A head gimbal assembly includes a suspension of the type supporting a slider and a flex circuit. The suspension is formed of a load beam that supports the flex circuit, and a resilient flexure which is secured to the load beam and which supports the slider. The flex circuit is comprised of conductive traces formed on a compliant, dielectric substrate. The substrate includes a body portion and a head portion for supporting the conductive traces. The substrate head portion is patterned such that selected portions are removed to leave bare conductive trace sections on a generally serpentine insulation layer, in order to compensate for variations effected by heat and humidity. The serpentine insulation layer is S-shaped with a periodic pattern, and overlays but does not touch the load beam tip. The substrate body portion overlays and is secured to the load beam at selected locations. This design enables the flex circuit to provide support for the conductive traces, to insulate the conductive traces from the load beam, to minimize the stiffness effect of the flex circuit on the gimbal, to direct the expansion and contraction of the substrate in a controlled fashion while retaining the mechanical connectivity of traces to the substrate, and to minimize the effect of the expansion and contraction on the slider flying characteristics.

Patent
   6249404
Priority
Feb 04 1999
Filed
Feb 04 1999
Issued
Jun 19 2001
Expiry
Feb 04 2019
Assg.orig
Entity
Large
121
16
all paid
1. A head gimbal assembly of the type supporting a slider and a flex circuit, comprising:
a load beam for supporting the flex circuit;
a flexure secured to said load beam and supporting the slider;
the flex circuit comprised of conductive traces formed on a compliant, dielectric substrate;
said substrate including a body portion and a head portion for supporting said conductive traces; and
said substrate head portion being patterned wherein selected portions of said head portion are removed to leave bare conductive trace sections on a generally S-shaped insulation layer with a substantially periodic pattern, to compensate for variations effected by heat and humidity.
17. A suspension assembly of the type supporting a slider, comprising:
a flex circuit;
a load beam for supporting said flex circuit;
a resilient flexure secured to said load beam and supporting the slider;
said flex circuit comprised of conductive traces formed on a compliant, dielectric substrate;
said substrate including a body portion and a head portion for insulating and supporting said conductive traces; and
said substrate head portion being patterned wherein selected portions of said head portion are removed to leave bare conductive trace sections on a generally S-shaped insulation layer with a substantially periodic pattern, to compensate for variations effected by heat and humidity.
18. A suspension assembly of the type supporting a slider, comprising:
a flex circuit;
a load beam for supporting said flex circuit;
a resilient flexure secured to said load beam and supporting the slider;
said flex circuit comprised of conductive traces formed on a compliant, dielectric substrate;
said substrate including a body portion and a head portion for insulating and supporting said conductive traces; and
said substrate head portion including a generally S-shaped insulation layer with a substantially periodic pattern, wherein selected portions of said head portion are removed to leave unsupported conductive trace sections that are generally interleaved with supported conductive trace sections, so that alternate portions of the substrate expand and contract in opposite directions to substantially compensate for thermal and humidity caused variations.
2. A head gimbal assembly according to claim 1, wherein said substrate body portion overlays and is secured to said load beam at one or more selected locations.
3. A head gimbal assembly according to claim 1, wherein said substrate body portion includes a non-patterned section that extends in a patterned section.
4. A head gimbal assembly according to claim 3, wherein said patterned section is serpentine, with a general S-Shape configuration.
5. A head gimbal assembly according to claim 4, wherein said patterned section supports said conductive traces at selected locations, and wherein bare conductive traces are not directly supported by said substrate.
6. A head gimbal assembly according to claim 5, wherein said conductive traces are selectively supported by pads that define regions of connectivity with said conductive traces.
7. A head gimbal assembly according to claim 5, wherein said patterned section extends about half way across said substrate body portion.
8. A head gimbal assembly according to claim 7, wherein said substrate includes a dividing edge at an intersection between said pattern section and said non-patterned section.
9. A head gimbal assembly according to claim 3, wherein said load beam includes a tip; and
wherein said substrate head portion overlays but does not touch said load beam tip .
10. A head gimbal assembly according to claim 1, wherein the width of said conductive traces is generally uniform.
11. A head gimbal assembly according to claim 10, wherein the width of said conductive traces ranges between approximately 0.5 mil and 5 mils.
12. A head gimbal assembly according to claim 1, wherein said conductive traces include a bend region; and
wherein said substrate head portion is patterned to remove substrate material from underneath said bend region.
13. A head gimbal assembly according to claim 12, wherein said conductive traces include four bend regions; and
wherein said substrate head portion is patterned to remove substrate material from underneath a conductive trace of at least one of said bend regions.
14. A head gimbal assembly according to claim 1, wherein said conductive traces are made of any of or more of: aluminum, steel, beryllium, gold, silver, or copper; and
wherein said substrate is made of any of: plastic or polymeric resinous material.
15. A head gimbal assembly according to claim 14, wherein said substrate is made of polyimide.
16. A head gimbal assembly according to claim 1, wherein said substrate body portion overlays a part of said load beam, and is secured thereto at selected locations.

1. Field of the Invention

The present invention relates to disk drives and particularly to a flex circuit design for a flex on suspension (FOS) head gimbal assembly (HGA). The present invention achieves reduced pitch and roll stiffness by patterning an insulator substrate of the FOS to selectively leave bare conductive trace sections. More particularly, the invention concerns a method for improving the mechanical static and dynamic behaviors of the HGA.

2. Description of Related Art

In a conventional disk drive, a read/write head is secured to a rotary actuator magnet and a voice coil assembly by means of a suspension and an actuator arm, and is positioned over a surface of a data storage disk. In operation, a lift force is generated by the aerodynamic interaction between the head and the disk. The lift force is opposed by a counteracting spring force applied by the suspension, such that a predetermined flying height is maintained over a full radial stroke of the rotary actuator assembly above the surface of the disk.

The suspension includes a load beam and a flexure secured to a cantilevered end of the load beam. A slider is mounted to the flexure. The flexure provides a proper pivotal connection for the slider so that during operation, the slider can compensate for irregularities in the disk drive manufacture and operation, by pitching and/or rolling slightly in order to maintain the air bearing, while maintaining appropriate stiffness against yaw movement. Roll is defined as the rotation about an axis extending directly out from the actuator arm through the pivot connection point and parallel to the X-Y plane of the disk. Pitch is defined as rotation about an axis perpendicular to the roll axis through the pivot contact point and parallel to the X-Y plane of the disk. Yaw is gyration around an axis perpendicular to the air-bearing surface. The flexure has to achieve low enough pitch and roll stiffness for the air bearing flying height tolerances while at the same time achieving high enough yaw stiffness for track seeking. A dimple extends from either the load beam or the flexure tongue, to provide a point load about which the slider gimbals.

As with wires or other types of electrical interconnects, flex on suspensions (FOS) tend to increase the static pitch and roll angle variations, the gimbal stiffness and the gimbal stiffness variation of the HGA suspension. This results in increased flying height variability of the suspended slider.

Several head designs have been proposed to minimize the stiffness of the FOS circuit, so that the air bearing can more easily overcome the pitch and roll variations of the head. Other head designs have been proposed to reduce pitch and roll changes due to thermal and humidity induced swelling or shrinking of the polyimide or insulator layer of the FOS.

The following references illustrate various head designs employing flex circuits or insulating layers and conductive traces:

U.S. Pat. No. 4,645,280 to Gordon et al.;

U.S. Pat. No. 4,761,699 to Ainslie et al.;

U.S. Pat. No. 4,819,094 to Oberg;

U.S. Pat. No. 4,996,623 to Erpelding et al.;

U.S. Pat. No. 5,055,969 to Putnam;

U.S. Pat. No. 5,124,864 to Matsuzaki;

U.S. Pat. No. 5,185,683 to Oberg et al.;

U.S. Pat. No. 5,491,597 to Benin et al.;

U.S. Pat. No. 5,528,819 to McKay et al.;

U.S. Pat. No. 5,597,496 to Massaichi et al.;

U.S. Pat. No. 5,598,307 to Bennin;

U.S. Pat. No. 5,606,477 to Erpelding et al.;

U.S. Pat. No. 5,687,479 to Bennin et al.; and

U.S. Pat. No. 5,734,523 to Scheidecker et al.

U.S. Pat. No. 5,598,307 to Bennin, supra, is an exemplary reference, and describes laminate structures for use in head suspension assemblies. The laminate structures are intended to eliminate manual handling of conductors by integrating the manufacture of the interconnect assembly with that of the suspension assembly. The first step in the manufacture of the laminate structures is to provide a multi-layer laminate sheet. The sheet comprises a first layer of a metal spring material, an intermediate second layer of an electrically insulating, adhesive material, and a third layer of an electrically conductive material. The second step is to create the layers, starting from the outside in.

The first layer is etched to become the primary spring element. The third layer is etched to provide at least one trace, the trace including at least one elongated conductor configured for electrical coupling to a head assembly and for operation as an additional mechanical spring element in selected regions. The second layer provides panels shaped in conformance with the areas of contact between the structure remaining after the etching to produce the elements of the first and the third layers. The traces of the laminate structure are electrically coupled to a head assembly and the laminate structure is attached to other elements of the head stack assembly. The design includes sections wherein the first and second layers are etched away, leaving the traces of the third layer to serve as both the electrical conductors and the gimbal or flexure.

The laminate structures include interconnect assemblies, interconnect-suspension assemblies, and gimbal-interconnect assemblies. Interconnect assemblies attach to a load beam and include at least one conductive trace. The second layer provides dielectric insulation and the third layer can include support and stiffening plates. An interconnect-suspension assembly embodiment has a first layer of stainless steel, a thin second layer of polyimide, and a third layer of copper solder mask may be deposited over the copper traces. Gold may be deposited on the copper traces where there is no solder mask.

U.S. Pat. No. 5,055,969 to Putnam, supra, is another exemplary reference, and describes a flexible circuit for an actuator arm of a hard disk storage device. The flexible circuit has a servo preamplifier, a data preamplifier, a signal routing layer which includes a first ground plane, and an electrically conductive second ground plane which is electrically isolated from and closely spaced to the signal routing layer. The flexible circuit includes a flexible substrate which bends so that the actuator arm remains electrically connected to the servo controller and data read/write circuitry when the actuator arm moves the heads from track to track on the disk surfaces. The flexible substrate is multilayered and is formed of a plurality of electrically insulating and conducting layers. The conducting layers include a signal routing layer with a first ground plane which underlies the data and servo preamplifiers and a second electrically floating ground plane layer.

The signal routing layer contains a plurality of data lines which route data between the data head and the data preamplifier and between the data preamplifier and the tail portion. The conductive servo lines are also routed on the signal routing layer. The conductive servo lines route servo data between the servo head and the servo preamplifier and between the servo preamplifier and the tail portion. A conductive, electrically floating second ground plane is incorporated into a layer beneath the signal routing layer. An electrically insulating layer separates the signal routing layer from the second ground plane.

However, there is still a need for a flex circuit design HGA that achieves reduced pitch and roll stiffness, and that improves the mechanical static and dynamic behaviors of the HGA.

A feature of the present invention is to provide a new flex circuit design for use in a head gimbal assembly, for achieving reduced pitch and roll stiffness by patterning an insulator substrate of the FOS, and by selectively leaving bare conductive trace sections.

Another feature of the present invention is to minimize the head pitch and roll changes resulting from thermal and humidity induced swelling or shrinking.

The foregoing and other features and advantages of the present invention can be achieved by a new head gimbal assembly design. The head gimbal assembly includes a suspension of the type supporting a slider and a flex circuit. The suspension is formed of a load beam that supports the flex circuit, and a resilient flexure which is secured to the load beam and which supports the slider. The flex circuit is comprised of conductive traces formed on a compliant, dielectric substrate. The substrate includes a body portion and a head portion for supporting the conductive traces.

The substrate head portion is patterned such that selected parts of the head portion are removed to leave bare conductive trace sections. The bare conductive trace sections are located on a generally serpentine insulation layer, which compensates for variations effected by heat and humidity, and achieves reduced pitch and roll stiffness of the combined flexure and flex circuit. The serpentine insulation layer is S-shaped with a periodic pattern, and overlays but does not touch the load beam tip. The substrate body portion overlays and is secured to the load beam at selected locations.

This design enables the flex circuit to provide support for the conductive traces, to insulate the conductive traces from the load beam, to minimize the stiffness effect of the flex circuit on the gimbal, to direct the expansion and contraction of the substrate in a controlled fashion while retaining the mechanical connectivity of traces to the substrate, and to minimize the effect of the expansion and contraction on the slider flying characteristics.

The features of the present invention and the manner of attaining them, will become apparent, and the invention itself will be understood by reference to the following description and the accompanying drawings, wherein:

FIG. 1 is a fragmentary isometric view of a data storage system utilizing a head gimbal assembly (HGA) according to the present invention;

FIG. 2 is a perspective view of the HGA of FIG. 1, comprised of a load beam, a flexure, a flex on suspension (FOS), and a slider;

FIG. 3 is an enlarged, partial, isometric view of the HGA of FIG. 2;

FIG. 4 is a top plan view of the FOS of FIGS. 2 and 3;

FIG. 4A is a greatly enlarged, fragmentary, side elevational view of the FOS shown in FIG. 4, taken along line 4A;

FIG. 4B is a fragmentary, enlarged, top plan view of a patterned substrate head portion forming part of the FOS of FIG. 4;

FIG. 4C is a greatly enlarged, fragmentary, top plan view of a lateral side of the substrate head portion of FIG. 4B, taken along line 4C;

FIG. 5 is a greatly enlarged, partial, bottom plan view of the HGA of FIGS. 2 and 3.

FIG. 6 is a top plan view of a load beam forming part of the HGA of FIGS. 2 and 3.

FIG. 7 is an isometric view of a flexure forming part of the HGA of FIGS. 2 and 3;

FIG. 8 is an enlarged, partial, fragmentary, side elevational view of the HGA of FIGS. 2 and 3; and

FIG. 9 is a front elevational view of the HGA of FIG. 7.

Similar numerals in the drawings refer to similar or identical elements. It should be understood that the sizes of the different components in the figures might not be in exact proportion, and are shown for visual clarity and for the purpose of explanation.

FIG. 1 illustrates a disk drive 10 comprised of a head stack assembly 12 and a stack of spaced apart magnetic data storage disks or media 14 that are rotatable about a common shaft 15. The head stack assembly 12 is rotatable about an actuator axis 16 in the direction of the arrow C. The head stack assembly 12 includes a number of actuator arms, only three of which 18A, 18B, 18C are illustrated, which extend into spacings above and below the disks 14.

The head stack assembly 12 further includes an E-shaped block 19 and a magnetic voice coil (or rotor) 20 attached to the block 19 in a position diametrically opposite to the actuator arms 18A, 18B, 18C. A voice coil 20 cooperates with a stator (not shown) for rotating in an arc about the actuator axis 16. Energizing the voice coil 20 with a direct current in one polarity or the reverse polarity causes the head stack assembly 12, including the actuator arms 18A, 18B, 18C, to rotate about the actuator axis 16, in a direction substantially radial to the disks 14.

A head gimbal assembly (HGA) 28 is secured to each of the outer actuator arms, for instance 18A and 18C. A pair of HGA's 28 is secured to each inner actuator arm, for instance 18B. With further reference to FIGS. 2 and 3, the HGA 28 is comprised of a suspension (also referred to herein as a suspension assembly) 33 and a read/write head 35. The suspension 33 includes a load beam 36 and a flexure 40 to which the head 35 is secured. The HGA 28 further includes a flex circuit which is also referred to herein as a flex circuit on suspension (FOS) 50, and which is illustrated in additional detail in FIGS. 4 and 5.

With further reference to FIGS. 7 and 9, the flexure 40 includes a tongue 56 that extends inwardly, within a clearance 58. The clearance 58 is contoured by a flexure body 80, two oppositely disposed peripheral ribs or outriggers 85, 86, and a trailing edge 89. The flexure 40 provides a slider 60 with sufficient flexibility in various degrees of movement for accommodating the uneven topology of the disk surface and other components and drive assembly tolerances, while the slider 60 is flying over the disk 14. The flexure 40 is sufficiently stiff in a direction parallel to the disk plane, to resist physical deflection that may be caused by the rapid movement of the actuator arms 18A, 18B, 18C.

The slider 60 forms part of the read-write head 35, and is secured to the tongue 56 by means of available techniques such as UV curable epoxy. A plurality of conductive contact pads, four of which 61, 62, 63, 64, are formed on the trailing side 59 of the slider 60, and are shown in FIGS. 5 and 9 for the purpose of illustration. These contact pads 61-64 are electrically connected to the FOS 50 by means of corresponding conductive traces 61T, 62T, 63T, and 64T for connection to a read and write element 69 (FIG. 9).

With reference to FIGS. 8 and 9, a dimple 68 is formed in the load beam 36, and is urged against the backside of the tongue 56, for contributing to the gimbaling action. Alternatively, the dimple 68 can be formed on the tongue 56, and urged against the underside of the load beam 36.

The load beam 36 includes a tip 65 which is positioned in proximity to peripheral ribs 85, 86 of the flexure 40, and above the flexure clearance 58 and at least part of the tongue 56. The tip 65 extends integrally in a body 66 having two stiffening rails 67 projecting along the length of the body 66. The body 66 includes datum features 92, 94, and 96 (FIG. 6), and the tip 65 includes the dimple 68.

Having described the general structure of the HGA 28, the FOS 50 will now be described in greater detail. Referring to the drawings and more particularly to FIGS. through 5, the FOS 50 is formed, for example, of a laminate comprised of conductive traces 70 that are formed on a patterned, compliant, substrate 75. The conductive traces 70 can be made primarily of conductive material, such as aluminum, steel, beryllium, gold, silver, but preferably from copper, due to the desirable conductivity and processing advantage of copper. The conductive traces 70, or selected portions thereof, can optionally be coated with a protective layer (not shown) to prevent them from shorting or corroding.

The substrate 75 is preferably a flat, patterned, flexible sheet of material adhered on one side to the conductive traces 70 by means of available techniques. The substrate 75 is made of plastic or polymeric resinous material, such as polyimide, and is attached to the conductive traces 70. The substrate 75 includes a body portion 100 and a patterned head portion 102.

The substrate body portion 100 overlays the load beam body 66 (FIG. 6), and is secured thereto at selected locations by means of available techniques such as adhesive bonding 107 (FIG. 4A) The substrate body portion 100 includes two datum holes or clearances 92F and 96F that coincide with the load beam datum features 92 and 96 respectively. Another datum hole (not shown) can optionally be added to the substrate body portion 100 to match and coincide with the load beam datum feature 94. The datum hole 92 can be used for mechanical registration, or can be enlarged for clearance of suspension registration pins, if other means of location, for example optical registration, are used.

The substrate body portion 100, is preferably, but optionally comprised of a non-patterned section 104 that extends in a patterned section 105. In a preferred embodiment, the patterned section 105 is serpentine, with a general S-Shape (or dollar shape) configuration. The patterned section 105 supports the conductive traces 70 at selected locations 70A (FIG. 4A), such that "bare" (i.e., unsupported) conductive traces 70B are not directly supported by the substrate 75. At locations 70A, these conductive traces 70 are supported by pads 108 (shown outlined in FIG. 4A by dotted lines for clarity of illustration), and define regions of connectivity between the traces 70 and the substrate 75, and that form part of the substrate patterned section 105. While these regions of connectivity will hereinafter be referred to as "pads", it should be clear that they are not necessarily isolated from one another. As a result, the unsupported conductive traces (or trace sections) 70B are interleaved between supported trace sections at locations 70B.

This design enables the FOS 50 to provide support for the conductive traces 70, to insulate the conductive traces 70 from the load beam 36, to minimize the stiffness effect of the FOS 50 on the gimbal, to direct the swelling (i.e., expansion) or shrinking (i.e., contraction) of the substrate 75 in a controlled fashion, while retaining the mechanical connectivity of traces 70 to the substrate 75, and to minimize the effect of the shrinking and swelling on the slider flying characteristics.

Preferably, in order to achieve the desired function of canceling or minimizing the shrinking or swelling effect of the substrate 75, alternate portions of the substrate 75 expand (or contract) in opposite directions so that they compensate for thermal or humidity caused variations.

In this particular illustration, the patterned section 105 extends about half way across the substrate body portion 100. It should however, be clear that the coverage of the substrate patterned section 105 can vary as required by the particular applications. The location of the attachment point or points of the substrate patterned section 105 (or the body portion 100) to the load beam 36 (that is where the patterned section 105 is glued to the load beam 36) can vary with several variables including but not limited to the substrate geometry.

The substrate 75 includes a dividing edge 175 (FIG. 4) that generally define the outline of the non-patterned section 104. If the dividing edge 175 were further back (that is closer to the datum hole 96F) the substrate 75 will exhibit a lower stiffness since a larger area of the substrate 75 will be allocated to the S-shaped patterned section 105 with reduced mass. Design considerations for the optimal placement of the dividing edge 175 include the fragility of the substrate 75 and its vibration (or dymanic) behavior.

The substrate head portion 102 overlays, and preferably does not touch the load beam (36) tip 65 (FIGS. 8, 9), in order to minimize the effect of the FOS 50 on the stiffness. Therefore, a clearance 138 (FIG. 8) is needed to prevent or substantially minimize the chances of substrate head portion 102 touching the tip 65 during normal operation conditions.

An important aspect of the present invention is the patterning of the substrate 75. According to one embodiment, selected portions of the substrate 75, including the substrate head portion 102, are removed such as by etching or other available techniques, leaving "bare" (or unsupported) conductive trace sections. In a preferred embodiment, and as is illustrated in FIGS. 4, 4A, 4B, and 5, the substrate head portion 102 is patterned in a serpentine (for example, S-shape or $-shape) configuration.

The patterning of the substrate 75 minimizes the head pitch and roll changes resulting from thermal and humidity induced swelling or shrinking, since the conductive traces 70 have lower thermal coefficients of expansion than the substrate 75 as well as lower moisture absorption than the substrate 75. The embodiment illustrated herein is only an example of leaving bare traces to reduce stiffness. Several other patterns can be used to reduce stiffness while providing adequate prevention from shorting and lending good manufacturing yields.

According to this exemplary embodiment, the substrate head portion 102 has a general rectangular outline, and is comprised of two lateral sides 120, 125, a trailing side 127, and two leading sides 128, 129. The present FOS 50 embodiment includes four conductors 61, 62, 63, 64 that overlay or are formed on, and secured to the substrate 75. It should be clear that the FOS 50 and particularly the substrate head portion 102 is not limited to the geometric shape(s) described herein, and that similar or equivalent shapes can alternatively be used.

The substrate head portion 102 overlays part of the outriggers 85, 86 (shown in dashed lines in FIG. 4B), without touching them, with the clearance 139 formed therebetween (FIG. 8). In the present exemplary embodiment, the substrate head portion 102 overlays the outer periphery of the outriggers 85, 86 and does not overlay the inner periphery 130 of the outriggers 85, 86.

Each of the leading sides 128, 129 of the substrate head portion 102 (for example 128) extends between two corner bends 143, 144. These substrate corner bends 143, 144 (FIG. 4B) are generally similar in structure and design, and are patterned, so as to provide protection to the traces from handling or electrical shorting. For example, the substrate 75 at the outer corner bend 143 is etched in such a way as to support the conductive trace 70 at two locations 70A, leaving the conductive trace 70 unsupported (i.e., bare or not directly supported) at location 70C. As a result, the outside sections of the corner bend 143 protect the traces.

Similarly, the substrate 75 at the inner corner bend 144 is etched is such a way as to support the conductive trace 70 at two locations 70A, leaving the conductive trace 70 unsupported at location 70D. As a result, the pattern provides maximum flexibility at the corner bends 144. The removal of the dielectric substrate at the corner bends 143, 144 reduces the pitch and roll stiffness of the FOS 50 at these locations.

The two lateral sides 120, 125 of the substrate head portion 102 are generally similar in structure and design, and therefore only one lateral side 120 will be described herein in greater detail. The lateral side 120 extends between two generally similar corner bends, 128, 150. In a preferred embodiment, the substrate lateral side 120 is patterned in a generally serpentine (e.g. S-Shape, or $-shape) configuration. The substrate lateral side 120 supports the conductive traces 70 at selected locations 70E (FIG. 4B), such that "bare" (i.e., unsupported) conductive traces 70 are not directly supported by the substrate lateral side 120. At locations 70E, the conductive traces 70 are supported by separate pads similar to pads 108 (FIG. 4A). As a result, the unsupported conductive traces (or trace sections) 70F are interleaved between supported trace sections at locations 70E.

With reference to FIG. 4C, the special pattern of the polyimide substrate lateral side 120 and the patterned section 105 of the body portion 100 reduces the overall mass of the HGA 28, and minimizes the effect of temperature and humidity variation on the FOS 50. Temperature variation (whether contraction or expansion) affects each of the multi-layers (or bi-layers as is in this example: the substrate 75 and the conductive trace 70), differently.

However, shaping the substrate 75 in a serpentine (or S) configuration, minimizes the relative thermal or hygroscopic variation between the multiple layers 75, 70 of different compositions, by canceling out the shrinking or swelling of the different sections of the serpentine, in effect compensating for the difference in the contraction and expansion of the layers 75, 70. Such cancellation or compensation is effected by redirecting the expansion or contraction direction of the polyimide substrate layer 75 in a desired direction, or away from an undesired direction, while retaining the structural robustness of the FOS 50.

The substrate lateral side 120 (FIG. 4C) has a periodic S-shape configuration, wherein inboard sections 220 are disposed on one side (i.e., the inner periphery of the substrate head portion 102), and extend generally parallel to a Y axis, that is substantially parallel to the conductive traces 70. Similarly, outboard sections 225 are disposed on the opposite side (i.e., the outer periphery of the substrate head portion 102), and extend generally parallel to the Y axis. The substrate lateral side 120 further includes lateral sections 230 that extend intermediate to the inboard sections 220 and the outboard sections 225, along an X axis, which is generally normal to the Y axis. The periodicity of the serpentine configuration is preferable for ease of manufacture. It should be clear that alternative, non-periodic configurations can be used.

In the event of a temperature variation, the contraction or expansion of the inboard sections 220 and the outboard sections 225 is substantially effected and limited to the Y axis direction, along the arrows A and C, respectively. Similarly, temperature and humidity variation effects contraction or expansion of the lateral sections 230 generally along the X axis. As a result of such well directed contraction or expansion, this design achieves the desired cancellation or compensation of variations effected by humidity, temperature, or other variables.

The substrate trailing side 127 is defined between two generally similar corner bends 150, that are similar in function and design to the corner bend 143. The substrate trailing side 127 includes a trailing support edge 250 that supports the four traces or leads 61, 62, 63, 64 and that provides support and robustness to the substrate 75. The trailing side 127 provides spacing between the conductive traces 61T, 62T, 63T, and 64T for ease of assembly.

In one embodiment, the substrate 75 has a generally uniform width of approximately around 2 mils along most of its length. However, such width can vary for example between approximately 0.5 mil and 10 mils. The width of the conductive traces 70 is generally uniform along substantially the entire length of the FOS 50, including the traces 61, 62, 63, 64 and ranges between approximately 0.5 mil and 5 mils.

It should be understood that the geometry, compositions, and dimensions of the elements described herein may be modified within the scope of the invention and are not intended to be the exclusive; rather, they can be modified within the scope of the invention. Other modifications may be made when implementing the invention for a particular environment.

Young, Kenneth F., Doundakov, Viktor S.

Patent Priority Assignee Title
10002628, Dec 16 2014 Hutchinson Technology Incorporated Piezoelectric motors including a stiffener layer
10002629, Jul 15 2013 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
10109305, May 12 2016 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
10147449, Feb 17 2015 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
10290313, Jun 30 2015 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
10339966, Dec 22 2014 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
10629232, May 23 2013 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
10748566, Jun 30 2015 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
11043236, Dec 18 2020 Seagate Technology LLC Curved outer gimbal strut
6376964, May 16 2001 Western Digital Technologies, INC Collocated rotating flexure microactuator for dual-stage servo in disk drives
6493190, Aug 16 2000 Magnecomp Corporation Trace flexure with controlled impedance
6639757, Jan 10 2001 Hutchinson Technology Inc.; Hutchinson Technology Incorporated Heat dissipation structures for integrated lead disk drive head suspensions
6667857, Sep 12 2000 TDK Corporation Head gimbal assembly having a flexible printed circuit
6673256, Dec 10 1998 Suncall Corporation Wiring integrated flexure and method of manufacturing the same
6751843, Mar 09 2001 APPLIED KINETICS, INC Method for improved static attitude of head suspension assemblies with electrical interconnects
6760194, Nov 28 2000 SAE Magentics (H.K.) Ltd. Head gimbal assembly with piezoelectric microactuator
6807029, Feb 08 2001 NHK Spring Co., Ltd. Wiring member of suspension for disc drive having electrically conductive substrate with slit between read wire and write wire
6952329, Aug 28 2003 HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Disk drive with localized thermal processing of integrated lead suspensions for controlling the pitch static attitude of sliders
6992862, Aug 28 2003 Western Digital Technologies, INC Disk drive with controlled pitch static attitude of sliders on integrated lead suspensions by improved plastic deformation processing
6993824, Aug 28 2003 HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Method of controlling pitch static attitude of sliders on integrated lead suspensions by improved plastic deformation processing
7152303, Aug 28 2003 HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Method of localized thermal processing of integrated lead suspensions for controlling the pitch static attitude of sliders
7257880, Feb 26 2004 Hitachi Global Storage Technologies Netherlands B.V. Method for assembling an actuator head suspension
7271985, Sep 24 2004 Oracle America, Inc System and method for crosstalk reduction in a flexible trace interconnect array
7349184, Aug 31 2004 Western Digital Technologies, INC System and apparatus for continuous reference plane for wireless suspension
7352535, Jan 13 2005 Western Digital Technologies, INC Method and apparatus for reducing crosstalk and signal loss in flexing interconnects of an electrical lead suspension
7408744, May 09 2005 Magnecomp Corporation Impedance control with reduced stiffness contribution from electrical interconnect
7489479, Jan 18 2005 Western Digital Technologies, INC Electrical lead suspension having partitioned air slots
7532438, May 16 2005 Hutchinson Technology Incorporated Wireless flexure with curved trace geometry against pitch and roll adjustment springback
7593189, Jun 30 2006 Seagate Technology LLC Head gimbal assembly to reduce slider distortion due to thermal stress
7652847, Dec 12 2003 Seagate Technology LLC Minimized skew angle slider
7660074, Sep 11 2003 Hutchinson Technology Incorporated Webbed ground plane structure for integrated lead suspensions
7898772, Aug 15 2007 Magnecomp Corporation Disk drive suspension with gimbal designed to provide enhanced signal fidelity
7957100, Aug 29 2007 Magnecomp Corporation Disk drive gimbal having reduced residual stress and related method of manufacture
8045295, Oct 11 2002 SAE Magnetics (HK) Ltd. Method and apparatus for providing an additional ground pad and electrical connection for grounding a magnetic recording head
8130470, Dec 14 2006 Western Digital Technologies, INC Suspension assembly including a limiter having a gross length larger than a between-coupling-portions distance between coupling portions
8194354, May 23 2008 Western Digital Technologies, INC Suspension assembly including a flexure tail with staggered rows of apertures
8274760, May 23 2008 Western Digital Technologies, Inc. Suspension assembly including a flexure tail with staggered rows of apertures
8289656, Nov 19 2008 Western Digital Technologies, Inc.; Western Digital Technologies, INC Disk drive comprising stacked and stepped traces for improved transmission line performance
8462466, Aug 31 2009 Western Digital Technologies, Inc. Disk drive comprising impedance discontinuity compensation for interconnect transmission lines
8467151, May 21 2010 Western Digital Technologies, INC Disk drive comprising an interconnect with transmission lines forming an approximated lattice network
8488279, Nov 22 2011 Western Digital Technologies, INC Disk drive suspension assembly with flexure having stacked interleaved traces
8488281, Sep 13 2011 Western Digital Technologies, INC Disk drive suspension assembly having a flexure bond pad shelf separate from a tongue
8570687, Aug 22 2008 Nitto Denko Corporation Copper residual stress relaxation reduction means for hard disk drive slider gimbals
8605389, Jun 09 2006 Western Digital Technologies, Inc. Head gimbal assembly including a conductive trace disposed upon a continuous dielectric layer segment without overlying a gimbal arm
8705210, Jan 05 2012 NHK Spring Co., Ltd. Interleaved circuit of flexure for disk drive
8705211, Jan 05 2012 NHK Spring Co., Ltd. Interleaved circuit of flexure for disk drive
8792212, Sep 14 2010 Western Digital Technologies, INC Robust gimbal design for head gimbal assembly
8792213, Feb 20 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Tethered gimbal on suspension for improved flyability
8797691, May 21 2013 Western Digital Technologies, INC Disk drive head suspension with a single piezoelectric element adhered to rotary-actuated and non-actuated portions of a structural layer of a tongue of a laminated flexure
8879212, Aug 23 2013 Western Digital Technologies, Inc. Disk drive suspension assembly with flexure having dual conductive layers with staggered traces
8885299, May 24 2010 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
8891206, Dec 17 2012 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffener
8896968, Oct 10 2012 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
8896969, May 23 2013 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
8896970, Dec 31 2013 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
8929033, May 02 2005 Western Digital Technologies, INC Flexure for implementation on a suspension in a hard disk drive for resisting windage effects
8929180, Apr 25 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Energy-assisted magnetic recording device having laser driving signal and magnetic write signal sharing same electrical conductor
8934199, Mar 31 2014 Western Digital Technologies, INC Disk drive head suspension tail with bond pad edge alignment features
8941951, Nov 28 2012 Hutchinson Technology Incorporated Head suspension flexure with integrated strain sensor and sputtered traces
8976491, May 09 2013 Western Digital Technologies, INC Disk drive head suspension distal non-op shock limiter with branched arms
8982512, Nov 24 2008 Magnecomp Corporation Low impedance, high bandwidth disk drive suspension circuit
8982513, May 21 2013 Western Digital Technologies, INC Disk drive head suspension with dual piezoelectric elements adhered to rotary-actuated and non-actuated portions of a structural layer of a tongue of a laminated flexure
8988830, May 13 2013 Western Digital Technologies, INC Air bearing design to mitigate lube waterfall effect
9001469, Mar 16 2012 Hutchinson Technology Incorporated Mid-loadbeam dual stage actuated (DSA) disk drive head suspension
9001471, Sep 14 2012 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions
9007726, Jul 15 2013 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
9025282, Feb 10 2011 Hutchinson Technology Incorporated Elongated trace tethers for disk drive head suspension flexures
9042048, Sep 30 2014 Western Digital Technologies, INC Laser-ignited reactive HAMR bonding
9064513, Mar 07 2014 Western Digital Technologies, INC Disk drive suspension assembly with flexure having dual conductive layers with staggered traces
9070387, Aug 23 2013 Western Digital Technologies, INC Integrated heat-assisted magnetic recording head/laser assembly
9093102, Mar 12 2013 Western Digital Technologies, INC Systems and methods for tuning seed layer hardness in components of magnetic recording systems
9093117, Mar 22 2012 Hutchinson Technology Incorporated Ground feature for disk drive head suspension flexures
9099131, Mar 17 2010 Western Digital Technologies, Inc. Suspension assembly having a microactuator electrically connected to a gold coating on a stainless steel surface
9099145, Dec 24 2013 Western Digital Technologies, INC High contrast alignment marker
9105282, May 20 2013 Western Digital Technologies, Inc. Head gimbal assembly carrier with adjustable protective bar
9135935, Oct 11 2013 Western Digital Technologies, INC Customized head gimbal assembly bonding skew angle for adjusting two-dimensional magnetic recording reader alignment
9147413, Dec 31 2013 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
9159343, Aug 22 2008 Nitto Denko Corporation Copper residual stress relaxation reduction means for hard disk drive slider gimbals
9165579, Sep 26 2014 Western Digital Technologies, INC Air bearing area configuration for reducing flying height hump across a stroke
9171562, Mar 19 2015 Western Digital Technologies, INC Patterned metal layer to control solder connection between laser and submount in a magnetic head
9180563, Mar 08 2013 Western Digital Technologies, INC De-swage machine for removal of a head from a head stack assembly and method of using the same
9183859, Nov 11 2014 Western Digital Technologies, INC HAMR writer pole length characterization
9190089, Dec 24 2014 Western Digital Technologies, INC Air bearing area configuration for contaminating particle removal
9190090, Dec 24 2014 Western Digital Technologies, INC Multi step lube blocking air bearing area configuration
9202478, Feb 10 2015 Western Digital Technologies, INC Method and structure for soldering a laser submount to a mounting face of a slider
9230580, Jun 30 2010 Western Digital Technologies, Inc. Suspension assembly having a microactuator grounded to a flexure
9240203, Oct 10 2012 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
9242340, Mar 12 2013 Western Digital Technologies, INC Method to stress relieve a magnetic recording head transducer utilizing ultrasonic cavitation
9245555, May 24 2010 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
9257138, Oct 28 2014 Western Digital Technologies, INC Slider assembly and method of manufacturing same
9257139, Dec 17 2012 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
9293157, Jun 28 2012 Western Digital Technologies, Inc. Automated active feedback slice and view milling of magnetic head cross-sections
9296188, Feb 17 2015 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
9308609, Mar 08 2013 Western Digital Technologies, Inc. De-swage machine for removal of a head from a head stack assembly and method of using the same
9315008, Jul 16 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Method and apparatus for aligning an illumination unit to a slider for a magnetic recording device
9343084, Mar 14 2012 Western Digital Technologies, Inc.; Western Digital Technologies, INC Systems and methods for correcting slider parallelism error using compensation lapping
9361916, Mar 13 2014 Western Digital Technologies, INC Electrical lapping guide for dimensional control of back side of heat assisted magnetic recording device
9368139, Mar 20 2015 Western Digital Technologies, INC Slider back side etching to increase shear strength between suspension and slider
9372078, Jun 20 2014 Western Digital Technologies, INC Detecting thickness variation and quantitative depth utilizing scanning electron microscopy with a surface profiler
9387568, Feb 27 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Systems and methods for correcting fabrication error in magnetic recording heads using magnetic write width measurements
9431037, Mar 12 2013 Western Digital Technologies, INC Systems and methods for monitoring the power of a light source utilized in energy-assisted magnetic recording
9431042, Jan 03 2014 Hutchinson Technology Incorporated Balanced multi-trace transmission in a hard disk drive flexure
9431044, May 07 2014 Western Digital Technologies, INC Slider having shock and particle resistance
9449631, Mar 12 2013 Western Digital Technologies, Inc. Slider for magnetic recording system
9472218, Mar 17 2010 Western Digital Technologies, Inc. Suspension assembly having a microactuator electrically connected to a gold coating on a stainless steel surface
9524739, Jul 15 2013 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
9558771, Dec 16 2014 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
9564154, Dec 22 2014 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
9613644, May 23 2013 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
9646638, May 12 2016 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
9659587, Nov 06 2015 Western Digital Technologies, INC Magnetic head having a reader overcoat with DLC and a recessed writer overcoat without DLC
9659589, Sep 29 2015 Western Digital Technologies, INC Free-standing reflector usable in heat assisted magnetic recording technology
9685187, Sep 26 2014 Western Digital Technologies, INC Bonding tool and method for high accuracy chip-to-chip bonding
9715890, Dec 16 2014 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
9734852, Jun 30 2015 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
9805748, Jun 24 2014 Western Digital Technologies, INC System and method for providing a protective layer having a graded intermediate layer
9812160, May 24 2010 INTRI-PLEX THAILAND LTD Low resistance ground joints for dual stage actuation disk drive suspensions
9824704, Feb 17 2015 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
9870788, Jan 08 2014 Western Digital Technologies, INC Method of adjusting tilt using magnetic erase width feedback
9870792, Jul 15 2013 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
9997183, May 23 2013 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
Patent Priority Assignee Title
4645280, Aug 08 1985 ADFLEX SOLUTIONS, INC Solderless connection technique between data/servo flex circuits and magnetic disc heads
4761699, Oct 28 1986 MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Slider-suspension assembly and method for attaching a slider to a suspension in a data recording disk file
4819094, Aug 12 1986 HUTCHINSON TECHNOLOGY, INC , A CORP OF MN Damped magnetic head suspension assembly
4996623, Aug 07 1989 MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Laminated suspension for a negative pressure slider in a data recording disk file
5055969, Sep 28 1990 Seagate Technology LLC Servo/data actuator arm flexible circuit
5124864, May 03 1989 TDK Corporation Magnetic head supporting device including a flexible member of polymeric resinous material
5185683, Dec 21 1987 Hutchinson Technology, Inc. Suspension arm mounting assembly
5491597, Apr 15 1994 Hutchinson Technology Incorporated Gimbal flexure and electrical interconnect assembly
5528819, Apr 30 1992 MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Combination transducer/slider/suspension and method for making
5597496, Jul 15 1994 Nippon Mektron, Ltd. Method for manufacturing a magnetic head suspension provided with circuit wiring
5598307, Apr 15 1994 Hutchinson Technology Inc. Integrated gimbal suspension assembly
5606477, Mar 15 1994 Western Digital Technologies, INC Viscoelastically damped slider suspension system
5687479, Apr 15 1994 Hutchinson Technology Incorporated Electrical trace interconnect assembly
5734523, Jul 24 1996 PEMSTAR INC Conductive film connectors for use on head assemblies in drives
5805382, Jun 21 1996 International Business Machines Corporation Integrated conductor magnetic recording head and suspension having cross-over integrated circuits for noise reduction
5959808, Dec 30 1997 Western Digital Technologies, INC Shielded electrostatic microactuators for magnetic-head positioning such devices
/////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 04 1999Read-Rite Corporation(assignment on the face of the patent)
Feb 04 1999DOUNDAKOV, VIKTOR S Read-Rite CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0097710081 pdf
Feb 04 1999YOUNG, KENNETH F Read-Rite CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0097710081 pdf
Dec 24 2002Read-Rite CorporationTENNENBAUM CAPITAL PARTNERS, LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0136160399 pdf
Jul 31 2003TENNENBAUM CAPITAL PARTNERS, LLCRead-Rite CorporationRELEASE OF SECURITY INTEREST0144990476 pdf
Jul 31 2003Read-Rite CorporationWESTERN DIGITAL FREMONT , INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0145060765 pdf
Sep 19 2003Western Digital Technologies, INCGENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0148300957 pdf
Sep 19 2003WESTERN DIGITAL FREMONT , INC GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0148300957 pdf
Jun 29 2007WESTERN DIGITAL FREMONT , INC WESTERN DIGITAL FREMONT , LLCENTITY CONVERSION FROM INC TO LLC0485010925 pdf
Aug 09 2007GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTWestern Digital Technologies, INCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0205990489 pdf
Aug 09 2007GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTWESTERN DIGITAL FREMONT , INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0205990489 pdf
May 12 2016WESTERN DIGITAL FREMONT , LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0387100845 pdf
May 12 2016WESTERN DIGITAL FREMONT , LLCU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY AGREEMENT0387440675 pdf
Feb 27 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTWESTERN DIGITAL FREMONT , LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0455010158 pdf
May 08 2019WESTERN DIGITAL FREMONT , LLCWestern Digital Technologies, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0504500582 pdf
Feb 03 2022JPMORGAN CHASE BANK, N A WESTERN DIGITAL FREMONT , LLCRELEASE OF SECURITY INTEREST AT REEL 038710 FRAME 08450589650445 pdf
Feb 03 2022JPMORGAN CHASE BANK, N A Western Digital Technologies, INCRELEASE OF SECURITY INTEREST AT REEL 038710 FRAME 08450589650445 pdf
Date Maintenance Fee Events
Jul 01 2004M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 13 2004STOL: Pat Hldr no Longer Claims Small Ent Stat
Nov 21 2008M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 07 2012M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 19 20044 years fee payment window open
Dec 19 20046 months grace period start (w surcharge)
Jun 19 2005patent expiry (for year 4)
Jun 19 20072 years to revive unintentionally abandoned end. (for year 4)
Jun 19 20088 years fee payment window open
Dec 19 20086 months grace period start (w surcharge)
Jun 19 2009patent expiry (for year 8)
Jun 19 20112 years to revive unintentionally abandoned end. (for year 8)
Jun 19 201212 years fee payment window open
Dec 19 20126 months grace period start (w surcharge)
Jun 19 2013patent expiry (for year 12)
Jun 19 20152 years to revive unintentionally abandoned end. (for year 12)