Various embodiments concern a gimbaled flexure having a dual stage actuation structure comprising flexure which comprises a gimbal. The gimbal comprises at least one spring arm and a tongue connected to the at least one spring arm. The dual stage actuation structure further comprises a motor mounted on the gimbal, the motor comprising a top side and a bottom side opposite the top side, the bottom side of the motor facing the flexure. The dual stage actuation structure further comprises a damper located between the motor and the flexure, the damper contacting the tongue and the bottom side of the motor. The damper comprises one or both of elastic and viscoelastic material. Various other features of a dual stage actuation structure are provided.
|
17. A suspension comprising:
a flexure comprising a tongue having a top side and a bottom side opposite the top side;
a head slider mounting located on the bottom side of the tongue;
a motor mounted on the flexure, the motor comprising a top side and a bottom side opposite the top side, the bottom side of the motor facing the top side of the tongue; and
a damper located between the bottom side of the motor and the top side of the tongue, the damper comprising one or both of elastic and visco-elastic material.
19. A suspension comprising:
a flexure comprising a pair of spring arms, a pair of struts, and a tongue having a top side and a bottom side opposite the top side, the tongue located between the pair of spring arms and connected to the pair of spring arms by the pair of struts;
a motor mounted on the pair of spring arms, the motor comprising a top side and a bottom side opposite the top side, the bottom side of the motor facing the top side of the tongue; and
a damper located between the bottom side of the motor and the top side of the tongue, the damper comprising one or both of elastic and visco-elastic material.
1. A suspension having a dual stage actuation structure, the suspension comprising:
a flexure comprising a gimbal, the gimbal comprising a top side and a bottom side opposite the top side;
a head slider mounting located on the bottom side of the gimbal;
a motor mounted on the top side of the gimbal, the motor comprising a top side and a bottom side opposite the top side, the bottom side of the motor facing the top side of the gimbal; and
a damper located between the motor and the flexure, the damper contacting the top side of the gimbal and the bottom side of the motor, the damper comprising one or both of elastic and visco-elastic material.
2. The suspension of
3. The suspension of
5. The suspension of
the motor comprises at least one terminal,
the flexure comprises at least one electrical connection pad and an electrically conductive material in contact with each of the at least one electrical connection pad and the at least one terminal to electrically connect the at least one electrical connection pad to the at least one terminal, respectively, and
the electrically conductive material is different from the damper.
6. The suspension of
9. The suspension of
10. The suspension of
11. The suspension of
12. The suspension of
15. The suspension of
16. The suspension of
the gimbal comprises a pair of struts, a pair of spring arms, and a tongue located between the pair of spring arms and connected to the pair of spring arms by the pair of struts,
the motor is mounted on the pair of spring arms,
the head slider mounting is located on the tongue, and
electrical activation of the motor bends the pair of struts to move the head slider mounting about a tracking axis.
18. The suspension of
the flexure comprises a pair of struts and a pair of spring arms,
the tongue is located between the pair of spring arms,
the tongue is connected to the pair of spring arms by the pair of struts,
the motor is mounted on the pair of spring arms, and
electrical activation of the motor bends the pair of struts to move the tongue about a tracking axis.
20. The suspension of
|
This application is a Continuation of U.S. patent application Ser. No. 14/050,660 Filed On Oct. 10, 2013, entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Dampers, which claims the benefit of U.S. Provisional Application Ser. No. 61/711,988, filed on Oct. 10, 2012 and entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions With Visco-Elastic Dampers, which applications are hereby incorporated herein by reference in their entireties for all purposes.
The present disclosure relates to disk drives and suspensions for disk drives. In particular, the invention concerns dual stage actuation (DSA) suspensions.
Dual stage actuation (DSA) disk drive head suspensions and disk drives incorporating DSA suspensions are generally known and commercially available. For example, DSA suspensions having an actuation structure on the baseplate or other mounting portion of the suspension, i.e., proximal to the spring or hinge region of the suspension, are described in the Okawara U.S. Patent Publication No. 2010/0067151, the Shum U.S. Patent Publication No. 2012/0002329, the Fuchino U.S. Patent Publication No. 2011/0242708 and the Imamura U.S. Pat. No. 5,764,444. DSA suspensions having actuation structures located on the loadbeam or gimbal portions of the suspension, i.e., distal to the spring or hinge region, are also known and disclosed, for example, in the Jurgenson U.S. Pat. No. 5,657,188, the Krinke U.S. Pat. No. 7,256,968 and the Yao U.S. Patent Publication No. 2008/0144225. Co-located gimbal-based DSA suspensions are disclosed in co-pending U.S. Provisional Application No. 61/700,972. All of the above-identified patents and patent applications are incorporated herein by reference in their entirety and for all purposes.
There remains a continuing need for improved DSA suspensions. DSA suspensions with enhanced performance capabilities are desired. The suspensions should be capable of being efficiently manufactured.
Various embodiments concern a gimbaled flexure having a dual stage actuation structure comprising flexure comprising a gimbal. The gimbal comprises at least one spring arm and a tongue connected to the at least one spring arm. The dual stage actuation structure further comprises a motor mounted on the gimbal, the motor comprising a top side and a bottom side opposite the top side, the bottom side of the motor facing the flexure. The dual stage actuation structure further comprises a damper located between the motor and the flexure, the damper contacting the tongue and the bottom side of the motor. The damper comprises one or both of elastic and viscoelastic material.
In some of the above embodiments, the damper reduces out-of-plane motion of the tongue during high frequency resonance modes. The contact between the damper and each of the tongue and the bottom side of the motor can maintain a generally parallel planar relationship between the tongue and the motor during activation of the motor.
In some of the above embodiments, the damper is adhered to both of the flexure and the bottom side of the motor. The damper can be located on a stainless steel layer of the flexure.
Some of the above embodiments further comprise a conductive island on the tongue and a void in the damper and a stainless steel layer of the flexure. The void can be a moat that surrounds the conductive island. The moat can minimize wicking of one or both of adhesive and solder from the conductive island.
In some of the above embodiments, the motor comprises two contacts on the bottom side of the motor and the two contacts electrically connect with two traces of the flexure, respectively. An impingement element can be mounted on the top side of the motor. The impingement element can be located and configured to engage with a loadbeam dimple.
Some of the above embodiments comprise further comprise a head slide attached to the tongue. Electrical activation of the motor can move the head slider amount a tracking axis. The head slider can comprise a channel. The motor can extend through the channel and the motor can be free from fixed contact with the head slider.
In some of the above embodiments, the gimbal further comprises a pair of struts, the at least one spring arm comprises a pair of spring arms, the tongue is located between the pair of spring arms and is connected to the pair of spring arms by the pair of struts, the motor is mounted on the pair of spring arms, the tongue comprises a head slider mounting, and electrical activation of the motor bends the pair of struts to move the head slider mounting about a tracking axis.
Further features and modifications of the various embodiments are further discussed herein and shown in the drawings. While multiple embodiments are disclosed, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of this disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
Flexure 12 includes a gimbal 24 at the distal end of the flexure 12. A DSA structure 14 is located on the gimbal 24, adjacent the distal end of the loadbeam 18. As best shown in
As shown in
As perhaps best shown in
As shown in
The operation of DSA structure 14 can be described with reference to
As shown in
The gimbal 124 includes spring arms 152 and the tongue 133. The base portion 150, the spring arms 152, and the center region 154 are each formed from the stainless steel layer 140. The spring arms 152 extend from the base portion 150. The center region 154, which is a center part of the tongue 133, is connected to the distal ends of the spring arms 152 and is supported between the spring arms 152. Also formed in the stainless steel layer 140 is a pair of struts 153. Each of the struts 153 extends from one of the opposite lateral sides of the center region 154 and has a motor mounting flag or pad 155 on its outer end. As shown, the struts 153 are offset from one another with respect to the longitudinal axis of the flexure 112 or otherwise configured so as to provide for rotational movement of the motor 134 and the head slider 132 mounted thereto about the tracking axis with respect to the center region 154. Each strut 153 comprises a longitudinal axis that extends generally perpendicular with respect to the longitudinal axis of the suspension 110. The longitudinal axes of the struts 153 extend parallel but do not intersect or otherwise overlap with each other when the struts 153 are not stressed (e.g., not bent). The struts 153 can be the only structural linkage between the center region 154 and the pads 155 (e.g., the only part of the stainless steel layer 140 connecting the center region 154 with the pads 155 is the struts 153, a single strut 153 for each pad 155). As shown in FIG. 13F, the struts 153 can each be the narrowest part of the stainless steel layer 140 in an X-Y plane (as viewed from the overhead perspective of
As shown in
The electrical terminals on the motor 134 may be on the same side (e.g., top or bottom) but opposite longitudinal ends of the motor 134. As shown in
The operation of DSA structure 114 can be described with reference to
As shown in
Some, although relatively little, out-of-plane motion of other portions of the gimbal 124 may be produced during the tracking action of DSA structure 114. The linkage provided by the struts 153 accommodates the motion of the motor 134 so the remaining portions of the tongue 133 remain generally aligned with respect to the longitudinal axis of the flexure 112 during this tracking action. For example, the motor 134 and head slider 132 rotate, but the center region 154 (or more broadly the tongue 133) does not rotate or rotates only an insignificant or trivial amount.
Incorporating a DSA structure as part of the gimbal of a suspension, which may require incorporating components that are configured to move with respect to one another as described above, may leave the components of the DSA structure more susceptible to unintended relative movement. Such movement could be out-of-plane movement of components that are not rigidly attached to one another in a co-located DSA embodiment, but may otherwise be rigidly attached to one another in a conventional non-co-located DSA embodiment. Such movement may be vibration of the components. Various embodiments, including those referenced above, can benefit from providing a dampening layer along a tongue, motor, and/or other components of a DSA structure, as further discussed herein in connection with
As shown in
The damper 329 can be formed from elastic or visco-elastic material. Visco-elastic materials can provide enhanced damping benefits. Examples of suitable materials include 3M™ 242 and JDC MP65 materials. These materials typically have a relatively low elastic modulus and therefore have low stiffness. The damper 329 can be formed by various techniques such as jetting or pin contacting the material in liquid form onto the stainless steel layer 340 or other surface of the tongue 333, or by applying a previously formed film of the material onto the stainless steel layer 340 or other surface of the tongue 333. The material of the damper 329 may be adhesive and therefore can adhere to the tongue 333 (e.g., to the stainless steel layer 340) and/or the motor 334 (e.g., to the bottom side of the motor 334). In any case, the material of the damper 329 can contact both the tongue 333 (e.g., the stainless steel layer 340) and the motor 334 (e.g., the bottom side of the motor 334).
Relative motion occurs between the motor 334 and the tongue 333 during activation of the motor 334. The damper 329 can be placed at the center of motion between the tongue 333 and the motor 334. For example, in some embodiments the damper 329 can extend over a center of rotational motion (e.g., a tracking axis) of the tongue 333. The damper 329 can reduce unintended motion (e.g., motion that is not rotation) between the tongue 333 and the motor 334. The damper 329 is placed into shear by the relative movement between the tongue 333 and the motor 334. The damper 329 material changes the shear motion into heat energy, therefore reducing or dampening unintended motion.
The damper 329 can help to keep the motor 334 in a generally parallel planar relationship with the tongue 333 during operation of the DSA structure 314. For example, a first plane aligned with the flat orientation of the motor 334 can remain parallel, or generally parallel, with a second plane aligned with the flat orientation of the tongue 333 during operation of the DSA structure 314 due to the damper 329. The motor 334 and/or the flexure 312 may otherwise be prone to bending out of the planar parallel relationship when the motor 334 is activated and the DSA structure 314 articulates. The damper 329 can stabilize the movement of the motor 334 with respect to the flexure 312 during activation of the motor 334 without rigidly fixing the motor 334 to the flexure 312, such that the motor 334 is allowed some movement with respect to the tongue 333, as needed for articulation of the DSA structure 314, but out of plane movement is reduced or eliminated. Stabilizing the motor 334 with respect to the flexure 312, and thereby reducing out of plane motion, increases the linear stroke of the motor 334 which increases the tracking efficiency of the DSA structure 314. The damper 329 can reduce or eliminate out-of-plane motion of the tongue 333 during high frequency resonance modes, thereby providing lower gain and higher servo bandwidth capabilities for a disk drive into which the flexure 312 is incorporated. Flexure mode bending gains can also be improved. The higher servo bandwidths provided by the DSA structure 314 also allow tracks on the disk surface (not shown) to be placed closer together and thereby provide for higher capacity disk drives. In general, the greater the area directly between the motor 334 and the stainless steel layer 340 that is covered by damper 329, the greater the benefits and advantages such as those described above that can be achieved. Dampers such as that described herein can also be incorporated into other DSA structures in a similar configuration, such as between the flexure and motors in the DSA structures of
In the embodiment shown in
In various embodiments, a dimple of a loadbeam that engages a motor or an element mounted on the motor can be electrically isolated from the terminals of the motor using elastic or visco-elastic materials such as those described above. For example, one or more materials can be provided on the motor to electrically insulate and mechanically protect the motor. Such aspects are further discussed in connection with
As shown, the top side of the motor 734, opposite the bottom side of the motor 734 which faces the tongue 733, includes an impingement element 788. The impingement element 788 comprises multiple layers. A top layer 737 of the impingement element 788 can comprise a layer of metal (e.g., stainless steel), plastic, or other material that is relatively hard to robustly engage a dimple of a loadbeam which impinges on the top layer 737 of the impingement element 788, thereby mechanically protecting the motor 734 from wear from the impinging dimple. The impingement element 788 includes a second layer 739 below the top layer 737. The second layer 739 can be adhered to the top layer 737 and the top side of the motor 734. The second layer 739 can comprise elastic or visco-elastic material. Characteristics and examples of elastic or visco-elastic materials are discussed herein. The second layer 739 can electrically insulate a terminal on the top side of the motor 734 from the top layer 737. Alternatively, the impingement element 788 can be a single layer of one of the materials discussed herein (e.g., metal, plastic, elastic, visco-elastic). It is noted that the top side of the motor 734 can comprise an electrical contact, such as in the case of motor 634. The impingement element 788 can be located on the electrical contact. The impingement element 788 can then provide a layer of insulating material (e.g., the second layer 739) disposed on the electrical contact to insulate the electrical contact from the dimple. An electrical connection can be made to the electrical contact on the top side of the motor 734 by the electrical contact extending from the top side of the motor 734 to another side of the motor (e.g., the bottom side) and an electrical connection being made to the electrical contact on the another side of the motor (e.g., via a bond pad connecting to an electrical contact extending to the bottom side of the motor 734, as discussed herein). In this or other embodiments, a differential motor drive signal can be applied to the motor 734 (e.g., a positive voltage applied to a first terminal of the motor and a negative voltage applied to a second terminal of the motor 734) to increase the stroke capability (e.g., due to the larger voltage difference across the piezoelectric material of the motor 734).
As shown in
The motor 934 is mounted on the flexure 912. Specifically, the lateral ends of the motor 934 are attached to the coverlay 946 on the support regions 958 of the spring arms 952. As shown in
The head slider 932 includes a channel 990. The channel 990 can be a trough in a bottom or top side of the head slider 932 that extends from a first side of the head slider 932 to a second side of the head slider 932 opposite the first side. As shown, the motor 934 extends within the channel 990 while the motor 934 is not coupled to the head slider 932. The length of the motor 934 is greater than that of the head slider 932 such that the motor 934 extends beyond both opposite lateral ends of the head slider 932. The channel 990 can have a width greater than the width of the motor 934 to provide clearance for the motor 934. Specifically, the channel 990 provides clearance that enables the head slider 932 to move with the tongue 933 independently from movement of the motor 934 during actuation of the DSA structure 614. In this way, the motor 934 extends through the channel 990 and the motor 934 is free from fixed contact with the head slider 932. The clearance allows the motor 934 to move within the channel 990 during activation of the motor 934 and tracking of the DSA structure 914. As shown in the side view of
The head slider 932 is mounted on the tongue 933. Specifically, the opposite ends 992 of the head slider 932, on opposite sides of the channel 990, are attached by adhesive to the head slider mountings 947 on the tongue 933. The head slider mountings 947 can be surfaces of the tongue 933, such as surfaces of the coverlay 946, to which the opposite ends 992 of the head slider 932 can be adhered. An advantage of the DSA structure 914 is that the overall height is reduced by incorporating the motor 934 into the channel 990 of the head slider 932. The motor 934 can be electrically activated to bend the struts 956 and move the head slider 932 about a tracking axis, as discussed herein.
Embodiments of the present disclosure can offer important advantages. For example, servo bandwidth can be significantly increased (e.g., from about 3-4 kHz for baseplate or loadbeam based DSA structures to 8 kHz or more for gimbal based DSA structures).
Any of the embodiments presented herein can be modified in view of the features presented in commonly owned U.S. patent application Ser. No. 14/026,427, entitled CO-LOCATED GIMBAL-BASED DUAL STAGE ACTUATION DISK DRIVE SUSPENSIONS, filed Sep. 13, 2013, and U.S. patent application Ser. No. 14/044,238, entitled CO-LOCATED GIMBAL-BASED DUAL STAGE ACTUATION DISK DRIVE SUSPENSIONS WITH MOTOR STIFFENERS, filed Oct. 2, 2013, each of which is incorporated herein by reference in its entirety. Likewise, any of the embodiments presented in such applications can be modified with any of the features of the present disclosure.
While the embodiments shown herein generally have one piezoelectric motor, it is noted that a suspension can include two or more motors. Such motors can be dampened and/or can include any feature as discussed herein. For example, a DSA structure can having two motors mounted on a gimbaled flexure, each motor dampened and/or including any other feature discussed herein. Various embodiments of suspensions having two motors are disclosed in commonly owned U.S. patent application Ser. No. 13/972,137, entitled CO-LOCATED GIMBAL-BASED DUAL STAGE ACTUATION DISK DRIVE SUSPENSIONS WITH OFFSET MOTORS, filed Aug. 21, 2013, which is incorporated herein by reference in its entirety.
Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the invention. For example, although described in connection with certain co-located DSA structures, dampeners and associated features described herein can be used in connection with motors on other DSA structures, including other co-located DSA structures.
Bjorstrom, Jacob D., Miller, Mark A., German, Nole D.
Patent | Priority | Assignee | Title |
10002628, | Dec 16 2014 | Hutchinson Technology Incorporated | Piezoelectric motors including a stiffener layer |
10109305, | May 12 2016 | Hutchinson Technology Incorporated | Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad |
10147449, | Feb 17 2015 | Hutchinson Technology Incorporated | Partial curing of a microactuator mounting adhesive in a disk drive suspension |
10290313, | Jun 30 2015 | Hutchinson Technology Incorporated | Disk drive head suspension structures having improved gold-dielectric joint reliability |
10339966, | Dec 22 2014 | Hutchinson Technology Incorporated | Multilayer disk drive motors having out-of-plane bending |
10629232, | May 23 2013 | Hutchinson Technology Incorporated | Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners |
10748566, | Jun 30 2015 | Hutchinson Technology Incorporated | Disk drive head suspension structures having improved gold-dielectric joint reliability |
9558771, | Dec 16 2014 | Hutchinson Technology Incorporated | Piezoelectric disk drive suspension motors having plated stiffeners |
9564154, | Dec 22 2014 | Hutchinson Technology Incorporated | Multilayer disk drive motors having out-of-plane bending |
9613644, | May 23 2013 | Hutchinson Technology Incorporated | Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners |
9646638, | May 12 2016 | Hutchinson Technology Incorporated | Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad |
9715890, | Dec 16 2014 | Hutchinson Technology Incorporated | Piezoelectric disk drive suspension motors having plated stiffeners |
9734852, | Jun 30 2015 | Hutchinson Technology Incorporated | Disk drive head suspension structures having improved gold-dielectric joint reliability |
9824704, | Feb 17 2015 | Hutchinson Technology Incorporated | Partial curing of a microactuator mounting adhesive in a disk drive suspension |
9997183, | May 23 2013 | Hutchinson Technology Incorporated | Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners |
Patent | Priority | Assignee | Title |
3320556, | |||
4299130, | Oct 22 1979 | Gould Inc. | Thin film strain gage apparatus with unstrained temperature compensation resistances |
4418239, | Aug 24 1981 | Oak Industries Inc. | Flexible connector with interconnection between conductive traces |
4422906, | Sep 17 1981 | Process for direct gold plating of stainless steel | |
4659438, | May 29 1980 | DEGUSSA AKTIENGESELLSCHAFT,, , GERMANY | Process for the treatment of stainless steel for a direct galvanic gold plating |
5140288, | Apr 08 1991 | MOTOROLA SOLUTIONS, INC | Wide band transmission line impedance matching transformer |
5320272, | Apr 02 1993 | Freescale Semiconductor, Inc | Tin-bismuth solder connection having improved high temperature properties, and process for forming same |
5321568, | Apr 22 1993 | MAXTOR CORP | Head suspension assembly with improved pitch and roll characteristics |
5333085, | Nov 06 1990 | Seagate Technology LLC | Read/write gimbal with limited range of motion |
5427848, | May 06 1991 | International Business Machines Corporation; IBM Corporation | Stress balanced composite laminate material |
5459921, | Nov 12 1993 | Seagate Technology LLC | Method of making a disc drive actuator arm with arm compliance compensation |
5485053, | Oct 15 1993 | Catholic University of America, The | Method and device for active constrained layer damping for vibration and sound control |
5491597, | Apr 15 1994 | Hutchinson Technology Incorporated | Gimbal flexure and electrical interconnect assembly |
5521778, | Aug 30 1994 | International Business Machines Corporation | Disk drive with primary and secondary actuator drives |
5526208, | Aug 17 1994 | Maxtor Corporation | Flex circuit vibration sensor |
5598307, | Apr 15 1994 | Hutchinson Technology Inc. | Integrated gimbal suspension assembly |
5608590, | Jun 20 1994 | Hutchinson Technology Incorporated | Gimballing flexure with static compensation and load print intregal etched features |
5608591, | Jun 09 1995 | Western Digital Technologies, INC | Integrated head-electronics interconnection suspension for a data recording disk drive |
5631786, | May 19 1994 | MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | Termination pad manipulator for a laminated suspension in a data storage system |
5636089, | Aug 01 1995 | Hutchinson Technology Incorporated | Head suspension with spaced static attitude compensation protuberance and load dimple |
5657186, | Sep 01 1994 | NHK SPRING CO , LTD | Device for supporting a magnetic head slider and magnetic head apparatus provided with the device including grounding electrical connection |
5657188, | Jun 01 1995 | Hutchinson Technology Incorporated | Head suspension with tracking microactuator |
5666241, | Jul 10 1995 | Magnecomp Corp.; MAGNECOMP CORP | Double dimple disk drive suspension |
5666717, | Jul 27 1994 | Nippon Mektron, Ltd. | Method for manufacturing a magnetic head suspension |
5694270, | Jul 03 1995 | Fujitsu Limited | Head assembly having laminated conductor patterns |
5712749, | Mar 02 1995 | Hutchinson Technology Incorporated | Reduced capacitance of electrical conductor on head suspension assembly |
5717547, | Oct 03 1996 | Maxtor Corporation | Multi-trace transmission lines for R/W head interconnect in hard disk drive |
5734526, | Dec 31 1996 | Hutchinson Technology Incorporated | Monocoque head suspension and its method of construction |
5737152, | Oct 27 1995 | Maxtor Corporation | Suspension with multi-layered integrated conductor trace array for optimized electrical parameters |
5754368, | Oct 27 1995 | NHK SPRING CO , LTD | Suspension, slider-suspension assembly, assembly carriage device and manufacturing method of suspension |
5764444, | Jul 23 1991 | Kabushiki Kaisha Toshiba | Mechanism for minute movement of a head |
5773889, | Nov 17 1992 | Fujitsu Limited | Wire interconnect structures for connecting an integrated circuit to a substrate |
5790347, | Dec 23 1996 | Hutchinson Technology Incorporated | Head suspension load beam and flexure construction for reducing structural height |
5796552, | Oct 03 1996 | Maxtor Corporation | Suspension with biaxially shielded conductor trace array |
5805382, | Jun 21 1996 | International Business Machines Corporation | Integrated conductor magnetic recording head and suspension having cross-over integrated circuits for noise reduction |
5812344, | May 12 1997 | Maxtor Corporation | Suspension with integrated conductor trace array having optimized cross-sectional high frequency current density |
5818662, | Jul 15 1996 | Western Digital Technologies, INC | Static attitude and stiffness control for an integrated suspension |
5862010, | Jul 08 1997 | Western Digital Technologies, INC | Transducer suspension system |
5862015, | May 22 1997 | Hutchinson Technology Incorporated | Head suspension with resonance feedback transducer |
5889137, | Jul 12 1995 | Georgia-Pacific Chemicals LLC | Phenolic polymers made by aralkylation reactions |
5892637, | May 10 1996 | HGST NETHERLANDS B V | Multi-piece integrated suspension assembly for a magnetic storage system |
5898544, | Jun 13 1997 | Hutchinson Technology Incorporated | Base plate-mounted microactuator for a suspension |
5914834, | Jun 17 1996 | Hutchinson Technology, Inc. | Head suspension assembly with electrical interconnect by slider bond pads and gimbal bonding zones |
5921131, | Jun 28 1996 | Hutchinson Technology Incorporated | Method for frictionally guiding and forming ferrous metal |
5924187, | Jan 06 1998 | Hutchinson Technology Incorporated | Integrated lead head suspension assembly having an etched laminated load beam and flexure with deposited conductors |
5929390, | Sep 14 1994 | Ishida Co., Ltd. | Load cell weighing apparatus using the same |
5973882, | Aug 07 1996 | Hutchinson Technology, Inc.; Hutchinson Technology Incorporated | Moment-flex head suspension |
5973884, | Jul 21 1997 | Magnecomp Corporation | Gimbal assembly with offset slider pad and cross beam for pitch and roll stiffness and high vertical and horizontal stiffness |
5986853, | Jul 08 1997 | Western Digital Technologies, INC | Transducer suspension system |
5995328, | Oct 03 1996 | Maxtor Corporation | Multi-layered integrated conductor trace array interconnect structure having optimized electrical parameters |
6011671, | Apr 10 1997 | Seagate Technology LLC | Head gimbal assembly for limiting dimple separation for a data storage device |
6038102, | Jan 21 1997 | Maxtor Corporation | Conductor trace array having interleaved passive conductors |
6046887, | Jul 11 1997 | NHK SPRING CO , LTD | Suspension for disc drive |
6055132, | Jun 04 1998 | Western Digital Technologies, INC | Integrated lead suspension flexure for attaching a micro-actuator with a transducer slider |
6075676, | Apr 28 1998 | Toshiba Electronic Devices & Storage Corporation | Head assembly including shorted head leads for preventing damage of head during manufacture of a magnetic storage system |
6078470, | Jun 28 1996 | Hutchinson Technology Incorporated | Head suspension having a modified dimple design |
6108175, | Dec 16 1996 | Seagate Technology LLC | Bimorph piezoelectric microactuator head and flexure assembly |
6118637, | Jan 08 1998 | Seagate Technology LLC | Piezoelectric assembly for micropositioning a disc drive head |
6144531, | Jun 06 1997 | TDK Corporation | Magnetic head assembly having a suspension with a loading projection and manufacturing method thereof |
6146813, | Jan 13 1999 | APPLIED KINETICS, INC | Method and shunting and deshunting an electrical component and a shuntable/shunted electrical component |
6156982, | Sep 24 1999 | Honeywell Inc. | Low current high temperature switch contacts |
6157522, | Apr 07 1998 | Seagate Technology LLC | Suspension-level microactuator |
6172853, | May 20 1999 | Magnecomp Corporation | Head suspension having a near dimple motion limiter |
6181520, | Jul 04 1997 | Fujitsu Limited | Head slider and disk unit having contact detection means |
6195227, | Dec 30 1997 | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V ; MARIANA HDD B V | Integrated 3D limiters for microactuators |
6215622, | Jan 02 1996 | MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | Laminated hard disk head suspension and etching process |
6215629, | Apr 16 1998 | Seagate Technology LLC | Unitary synchronous flexure microactuator |
6229673, | Jan 20 1992 | Toshiba Storage Device Corporation | Magnetic head assembly with contact-type head chip mounting and electrically connecting arrangements |
6233124, | Nov 18 1998 | Seagate Technology LLC | Piezoelectric microactuator suspension assembly with improved stroke length |
6239953, | Oct 15 1999 | Magnecomp Corp. | Microactuated disk drive suspension with heightened stroke sensitivity |
6246546, | Oct 02 1997 | Hutchinson Technology Incorporated | Coined partial etched dimple in a head suspension and method of manufacture |
6246552, | Oct 31 1996 | TDK Corporation | Read/write head including displacement generating means that elongates and contracts by inverse piezoelectric effect of electrostrictive effect |
6249404, | Feb 04 1999 | Western Digital Technologies, INC | Head gimbal assembly with a flexible printed circuit having a serpentine substrate |
6262868, | Dec 30 1997 | HGST NETHERLANDS B V | Method and structures used for connecting recording head signal wires in a microactuator |
6275358, | Jan 21 1997 | Maxtor Corporation | Conductor trace array having passive stub conductors |
6278587, | Apr 21 1999 | Magnecomp Corp. | Positive coupling of piezoelectric devices in disk drive suspensions |
6282062, | Feb 27 1998 | TDK Corporation | Magnetic head apparatus with head IC chip |
6295185, | Apr 07 1998 | Seagate Technology LLC | Disc drive suspension having a moving coil or moving magnet microactuator |
6297936, | Nov 09 1998 | Seagate Technology LLC | Integral load beam push-pull microactuator |
6300846, | Mar 18 1999 | Molex Incorporated | Flat flexible cable with ground conductors |
6307715, | Aug 30 1996 | Western Digital Technologies, INC | Head suspension having reduced torsional vibration |
6320730, | Sep 26 1998 | Seagate Technology LLC | Low-stress disc drive microactuator cradle |
6330132, | Mar 02 1999 | TDK Corporation | Magnetic head with high bonding strength of member for bonding head element and conductive pattern connected to external circuit |
6349017, | Feb 21 1997 | Western Digital Technologies, INC | Magnetic head suspension assembly using bonding pads of a slider to an attachment surface of a flexure |
6376964, | May 16 2001 | Western Digital Technologies, INC | Collocated rotating flexure microactuator for dual-stage servo in disk drives |
6396667, | Jun 24 1997 | Seagate Technology LLC | Electromagnetic disc drive microactuator and suspension |
6399899, | Nov 19 1999 | Nitto Denko Corporation | Suspension board with circuit |
6400532, | Jun 17 1998 | MAGNECOMP CORP | Recording head suspension with coupled dimple and channel |
6404594, | Mar 12 1999 | Western Digital Technologies, INC | Magnetic disk drive with integrated electrical conductors for recording element |
6424500, | Feb 24 2000 | Magnecomp Corp. | Trace flexure suspension with differential impedance in read and write conductor circuits |
6445546, | Mar 24 1999 | Magnecomp Corporation | Snap-in assembly of suspension limiter having both high shock and load/unload cycle capability |
6459549, | Jul 15 1999 | Western Digital Technologies, INC | Hard disk drive with slider support structure and head gimbal assembly |
6490228, | Feb 16 2001 | Koninklijke Philips Electronics N.V. | Apparatus and method of forming electrical connections to an acoustic transducer |
6493190, | Aug 16 2000 | Magnecomp Corporation | Trace flexure with controlled impedance |
6493192, | Jun 20 2000 | Seagate Technology LLC | Disc drive with improved head pitch adjustment |
6539609, | Jul 05 1994 | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | Method of forming a head gimbal assembly |
6549376, | Mar 31 2000 | SAMSUNG ELECTRONICS CO LTD | Gimbal suspension with vibration damper |
6549736, | Jan 19 2000 | Canon Kabushiki Kaisha | Process cartridge, engaging member therefor and method for mounting developing roller and magnet |
6563676, | Sep 28 1999 | Maxtor Corporation | Disk drive actuator arm |
6596184, | Feb 15 1999 | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | Non-homogeneous laminate materials for suspensions with conductor support blocks |
6597541, | Dec 15 2000 | NHK Spring Co., Ltd. | Suspension for disc drive |
6600631, | Nov 27 1989 | Seagate Technology LLC | Transducer/flexure/conductor structure for electromagnetic read/write system |
6621653, | Jun 09 2000 | Western Digital Technologies, INC | Secondary actuator system for mode compensation |
6621658, | Jul 14 1999 | Material Sciences Corporation | Vibration damping laminate with vibration isolating cut therein |
6636388, | Apr 07 1998 | Seagate Technology LLC | Disc drive suspension having a moving coil or moving magnet microactuator |
6639761, | Dec 02 1999 | Seagate Technology LLC | Micro-actuator damping and humidity protection |
6647621, | Mar 24 2000 | Hutchinson Technology Incorporated | Electrical resistance reduction method for thermosetting conductive epoxy contacts in integrated lead suspensions |
6661617, | Dec 14 1999 | Seagate Technology LLC | Structure and fabrication process for integrated moving-coil magnetic micro-actuator |
6661618, | Dec 27 2000 | NHK Spring Co., Ltd. | Suspension for disc drive with insulating cover film on piezoelectric element |
6704157, | Apr 14 2000 | Seagate Technology LLC | Passive damping method and circuit for data storage device actuator |
6704158, | Jun 05 2001 | Western Digital Technologies, INC | Shear mode multilayered collocated micro-actuator for dual-stage servo controllers in disk drives |
6714384, | Dec 07 1998 | Seagate Technolgy LLC | Reduced stiffness printed circuit head interconnect |
6714385, | Apr 16 2001 | Hutchinson Technology Inc. | Apparatus and method for controlling common mode impedance in disk drive head suspensions |
6724580, | Feb 16 2000 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Actuator with piezoelectric member |
6728057, | May 10 2000 | Seagate Technology LLC | Frequency extension method and apparatus for fast rise time writers |
6728077, | Jul 03 1997 | Seagate Technology LLC | Suspension-level piezoelectric microactuator |
6731472, | May 22 2000 | Hitachi Global Storage Technologies Japan, Ltd | Suspension for disc drive |
6735052, | May 09 2000 | 3M Innovative Properties Company | Hard disk drive suspension with integral flexible circuit |
6735055, | May 07 1998 | Seagate Technology LLC | Microactuator structure with vibration attenuation properties |
6737931, | Jul 19 2002 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Device interconnects and methods of making the same |
6738225, | Apr 28 1999 | Magnecomp Corporation | Alignment of sliders with a dimple post in head gimbal assemblies |
6741424, | Aug 31 2001 | Hutchinson Technology, Inc. | Head suspension with rail and stiffener combination |
6751062, | Jul 04 2001 | Saesmagnetics (H.K.) Ltd. | Vibration-canceling mechanism and head gimbal assembly with the vibration-canceling mechanism |
6760182, | Feb 19 2001 | Seagate Technology LLC | Temperature compensated fly height control |
6760194, | Nov 28 2000 | SAE Magentics (H.K.) Ltd. | Head gimbal assembly with piezoelectric microactuator |
6760196, | Dec 12 2001 | Western Digital Technologies, INC | Microactuator with offsetting hinges and method for high-resolution positioning of magnetic read/write head |
6762913, | Apr 16 2001 | Hutchinson Technology Inc. | Method for controlling common mode impedance in disk drive head suspensions |
6765761, | Apr 24 2002 | Western Digital Technologies, INC | Swageless mount plate or unimount arm based milliactuated suspension |
6771466, | Jul 04 2001 | SAE Magnetics (H.K.) Ltd. | Vibration-canceling mechanism and head gimbal assembly with the vibration-canceling mechanism |
6771467, | Jul 04 2001 | SAE Magnetics (H.K.) Ltd. | Vibration-canceling mechanism and head gimbal assembly with the vibration-canceling mechanism |
6791802, | Feb 23 2001 | TDK Corporation | Magnetic head device having suspension with microactuator bonded thereto |
6796018, | Dec 21 2001 | Western Digital Technologies, INC | Method of forming a slider/suspension assembly |
6798597, | Feb 02 2001 | Marvell International Ltd.; MARVELL INTERNATIONAL LTD; MARVELL SEMICONDUCTOR, INC | Write channel having preamplifier and non-uniform transmission line |
6801402, | Oct 31 2002 | Western Digital Technologies, Inc. | ESD-protected head gimbal assembly for use in a disk drive |
6831539, | Aug 28 2003 | Seagate Technology LLC | Magnetic microactuator for disc with integrated head connections and limiters drives |
6833978, | Apr 24 2002 | Western Digital Technologies, INC | Micro-actuator integrated lead suspension head terminations |
6839204, | Sep 19 2000 | TDK Corporation | Head gimbal assembly with a ground or source voltage lead conductor |
6841737, | Jul 17 2001 | Nitto Denko Corporation | Wired circuit board |
6856075, | Jun 22 2001 | Hutchinson Technology Incorporated | Enhancements for adhesive attachment of piezoelectric motor elements to a disk drive suspension |
6898042, | May 23 2001 | Seagate Technology LLC | Slider level microactuator with integrated fly control |
6900967, | Feb 24 2000 | Magnecomp Corporation | Trace flexure suspension with differential insulator and trace structures for locally tailoring impedance |
6922305, | Nov 18 2002 | Western Digital Technologies, INC | Apparatus and method for reducing vibrational excitation in storage devices with dual stage actuators |
6934127, | Nov 04 2002 | SAE Magnetics (H.K.) Ltd. | Precise positioning actuator for head element, head gimbal assembly with the actuator and disk drive apparatus with the head gimbal assembly |
6942817, | Mar 24 2000 | Dainippon Printing Co., Ltd. | Method of manufacturing wireless suspension blank |
6943991, | Aug 26 2002 | SAE MAGNETICS H K LTD | Suspension design for the co-located PZT micro-actuator |
6950288, | Oct 09 2002 | SAE MAGNETICS H K LTD | Integrated method and device for a dual stage micro-actuator and suspension design for the hard disk driver |
6963471, | Apr 10 2002 | NHK Spring Co., Ltd. | Wiring member of a disc drive suspension having an insulating layer with thick-walled and thin-walled portions |
6975488, | Apr 30 2002 | Magnecomp Corporation | Suspension interconnect with controlled noise |
6977790, | May 04 2001 | Maxtor Corporation | Design scheme to increase the gain of strain based sensors in hard disk drive actuators |
7006333, | Jun 28 2001 | Magnecomp Corporation | Suspension with flexure mounted microactuator |
7016159, | Jul 24 2001 | INTRI-PLEX THAILAND LTD | Disk drive head suspension with spring rails for base plate microactuation |
7020949, | Mar 12 2001 | TDK Corporation | Method of fabricating head supporting member |
7023667, | Oct 07 2002 | Western Digital Technologies, INC | Dual stage suspension with PZT actuators arranged to improve actuation in suspensions of short length |
7050267, | Mar 27 2003 | Samsung Electronics Co., Ltd. | Head-gimbal assembly of hard disk drive |
7057857, | Dec 20 2002 | Western Digital Technologies, INC | Dimple pivot post for a rotary co-located microactuator |
7064928, | Oct 11 2002 | SAE MAGNETICS H K LTD | Method and apparatus for providing an additional ground pad and electrical connection for grounding a magnetic recording head |
7079357, | Apr 30 2002 | Magnecomp Corporation | Additive-process suspension interconnect with controlled noise |
7082670, | Jun 29 1999 | Hutchinson Technology, Inc. | Method for actively controlling the gram load on a disk drive suspension assembly |
7092215, | Oct 09 2002 | NHK Spring Co., Ltd. | Disc drive suspension including a wired flexure with conductors arranged to reduce crosstalk |
7130159, | Feb 14 2000 | Western Digital Technologies, INC | Magnetic disk apparatus |
7132607, | Jun 04 2003 | Nitto Denko Corporation | Wired circuit board |
7142395, | May 14 2004 | Hutchinson Technology Incorporated | Method for making noble metal conductive leads for suspension assemblies |
7144687, | Jul 01 2004 | TDK Corporation | Manufacturing method for magnetic head suspension |
7159300, | Aug 26 2002 | SAE Magnetics (H.K.) Ltd. | Method for manufacturing a suspension design for a co-located PZT micro-actuator |
7161765, | Nov 13 1998 | TDK Corporation | Write/read head supporting mechanism, and write/read system |
7161767, | Jul 16 2002 | SAE MAGNETICS H K LTD | Wireless suspension design with ground plane structure |
7177119, | Dec 05 2000 | INTRI-PLEX THAILAND LTD | Microactuated head suspension with ring springs |
7218481, | Oct 07 2002 | Hutchinson Technology Incorporated | Apparatus for insulating and electrically connecting piezoelectric motor in dual stage actuator suspension |
7256968, | Sep 11 2000 | Hutchinson Technology Incorporated | Microactuated dimple for head suspensions |
7271958, | Feb 04 2005 | Samsung Electro-Machanics Co., Ltd. | Diffractive light modulator |
7283331, | Jun 04 2004 | SAMSUNG ELECTRONICS CO , LTD | Method and apparatus reducing off track head motion due to disk vibration in a hard disk drive |
7292413, | Aug 01 2001 | Magnecomp Corporation | Microactuated suspension with shear transmission of force |
7307817, | Sep 30 2001 | Magnecomp Corporation | Disk drive suspension with limiter feature |
7322241, | Jan 20 2005 | LAPIS SEMICONDUCTOR CO , LTD | Acceleration sensor with redundant contact holes |
7336436, | Jul 29 2004 | SAMSUNG ELECTRONICS CO , LTD | Head gimbal assemblies for very low flying height heads with optional micro-actuators in a hard disk drive |
7342750, | Jun 16 2004 | Hutchinson Technology Incorporated | Method for providing electrical crossover in a laminated structure |
7345851, | Aug 26 2004 | Western Digital Technologies, INC | Disk drive with rotary piezoelectric microactuator |
7375930, | Dec 27 2002 | Magnecomp Corporation | Apparatus for PZT actuation device for hard disk drives |
7379274, | Feb 28 2005 | SAE MAGNETICS H K LTD | Rotational PZT micro-actuator, head gimbal assembly, and disk drive unit with the same |
7382582, | Mar 21 2000 | Magnecomp Corporation | Reduced cross talk in wireless suspensions |
7385788, | Jul 13 2004 | Toshiba Storage Device Corporation | Carriage assembly of a hard disk drive |
7391594, | Oct 11 2002 | SAE Magnetics (H.K.) Ltd. | Apparatus for providing an additional ground pad and electrical connection for grounding a magnetic recording head |
7403357, | Aug 05 2004 | Maxtor Corporation | Disk drive flexure assembly with a plurality of support bond pad apertures with a bond pad disposed over a bond pad support and part of each support bond pad aperture |
7408745, | May 10 2005 | SAE Magnetics (H.K.) Ltd. | Sway-type micro-actuator with slider holding arms for a disk drive head gimbal assembly |
7417830, | Aug 31 2005 | Magnecomp Corporation | Head gimbal assembly with dual-mode piezo microactuator |
7420778, | Dec 22 2003 | Seagate Technology LLC | Suspension component with sealed damping layer |
7459835, | Mar 06 2006 | Magnecomp Corporation | Loading-protected bending microactuator in additive suspensions |
7460337, | Jun 30 2006 | Magnecomp Corporation | Low density, high rigidity disk drive suspension for high resonance frequency applications |
7466520, | Oct 07 2004 | Seagate Technology LLC | Co-located microactuator lever assembly |
7499246, | Jun 02 2004 | TDK Corporation | Magnetic head device |
7509859, | Jan 20 2005 | LAPIS SEMICONDUCTOR CO , LTD | Acceleration sensor with redundant contact holes |
7518830, | Apr 19 2006 | Hutchinson Technology Incorporated | Dual sided electrical traces for disk drive suspension flexures |
7567410, | Oct 31 2006 | Western Digital Technologies, Inc. | Flexure including a heat sink and a dielectric layer under trace termination pads |
7595965, | Nov 18 2005 | Magnecomp Corporation | Single PZT actuator for effecting rotation of head suspension loads |
7625654, | Jun 05 2002 | GM Global Technology Operations LLC | Ultra-low loadings of Au for stainless steel bipolar plates |
7643252, | Feb 21 2005 | NHK Spring Co., Ltd. | Head suspension having wiring disposed with conductive layer |
7649254, | May 01 2006 | FLEX LTD | Conductive stiffener for a flexible substrate |
7663841, | Feb 28 2005 | Seagate Technology LLC | Resonance control features for a head gimbal assembly |
7667921, | Dec 12 2002 | Western Digital Technologies, INC | Suspension having magnetic head assembly mounted thereon and magnetic recording disk drive using the suspension |
7675713, | May 27 2005 | NHK Spring Co., Ltd. | Head suspension with flexure vibration clearance |
7688552, | Aug 09 2006 | SAE Magnetics (H.K.) Ltd. | Head gimbal assembly having dimple-shaft limiter and manufacturing method thereof and disk drive unit with the same |
7692899, | Feb 21 2005 | NHK Spring Co., Ltd. | Head suspension having wiring disposed in contact with slightly conductive flexible resin |
7701673, | May 17 2005 | SAE Magnetics (HK) Ltd. | Gimbal design with solder ball bond pads and trailing edge limiter tab for a recording head |
7701674, | Dec 09 2005 | NHK Spring Co., Ltd. | Head suspension with multilayer ground, flexure with multilayer ground, and methods of manufacturing them |
7710687, | Sep 13 2006 | Hutchinson Technology Incorporated | High conductivity ground planes for integrated lead suspensions |
7719798, | Feb 14 2006 | SAE Magnetics (H.K.) Ltd. | Rotational micro-actuator integrated with suspension of head gimbal assembly, and disk drive unit with the same |
7724478, | Aug 09 2004 | Western Digital Technologies, INC | Magnetic disk drive, wiring connection structure and terminal structure |
7751153, | Nov 18 2005 | Magnecomp Corporation | Suspension assembly having recessed actuator with simplified lead connection |
7768746, | Dec 29 2005 | SAE Magnetics (H.K.) Ltd. | Rotational micro-actuator with a rotatable plate, head gimbal assembly and disk drive device with the same |
7782572, | May 04 2007 | Hutchinson Technology Incorporated | Disk drive head suspension flexures having alternating width stacked leads |
7813083, | Jan 18 2006 | Seagate Technology LLC | Disk drive load arm structure having a strain sensor and method of its fabrication |
7821742, | May 12 2005 | Magnecomp Corporation | High stroke sensitivity suspension with laminate load beam for additive laminated and other interconnect support |
7832082, | Oct 10 2006 | Hutchinson Technology Incorporated | Method for manufacturing an integrated lead suspension component |
7835113, | Oct 27 2006 | Hutchinson Technology Incorporated | Deep dimple structure for head suspension component |
7872344, | Oct 31 1995 | Tessera, Inc. | Microelectronic assemblies having compliant layers |
7875804, | Sep 27 2006 | Hutchinson Technology Incorporated | Plated ground features for integrated lead suspensions |
7902639, | May 13 2005 | SILURIA TECHNOLOGIES, INC | Printable electric circuits, electronic components and method of forming the same |
7914926, | Mar 17 2005 | MAXELL, LTD | Flat-shaped battery |
7923644, | Nov 10 2008 | Nitto Denko Corporation | Printed circuit board and method of manufacturing the same |
7924530, | Nov 14 2007 | Magnecomp Corporation | Head suspension having a punched gimbal dimple with coined inclined inner and outer surfaces oriented at different angles and method of fabricating same |
7929252, | Oct 10 2006 | Hutchinson Technology Incorporated | Multi-layer ground plane structures for integrated lead suspensions |
7983008, | Oct 24 2005 | Intellectual Ventures I LLC | Piezoelectric actuated suspension with passive damping in hard disk drives |
7986494, | May 04 2007 | Hutchinson Technology Incorporated | Integrated lead head suspension with tapered trace spacing |
8004798, | Mar 31 2008 | Magnecomp Corporation | High bandwidth flexure for hard disk drives |
8072708, | Oct 11 2007 | NHK SPRING CO., LTD | Head suspension, load beam, and method of manufacturing load beam |
8085508, | Mar 28 2008 | Western Digital Technologies, INC | System, method and apparatus for flexure-integrated microactuator |
8089728, | Jul 23 2009 | SAE MAGNETICS H K LTD | Head gimbal assembly, suspension for the head gimbal assembly, and disk drive unit with the same |
8120878, | Oct 17 2008 | Hutchinson Technology Incorporated | Tubular stiffening rails for head suspension components |
8125736, | Oct 04 2007 | NHK Spring Co., Ltd. | Head suspension, load beam, and method of manufacturing load beam |
8125741, | Jul 20 2007 | TAHIE INSTRUMENTS; TAHOE INSTRUMENTS | Rotational, shear mode, piezoelectric motor integrated into a collocated, rotational, shear mode, piezoelectric micro-actuated suspension, head or head/gimbal assembly for improved tracking in disk drives and disk drive equipment |
8144436, | May 25 2009 | NHK Spring Co., Ltd. | Head suspension |
8149542, | Dec 25 2008 | NHK Spring Co., Ltd. | Wiring connecting structure for piezoelectric element, wiring connecting method, piezoelectric actuator, and head suspension |
8151440, | Jan 22 2008 | NHK Spring Co., Ltd. | Method for manufacturing a head suspension |
8154827, | Jul 14 2008 | Western Digital Technologies, INC | Integrated lead suspension with multiple crossover coplanar connection of the electrically conductive traces |
8161626, | Feb 17 2009 | NHK Spring Co., Ltd. | Method for manufacturing a suspension |
8169746, | Apr 08 2008 | Hutchinson Technology Incorporated | Integrated lead suspension with multiple trace configurations |
8174797, | Mar 03 2010 | NHK Spring Co., Ltd. | Head suspension and method of manufacturing head suspension |
8189281, | Dec 18 2009 | Western Digital Technologies, INC | Magnetic recording disk drive with write driver to write head transmission line having non-uniform sections for optimal write current pulse overshoot |
8189301, | Apr 24 2009 | Magnecomp Corporation | Wireless microactuator motor assembly for use in a hard disk drive suspension, and mechanical and electrical connections thereto |
8194359, | May 21 2008 | SAE Magnetics (H.K.) Ltd. | Piezoelectric element having etched portion to form stepped recesses between layers and manufacturing method thereof, head gimbal assembly, and disk drive device with the same |
8199441, | Sep 19 2008 | NHK Spring Co., Ltd. | Head suspension |
8228642, | Feb 16 2009 | Magnecomp Corporation | Dual stage actuator suspension having a single microactuator and employing pseudo symmetry to achieve suspension balance |
8233240, | Dec 10 2009 | Western Digital Technologies, INC | Magnetic recording disk drive with integrated lead suspension having multiple segments for optimal characteristic impedance |
8248731, | Dec 25 2008 | NHK Spring Co., Ltd. | Electrical connection between piezoelectric actuator and head suspension |
8248734, | Jan 15 2009 | NHK Spring Co., Ltd. | Wiring connecting structure for piezoelectric actuator, piezoelectric actuator, and head suspension |
8248735, | Sep 04 2009 | Suncall Corporation | Magnetic head suspension for supporting piezoelectric elements in a non-facing manner relative to suspension structure |
8248736, | Sep 08 2009 | NHK Spring Co., Ltd. | Disk drive suspension having a microactuator mounting section |
8254062, | Oct 20 2008 | Seagate Technology LLC | Recessed base plate for data transducer suspension |
8259416, | May 09 2008 | Hutchinson Technology Incorporated | Head suspension having viscoelastic load point |
8264797, | Dec 21 2009 | Western Digital Technologies, INC | Head gimbal assembly having a radial rotary piezoelectric microactuator between a read head and a flexure tongue |
8289652, | Oct 22 2010 | Seagate Technology LLC | Compact microactuator head assembly |
8289656, | Nov 19 2008 | Western Digital Technologies, Inc.; Western Digital Technologies, INC | Disk drive comprising stacked and stepped traces for improved transmission line performance |
8295012, | Jun 14 2011 | Western Digital Technologies, INC | Disk drive suspension assembly with rotary fine actuator at flexure tongue |
8300362, | Jun 15 2009 | Seagate Technology LLC | Slider-gimbal scratch mitigation |
8300363, | Oct 01 2010 | NHK Spring Co., Ltd. | Wiring structure of flexure |
8305712, | Dec 23 2009 | Western Digital Technologies, INC | Tunable microstrip signal transmission path in a hard disk drive |
8310790, | Jun 11 2011 | NHK SPRING CO., LTD; NHK SPRING CO , LTD | Remote drive rotary head dual stage actuator |
8331061, | Feb 16 2009 | NHK Spring Co., Ltd. | Head suspension including integral piezoelectric element electrode support member |
8339748, | Jun 29 2010 | Western Digital Technologies, INC | Suspension assembly having a microactuator bonded to a flexure |
8351160, | May 13 2010 | Suncall Corporation | Magnetic head suspension utilizing laminate conductor connecting piezoelectric elements via first and second connecting openings in the laminate |
8363361, | Oct 09 2009 | NHK Spring Co., Ltd. | Disk drive suspension having a microactuator mounting section provided with a microactuator element and manufacturing method for the disk drive suspension |
8379349, | May 04 2007 | Hutchinson Technology Incorporated | Trace jumpers for disc drive suspensions |
8405933, | Oct 27 2009 | NHK Spring Co., Ltd. | Disk drive suspension having a load beam and flexure, a projection height of a dimple formed on the flexure being less than a projecting height of a protrusion formed on a surface of the load beam which faces the dimple |
8446694, | Jun 14 2011 | Western Digital Technologies, Inc.; Western Digital Technologies, INC | Disk drive head suspension assembly with embedded in-plane actuator at flexure tongue |
8456780, | Feb 10 2012 | Western Digital Technologies, INC | Uncoupled piezoelectric milli-actuator assembly |
8498082, | Mar 23 2011 | Hutchinson Technology Incorporated | DSA suspension with improved microactuator stroke length |
8526142, | Dec 30 2010 | Magnecomp Corporation | Hard disk drive DSA suspension having PZT encapsulation dam |
8542465, | Mar 17 2010 | Western Digital Technologies, INC | Suspension assembly having a microactuator electrically connected to a gold coating on a stainless steel surface |
8559137, | Oct 07 2010 | NHK Spring Co., Ltd. | Piezoelectric actuator and head suspension |
8665565, | May 04 2007 | Hutchinson Technology Incorporated | Trace jumpers for disc drive suspensions |
8675314, | Aug 21 2013 | Hutchinson Technology Incorporated | Co-located gimbal-based dual stage actuation disk drive suspensions with offset motors |
8681456, | Sep 14 2012 | Hutchinson Technology Incorporated | Co-located gimbal-based dual stage actuation disk drive suspensions |
8717712, | Jul 15 2013 | Hutchinson Technology Incorporated | Disk drive suspension assembly having a partially flangeless load point dimple |
8792214, | Jul 23 2013 | Hutchinson Technology Incorporated | Electrical contacts to motors in dual stage actuated suspensions |
8891206, | Dec 17 2012 | Hutchinson Technology Incorporated | Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffener |
20010012181, | |||
20010013993, | |||
20010030838, | |||
20010043443, | |||
20020075606, | |||
20020118492, | |||
20020149888, | |||
20020176209, | |||
20030011118, | |||
20030011936, | |||
20030053258, | |||
20030135985, | |||
20030174445, | |||
20030202293, | |||
20030210499, | |||
20040027727, | |||
20040027728, | |||
20040070884, | |||
20040125508, | |||
20040181932, | |||
20040207957, | |||
20050061542, | |||
20050063097, | |||
20050105217, | |||
20050180053, | |||
20050254175, | |||
20050280944, | |||
20060044698, | |||
20060077594, | |||
20060181812, | |||
20060193086, | |||
20060209465, | |||
20060238924, | |||
20060274452, | |||
20060274453, | |||
20060279880, | |||
20070133128, | |||
20070153430, | |||
20070223146, | |||
20070227769, | |||
20070253176, | |||
20080084638, | |||
20080144225, | |||
20080192384, | |||
20080198511, | |||
20080229842, | |||
20080273266, | |||
20080273269, | |||
20090027807, | |||
20090080117, | |||
20090135523, | |||
20090147407, | |||
20090168249, | |||
20090176120, | |||
20090190263, | |||
20090244786, | |||
20090294740, | |||
20100007993, | |||
20100067151, | |||
20100073825, | |||
20100097726, | |||
20100143743, | |||
20100165515, | |||
20100165516, | |||
20100177445, | |||
20100195252, | |||
20100208390, | |||
20100220414, | |||
20100246071, | |||
20100271735, | |||
20100290158, | |||
20110013319, | |||
20110058282, | |||
20110096438, | |||
20110096440, | |||
20110123145, | |||
20110141624, | |||
20110141626, | |||
20110228425, | |||
20110242708, | |||
20110279929, | |||
20110299197, | |||
20120002329, | |||
20120081813, | |||
20120081815, | |||
20120087041, | |||
20120113547, | |||
20120279757, | |||
20120281316, | |||
20130020112, | |||
20130021698, | |||
20130107488, | |||
20130176646, | |||
20130242434, | |||
20130242436, | |||
20130265674, | |||
20140022670, | |||
20140022671, | |||
20140022674, | |||
20140022675, | |||
20140063660, | |||
20140078621, | |||
20140098440, | |||
20140168821, | |||
20140362475, | |||
20150016235, | |||
20150055254, | |||
20150055256, | |||
20150062758, | |||
EP591954, | |||
EP834867, | |||
JP10003632, | |||
JP2001057039, | |||
JP2001202731, | |||
JP2001307442, | |||
JP2002050140, | |||
JP2002170607, | |||
JP2003223771, | |||
JP2003234549, | |||
JP2004039056, | |||
JP2004300489, | |||
JP2005209336, | |||
JP9198825, | |||
RE40975, | May 23 1996 | Hutchinson Technology Incorporated | Head suspension with resonance feedback transducer |
WO2015027034, | |||
WO2014190001, | |||
WO9820485, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 10 2013 | MILLER, MARK A | Hutchinson Technology Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033649 | /0297 | |
Oct 10 2013 | BJORSTROM, JACOB D | Hutchinson Technology Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033649 | /0297 | |
Oct 10 2013 | GERMAN, NOLE D | Hutchinson Technology Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033649 | /0297 | |
Oct 10 2013 | MILLER, MARK A | Hutchinson Technology Incorporated | CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL NO 14 050,660 PREVIOUSLY RECORDED AT REEL: 033649 FRAME: 0297 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 033685 | /0828 | |
Oct 10 2013 | BJORSTROM, JACOB D | Hutchinson Technology Incorporated | CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL NO 14 050,660 PREVIOUSLY RECORDED AT REEL: 033649 FRAME: 0297 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 033685 | /0828 | |
Oct 10 2013 | GERMAN, NOLE D | Hutchinson Technology Incorporated | CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL NO 14 050,660 PREVIOUSLY RECORDED AT REEL: 033649 FRAME: 0297 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 033685 | /0828 | |
Aug 25 2014 | Hutchinson Technology Incorporated | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 19 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 19 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 19 2019 | 4 years fee payment window open |
Jul 19 2019 | 6 months grace period start (w surcharge) |
Jan 19 2020 | patent expiry (for year 4) |
Jan 19 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 19 2023 | 8 years fee payment window open |
Jul 19 2023 | 6 months grace period start (w surcharge) |
Jan 19 2024 | patent expiry (for year 8) |
Jan 19 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 19 2027 | 12 years fee payment window open |
Jul 19 2027 | 6 months grace period start (w surcharge) |
Jan 19 2028 | patent expiry (for year 12) |
Jan 19 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |