A mos transistor and a method of fabricating the same for Ultra Large Scale Integration applications includes a composite gate structure. The composite gate structure is comprised of a main gate electrode and two assisted-gate electrodes disposed adjacent to and on opposite sides of the main gate electrode via an oxide layer. Areas underneath the two assisted-gate electrodes form ultra-shallow "pseudo" source/drain extensions. As a result, these extensions have a more shallow depth so as to enhance immunity to short channel effects.
|
10. A method for fabricating an n-channel mos transistor with assisted-gate electrodes for ULSI, said method comprising the steps of:
forming a thin gate dielectric layer on a top surface of a p-type semiconductor substrate; forming a doped poly-Si layer on a surface of said gate dielectric layer; patterning said doped poly-Si layer and said gate dielectric layer to form a main gate electrode; forming a thin cap layer on a top surface of said main gate electrode; forming an oxide layer on opposite sides of said main gate electrode; forming first sidewall spacers on each side of said oxide layer; forming n+ highly-doped source/drain regions in said semiconductor substrate on opposite sides of said main gate electrode; removing said first sidewall spacers; annealing said semiconductor substrate so as to activate dopants in said n+ highly-doped source/drain regions; forming doped poly-Si1-x Gex layer over said main gate electrode and exposed surfaces of said gate dielectric layer; patterning said doped poly-Si1-x Gex layer and said gate dielectric layer to form a pair of assisted-gate electrodes on opposite sides of said oxide layer and overlying portions of said gate dielectric layer which are located over corresponding areas of the top surface of the semiconductor substrate defining ultra-shallow "pseudo" source/drain regions; forming second sidewall spacers adjacent said pair of assisted-gate electrodes; removing uncovered portions of said gate dielectric layer on said top surface of said semiconductor substrate to expose said n+ highly-doped source/drain regions and said thin cap layer on the top surface of said main gate electrode; and forming silicide contacts over said exposed n+ highly-doped source/drain regions and exposed surfaces of said main and assisted-gate electrodes.
1. A method for fabricating a mos transistor with assisted-gate electrodes for ULSI, said method comprising the steps of:
forming a thin gate dielectric layer on a top surface of a semiconductor substrate; forming a first doped polysilicon or polysilicon-germanium layer on a surface of said gate dielectric layer; patterning said first doped polysilicon or polysilicon-germanium layer and said gate dielectric layer to form a main gate electrode; forming a thin cap layer on a top surface of said main gate electrode; forming an oxide layer on opposite sides of said main-gate electrode; forming first sidewall spacers on each side of said oxide layer; forming highly-doped source/drain regions in said semiconductor substrate on opposite sides of said main gate electrode; removing said first sidewall spacers; annealing said semiconductor substrate so as to activate dopants in said highly-doped source/drain regions; forming second doped polysilicon-germanium or polysilicon layer over said main gate electrode and exposed surfaces of said gate dielectric layer; patterning said second doped polysilicon-germanium or polysilicon layer and said gate dielectric layer to form a pair of assisted-gate electrodes on opposite sides of said oxide layer and overlying portions of said gate dielectric layer which are located over corresponding areas of the top surface of the semiconductor substrate defining ultra-shallow "pseudo" source/drain regions; forming second sidewall spacers adjacent said pair of assisted-gate electrodes; removing uncovered portions of said gate dielectric layer on said top surface of said semiconductor substrate to expose said highly-doped source/drain regions and said thin cap layer on the top surface of said main gate electrode; and forming silicide contacts over said exposed highly-doped source/drain regions and exposed surfaces of said main and assisted-gate electrodes.
2. A method for fabricating a mos transistor as claimed in
3. A method for fabricating a mos transistor as claimed in
4. A method for fabricating a mos transistor as claimed in
5. A method for fabricating a mos transistor as claimed in
6. A method for fabricating a mos transistor as claimed in
7. A method for fabricating a mos transistor as claimed in
8. A method for fabricating a mos transistor as claimed in
9. A method for fabricating a mos transistor as claimed in
|
This invention relates generally to ultra-large-scale integration (ULSI) MOSFET integrated circuits. More particularly, it relates to a new and novel MOS transistor and a method of fabricating the same for ULSI systems which includes two assisted-gate electrodes to form ultra-shallow "pseudo" source/drain extensions.
As is generally known, in recent years advances made in the semiconductor process methodologies have dramatically decreased the device dimension sizes and have increased the circuit density on the IC chips. A MOSFET (metal-oxide-semiconductor field-effect transistor) device such as an N-channel MOS transistor or a P-channel MOS transistor has been used extensively for ultra-large-scale integration applications. Typically, the MOSFET devices are fabricated by patterning polysilicon gate electrodes over a thin gate oxide on a single crystal semiconductor substrate. The gate electrode is used as a diffusion or implant barrier mask to form self-aligned source/drain regions in the substrate adjacent to and on opposite sides of the gate electrode. The distance from the source region to the drain region under the gate electrode is defined as the "channel length" of the MOSFET device. Currently, the channel length dimension is less than 0.5 microns.
In order to increase the speed of the MOSFET devices, there has existed in the micro-electronics industry over the past two decades an aggressive scaling-down of the channel length dimensions. However, as the channel length reduction of the MOS transistor occurs, the source/drain extension junction depth must also be likewise aggressively reduced down in order to achieve acceptable immunity to the problem of "short-channel effects." One method of solving this short-channel effect problem is to form ultra-shallow extensions. Unfortunately, this method suffers from the drawback that it is very difficult to form such ultra-shallow extensions by using the conventional ion implantation technique. As a result, the problem of forming ultra-shallow extensions has become one of the major concerns for advanced deep-submicron MOSFET technology which limits its performance.
In view of the foregoing, there exists a need for MOS transistor and a method of fabricating the same for use in ULSI applications so as to provide ultra-shallow extensions without using the ion implantation process.
Accordingly, it is a general object of the present invention to provide a novel method for fabricating a MOS transistor for use in ultra-large-scale integration applications.
It is an object of the present invention to provide an improved MOS transistor structure and a method of fabricating the same for use in ULSI applications.
It is another object of the present invention to provide an improved MOS transistor and a method of fabricating the same for ULSI applications which includes two assisted-gate electrodes to form ultra-shallow "pseudo" source/drain extensions.
It is still another object of the present invention to provide an improved MOS transistor structure which is comprised of a composite gate structure formed of a main gate region and a pair of assisted-gate regions disposed adjacent to and on opposite sides of the main gate region via an oxide layer.
In accordance with a preferred embodiment of the present invention, there is provided a MOS transistor with assisted-gate electrodes for ultra-large-scale integration. A thin gate dielectric layer is formed on a surface of a semiconductor substrate. A composite gate structure is formed over the thin gate dielectric layer. The composite gate structure consists of a main gate region and a pair of assisted-gate regions disposed adjacent to and on opposite sides of the main gate region via an oxide layer. Source/drain regions are formed on the semiconductor substrate on opposite sides of the pair of assisted-gate regions. Sidewall spacers are formed on each side of the pair of assisted-gate regions. Silicide contacts are formed over the source/drain regions and the composite gate structure.
These and other objects and advantages of the present invention will become more fully apparent from the following detailed description when read in conjunction with the accompanying drawings with like reference numerals indicating corresponding parts throughout, wherein:
FIG. 1 is a cross-sectional view of a MOS transistor structure, constructed in accordance with the principles of the present invention;
FIGS. 2(a) through 2(e) are cross-sectional views of the fabrication steps for forming an N-channel MOS transistor structure, according to the method of the present invention; and
FIG. 3 is a cross-sectional view of a P-channel MOS transistor structure in accordance with the principles of the present invention.
The process steps and structures described below do not form a complete process flow for manufacturing MOSFET integrated circuits. The present invention can be practiced in conjunction with MOSFET integrated circuit fabrication techniques currently used in the art, and only so much of the commonly practiced process steps are included as are necessary for an understanding of the present invention. The figures representing cross-sections of portions of an integrated circuit during fabrication are not drawn to scale, but instead are drawn in order to best illustrate the salient features of the present invention.
Referring now in detail to the drawings, there is illustrated in FIG. 1 a cross-sectional view of a MOSFET (metal-oxide-semiconductor field-effect transistor) or MOS transistor structure 10 constructed in accordance with the principles of the present invention. As fabricated, the MOS transistor structure 10 is formed over a semiconductor substrate 12 or a doped well region formed within a semiconductor substrate. If an N-channel MOS (NMOS) transistor is to be built, then a p-well region or a p-type substrate would be used. On the other hand, for a P-channel MOS (PMOS) transistor an n-well region or an n-type substrate would be used. A composite gate structure 14 is formed over a channel region 16 and is separated from the semiconductor substrate 12 by a thin gate dielectric layer 18. A source region 20 and a drain region 22 are formed in the substrate 12 with the channel region 16 being sandwiched therebetween. Sidewall spacers 24a, 24b serving as insulating film are formed adjacent to each side of the composite gate structure 14. Silicide layers 26a, 26b and 26c are formed over the respective source region 20, drain region 22 and composite gate structure 14. The composite gate structure 14 is comprised of a main gate region M and a pair of assisted-gate regions M1, M2 disposed adjacent to and on each side of the main gate region M via an oxide layer 17.
The two assisted-gate regions M1, M2 have a smaller work function than that of the main gate region M for the case of the NMOS transistor or have a larger work function than that of the main gate region for the case of the PMOS transistor. Therefore, the parasitic transistors formed underneath the respective assisted gate regions M1 and M2 will always have threshold voltages of smaller absolute values than the threshold voltage of the main transistor formed under the main gate region M. As a consequence, the parasitic transistors in the assisted gate regions M1 and M2 will always be rendered conductive or in a turned ON-state before the main transistor in the main gate region M is rendered conductive or turned ON. These parasitic transistors have been purposely designed so as to be operated in a depletion mode, i.e., the channel area underneath the assisted gate regions M1, N2 are deeply inverted even when no bias voltage (zero volts) is being applied to the gate structure 14.
In the case of the NMOS transistor, the main gate region M is formed of a p+ polycrystalline silicon (polysilicon or poly-Si) material and the two assisted gate regions M1, M2 are formed of a p+ poly-Si1-x Gex material, where x is the composition of germanium. On the other hand, in the case of the PMOS transistor, the main gate region N is formed of p+ poly-Si1-x Gex material and the two assisted-gate regions M1 M2 are formed of a p+ poly-Si material. The work function of the p+ poly-Si1-x Gex material is dependent upon the composition x of the germanium material being used. It is believed by the inventors that the work function of the p+ poly-Si1-x Gex material will be reduced approximately 40 mV for each ten percent (10%) increase in the Ge composition.
In operation, when the gate bias voltage is raised to the threshold voltage of the main transistor, the silicon surface of the main transistor starts to be inverted and the majority carriers will flow into the channel region 16 between the source and drain regions 20, 22. As a result, the overall MOS transistor device 10 will then be conductive or turned ON. This is due to the fact that the silicon surface in the assisted-gate regions M1, M2 are already deeply inverted and thus will act as ultra-shallow "pseudo" source/drain extensions 20a, 22a of the respective source and drain regions 20, 22. These "pseudo" source/drain extensions have a much shallower junction depth as compared to lightly-doped source/drain (LDD) extensions formed by the conventional ion implantation technique. Thus, the MOS transistor structure 10 will have a superior immunity to "short-channel effects" and have a better overall performance. The fabrication steps of the present invention for manufacturing an NMOS transistor will now be described in detail with reference to FIGS. 2(a) through 2(e).
First, in FIG. 2(a) there is provided a p-type semiconductor (silicon) substrate or p-well region 110 on top of which is formed a gate dielectric layer 112, which is preferably a thermally grown thin silicon nitride having a thickness on the order of 20-40 Å. Then, an undoped polysilicon (poly-Si) gate layer having a thickness between 1000-2500 Å is formed over the surface of the gate dielectric layer 112. A p+ in-situ doping process of the poly-Si gate layer is performed as the gate layer is being formed. Next, the poly-Si gate layer and the gate dielectric layer 112 are patterned using conventional photolithographic techniques followed by anisotropical dry etching so as to form a main gate electrode 114, as depicted in FIG. 2(a).
Then, a thin cap layer 116 of SiON (silicon oxynitride) is formed on the top surface of the main gate electrode 114 so as to protect the same during a subsequent step of source/drain implantation. The thickness of the SiON layer 116 is on the order of 300-400 Å in thickness. An oxide layer 117 is grown by thermal oxidation in a well-known dry oxygen process at 800-1000°C The oxide layer 117 serves as a barrier layer. Next, first sidewall spacers 118a, 118b are formed adjacent to each side of the main gate electrode 114 via the oxide layer 117. The formation of the first sidewall spacers 118a, 118b is preferably achieved by depositing an undoped polysilicon layer using a low-pressure chemical-vapor deposition (LPCVD) process followed by anisotropical dry etching. The width of the first side-wall spacers 118a, 118b is approximately 400-800 Å in thickness.
After formation of the spacers 118a and 118b, n+ highly-doped source/drain regions 120a and 120b are implanted into the silicon substrate 110 at self-aligned positions with the first sidewall spacers. This is illustrated in FIG. 2(b). It should be noted that the n-type dopant used is preferably arsenic (As) or phosphorus (P) ions as indicated by arrows 122. The dosage is typically on the order of 1×1015 ions/cm2 to 5×1015 ions/cm2, and the energy level for implantation is between 10-30 KeV. Following the source/drain implants, the first sidewall spacers 118a, 118b are removed preferably by a wet chemical etching process. This is shown in FIG. 2(c). Thereafter, a furnace annealing or high temperature rapid thermal annealing (RTA) at temperatures between 1000-1100°C is performed (not shown) on the silicon substrate in order to activate the dopants in the implanted source and drain regions 120a, 120b.
Next, two assisted-gate electrodes 124a, 124b are formed adjacent to and on each side of the main gate electrode 114 via the oxide layer 117. Thus, the main gate electrode 114, the oxide layer 117 and the two assisted-gate electrodes 124a, 124b define a composite gate structure. The two assisted-gate electrodes 124a, 124b are formed by depositing an undoped gate insulating layer on the order of 2000-3000 Å over the source region 120a, main gate electrode 114 and drain region 120b. Preferably, the deposited gate insulating layer is an undoped poly-Si1-x Gex material which is deposited by an LPCVD process. Then, a p+ in-situ doping process on the gate insulating layer is performed as the assisted-gate electrodes are being formed. Thereafter, an anisotropical dry etching is performed to etch-away the gate insulating layer so as to form the two assisted-gate electrodes 124a, 124b. The width of the two assisted-gate electrodes 124a, 124b is approximately 300-600 Å in thickness.
The composition of the germanium (Ge) is preferably between 50-75% in order to yield a difference of work function (and hence the threshold voltage of the transistor) between the main gate transistor and the two assisted-gate transistors. The threshold voltage difference is approximately between 0.2 to 0.3 volts. Then, an anisotropical dry etch is performed so as to remove the uncovered portion of the nitride layer 112 on the top surface of the silicon substrate and the SiON cap layer 116 from the top surface of the main gate electrode 114. Thereafter, second sidewall spacers 126a, 126b are formed (by deposition and then etch-back) adjacent to and on both sides of the two assisted-gate electrodes 124a, 124b. The width of the second sidewall spacers 126a, 125b is approximately 300-500 Å in thickness. This is illustrated in FIG. 2(d) of the drawings.
After formation of the second sidewall spacers 126a and 126b, refractory metal silicide contacts or regions 128a, 128b and 128c are formed over the respective drain region 120a, composite gate structure and source region 120b. Typically, the refractory metal silicide contacts 128a-128c are on the order of 200 to 500 Å in thickness. The silicide contacts result from the thermal reaction of a refractory metal such as titanium (Ti), cobalt (Co), nickel (Ni) and the like with silicon so as to form the silicide layer (TiSi2, CoSi21 or NiSi2). Further, these silicide contacts are formed by a process known as self-aligned silicide (SALICIDE) process based on annealing in a nitrogen, ammonia, or an inert ambient environment. This is shown in FIG. 2(e). The subsequent remaining process flow steps of the standard MOSFET fabrication, such as passivation and metallization for forming contacts, interconnects and the like are quite conventional and thus will not be described.
It should be clearly understood that the description given above in connection with FIGS. 2(a) through 2(e) are for constructing a new NMOS transistor structure. However, the present invention can be applied equally to an n-type substrate or n-well so as to build a new PMOS transistor structure since the interchangeability of p-type and n-type semiconductor elements is well known to those of ordinary skill in the art. Further, the dopant type or polarity used in the case of the PMOS transistor would be the opposite. Also, the primary difference for the PMOS transistor structure is that the main gate electrode 114a is formed of a p+ in-situ doped polySi1-x Gex material and that the two assisted-gate electrodes 124c, 124d are formed of a p+ in-situ doped poly-Si material. Such a PMOS transistor constructed in accordance with the principles of the present invention is illustrated in FIG. 3.
From the foregoing detailed description, it can thus be seen that the present invention provides a new and novel MOS transistor structure and a method of fabricating the same for ultra-large-scale integration applications. The MOS transistor of the present invention includes a composite gate structure formed of a main gate electrode and two assisted-gate electrodes disposed adjacent to and on opposite sides of the main gate electrode via an oxide layer. The areas underlying the assisted-gate electrodes form ultra-shallow "pseudo" source/drain extensions of source and drain regions, thereby enhancing immunity to short-channel effects.
While there has been illustrated and described what is at present considered to be a preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made, and equivalents may be substituted for elements thereof without departing from the true scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the central scope thereof. Therefore, it is intended that this invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out the invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Patent | Priority | Assignee | Title |
10026621, | Nov 14 2016 | Applied Materials, Inc | SiN spacer profile patterning |
10032606, | Aug 02 2012 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
10043674, | Aug 04 2017 | Applied Materials, Inc | Germanium etching systems and methods |
10043684, | Feb 06 2017 | Applied Materials, Inc | Self-limiting atomic thermal etching systems and methods |
10049891, | May 31 2017 | Applied Materials, Inc | Selective in situ cobalt residue removal |
10062575, | Sep 09 2016 | Applied Materials, Inc | Poly directional etch by oxidation |
10062578, | Mar 14 2011 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
10062579, | Oct 07 2016 | Applied Materials, Inc | Selective SiN lateral recess |
10062585, | Oct 04 2016 | Applied Materials, Inc | Oxygen compatible plasma source |
10062587, | Jul 18 2012 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
10128086, | Oct 24 2017 | Applied Materials, Inc | Silicon pretreatment for nitride removal |
10147620, | Aug 06 2015 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
10163696, | Nov 11 2016 | Applied Materials, Inc | Selective cobalt removal for bottom up gapfill |
10170282, | Mar 08 2013 | Applied Materials, Inc | Insulated semiconductor faceplate designs |
10170336, | Aug 04 2017 | Applied Materials, Inc | Methods for anisotropic control of selective silicon removal |
10186428, | Nov 11 2016 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
10224180, | Oct 04 2016 | Applied Materials, Inc. | Chamber with flow-through source |
10224210, | Dec 09 2014 | Applied Materials, Inc | Plasma processing system with direct outlet toroidal plasma source |
10242908, | Nov 14 2016 | Applied Materials, Inc | Airgap formation with damage-free copper |
10256079, | Feb 08 2013 | Applied Materials, Inc | Semiconductor processing systems having multiple plasma configurations |
10256112, | Dec 08 2017 | Applied Materials, Inc | Selective tungsten removal |
10283321, | Jan 18 2011 | Applied Materials, Inc | Semiconductor processing system and methods using capacitively coupled plasma |
10283324, | Oct 24 2017 | Applied Materials, Inc | Oxygen treatment for nitride etching |
10297458, | Aug 07 2017 | Applied Materials, Inc | Process window widening using coated parts in plasma etch processes |
10319600, | Mar 12 2018 | Applied Materials, Inc | Thermal silicon etch |
10319603, | Oct 07 2016 | Applied Materials, Inc. | Selective SiN lateral recess |
10319649, | Apr 11 2017 | Applied Materials, Inc | Optical emission spectroscopy (OES) for remote plasma monitoring |
10319739, | Feb 08 2017 | Applied Materials, Inc | Accommodating imperfectly aligned memory holes |
10325923, | Feb 08 2017 | Applied Materials, Inc | Accommodating imperfectly aligned memory holes |
10354843, | Sep 21 2012 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
10354889, | Jul 17 2017 | Applied Materials, Inc | Non-halogen etching of silicon-containing materials |
10403507, | Feb 03 2017 | Applied Materials, Inc | Shaped etch profile with oxidation |
10424463, | Aug 07 2015 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
10424464, | Aug 07 2015 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
10424485, | Mar 01 2013 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
10431429, | Feb 03 2017 | Applied Materials, Inc | Systems and methods for radial and azimuthal control of plasma uniformity |
10465294, | May 28 2014 | Applied Materials, Inc. | Oxide and metal removal |
10468267, | May 31 2017 | Applied Materials, Inc | Water-free etching methods |
10468276, | Aug 06 2015 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
10468285, | Feb 03 2015 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
10490406, | Apr 10 2018 | Applied Materials, Inc | Systems and methods for material breakthrough |
10490418, | Oct 14 2014 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
10497573, | Mar 13 2018 | Applied Materials, Inc | Selective atomic layer etching of semiconductor materials |
10497579, | May 31 2017 | Applied Materials, Inc | Water-free etching methods |
10504700, | Aug 27 2015 | Applied Materials, Inc | Plasma etching systems and methods with secondary plasma injection |
10504754, | May 19 2016 | Applied Materials, Inc | Systems and methods for improved semiconductor etching and component protection |
10522371, | May 19 2016 | Applied Materials, Inc | Systems and methods for improved semiconductor etching and component protection |
10529737, | Feb 08 2017 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
10541113, | Oct 04 2016 | Applied Materials, Inc. | Chamber with flow-through source |
10541184, | Jul 11 2017 | Applied Materials, Inc | Optical emission spectroscopic techniques for monitoring etching |
10541246, | Jun 26 2017 | Applied Materials, Inc | 3D flash memory cells which discourage cross-cell electrical tunneling |
10546729, | Oct 04 2016 | Applied Materials, Inc | Dual-channel showerhead with improved profile |
10566206, | Dec 27 2016 | Applied Materials, Inc | Systems and methods for anisotropic material breakthrough |
10573496, | Dec 09 2014 | Applied Materials, Inc | Direct outlet toroidal plasma source |
10573527, | Apr 06 2018 | Applied Materials, Inc | Gas-phase selective etching systems and methods |
10593523, | Oct 14 2014 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
10593539, | Feb 26 2004 | Applied Materials, Inc. | Support assembly |
10593553, | Aug 04 2017 | Applied Materials, Inc. | Germanium etching systems and methods |
10593560, | Mar 01 2018 | Applied Materials, Inc | Magnetic induction plasma source for semiconductor processes and equipment |
10600639, | Nov 14 2016 | Applied Materials, Inc. | SiN spacer profile patterning |
10607867, | Aug 06 2015 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
10615047, | Feb 28 2018 | Applied Materials, Inc | Systems and methods to form airgaps |
10629473, | Sep 09 2016 | Applied Materials, Inc | Footing removal for nitride spacer |
10672642, | Jul 24 2018 | Applied Materials, Inc | Systems and methods for pedestal configuration |
10679870, | Feb 15 2018 | Applied Materials, Inc | Semiconductor processing chamber multistage mixing apparatus |
10699879, | Apr 17 2018 | Applied Materials, Inc | Two piece electrode assembly with gap for plasma control |
10699921, | Feb 15 2018 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
10707061, | Oct 14 2014 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
10727080, | Jul 07 2017 | Applied Materials, Inc | Tantalum-containing material removal |
10755941, | Jul 06 2018 | Applied Materials, Inc | Self-limiting selective etching systems and methods |
10770346, | Nov 11 2016 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
10796922, | Oct 14 2014 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
10840149, | Jul 22 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fabrication method of a metal gate structure |
10854426, | Jan 08 2018 | Applied Materials, Inc | Metal recess for semiconductor structures |
10861676, | Jan 08 2018 | Applied Materials, Inc | Metal recess for semiconductor structures |
10872778, | Jul 06 2018 | Applied Materials, Inc | Systems and methods utilizing solid-phase etchants |
10886137, | Apr 30 2018 | Applied Materials, Inc | Selective nitride removal |
10892198, | Sep 14 2018 | Applied Materials, Inc | Systems and methods for improved performance in semiconductor processing |
10903052, | Feb 03 2017 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
10903054, | Dec 19 2017 | Applied Materials, Inc | Multi-zone gas distribution systems and methods |
10920319, | Jan 11 2019 | Applied Materials, Inc | Ceramic showerheads with conductive electrodes |
10920320, | Jun 16 2017 | Applied Materials, Inc | Plasma health determination in semiconductor substrate processing reactors |
10943834, | Mar 13 2017 | Applied Materials, Inc | Replacement contact process |
10964512, | Feb 15 2018 | Applied Materials, Inc | Semiconductor processing chamber multistage mixing apparatus and methods |
11004689, | Mar 12 2018 | Applied Materials, Inc. | Thermal silicon etch |
11024486, | Feb 08 2013 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
11049698, | Oct 04 2016 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
11049755, | Sep 14 2018 | Applied Materials, Inc | Semiconductor substrate supports with embedded RF shield |
11062887, | Sep 17 2018 | Applied Materials, Inc | High temperature RF heater pedestals |
11101136, | Aug 07 2017 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
11121002, | Oct 24 2018 | Applied Materials, Inc | Systems and methods for etching metals and metal derivatives |
11133226, | Oct 22 2018 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | FUSI gated device formation |
11158527, | Aug 06 2015 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
11239061, | Nov 26 2014 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
11257693, | Jan 09 2015 | Applied Materials, Inc | Methods and systems to improve pedestal temperature control |
11264213, | Sep 21 2012 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
11276559, | May 17 2017 | Applied Materials, Inc | Semiconductor processing chamber for multiple precursor flow |
11276590, | May 17 2017 | Applied Materials, Inc | Multi-zone semiconductor substrate supports |
11328909, | Dec 22 2017 | Applied Materials, Inc | Chamber conditioning and removal processes |
11361939, | May 17 2017 | Applied Materials, Inc | Semiconductor processing chamber for multiple precursor flow |
11393726, | Jul 22 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | Metal gate structure of a CMOS semiconductor device and method of forming the same |
11417534, | Sep 21 2018 | Applied Materials, Inc | Selective material removal |
11437242, | Nov 27 2018 | Applied Materials, Inc | Selective removal of silicon-containing materials |
11476093, | Aug 27 2015 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
11594428, | Feb 03 2015 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
11637002, | Nov 26 2014 | Applied Materials, Inc | Methods and systems to enhance process uniformity |
11682560, | Oct 11 2018 | Applied Materials, Inc | Systems and methods for hafnium-containing film removal |
11721527, | Jan 07 2019 | Applied Materials, Inc | Processing chamber mixing systems |
11735441, | May 19 2016 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
11823959, | Oct 22 2018 | Taiwan Semiconductor Manufacturing Company, Ltd. | FUSI gated device formation |
11915950, | May 17 2017 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
12057329, | Jun 29 2016 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
12148597, | Dec 19 2017 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
6413861, | Apr 18 2001 | Macronix International Co. Ltd. | Method of fabricating a salicide of an embedded memory |
6528399, | Aug 02 1999 | STMICROELECTRONICS, S A | MOSFET transistor with short channel effect compensated by the gate material |
6762468, | Dec 26 2001 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
6841826, | Jan 15 2003 | GLOBALFOUNDRIES U S INC | Low-GIDL MOSFET structure and method for fabrication |
6878582, | Jan 15 2003 | GLOBALFOUNDRIES Inc | Low-GIDL MOSFET structure and method for fabrication |
6967143, | Apr 30 2003 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Semiconductor fabrication process with asymmetrical conductive spacers |
7148096, | Dec 26 2001 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device having a gate electrode containing polycrystalline silicon-germanium |
7192876, | May 22 2003 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Transistor with independent gate structures |
7285829, | Mar 31 2004 | TAHOE RESEARCH, LTD | Semiconductor device having a laterally modulated gate workfunction and method of fabrication |
7666727, | Mar 31 2004 | TAHOE RESEARCH, LTD | Semiconductor device having a laterally modulated gate workfunction and method of fabrication |
7920109, | Aug 26 2005 | SAMSUNG DISPLAY CO , LTD | Emission driving device of organic light emitting display device |
7943988, | Sep 05 2008 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Power MOSFET with a gate structure of different material |
8309410, | Sep 05 2008 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Power MOSFET with a gate structure of different material |
8343307, | Feb 26 2004 | Applied Materials, Inc | Showerhead assembly |
8679982, | Aug 26 2011 | Applied Materials, Inc | Selective suppression of dry-etch rate of materials containing both silicon and oxygen |
8679983, | Sep 01 2011 | Applied Materials, Inc | Selective suppression of dry-etch rate of materials containing both silicon and nitrogen |
8765574, | Nov 09 2012 | Applied Materials, Inc | Dry etch process |
8771539, | Feb 22 2011 | Applied Materials, Inc | Remotely-excited fluorine and water vapor etch |
8801952, | Mar 07 2013 | Applied Materials, Inc | Conformal oxide dry etch |
8808563, | Oct 07 2011 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
8895449, | May 16 2013 | Applied Materials, Inc | Delicate dry clean |
8921234, | Dec 21 2012 | Applied Materials, Inc | Selective titanium nitride etching |
8927390, | Sep 26 2011 | Applied Materials, Inc | Intrench profile |
8951429, | Oct 29 2013 | Applied Materials, Inc | Tungsten oxide processing |
8956980, | Sep 16 2013 | Applied Materials, Inc | Selective etch of silicon nitride |
8969212, | Nov 20 2012 | Applied Materials, Inc | Dry-etch selectivity |
8975152, | Nov 08 2011 | Applied Materials, Inc | Methods of reducing substrate dislocation during gapfill processing |
8980763, | Nov 30 2012 | Applied Materials, Inc | Dry-etch for selective tungsten removal |
8999856, | Mar 14 2011 | Applied Materials, Inc | Methods for etch of sin films |
9012302, | Sep 26 2011 | Applied Materials, Inc. | Intrench profile |
9023732, | Mar 15 2013 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
9023734, | Sep 18 2012 | Applied Materials, Inc | Radical-component oxide etch |
9034770, | Sep 17 2012 | Applied Materials, Inc | Differential silicon oxide etch |
9040422, | Mar 05 2013 | Applied Materials, Inc | Selective titanium nitride removal |
9064815, | Mar 14 2011 | Applied Materials, Inc | Methods for etch of metal and metal-oxide films |
9064816, | Nov 30 2012 | Applied Materials, Inc | Dry-etch for selective oxidation removal |
9093371, | Mar 15 2013 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
9093390, | Mar 07 2013 | Applied Materials, Inc. | Conformal oxide dry etch |
9093421, | Jun 26 2012 | GLOBALFOUNDRIES Inc | Implementing gate within a gate utilizing replacement metal gate process |
9111877, | Dec 18 2012 | Applied Materials, Inc | Non-local plasma oxide etch |
9114438, | May 21 2013 | Applied Materials, Inc | Copper residue chamber clean |
9117855, | Dec 04 2013 | Applied Materials, Inc | Polarity control for remote plasma |
9132436, | Sep 21 2012 | Applied Materials, Inc | Chemical control features in wafer process equipment |
9136273, | Mar 21 2014 | Applied Materials, Inc | Flash gate air gap |
9153442, | Mar 15 2013 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
9159606, | Jul 31 2014 | Applied Materials, Inc | Metal air gap |
9165786, | Aug 05 2014 | Applied Materials, Inc | Integrated oxide and nitride recess for better channel contact in 3D architectures |
9184055, | Mar 15 2013 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
9190293, | Dec 18 2013 | Applied Materials, Inc | Even tungsten etch for high aspect ratio trenches |
9209012, | Sep 16 2013 | Applied Materials, Inc. | Selective etch of silicon nitride |
9236265, | Nov 04 2013 | Applied Materials, Inc | Silicon germanium processing |
9236266, | Aug 01 2011 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
9245762, | Dec 02 2013 | Applied Materials, Inc | Procedure for etch rate consistency |
9263278, | Dec 17 2013 | Applied Materials, Inc | Dopant etch selectivity control |
9269590, | Apr 07 2014 | Applied Materials, Inc | Spacer formation |
9287095, | Dec 17 2013 | Applied Materials, Inc | Semiconductor system assemblies and methods of operation |
9287134, | Jan 17 2014 | Applied Materials, Inc | Titanium oxide etch |
9293568, | Jan 27 2014 | Applied Materials, Inc | Method of fin patterning |
9299537, | Mar 20 2014 | Applied Materials, Inc | Radial waveguide systems and methods for post-match control of microwaves |
9299538, | Mar 20 2014 | Applied Materials, Inc | Radial waveguide systems and methods for post-match control of microwaves |
9299575, | Mar 17 2014 | Applied Materials, Inc | Gas-phase tungsten etch |
9299582, | Nov 12 2013 | Applied Materials, Inc | Selective etch for metal-containing materials |
9299583, | Dec 05 2014 | Applied Materials, Inc | Aluminum oxide selective etch |
9309598, | May 28 2014 | Applied Materials, Inc | Oxide and metal removal |
9324576, | May 27 2010 | Applied Materials, Inc. | Selective etch for silicon films |
9343272, | Jan 08 2015 | Applied Materials, Inc | Self-aligned process |
9349605, | Aug 07 2015 | Applied Materials, Inc | Oxide etch selectivity systems and methods |
9355856, | Sep 12 2014 | Applied Materials, Inc | V trench dry etch |
9355862, | Sep 24 2014 | Applied Materials, Inc | Fluorine-based hardmask removal |
9355863, | Dec 18 2012 | Applied Materials, Inc. | Non-local plasma oxide etch |
9362130, | Mar 01 2013 | Applied Materials, Inc | Enhanced etching processes using remote plasma sources |
9368364, | Sep 24 2014 | Applied Materials, Inc | Silicon etch process with tunable selectivity to SiO2 and other materials |
9373517, | Aug 02 2012 | Applied Materials, Inc | Semiconductor processing with DC assisted RF power for improved control |
9373522, | Jan 22 2015 | Applied Materials, Inc | Titanium nitride removal |
9378969, | Jun 19 2014 | Applied Materials, Inc | Low temperature gas-phase carbon removal |
9378978, | Jul 31 2014 | Applied Materials, Inc | Integrated oxide recess and floating gate fin trimming |
9384997, | Nov 20 2012 | Applied Materials, Inc. | Dry-etch selectivity |
9385028, | Feb 03 2014 | Applied Materials, Inc | Air gap process |
9390937, | Sep 20 2012 | Applied Materials, Inc | Silicon-carbon-nitride selective etch |
9396989, | Jan 27 2014 | Applied Materials, Inc | Air gaps between copper lines |
9406523, | Jun 19 2014 | Applied Materials, Inc | Highly selective doped oxide removal method |
9412608, | Nov 30 2012 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
9418858, | Oct 07 2011 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
9425058, | Jul 24 2014 | Applied Materials, Inc | Simplified litho-etch-litho-etch process |
9437451, | Sep 18 2012 | Applied Materials, Inc. | Radical-component oxide etch |
9449845, | Dec 21 2012 | Applied Materials, Inc. | Selective titanium nitride etching |
9449846, | Jan 28 2015 | Applied Materials, Inc | Vertical gate separation |
9449850, | Mar 15 2013 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
9472412, | Dec 02 2013 | Applied Materials, Inc | Procedure for etch rate consistency |
9472417, | Nov 12 2013 | Applied Materials, Inc | Plasma-free metal etch |
9478432, | Sep 25 2014 | Applied Materials, Inc | Silicon oxide selective removal |
9478434, | Sep 24 2014 | Applied Materials, Inc | Chlorine-based hardmask removal |
9493879, | Jul 12 2013 | Applied Materials, Inc | Selective sputtering for pattern transfer |
9496167, | Jul 31 2014 | Applied Materials, Inc | Integrated bit-line airgap formation and gate stack post clean |
9499898, | Mar 03 2014 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
9502258, | Dec 23 2014 | Applied Materials, Inc | Anisotropic gap etch |
9508721, | Jul 22 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | Metal gate structure of a CMOS semiconductor device |
9520303, | Nov 12 2013 | Applied Materials, Inc | Aluminum selective etch |
9553102, | Aug 19 2014 | Applied Materials, Inc | Tungsten separation |
9564296, | Mar 20 2014 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
9576809, | Nov 04 2013 | Applied Materials, Inc | Etch suppression with germanium |
9607856, | Mar 05 2013 | Applied Materials, Inc. | Selective titanium nitride removal |
9613822, | Sep 25 2014 | Applied Materials, Inc | Oxide etch selectivity enhancement |
9659753, | Aug 07 2014 | Applied Materials, Inc | Grooved insulator to reduce leakage current |
9659792, | Mar 15 2013 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
9685526, | Feb 12 2014 | International Business Machines Corporation | Side gate assist in metal gate first process |
9691645, | Aug 06 2015 | Applied Materials, Inc | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
9704723, | Mar 15 2013 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
9711366, | Nov 12 2013 | Applied Materials, Inc. | Selective etch for metal-containing materials |
9721789, | Oct 04 2016 | Applied Materials, Inc | Saving ion-damaged spacers |
9728437, | Feb 03 2015 | Applied Materials, Inc | High temperature chuck for plasma processing systems |
9741593, | Aug 06 2015 | Applied Materials, Inc | Thermal management systems and methods for wafer processing systems |
9754800, | May 27 2010 | Applied Materials, Inc. | Selective etch for silicon films |
9768034, | Nov 11 2016 | Applied Materials, Inc | Removal methods for high aspect ratio structures |
9773648, | Aug 30 2013 | Applied Materials, Inc | Dual discharge modes operation for remote plasma |
9773695, | Jul 31 2014 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
9837249, | Mar 20 2014 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
9837284, | Sep 25 2014 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
9842744, | Mar 14 2011 | Applied Materials, Inc. | Methods for etch of SiN films |
9847289, | May 30 2014 | Applied Materials, Inc | Protective via cap for improved interconnect performance |
9865484, | Jun 29 2016 | Applied Materials, Inc | Selective etch using material modification and RF pulsing |
9881805, | Mar 02 2015 | Applied Materials, Inc | Silicon selective removal |
9885117, | Mar 31 2014 | Applied Materials, Inc | Conditioned semiconductor system parts |
9887096, | Sep 17 2012 | Applied Materials, Inc. | Differential silicon oxide etch |
9903020, | Mar 31 2014 | Applied Materials, Inc | Generation of compact alumina passivation layers on aluminum plasma equipment components |
9934942, | Oct 04 2016 | Applied Materials, Inc | Chamber with flow-through source |
9947549, | Oct 10 2016 | Applied Materials, Inc | Cobalt-containing material removal |
9978564, | Sep 21 2012 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
9991134, | Mar 15 2013 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
ER3578, |
Patent | Priority | Assignee | Title |
5358879, | Apr 30 1993 | Bae Systems Information and Electronic Systems Integration, Inc | Method of making gate overlapped lightly doped drain for buried channel devices |
5741736, | May 04 1995 | Motorola Inc. | Process for forming a transistor with a nonuniformly doped channel |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 02 1999 | YU, BIN | Advanced Micro Devices, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009813 | /0994 | |
Mar 08 1999 | Advanced Micro Devices, Inc. | (assignment on the face of the patent) | / | |||
Jun 30 2009 | Advanced Micro Devices, INC | GLOBALFOUNDRIES Inc | AFFIRMATION OF PATENT ASSIGNMENT | 023119 | /0083 | |
Nov 27 2018 | GLOBALFOUNDRIES Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY AGREEMENT | 049490 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES U S INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056987 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054636 | /0001 |
Date | Maintenance Fee Events |
Oct 25 2001 | ASPN: Payor Number Assigned. |
Mar 29 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 26 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 07 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 06 2004 | 4 years fee payment window open |
May 06 2005 | 6 months grace period start (w surcharge) |
Nov 06 2005 | patent expiry (for year 4) |
Nov 06 2007 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 06 2008 | 8 years fee payment window open |
May 06 2009 | 6 months grace period start (w surcharge) |
Nov 06 2009 | patent expiry (for year 8) |
Nov 06 2011 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 06 2012 | 12 years fee payment window open |
May 06 2013 | 6 months grace period start (w surcharge) |
Nov 06 2013 | patent expiry (for year 12) |
Nov 06 2015 | 2 years to revive unintentionally abandoned end. (for year 12) |