the stacked semiconductor package 14 (FIG. 2D) are illustrated. For simplicity, only a single substrate 12 is illustrated in FIGS. 2A-2D. However, it is to be understood that each of the steps is performed on the panel 10 (FIG. 1) containing multiple substrates 12.
As shown in FIG. 2A, the substrate 12 includes three separate layers 12a, 12b, 12c, that have been pre-formed and then laminated to form a unitary structure. A first substrate layer 12a includes a first side 22 of the substrate 12. A second substrate layer 12b forms a middle portion of the substrate 12. A third substrate layer 12c includes a second side 24 of the substrate. The first side 22 and the second side 24 of the substrate 12 are generally planar opposing surfaces which are substantially parallel to one another.
By way of example, a representative thickness "T" (FIG. 2A) of the substrate 12 can be from 0.5 mm to 3.0 mm. A representative length "L" (FIG. 4) of the substrate 12 can be from 1 mm to 50 mm. A representative width "W" (FIG. 4) of the substrate 12 can be from 1 mm to 50 mm.
A die mounting cavity 18 is formed in the substrate 12 proximate to the second side 24 of the substrate 12. The die mounting cavity 18 is configured to receive a semiconductor die 20 (FIG. 2B). The die mounting cavity 18 can have a peripheral outline that corresponds to a peripheral outline of the die 20. In the illustrative embodiment, the peripheral outline is rectangular, but can also be square or other polygonal shape.
The die mounting cavity 18 can be slightly larger than the die 20 (e.g., a few mils on each side) to permit insertion of the die 20 into the cavity 18. A representative size of the die mounting cavity 18 along a first side S1 (FIG. 2A) can be from 0.3 mm to 12.5 mm. A representative size of the die mounting cavity along a second side "S2" (FIG. 3) can be from 0.3 mm to 12.5 mm. In addition, a depth "D" (FIG. 2A) of the die mounting cavity 18 can be approximately equal to a thickness of the die 20 to preserve a planarity of the second side 24 of the substrate 22 with the die 20 mounted to the cavity 18. A representative depth "D" for the die mounting cavity 18 can be from 0.10 mm to 1.0 mm. Still further, outside edges of the die mounting cavity 18 can be chamfered, or radiused, to facilitate insertion of the die 20 into the cavity 18.
The substrate 12 also includes a wire bonding cavity 26 formed in the substrate 12 proximate to the first side 22 of the substrate 12. The wire bonding cavity 26 is sized to protect bond wires 28 (FIG. 2C) or a similar electrical path. Additionally, the wire bonding cavity 26 is configured to contain an encapsulant 30 that will subsequently be deposited into the wire bonding cavity 26. In the illustrative embodiment, the wire bonding cavity 26 has a peripheral outline and a depth that are about the same as the die mounting cavity 18.
The substrate 12 also includes an interconnect opening 32 formed through the substrate 12 from the die mounting cavity 18 to the wire bonding cavity 26. The interconnect opening 32 is configured to provide access to the die 20 (FIG. 2B) for wire bonding the bond wires 28 to die bond pads 34 (FIG. 2B). As shown in FIG. 3, the interconnect opening 32 has a generally rectangular shaped peripheral configuration. In addition, the interconnect opening 32 is located to align with the die bond pads 34, when the die 20 is mounted within the die mounting cavity 18. A representative width "w" (FIG. 3) of the interconnect opening 32 can be from 0.2 mm to 45 mm. A representative thickness "T1" of the portion of the substrate 12 which forms the interconnect opening 32 can be from 0.1 mm to 0.5 mm.
With the substrate 12 comprising a glass resin, or a plastic material, the die mounting cavity 18, the wire bonding cavity 26 and the interconnect opening 32 can be formed with required sizes and shapes using an injection molding process. With the substrate 12 comprising a ceramic, a lamination process can be used to define the die mounting cavity 18, the wire bonding cavity 26 and the interconnect opening 26. With the substrate 12 comprising silicon, an etch process can be used to etch the die mounting cavity 18, the wire bonding cavity 26 and the interconnect opening 32. One suitable wet etchant for etching silicon is a solution of KOH and H2 O. This type of etching is also known as bulk micro machining.
The substrate 12 also includes patterns of conductors 36 formed on the first side 22. As shown in FIG. 2A, the conductors 36 extend into the wire bonding cavity 26. In addition, the conductors 36 include bond pads 38 to which the bond wires 28 are wire bonded. Also, the conductors 36 are in electrical communication with contact pads 40 on the first side 22 of the substrate, with interlevel conductors 44 through the substrate 12, and with external contacts 42 on the second side 24 of the substrate 12. FIG. 3 illustrates an exemplary layout for the conductors 36, the bond pads 38 and the contact pads 40.
As shown in FIG. 2D, the contact pads 40 are adapted for bonding to external contacts 42 on an adjacent substrate 12A (FIG. 2D). The adjacent substrate 12A has a configuration that is substantially the same as the configuration of the substrate 12. As will be further explained, a bonding process, such as reflow of a solder material, or curing of a conductive elastomer material, can be used to bond the external contacts 42 on the adjacent substrate 12A to the contact pads 40 on the substrate 12. With the adjacent external contacts 42 comprising a solder material, the contact pads 40 preferably comprise a solder wettable material such as copper. In order to facilitate the bonding process, a pattern of the contact pads 40 on the first side 22 of the substrate 12, exactly matches a pattern of the external contacts on the second side 24 of the substrate 12.
The conductors 36, bond pads 38 and contact pads 40 can be fabricated using a conventional metallization process. For example, a metal layer, such as copper, can be formed on the first side 22 of the substrate 12 using foil lamination, electrolytic plating, electroless plating, or CVD deposition. A resist layer can then be deposited on the metal layer, and patterned using photolithography to form a resist mask. The resist mask can then be used to subtractively etch the metal layer to form the conductors 36, the bond pads 38 and the contact pads 40. Alternately, the conductors 36, bond pads 38 and contact pads 40 can be formed using an additive process in which a resist mask is formed and then used to plate a metal such as copper in the required pattern. A seed or nucleation step can also be employed to prep the surface of the substrate 12 for plating.
As shown in FIG. 2A, the interlevel conductors 44 electrically connect the contact pads 40 on the first side 22 of the substrate 12, to the external contacts 42 on the second side 24 of the substrate 12. The interlevel conductors 44 comprise holes 46 in the substrate 12 which contain an electrically conductive material. Depending on the material of the substrate 12, the holes 46 for the interlevel conductors 44 can be formed using a suitable process such as drilling, punching, molding or etching. Preferably, formation of the holes 46 is prior to formation of the conductors 36.
The holes 46 for the interlevel conductors 44 can also be formed using a laser machining process. A suitable laser machining apparatus is manufactured by General Scanning of Sommerville, Mass. and is designated a model no. 670-W. A representative diameter of the holes 46 is from 10 μm to 2 mils or greater. A representative laser fluence for forming the holes 46 with the substrate 12 having a thickness of about 28 mils is from 2 to 10 watts/per hole at a pulse duration of 20-25 ns and at a repetition rate of up to several thousand per second. The wavelength of the laser beam can be a standard infrared or green wavelength (e.g., 1064 nm-532 nm).
Following formation of the holes 46, a conductive material can be deposited in the holes 46. One method of deposition comprises plating a metal, such as copper or nickel, on the walls of the holes 46 using an electrolytic or electroless plating process. A plating process can also be used to completely fill the holes 46 with a metal. Alternately, rather than a metal, the holes 46 can be at least partially filled with an isotropic conductive elastomer, such as epoxy or silicone with embedded metal particles. Suitable conductive elastomers are sold by A. I. Technology, Trenton, N.J.; Sheldahl, Northfield, Minn.; and 3M, St. Paul, Minn. In this case, a squeegee or similar mechanism can be used to force the viscous conductive elastomer into the holes 46. Following deposition, the viscous conductive elastomer can be cured by heating to a required temperature for a required time period.
Plating, or filling, of the holes 46 to form the interlevel conductors 44 can be either prior to or subsequent to formation of the contact pads 40 and the conductors 36. In either case, the conductive material within the holes 46 must be in electrical contact with the contact pads 40 and with the conductors 36. Also, depending on the material and deposition process, the contact pads 40 can comprise a same material as the conductive material which is deposited in the holes 46 (e.g., copper), and can be formed using the same process (e.g., plating). Alternately, the contact pads 40 and interlevel conductors 44 can be different materials formed using different processes. For example, the contact pads 40 can be formed first using a metallization process, and a conductive elastomeric material placed in the holes 46 from the second side 24 of the substrate 12.
Still referring to FIG. 2A, the interlevel conductors 44 can include pads 48 for attaching the external contacts 42 to the second side 24 of the substrate 12. The pads 48 provide a surface for mounting the external contacts 42. Any of the deposition processes previously described for forming the contact pads 40, can be used to form the pads 48 for the external contacts 42. As with the contact pads 40, the pads 48 can be a same material as the interlevel conductors 44, and can be formed by the same deposition process. Alternately, the pads 48 can be a different material than the interlevel conductors 44, and can be formed by a different deposition process. In addition, the pads 48 can comprise different layers of material, such as an underlying layer formed of a same material as the interlevel conductors 44, and an outer layer configured to provide adherence for the external contacts 42.
In the illustrative embodiment, the external contacts 42 comprise solder, a metal, or a conductive elastomeric bumps formed on the pads 48. Preferably the external contacts 42 comprise a solder alloy such as 95% Pb/5% Sn, 60% Pb/40% Sn, 63% In/37% Sn, or 62% Pb/36% Sn/2% Ag. This allows a solder reflow to be performed to reflow and bond the external contacts 42 to the contact pads 40 on an adjacent substrate 12. The external contacts 42 can also be formed of a metal such as nickel, copper, beryllium copper, alloys of nickel, alloys of copper, alloys of beryllium copper, nickel-cobalt-iron alloys and iron-nickel alloys. In this case a welding, brazing, or laser reflow process can be used to bond the external contacts 42 to the contact pads 40 on the adjacent substrate 12.
One method for attaching the external contacts 42 to the pads 48 is by bonding pre-fabricated solder or metal balls to the pads 48. For example, pre-fabricated balls are manufactured by Mitsui Comtek Corp. of Saratoga, Calif. under the trademark "SENJU SPARKLE BALLS". The balls can be attached to the pads 48 by soldering, laser reflow, brazing, welding, or applying a conductive adhesive. A solder ball bumper can also be used to bond the external contacts 42 to the pads 48. A suitable solder ball bumper is manufactured by Pac Tech Packaging Technologies of Falkensee, Germany. The external contacts 42 can also be formed on the pads 48 using a conventional wire bonder apparatus adapted to form a ball bond, and then to sever the attached wire. The external contacts 42 can also be formed by electrolytic deposition or electroless deposition of a metal to form bumps. A representative diameter for the external contacts 42 can be from about 4 mils to 50 mils or more. A pitch of the external contacts 42 can be from about 6 mils to 50 mils or more.
Rather than being a solder or a metal, the external contacts 42 can comprise a conductive elastomer, such as an isotropic or anisotropic adhesive. For example, the external contacts can comprise an anisotropic adhesive cured under compression. Alternately, the external contacts 42 can comprise elastomeric bumps deposited on the pads 48 in a semi cured condition, and then fully cured while in contact with the contact pads 40 on the adjacent substrate 12. Semi curing of the external contacts 42 permits full curing to be accomplished with external compression of the external contacts 42. Alternately, the external contacts 42 can comprise an anisotropic adhesive that is cured under compression.
Referring to FIG. 2B, following formation of the substrate 12, the die 20 can be attached to the die mounting cavity 18. For attaching the die 20 to the die mounting cavity 18, an adhesive, such as silicone, can be applied to the face of the die 20, or to the cavity 18 to form an adhesive layer therebetween. One suitable adhesive is "ZYMET" silicone elastomer manufactured by Zymet, Inc., East Hanover, N.J.
The die mounting cavity 18 and the interconnect opening 32 can be configured such that with the die 20 mounted to the die mounting cavity 18, the bond pads 34 align with the interconnect opening 32 to provide access for wire bonding of the bond wires 28 (FIG. 2C). In the illustrative embodiment, the die 20 can comprise a conventional semiconductor die, such as a lead on chip (LOC) die having the bond pads 34 formed along a center line of the die 20. However, this arrangement is merely exemplary, as dice having bond pads along the edges or ends thereof, can also be employed. In this case one or more interconnect openings (not shown) can be located between the die mounting cavity 18 and wire bonding cavity 26 to provide access to the bond pads on the die.
Referring to FIG. 2C, following mounting of the die 20 to the die mounting cavity 18, the bond wires 28 can be wire bonded to the bond pads 38 on the conductors 36, and to the bond pads 34 on the die 20. Wire bonding can be performed using a conventional wire bonder apparatus. During the wire bonding process the interconnect opening 32 provides access to the bond pads 34. In addition, the stepped surface of the wire bonding cavity 26 provides a bonding shelf wherein the bond pads 38 are located.
As also shown in FIG. 2C, following wire bonding, an encapsulant 30 can be deposited into the wire bonding cavity 26 to encapsulate the bond wires 28. One method for depositing the encapsulant 30 is a glob top encapsulation method. For example, the encapsulant 30 can comprise an epoxy, silicone, room temperature vulcanizing (RTV) or polyimide material. Suitable compounds are commercially available from Dexter/Hysol under the trademark of "HYSOL 4450 and 4451" and from Thermoset under the trademark of "EP729". The encapsulant 30 can be dispensed using a suitable dispensing apparatus such as a needle and syringe. Suitable dispensing apparatus are commercially available from Asymtek under the trademarks "A-400" and "A-800" and from MRSI under the trademark "MRSI-170".
Preferably a surface of the encapsulant 30 is planarized to provide a planar surface for stacking. Planarization can be accomplished using a dam or mold placed over the wire bonding cavity 26, and having an opening for dispensing the encapsulant 30. A planarization process can also be performed following hardening of the encapsulant 30 using a polishing tool.
Referring to FIG. 2D, following formation thereof, the substrate 12 can be stacked to one or more adjacent substrates 12A to form the stacked semiconductor package 14. The adjacent substrate 12A can be fabricated exactly as previously described for substrate 12. In addition, external contacts 42 on the adjacent substrate 12A can be bonded to the contact pads 40 on the substrate 12 using a non-compressive, or compressive bonding technology. As the substrate 12 and adjacent substrate 12A are contained on panels 10 (FIG. 1), the stacking and bonding processes are performed using panels 10 containing multiple substrates 12.
One non-compressive bonding process for bonding the substrates is a solder reflow process. In FIG. 2D the external contacts 42 on the adjacent substrate have been reflowed and are designated as 42RF. For a reflow process, the external contacts 42RF preferably comprise solder, and the contact pads 40 preferably comprise a solder wettable material such as copper or aluminum. A thermode or laser source can be used to heat the external contacts 42RF to a molten state in order to form a permanent bond with the contact pads 40. Alternately with the external contacts 42RF comprising a metal other than solder (e.g., nickel), a brazing process or a welding process can be employed to bond the external contacts 42RF to the contact pads 40.
As another non-compressive alternative, a conductive adhesive material can be employed to form the bonded connections. In this case, either the external contacts 42 or the contact pads 40 can comprise a conductive adhesive material, or a conductive adhesive material can be applied between the external contacts 42 and the contact pads 40. In the case of a conductive adhesive, the material can be applied in a semi cured condition, as previously described, and then cured to harden and form a permanent bond.
A compressive bonding process such as thermocompression bonding can also be employed to bond the external contacts 42 on the adjacent substrate 12A to the contact pads 40 on the substrate 12. With thermocompression bonding the external contacts 42 can be heated and compressed at the same time. Weights, or a suitable fixture can be used to bias the panels together as the external contacts 42 are heated to a molten state. Another compressive bonding process can employ external contacts 42 in the form of anisotropic conductive adhesive bumps. Again, weights or a suitable fixture can be used to place the external contacts 42 under compression while the anisotropic conductive adhesive bumps are cured.
Following the bonding process, an outer insulating layer 50 can be formed on the adjacent substrate 12A to electrically insulate the exposed conductors 36 and contact pads 40. For example, the insulating layer 50 can comprise a polymer material, such as polyimide, deposited using a spin on or other suitable process. Also following the bonding process, the stacked panels 10 (FIG. 1) can be sawed, sheared and broken along the boundary lines 16 of the panel 10 to form a plurality of separate stacked packages 14.
In the completed package 14, the external contacts 42 on the substrate 12 provide electrical paths from the outside to the semiconductor dice 20 contained within the packages 14. In addition, the interlevel conductors 44 interconnect the dice 20 to one another. The packages 14 can be used to construct multi chip modules and other electronic assemblies. In some applications the external contacts 42 can be used to form bonded connections with mating electrodes of a supporting substrate such as a PCB, or multi chip module substrate. Although the packages 14 can be constructed with a relatively small peripheral outline, the stacked configuration permits a high packing density for multiple dice 20. In addition, each additional substrate 12 adds a die 20 to the package 14, but only adds about 0.7 mm to 5 mm to the height of the package 14.
Thus the invention provides an improved semiconductor package and method of fabrication. The package includes multiple semiconductor dice mounted to substrates in a stacked configuration. The substrates are configured to provide a small outline package but with multiple semiconductor dice packaged in a high density configuration. In addition, by performing the packaging process with panels rather than individual packages, packaging costs can be reduced, and a high volume process can be provided.
Although the invention has been described with reference to certain preferred embodiments, as will be apparent to those skilled in the art, certain changes and modifications can be made without departing from the scope of the invention as defined by the following claims.
Farnworth, Warren M., Wood, Alan G., Brooks, Mike
Patent | Priority | Assignee | Title |
10056359, | Jul 24 2007 | Micron Technology, Inc. | Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods |
10062667, | Aug 29 2003 | Micron Technology, Inc. | Stacked microfeature devices and associated methods |
10068938, | Oct 04 2001 | Sony Corporation | Solid image-pickup device with flexible circuit substrate |
10153254, | Aug 26 2005 | Micron Technology, Inc. | Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices |
10163826, | Mar 13 2007 | Micron Technology, Inc. | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
10211114, | Feb 28 2006 | Micron Technology, Inc. | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices |
10276541, | Jun 30 2015 | Taiwan Semiconductor Manufacturing Company, Ltd | 3D package structure and methods of forming same |
10312173, | Mar 13 2007 | Micron Technology, Inc. | Packaged semiconductor components having substantially rigid support members and methods of packaging semiconductor components |
10396059, | Jul 24 2007 | Micron Technology, Inc. | Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods |
10431513, | Aug 19 2005 | Micron Technology, Inc. | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices |
10453786, | Jan 19 2016 | General Electric Company | Power electronics package and method of manufacturing thereof |
10692827, | Mar 13 2007 | Micron Technology, Inc. | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
10763185, | Mar 13 2007 | Micron Technology, Inc. | Packaged semiconductor components having substantially rigid support members |
10861824, | Aug 26 2005 | Micron Technology, Inc. | Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices |
10861827, | Jun 30 2015 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D package structure and methods of forming same |
11177175, | Dec 10 2003 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
11177204, | Jan 19 2016 | General Electric Company | Power electronics package and method of manufacturing thereof |
11239128, | Aug 19 2005 | Micron Technology, Inc. | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices |
11373979, | Aug 29 2003 | Micron Technology, Inc. | Stacked microfeature devices and associated methods |
11545465, | Jun 30 2015 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3D package structure and methods of forming same |
11887970, | Aug 29 2003 | Micron Technology, Inc. | Stacked microfeature devices and associated methods |
6093969, | May 15 1999 | CHIP PACKAGING SOLUTIONS LLC | Face-to-face (FTF) stacked assembly of substrate-on-bare-chip (SOBC) modules |
6153928, | May 17 1996 | HYUNDAI ELECTRONICS INDUSTRIES CO , LTD | Substrate for semiconductor package, fabrication method thereof, and stacked-type semiconductor package using the substrate |
6232666, | Dec 04 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interconnect for packaging semiconductor dice and fabricating BGA packages |
6235554, | Nov 27 1995 | Round Rock Research, LLC | Method for fabricating stackable chip scale semiconductor package |
6239496, | Jan 18 1999 | Kabushiki Kaisha Toshiba | Package having very thin semiconductor chip, multichip module assembled by the package, and method for manufacturing the same |
6255585, | Jan 29 1999 | Advantest Corporation | Packaging and interconnection of contact structure |
6271056, | Jun 05 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked semiconductor package and method of fabrication |
6274929, | Sep 01 1998 | Texas Instruments Incorporated | Stacked double sided integrated circuit package |
6281044, | Jul 31 1995 | Micron Technology, Inc. | Method and system for fabricating semiconductor components |
6313522, | Aug 28 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor structure having stacked semiconductor devices |
6317331, | Aug 19 1998 | KULICKE AND SOFFA INDUSTRIES, INC | Wiring substrate with thermal insert |
6335565, | Dec 04 1996 | TESSERA ADVANCED TECHNOLOGIES, INC | Semiconductor device |
6337510, | Nov 17 2000 | Walsin Advanced Electronics LTD | Stackable QFN semiconductor package |
6339255, | Oct 24 1998 | Hyundai Electronics Industries Co., Ltd. | Stacked semiconductor chips in a single semiconductor package |
6380624, | Oct 10 2000 | Walsin Advanced Electronics Ltd. | Stacked integrated circuit structure |
6384473, | May 16 2000 | National Technology & Engineering Solutions of Sandia, LLC | Microelectronic device package with an integral window |
6413798, | Jan 18 1998 | Kabushiki Kaisha Toshiba | Package having very thin semiconductor chip, multichip module assembled by the package, and method for manufacturing the same |
6441483, | Mar 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die stacking scheme |
6451624, | Jun 05 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stackable semiconductor package having conductive layer and insulating layers and method of fabrication |
6461956, | Mar 03 1999 | United Microelectronics Corp. | Method of forming package |
6468831, | Sep 01 1998 | Texas Instruments Incorporated | Method of fabricating thin integrated circuit units |
6469376, | Mar 09 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die support structure |
6472746, | Aug 02 2000 | SOCIONEXT INC | Semiconductor device having bonding wires serving as external connection terminals |
6486545, | Jul 26 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Pre-drilled ball grid array package |
6486549, | Nov 10 2001 | Bridge Semiconductor Corporation | Semiconductor module with encapsulant base |
6492719, | Jul 30 1999 | TESSERA ADVANCED TECHNOLOGIES, INC | Semiconductor device |
6500698, | Oct 24 1998 | Hynix Semiconductor, Inc. | Method for fabricating a stacked semiconductor chip package |
6501165, | Jun 05 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stackable semiconductor package having conductive layer and insulating layers and method of fabrication |
6507107, | Mar 15 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor/printed circuit board assembly |
6507114, | Jan 30 2001 | Round Rock Research, LLC | BOC semiconductor package including a semiconductor die and a substrate bonded circuit side down to the die |
6531337, | Aug 28 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of manufacturing a semiconductor structure having stacked semiconductor devices |
6531338, | Aug 28 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of manufacturing a semiconductor structure having stacked semiconductor devices |
6531341, | May 16 2000 | National Technology & Engineering Solutions of Sandia, LLC | Method of fabricating a microelectronic device package with an integral window |
6534710, | Jan 29 1999 | Advantest Corp. | Packaging and interconnection of contact structure |
6541872, | Jan 11 1999 | Round Rock Research, LLC | Multi-layered adhesive for attaching a semiconductor die to a substrate |
6548376, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of thinning microelectronic workpieces |
6548756, | Jan 29 1999 | Advantest Corp. | Packaging and interconnection of contact structure |
6548759, | Jun 28 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Pre-drilled image sensor package |
6552910, | Jun 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked-die assemblies with a plurality of microelectronic devices and methods of manufacture |
6558600, | May 04 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for packaging microelectronic substrates |
6560117, | Jun 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic die assemblies and methods of manufacture |
6564979, | Jul 18 2001 | Micron Technology, Inc. | Method and apparatus for dispensing adhesive on microelectronic substrate supports |
6576494, | Jun 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Recessed encapsulated microelectronic devices and methods for formation |
6582992, | Nov 16 2001 | Round Rock Research, LLC | Stackable semiconductor package and wafer level fabrication method |
6603198, | Aug 28 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor structure having stacked semiconductor devices |
6607937, | Aug 23 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic dies and methods for stacking microelectronic dies |
6608371, | Aug 04 2000 | SAMSUNG ELECTRONICS CO , LTD | Semiconductor device and method of manufacturing the same, circuit board, and electronic equipment |
6611012, | Dec 04 1996 | TESSERA ADVANCED TECHNOLOGIES, INC | Semiconductor device |
6611052, | Nov 16 2001 | Round Rock Research, LLC | Wafer level stackable semiconductor package |
6614104, | Jun 05 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stackable semiconductor package having conductive layer and insulating layers |
6622380, | Feb 12 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for manufacturing microelectronic devices and methods for mounting microelectronic packages to circuit boards |
6626222, | Jul 31 1995 | Micron Technology, Inc. | System for fabricating semiconductor components |
6630731, | Dec 04 1996 | TESSERA ADVANCED TECHNOLOGIES, INC | Semiconductor device |
6638595, | Jun 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for reduced flash encapsulation of microelectronic devices |
6638792, | Jan 30 2001 | Round Rock Research, LLC | Method for fabricating BOC semiconductor package |
6644949, | Jun 28 2000 | Micron Technology, Inc. | Apparatus for reduced flash encapsulation of microelectronic devices |
6646334, | Jan 04 2000 | Hyundai Electronics Industries Co., Ltd. | Stacked semiconductor package and fabricating method thereof |
6653173, | Jun 16 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for packaging a microelectronic die |
6656769, | May 08 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for distributing mold material in a mold for packaging microelectronic devices |
6664139, | Jun 16 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for packaging a microelectronic die |
6677675, | Jun 16 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and microelectronic die packages |
6683388, | Jun 16 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for packaging a microelectronic die |
6686222, | May 17 2002 | Kabushiki Kaisha Toshiba | Stacked semiconductor device manufacturing method |
6710246, | Aug 02 2002 | National Semiconductor Corporation | Apparatus and method of manufacturing a stackable package for a semiconductor device |
6717245, | Jun 02 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Chip scale packages performed by wafer level processing |
6723585, | Oct 31 2002 | National Semiconductor Corporation | Leadless package |
6730536, | Jun 28 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Pre-drilled image sensor package fabrication method |
6734538, | Apr 12 2001 | BAE Systems Information & Electronic Systems Integration, Inc. | Article comprising a multi-layer electronic package and method therefor |
6737581, | May 16 2000 | Polaris Innovations Limited | Configuration of a plurality of circuit modules |
6740546, | Aug 21 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for assembling microelectronic devices |
6743696, | Oct 16 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Apparatus and method for leadless packaging of semiconductor devices |
6744135, | May 22 2001 | HITACHI ASTEMO, LTD | Electronic apparatus |
6747348, | Oct 16 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Apparatus and method for leadless packaging of semiconductor devices |
6750547, | Dec 26 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Multi-substrate microelectronic packages and methods for manufacture |
6753205, | Sep 13 2001 | Invensas Corporation | Method for manufacturing a structure comprising a substrate with a cavity and a semiconductor integrated circuit bonded to a contact pad located in the cavity |
6753207, | Jan 04 2000 | Hyundai Electronics Industries Co., Ltd. | Stacked semiconductor package and fabricating method thereof |
6767817, | Jul 11 2002 | Micron Technology, Inc. | Asymmetric plating |
6770164, | Jan 11 1999 | Round Rock Research, LLC | Method for attaching a semiconductor die to a substrate |
6780672, | Jan 31 2000 | Lockheed Martin Corporation | Micro eletro-mechanical component and system architecture |
6780746, | Jun 02 2000 | Micron Technology, Inc. | Method for fabricating a chip scale package using wafer level processing and devices resulting therefrom |
6781066, | Aug 19 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic component assemblies |
6781248, | May 21 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for encapsulating intermediate conductive elements connecting a semiconductor die to a substrate and semiconductor devices so packaged |
6784525, | Oct 29 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor component having multi layered leadframe |
6787894, | Oct 16 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Apparatus and method for leadless packaging of semiconductor devices |
6787916, | Sep 13 2001 | Invensas Corporation | Structures having a substrate with a cavity and having an integrated circuit bonded to a contact pad located in the cavity |
6790706, | Oct 16 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Apparatus and method for leadless packaging of semiconductor devices |
6796028, | Aug 23 2000 | Micron Technology, Inc. | Method of Interconnecting substrates for electrical coupling of microelectronic components |
6798055, | Mar 12 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die support structure |
6819003, | Jun 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Recessed encapsulated microelectronic devices and methods for formation |
6825569, | Nov 12 1998 | Round Rock Research, LLC | BGA package having substrate with patterned solder mask defining open die attach area |
6833619, | Apr 28 2003 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Thin profile semiconductor package which reduces warpage and damage during laser markings |
6835599, | Oct 29 2002 | Micron Technology, Inc. | Method for fabricating semiconductor component with multi layered leadframe |
6836007, | Oct 01 2002 | Renesas Technology Corp | Semiconductor package including stacked semiconductor chips |
6836009, | Aug 08 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic components |
6838760, | Aug 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices with interconnecting units |
6841418, | Dec 26 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Multi-substrate microelectronic packages and methods for manufacture |
6841423, | Jun 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for formation of recessed encapsulated microelectronic devices |
6853064, | May 12 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor component having stacked, encapsulated dice |
6853088, | Jan 24 2001 | EUPEC GmbH | Semiconductor module and method for fabricating the semiconductor module |
6869827, | Mar 15 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor/printed circuit board assembly, and computer system |
6873036, | Mar 12 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die stacking scheme |
6876066, | Aug 29 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods of forming same |
6879050, | Feb 11 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for packaging microelectronic devices |
6884658, | Mar 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die stacking scheme |
6896760, | Jan 16 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Fabrication of stacked microelectronic devices |
6897552, | Dec 12 2001 | Kioxia Corporation | Semiconductor device wherein chips are stacked to have a fine pitch structure |
6900074, | Jul 30 1999 | TESSERA ADVANCED TECHNOLOGIES, INC | METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE HAVING PLURAL SEMICONDUCTOR CHIPS, WHEREIN ELECTRODES OF THE SEMICONDUCTOR CHIPS ARE ELECTRICALLY CONNECTED TOGETHER VIA WIRING SUBSTRATES OF THE SEMICONDUCTOR CHIPS |
6900079, | Jun 02 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for fabricating a chip scale package using wafer level processing |
6909178, | Sep 06 2000 | SANYO ELECTRIC CO , LTD | Semiconductor device and method of manufacturing the same |
6921860, | Mar 18 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic component assemblies having exposed contacts |
6924550, | Aug 21 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for assembling microelectronic devices |
6933170, | Aug 19 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic component assemblies |
6933603, | Jul 11 2002 | TELEDYNE DEFENSE ELECTRONICS, LLC | Multi-substrate layer semiconductor packages and method for making same |
6943450, | Aug 29 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods of forming same |
6946325, | Mar 14 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for packaging microelectronic devices |
6951982, | Nov 22 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic component assemblies |
6972214, | Oct 29 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for fabricating a semiconductor package with multi layered leadframe |
6975035, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for dielectric filling of flip chip on interposer assembly |
6979595, | Aug 24 2000 | Micron Technology, Inc. | Packaged microelectronic devices with pressure release elements and methods for manufacturing and using such packaged microelectronic devices |
6979904, | Apr 19 2002 | Round Rock Research, LLC | Integrated circuit package having reduced interconnects |
6982386, | Aug 23 2000 | Micron Technology, Inc. | Interconnecting substrates for electrical coupling of microelectronic components |
6982482, | Feb 24 2004 | EXCELITAS TECHNOLOGIES CORP | Packaging of solid state devices |
6983551, | Aug 23 2000 | Micron Technology, Inc. | Interconnecting substrates for electrical coupling of microelectronic components |
7008822, | May 12 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for fabricating semiconductor component having stacked, encapsulated dice |
7008823, | Mar 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die stacking scheme |
7019397, | Sep 11 2000 | LAPIS SEMICONDUCTOR CO , LTD | Semiconductor device, manufacturing method of semiconductor device, stack type semiconductor device, and manufacturing method of stack type semiconductor device |
7022418, | Jan 16 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Fabrication of stacked microelectronic devices |
7037751, | Jan 16 2002 | Micron Technology, Inc. | Fabrication of stacked microelectronic devices |
7037756, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic devices and methods of fabricating same |
7049685, | Aug 24 2000 | Micron Technology, Inc. | Packaged microelectronic devices with pressure release elements and methods for manufacturing and using such packaged microelectronic devices |
7057281, | Mar 04 2003 | Micron Technology Inc. | Microelectronic component assemblies employing lead frames having reduced-thickness inner lengths |
7061085, | Sep 19 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor component and system having stiffener and circuit decal |
7067905, | Aug 08 2002 | Micron Technology, Inc. | Packaged microelectronic devices including first and second casings |
7071421, | Aug 29 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microfeature devices and associated methods |
7087460, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for assembly and packaging of flip chip configured dice with interposer |
7091064, | Apr 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for attaching microelectronic substrates and support members |
7091124, | Nov 13 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming vias in microelectronic devices, and methods for packaging microelectronic devices |
7101737, | Aug 28 2000 | Micron Technology, Inc. | Method of encapsulating interconnecting units in packaged microelectronic devices |
7109576, | May 12 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor component having encapsulated die stack |
7109588, | Apr 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for attaching microelectronic substrates and support members |
7112520, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor die packages with recessed interconnecting structures and methods for assembling the same |
7112878, | Mar 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die stacking scheme |
7115982, | Sep 19 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor component having stiffener, stacked dice and circuit decals |
7115986, | May 02 2001 | Round Rock Research, LLC | Flexible ball grid array chip scale packages |
7122905, | Feb 12 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for mounting microelectronic packages to circuit boards |
7122907, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interposer substrate and wafer scale interposer substrate member for use with flip-chip configured semiconductor dice |
7129584, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Elimination of RDL using tape base flip chip on flex for die stacking |
7132311, | Jul 26 2002 | Intel Corporation | Encapsulation of a stack of semiconductor dice |
7132739, | Jul 26 2002 | Intel Corporation | Encapsulated stack of dice and support therefor |
7138722, | Dec 04 1996 | TESSERA ADVANCED TECHNOLOGIES, INC | Semiconductor device |
7141872, | Sep 28 2001 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing semiconductor device |
7145225, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interposer configured to reduce the profiles of semiconductor device assemblies and packages including the same and methods |
7145228, | Mar 14 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices |
7145231, | May 22 2001 | HITACHI ASTEMO, LTD | Electronic apparatus |
7157310, | Sep 01 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for packaging microfeature devices and microfeature devices formed by such methods |
7161237, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Flip chip packaging using recessed interposer terminals |
7183191, | Jun 02 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for fabricating a chip scale package using wafer level processing |
7183638, | Dec 30 2004 | Intel Corporation; INTEL CORPORATION A DELAWARE CORPORATION | Embedded heat spreader |
7189593, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Elimination of RDL using tape base flip chip on flex for die stacking |
7193306, | Aug 28 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor structure having stacked semiconductor devices |
7195957, | Aug 08 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic components |
7198693, | Feb 20 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic device having a plurality of stacked dies and methods for manufacturing such microelectronic assemblies |
7208825, | Jan 22 2003 | Siliconware Precision Industries Co., Ltd. | Stacked semiconductor packages |
7217597, | Jun 22 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die stacking scheme |
7218001, | Oct 31 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Reduced footprint packaged microelectronic components and methods for manufacturing such microelectronic components |
7227252, | May 12 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor component having stacked, encapsulated dice and method of fabrication |
7230329, | Feb 07 2003 | Seiko Epson Corporation | Semiconductor device, electronic device, electronic equipment, method of manufacturing semiconductor device, and method of manufacturing electronic device |
7230330, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor die packages with recessed interconnecting structures |
7235871, | Aug 23 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic dies |
7250328, | Jul 23 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic component assemblies with recessed wire bonds and methods of making same |
7253025, | Aug 09 2000 | Round Rock Research, LLC | Multiple substrate microelectronic devices and methods of manufacture |
7256115, | Jul 11 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Asymmetric plating |
7259451, | Aug 29 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Invertible microfeature device packages |
7268018, | Sep 19 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for fabricating semiconductor component with stiffener and circuit decal |
7268020, | Dec 30 2004 | Intel Corporation | Embedded heat spreader |
7273769, | Aug 16 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for removing encapsulating material from a packaged microelectronic device |
7279797, | Jun 30 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Module assembly and method for stacked BGA packages |
7282390, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked die-in-die BGA package with die having a recess |
7282392, | Feb 05 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating a stacked die in die BGA package |
7298031, | Aug 09 2000 | Round Rock Research, LLC | Multiple substrate microelectronic devices and methods of manufacture |
7298037, | Feb 17 2006 | STATS CHIPPAC PTE LTE | Stacked integrated circuit package-in-package system with recessed spacer |
7301234, | Sep 07 2005 | Hynix Semiconductor Inc. | Stack type semiconductor package module utilizing solder coated stacking protrusions and method for manufacturing the same |
7306974, | Aug 08 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for manufacturing and operating packaged microelectronic device assemblies |
7309623, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating a stacked die in die BGA package |
7312519, | Jan 12 2006 | STATS CHIPPAC PTE LTE | Stacked integrated circuit package-in-package system |
7315000, | Jul 27 2003 | Sandisk IL Ltd | Electronic module with dual connectivity |
7320933, | Aug 20 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Double bumping of flexible substrate for first and second level interconnects |
7329945, | Dec 19 1995 | Round Rock Research, LLC | Flip-chip adaptor package for bare die |
7332376, | Aug 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of encapsulating packaged microelectronic devices with a barrier |
7332819, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked die in die BGA package |
7332820, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked die in die BGA package |
7335978, | Sep 19 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor component having stiffener, circuit decal and terminal contacts |
7344969, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked die in die BGA package |
7348215, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for assembly and packaging of flip chip configured dice with interposer |
7358117, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked die in die BGA package |
7365424, | Jul 23 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic component assemblies with recessed wire bonds and methods of making same |
7368810, | Aug 29 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Invertible microfeature device packages |
7371608, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating a stacked die having a recess in a die BGA package |
7381591, | Dec 19 1995 | Round Rock Research, LLC | Flip-chip adaptor package for bare die |
7396702, | Jun 30 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Module assembly and method for stacked BGA packages |
7400032, | Jun 30 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Module assembly for stacked BGA packages |
7405138, | Sep 11 2000 | LAPIS SEMICONDUCTOR CO , LTD | Manufacturing method of stack-type semiconductor device |
7405487, | Aug 16 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for removing encapsulating material from a packaged microelectronic device |
7408255, | Jun 30 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Assembly for stacked BGA packages |
7413979, | Nov 13 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming vias in microelectronic devices, and methods for packaging microelectronic devices |
7425470, | Mar 04 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic component assemblies employing lead frames having reduced-thickness inner lengths |
7425762, | May 22 2001 | HITACHI ASTEMO, LTD | Electronic apparatus |
7427535, | Mar 15 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor/printed circuit board assembly, and computer system |
7432583, | Jan 22 2003 | National Semiconductor Corporation | Leadless leadframe package substitute and stack package |
7462508, | Sep 07 2005 | Hynix Semiconductor Inc. | Stack type semiconductor package module utilizing solder coated stacking protrusions and method for manufacturing the same |
7476962, | Mar 04 2005 | Samsung Electronics Co., Ltd. | Stack semiconductor package formed by multiple molding and method of manufacturing the same |
7482203, | Jan 12 2006 | STATS CHIPPAC PTE LTE | Stacked integrated circuit package-in-package system |
7485969, | Sep 01 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic devices and methods for manufacturing microelectronic devices |
7504284, | Aug 26 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices |
7514776, | Mar 15 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor/printed circuit board assembly, and computer system |
7518237, | Feb 08 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature systems including adhered microfeature workpieces and support members |
7531906, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Flip chip packaging using recessed interposer terminals |
7534660, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for assembly and packaging of flip chip configured dice with interposer |
7557443, | Aug 19 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices |
7569473, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming semiconductor assemblies |
7575953, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked die with a recess in a die BGA package |
7579684, | Sep 01 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for packing microfeature devices and microfeature devices formed by such methods |
7602618, | Aug 25 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods and apparatuses for transferring heat from stacked microfeature devices |
7615871, | Apr 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and apparatus for attaching microelectronic substrates and support members |
7622333, | Aug 04 2006 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Integrated circuit package system for package stacking and manufacturing method thereof |
7645638, | Aug 04 2006 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Stackable multi-chip package system with support structure |
7656040, | Jun 01 2006 | Phoenix Precision Technology Corporation | Stack structure of circuit board with semiconductor component embedded therein |
7656236, | May 15 2007 | TELEDYNE DEFENSE ELECTRONICS, LLC | Noise canceling technique for frequency synthesizer |
7663232, | Mar 07 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Elongated fasteners for securing together electronic components and substrates, semiconductor device assemblies including such fasteners, and accompanying systems |
7671459, | Feb 08 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices |
7674652, | Apr 19 2002 | Round Rock Research, LLC | Methods of forming an integrated circuit package |
7683468, | Dec 21 2006 | Tessera, Inc | Enabling uniformity of stacking process through bumpers |
7687313, | Oct 08 2002 | STATS CHIPPAC PTE LTE | Method of fabricating a semiconductor multi package module having an inverted package stacked over ball grid array (BGA) package |
7691680, | Mar 04 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating microelectronic component assemblies employing lead frames having reduced-thickness inner lengths |
7691726, | Oct 31 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Reduced footprint packaged microelectronic components and methods for manufacturing such microelectronic components |
7692931, | Jul 17 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods |
7696003, | Jul 23 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic component assemblies with recessed wire bonds and methods of making same |
7727858, | Jun 02 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for fabricating a chip scale package using wafer level processing |
7741150, | Dec 04 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
7742313, | Aug 29 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microfeature devices |
7745944, | Aug 31 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices having intermediate contacts for connection to interposer substrates, and associated methods of packaging microelectronic devices with intermediate contacts |
7749807, | Apr 04 2003 | STATS CHIPPAC PTE LTE | Method of fabricating a semiconductor multipackage module including a processor and memory package assemblies |
7749808, | Sep 01 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic devices and methods for manufacturing microelectronic devices |
7750449, | Mar 13 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged semiconductor components having substantially rigid support members and methods of packaging semiconductor components |
7754531, | Mar 14 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for packaging microelectronic devices |
7759221, | Dec 29 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for packaging microelectronic devices and microelectronic devices formed using such methods |
7759800, | Nov 13 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronics devices, having vias, and packaged microelectronic devices having vias |
7766667, | Dec 18 2007 | R&D CIRCUITS | Separable electrical connectors using isotropic conductive elastomer interconnect medium |
7772689, | Sep 07 2005 | Shinko Electric Industries Co., Ltd. | Semiconductor package with a conductive post and wiring pattern |
7799610, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating a stacked die having a recess in a die BGA package |
7807505, | Aug 30 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for wafer-level packaging of microfeature devices and microfeature devices formed using such methods |
7833456, | Feb 23 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Systems and methods for compressing an encapsulant adjacent a semiconductor workpiece |
7843050, | Jul 24 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods |
7868440, | Aug 25 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microdevices and methods for manufacturing packaged microdevices |
7888185, | Aug 17 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor device assemblies and systems including at least one conductive pathway extending around a side of at least one semiconductor device |
7897503, | May 12 2005 | The Board of Trustees of the University of Arkansas | Infinitely stackable interconnect device and method |
7902648, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interposer configured to reduce the profiles of semiconductor device assemblies, packages including the same, and methods |
7910385, | May 12 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating microelectronic devices |
7915718, | Mar 04 2002 | Micron Technology, Inc | Apparatus for flip-chip packaging providing testing capability |
7915738, | Aug 04 2006 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Stackable multi-chip package system with support structure |
7931476, | Dec 18 2007 | R&D CIRCUITS | Separable electrical connectors using isotropic conductive elastomer interconnect medium |
7947529, | Aug 16 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods |
7955898, | Mar 13 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
7968369, | Sep 01 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and microelectronic support devices, and associated assemblies and methods |
8026611, | Dec 01 2005 | Tessera, Inc | Stacked microelectronic packages having at least two stacked microelectronic elements adjacent one another |
8030748, | Aug 26 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices |
8049317, | Dec 19 1995 | Round Rock Research, LLC | Grid array packages |
8066517, | Dec 18 2007 | R&D CIRCUITS | Separable electrical connectors using isotropic conductive elastomer interconnect medium |
8067272, | Aug 04 2006 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Integrated circuit package system for package stacking and manufacturing method thereof |
8067827, | Aug 23 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic device assemblies |
8084866, | Dec 10 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for filling vias in microelectronic devices |
8093718, | Nov 08 2007 | Industrial Technology Research Institute | Chip structure and stacked structure of chips |
8106491, | May 16 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming stacked semiconductor devices with a leadframe and associated assemblies |
8111515, | Aug 25 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods and apparatuses for transferring heat from stacked microfeature devices |
8115269, | Apr 19 2002 | Round Rock Research, LLC | Integrated circuit package having reduced interconnects |
8124456, | Mar 07 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for securing semiconductor devices using elongated fasteners |
8125065, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Elimination of RDL using tape base flip chip on flex for die stacking |
8138613, | May 12 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices |
8164175, | Dec 19 1995 | Round Rock Research, LLC | Stackable semiconductor device assemblies |
8169058, | Aug 21 2009 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Semiconductor device and method of stacking die on leadframe electrically connected by conductive pillars |
8174101, | Aug 24 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and microelectronic support devices, and associated assemblies and methods |
8179045, | Apr 22 2008 | TELEDYNE DEFENSE ELECTRONICS, LLC | Slow wave structure having offset projections comprised of a metal-dielectric composite stack |
8198138, | Dec 19 1995 | Round Rock Research, LLC | Methods for providing and using grid array packages |
8198720, | Jul 24 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods |
8202754, | Mar 29 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices recessed in support member cavities, and associated methods |
8203213, | Dec 29 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for packaging microelectronic devices and microelectronic devices formed using such methods |
8269326, | Mar 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor device assemblies |
8278751, | Feb 08 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of adhering microfeature workpieces, including a chip, to a support member |
8299598, | Dec 19 1995 | Round Rock Research, LLC | Grid array packages and assemblies including the same |
8319332, | Aug 31 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices having intermediate contacts for connection to interposer substrates, and associated methods of packaging microelectronic devices with intermediate contacts |
8354301, | Aug 25 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microdevices and methods for manufacturing packaged microdevices |
8354743, | Jan 27 2010 | Honeywell International Inc. | Multi-tiered integrated circuit package |
8373277, | Feb 05 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked die in die BGA package |
8390128, | Dec 31 2009 | MIMIRIP LLC | Semiconductor package and stack semiconductor package having the same |
8399971, | Dec 04 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
8400780, | Aug 29 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microfeature devices |
8410567, | Oct 04 2001 | Sony Corporation | Solid image-pickup device with flexible circuit substrate |
8432026, | Aug 04 2006 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Stackable multi-chip package system |
8441113, | Jan 09 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Elimination of RDL using tape base flip chip on flex for die stacking |
8441132, | Mar 29 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices recessed in support member cavities, and associated methods |
8445997, | May 16 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked packaged integrated circuit devices |
8450839, | Feb 28 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices |
8502387, | Dec 09 2010 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Integrated circuit packaging system with vertical interconnection and method of manufacture thereof |
8507318, | Aug 19 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for manufacturing microelectronic devices |
8519523, | Aug 26 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices |
8525320, | Aug 16 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods |
8536702, | Jul 24 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods |
8564116, | Jun 19 2009 | Shinko Electric Industries Co., Ltd. | Semiconductor device with reinforcement plate and method of forming same |
8564141, | May 06 2010 | SK Hynix Inc. | Chip unit and stack package having the same |
8587109, | Aug 23 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic dies and methods for stacking microelectronic dies |
8637973, | Aug 08 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic components with terminals exposed through encapsulant |
8703599, | Aug 31 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices having intermediate contacts for connection to interposer substrates, and associated methods of packaging microelectronic devices with intermediate contacts |
8704380, | Aug 30 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for wafer-level packaging of microfeature devices and microfeature devices formed using such methods |
8748311, | Dec 10 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for filing vias in microelectronic devices |
8772947, | Dec 29 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for packaging microelectronic devices and microelectronic devices formed using such methods |
8778732, | Aug 24 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and microelectronic support devices, and associated assemblies and methods |
8803299, | Feb 27 2006 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Stacked integrated circuit package system |
8803305, | Nov 18 2009 | Qualcomm Incorporated | Hybrid package construction with wire bond and through silicon vias |
8823159, | Aug 19 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic devices |
8866272, | Mar 13 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
8869387, | Jul 17 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for making microelectronic die systems |
8890327, | Dec 01 2005 | Tessera, Inc. | Stacked microelectronic packages having at least two stacked microelectronic elements adjacent one another |
8900923, | Dec 04 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
8906744, | Jul 24 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods |
8963302, | May 16 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked packaged integrated circuit devices, and methods of making same |
8975745, | Jun 13 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices recessed in support member cavities, and associated methods |
8987885, | Aug 25 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microdevices and methods for manufacturing packaged microdevices |
9048352, | Oct 04 2001 | Sony Corporation | Solid image-pickup device with flexible circuit substrate |
9064973, | Feb 08 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Die attached to a support member by a plurality of adhesive members |
9129862, | Aug 24 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and microelectronic support devices, and associated assemblies and methods |
9165888, | Sep 11 2008 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods |
9165910, | Jul 24 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods |
9177901, | Aug 21 2009 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Semiconductor device and method of stacking die on leadframe electrically connected by conductive pillars |
9202660, | Mar 13 2013 | TELEDYNE DEFENSE ELECTRONICS, LLC | Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes |
9240380, | Aug 21 2009 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Semiconductor device and method of forming interposer frame over semiconductor die to provide vertical interconnect |
9299684, | Aug 26 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices |
9324676, | Dec 04 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
9362141, | Feb 28 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices |
9362208, | Mar 13 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged semiconductor components having substantially rigid support members and methods of packaging semiconductor components |
9362260, | May 16 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked packaged integrated circuit devices, and methods of making same |
9418872, | Aug 08 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic components |
9455286, | Oct 04 2001 | Sony Corporation | Solid image-pickup device with through hole passing through substrate |
9515046, | Aug 29 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microfeature devices and associated methods |
9583476, | Aug 26 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices |
9627366, | Dec 01 2005 | Tessera, Inc. | Stacked microelectronic packages having at least two stacked microelectronic elements adjacent one another |
9640458, | Aug 19 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stacked microelectronic devices |
9647327, | Jun 21 2010 | LEONHARD KURZ STIFTUNG & CO KG | Multilayered film element |
9653420, | Dec 10 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for filling vias in microelectronic devices |
9653444, | Jul 24 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods |
9741644, | May 04 2015 | Honeywell International Inc.; HONEYWELL INTERNATIONAL INC , PATENT SERVICES M S AB 2B | Stacking arrangement for integration of multiple integrated circuits |
9768121, | Feb 28 2006 | Micron Technology, Inc. | Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices |
9812415, | Mar 13 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices |
9893045, | Aug 21 2009 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Semiconductor device and method of forming interposer frame over semiconductor die to provide vertical interconnect |
9960094, | Mar 13 2007 | Micron Technology, Inc. | Packaged semiconductor components having substantially rigid support members and methods of packaging semiconductor components |
9960148, | Aug 25 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for transferring heat from stacked microfeature devices |
ER8968, | |||
RE43112, | May 04 1998 | Round Rock Research, LLC | Stackable ball grid array package |
RE48111, | Aug 21 2009 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Semiconductor device and method of forming interposer frame over semiconductor die to provide vertical interconnect |
RE48408, | Aug 21 2009 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Semiconductor device and method of forming interposer frame over semiconductor die to provide vertical interconnect |
Patent | Priority | Assignee | Title |
4505799, | Dec 08 1983 | General Signal Corporation | ISFET sensor and method of manufacture |
4996587, | Apr 10 1989 | International Business Machines Corporation | Integrated semiconductor chip package |
5063177, | Oct 04 1990 | Comsat Corporation | Method of packaging microwave semiconductor components and integrated circuits |
5107328, | Feb 13 1991 | Round Rock Research, LLC | Packaging means for a semiconductor die having particular shelf structure |
5138434, | Jan 22 1991 | Micron Technology, Inc. | Packaging for semiconductor logic devices |
5155067, | Mar 26 1991 | Micron Technology, Inc. | Packaging for a semiconductor die |
5229647, | Mar 27 1991 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High density data storage using stacked wafers |
5266912, | Aug 19 1992 | Micron Technology, Inc.; Micron Technology, Inc | Inherently impedance matched multiple integrated circuit module |
5334857, | Apr 06 1992 | Freescale Semiconductor, Inc | Semiconductor device with test-only contacts and method for making the same |
5384689, | Dec 20 1993 | SHEN, MING-TUNG | Integrated circuit chip including superimposed upper and lower printed circuit boards |
5444296, | Nov 22 1993 | Sun Microsystems, Inc. | Ball grid array packages for high speed applications |
5468999, | May 26 1994 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Liquid encapsulated ball grid array semiconductor device with fine pitch wire bonding |
5474957, | May 09 1994 | NEC Electronics Corporation | Process of mounting tape automated bonded semiconductor chip on printed circuit board through bumps |
5562971, | Apr 19 1994 | Hitachi Chemical Company, Ltd. | Multilayer printed wiring board |
5633530, | Oct 24 1995 | United Microelectronics Corporation | Multichip module having a multi-level configuration |
5646828, | Feb 24 1995 | Bell Semiconductor, LLC | Thin packaging of multi-chip modules with enhanced thermal/power management |
5674785, | Nov 27 1995 | Round Rock Research, LLC | Method of producing a single piece package for semiconductor die |
5677566, | May 08 1995 | NANYA | Semiconductor chip package |
5689091, | Sep 19 1996 | VLSI Technology, Inc. | Multi-layer substrate structure |
5696033, | Aug 16 1995 | Round Rock Research, LLC | Method for packaging a semiconductor die |
5723900, | Sep 06 1993 | Sony Corporation | Resin mold type semiconductor device |
5739585, | Nov 27 1995 | Round Rock Research, LLC | Single piece package for semiconductor die |
5753857, | Jun 14 1996 | HANGER SOLUTIONS, LLC | Charge coupled device (CCD) semiconductor chip package |
5763939, | Sep 30 1994 | NEC Electronics Corporation | Semiconductor device having a perforated base film sheet |
5796038, | Jun 16 1997 | Taiwan Semiconductor Manufacturing Company, Ltd | Technique to produce cavity-up HBGA packages |
5811879, | Jun 26 1996 | Round Rock Research, LLC | Stacked leads-over-chip multi-chip module |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 18 1998 | WOOD, ALAN G | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009239 | /0832 | |
May 18 1998 | FARNWORTH, WARREN M | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009239 | /0832 | |
May 19 1998 | BROOKS, MIKE | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009239 | /0832 | |
Jun 05 1998 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 043079 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 038954 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 038669 | /0001 | |
Jun 29 2018 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 047243 | /0001 | |
Jul 03 2018 | MICRON SEMICONDUCTOR PRODUCTS, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 03 2018 | Micron Technology, Inc | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | MICRON SEMICONDUCTOR PRODUCTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 050937 | /0001 |
Date | Maintenance Fee Events |
Jun 21 2000 | ASPN: Payor Number Assigned. |
Jul 09 2003 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 06 2007 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 29 2011 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 01 2003 | 4 years fee payment window open |
Aug 01 2003 | 6 months grace period start (w surcharge) |
Feb 01 2004 | patent expiry (for year 4) |
Feb 01 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 01 2007 | 8 years fee payment window open |
Aug 01 2007 | 6 months grace period start (w surcharge) |
Feb 01 2008 | patent expiry (for year 8) |
Feb 01 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 01 2011 | 12 years fee payment window open |
Aug 01 2011 | 6 months grace period start (w surcharge) |
Feb 01 2012 | patent expiry (for year 12) |
Feb 01 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |