An embedded signal detection process determines a transformation of a media signal subsequent to the encoding of an embedded code signal into the media signal. The process performs a logarithmic sampling of the media signal to create a sampled signal in which scaling of the media signal is converted to translation in the sampled signal. It then computes the translation of the embedded code signal in the sampled signal to determine scaling of the media signal subsequent to the encoding of the embedded signal in the media signal.
|
1. A method of determining a transformation of a media signal having an embedded code signal, the method comprising:
performing a logarithmic sampling of the media signal to create a sampled signal in which scaling of the media signal is converted to translation in the sampled signal; and computing translation of the embedded code signal in the sampled signal to determine scaling of the media signal subsequent to the encoding of the embedded signal in the media signal.
26. A system for determining a transformation of a media signal having an embedded code signal, the method comprising:
means for performing a logarithmic sampling of the media signal to create a sampled signal in which scaling of the media signal is converted to translation in the sampled signal; and means for computing translation of the embedded code signal in the sampled signal to determine scaling of the media signal subsequent to the encoding of the embedded signal in the media signal.
20. A method of determining orientation of an embedded code signal in a media signal that has been transformed since encoding of the embedded code signal in the media signal, the method comprising:
performing a logarithmic sampling of the media signal to create a sampled signal in which scaling of the media signal is converted to translation in the sampled signal; and computing translation of the embedded code signal in the sampled signal to determine scaling of the embedded code signal subsequent to the encoding of the embedded signal in the media signal.
2. The method of
3. The method of
4. The method of
6. The method of
7. The method of
10. The method of
11. The method of
performing a logarithmic sampling of each dimension of the media signal to create the sampled signal; and computing translation of the embedded code signal in the sampled signal to determine scaling of the media signal in each of the dimensions.
12. The method of
13. The method of
performing a logarithmic sampling of each of the three dimensions of the media signal to create the sampled signal; and computing translation of the embedded code signal in the sampled signal to determine scaling of the media signal in each of the dimensions.
14. The method of
15. The method of
16. The method of
performing a logarithmic and polar sampling of the two dimensional signal to create the sampled signal in which both scaling and rotation of the two dimensional signal are converted to translation in the sampled signal; and computing translation of the embedded code signal in the sampled signal to determine scaling and rotation of the media signal.
17. The method of
18. The method of
performing a logarithmic and polar sampling of one or more frames and a logarithmic sampling of the temporal dimension of the sequence of frames to create sampled signals; and computing translation of the embedded code signal in the sampled signals to determine scaling and rotation of one or more frames and temporal scaling of the frames relative to the media signal at an encoding time of the embedded code signal.
21. The method of
22. The method of
24. The method of
performing a logarithmic and polar sampling of the two dimensional signal to create the sampled signal; and computing translation of the embedded code signal in the sampled signal to determine scaling and rotation of the embedded code signal.
28. The system of
|
This application is a continuation-in-part of application Ser. No. 09/452,023, filed Nov. 30, 1999. This application is also a continuation-in-part of application Ser. No. 08/746,613, filed Nov. 12, 1996, (now U.S. Pat. No. 6,122,403). This application is also a continuation-in-part of application Ser. No. 09/186,962, filed Nov. 5, 1998, which is a continuation of application Ser. No. 08/649,419, filed May 16, 1996(now U.S. Pat. No. 5,862,260).
The subject matter of the present application is also related to that of the assignee's other patents and applications, including U.S. Pat. Nos. 5,930,377, 5,809,160, 5,721,788, 5,745,604, 5,768,426, 5,850,481, 5,748,753, 5,710,834, 5,636,292, 5,841,978, 5,841,886, 5,832,119, 5,822,436, 5,862,260, and pending applications Ser. Nos. 08/951,858, 08/967,693, 09/074,034, 09/127,502, 09/151,492, 09/185,380, 09/292,569, 09/314,648, 09/337,590, 09/343,104, 09/342,688, 09/343,101, 09/342,971, 09/342,689, 09/408,026, 09/433,104, 60/163,332, 09/434,757, 09/437,357, 60/164,619, 09/452,021, 09/452,022, 60/112,955, 60/134,782, 09/503,881 and 60/158,015. The technology disclosed in this application can advantageously be used in the methods and systems disclosed in the foregoing patents and applications (all of which are incorporated by reference).
The invention relates to multimedia processing, and more specifically relates to detecting embedded code signals in media such as images, video and audio.
Digital watermarking is a process for modifying media content to embed a machine-readable code into the data content. The data may be modified such that the embedded code is imperceptible or nearly imperceptible to the user, yet may be detected through an automated detection process. Most commonly, digital watermarking is applied to media such as images, audio signals, and video signals. However, it may also be applied to other types of data, including documents (e.g., through line, word or character shifting), software, multi-dimensional graphics models, and surface textures of objects.
Digital watermarking systems have two primary components: an embedding component that embeds the watermark in the media content, and a reading component that detects and reads the embedded watermark. The embedding component embeds a watermark pattern by altering data samples of the media content in the spatial or frequency domains. The reading component analyzes target content to detect whether a watermark pattern is present. In applications where the watermark encodes information, the reader extracts this information from the detected watermark.
One challenge to the developers of watermark embedding and reading systems is to ensure that the watermark is detectable even if the watermarked media content is corrupted in some fashion. The watermark may be corrupted intentionally, so as to bypass its copy protection or anti-counterfeiting functions, or unintentionally through various transformations that result from routine manipulation of the content (e.g., digital to analog conversion, geometric distortion compression, etc.). In the case of watermarked images, such manipulation of the image may distort the watermark pattern embedded in the image. In general, the geometric distortion may result in some linear or non-linear geometric transformation. An affine transformation encompasses various linear transformations, including scale, translation, rotation, differential scale, and shear.
To accurately detect and read the watermark, it is helpful to determine the parameters of this affine transformation. The reader may then use these parameters to adjust the corrupted image to approximate its original state and then proceed to read the information content represented in the watermark.
Watermarks are often difficult to detect and read in corrupted media, particularly if the original un-marked media is not available to assist in the detection and reading process. Thus, there is a need to develop techniques for accurately detecting the presence and orientation of a watermark in corrupted media where the original media is not available.
In some applications, it is useful to determine whether a media signal, such as an audio, image or video signal has been transformed, and if so, how it has been transformed. Methods capable of determining alteration of a signal are useful in a variety of applications, including forensics and encoding auxiliary messages in media. In some applications, there is a need to be able to restore a media signal to its original state in addition to detecting alteration.
The invention provides a method and system of determining a transformation of a media signal subsequent to the encoding of an embedded code signal into the media signal. It also provides a method and system to determine the orientation of the embedded code signal in a media signal after the media signal has been transformed. The invention applies to various types of media signals, including image, video and audio signals.
One aspect of the invention is a method of determining a transformation of a media signal having an embedded code signal. The method performs a logarithmic sampling of the media signal to create a sampled signal in which scaling of the media signal is converted to translation in the sampled signal. It then computes the translation of the embedded code signal in the sampled signal to determine scaling of the media signal subsequent to the encoding of the embedded signal in the media signal.
The embedded code signal may be implemented in a variety of ways. In one implementation, the embedded code signal comprises a set of impulse functions in a frequency domain. In particular, the impulse functions may be in a Fourier domain, or some other transform domain such as wavelet, Discrete Cosine Transform, etc. For some applications, the impulse functions have random or pseudo-random phase. When the impulse functions have random phase, they tend to make the embedded code signal imperceptible or less perceptible. For instance, the embedded code signal may be an imperceptible or substantially imperceptible digital watermark in an image or audio signal.
Using the embedded code signal's phase attributes, a detection process can determine the position of the embedded code signal or the translation of the media signal in which it is embedded. For example, the detection process may be used to determine a shift, offset, or cropping of the media signal after it has been encoded with the embedded code signal. In particular, the detection process may perform phase matching between the code signal and a media signal suspected of containing an embedded code signal (a suspect signal). One form of phase matching is a matched filtering process between the code signal and the suspect media signal in the spatial or temporal domain. This process may be performed on one dimensional signals such as audio signals, or two or more dimensional signals like images and video.
The logarithmic sampling may be performed directly on the media signal or after it has been converted to a transform domain. For example, one implementation performs the sampling on frequency domain data of the media signal. Depending on the nature of the media signal and the application, the sampling may be performed in two or more dimensions. A two-dimensional signal, such as an image, may be logarithmically sampled in each of the two dimensions to determine scaling in each dimension. A three dimensional signal, such as a video sequence, may be logarithmically sampled in three dimensions. After sampling, matched filtering, or other forms of filtering, may be used to determine the translation of the embedded code signal in the sampled signal in each of the dimensions. The extent of translation in the sampled signal corresponds to scaling in the media signal.
Polar sampling may also be used to convert rotation of a media signal into translation in polar coordinates. Once converted in this manner, matched filtering may be used to determine translation of the embedded code signal in the sampled signal. The translation in polar coordinates provides the angle of rotation of the media signal subsequent to encoding of the embedded code signal.
Logarithmic sampling may also be performed in combination with a polar sampling. The logarithmic or polar sampling may be performed on the media signal directly (e.g., in its native spatial, or temporal domain) or on frequency domain or other transform domain data of the media signal. Similarly, the embedded code signal, or components of it, may be defined in the spatial or frequency domain, or in a transform domain. One example of an embedded code signal is a watermark signal with fixed attributes that can be located via matched filtering in the sampled media signal.
Further advantages and features of the invention will become apparent with reference to the following detailed description and accompanying drawings.
A watermark provides a mechanism for imperceptibly embedding information into digital media content. Media content includes various forms of data represented as a collection of digital samples that may be altered without disrupting the function or appearance of the data in a perceptible way. Watermarking is particularly suited for visual and audio media such as images, video and sound, yet it applies to other data forms as well. It may be performed in the digital and analog domains.
The watermark is "imperceptible" from the standpoint that it makes minor alterations to media samples that are generally not noticeable to the user. The degree to which the watermark is imperceptible at playback depends on the implementation and the requirements of the application. In some applications, it may be sufficient that the watermark is virtually imperceptible even though one might discern it upon closer scrutiny. Also, some applications may utilize an imperceptible watermark along with perceptible markings to help detect the watermark or determine its orientation.
Digital watermarking systems are sometimes classified based on how they alter the underlying media content to embed information. Some systems directly alter data samples in the domain in which the media is presented as output while other systems transform the data into another domain and then alter the transformed samples. In watermarking of digital images for example, the system may alter discrete pixel values in the spatial domain, or it may transform the image into discrete spatial frequency components and alter the frequency components. In the image field alone, there are many different types of transforms to different domains, such as a discrete cosine transform (DCT), Fourier transform, Karhunen-Loeve transform (KLT), wavelet transform etc. The embedding component of a watermarking system may embed a watermark pattern in any of these domains and then convert the watermarked media back to its original form. Similarly, the embedding component may transform a watermark pattern from one domain to the output domain of the target media content (e.g., spatial domain for images) and combine the transformed pattern with the original media content to create a watermarked version of the target media.
The following sections describe a watermark detection process that employs a Fourier Mellin Transform. For the purpose of this discussion, the process is adapted to detecting a watermark in an image. A similar process may be used for other empirical data sets such as audio and video.
The objective of the detection process shown in
The detection process begins by capturing one or more data sets from the target data (100, 102). In the case of an image, the target data is an image (the target image 102), and the data sets are blocks of pixels taken from this image.
Next, the detection process transforms the data sets into the frequency domain (104). In particular, it performs a fourier transform of an image block from the spatial domain to a spatial frequency domain.
The process may optionally apply one or more pre-processing functions to reduce the impact of unwanted noise on the detection process. For example, in one implementation, the detection process adds two or more image blocks together to increase the embedded signal to noise ratio (the addition may be performed in the spatial or some other transform domain). Filtering may also be employed to attenuate signal having little, if any, watermark information.
Next, the process transforms the data set (which may contain a transformed watermark) to a log polar coordinate system (106). By converting to the log polar domain, rotation and scale are converted to translation. One implementation performs a Fourier Mellin transform to map the data set from the spatial frequency domain to a logpolar coordinate system. For other types of signals, a similar mapping of the data set may be employed. For audio signals, the detector may perform a logarithmic sampling of audio data (e.g., a logarithmic sampling of frequency domain audio data) to convert scaling into translation. For video signals, the detector may perform a log-log-log transformation or a log-polar-log transformation of the two spatial coordinates (horizontal and vertical directions within an image), and temporal coordinates, respectively.
At this stage, the detection process correlates the watermark pattern (108) with the data set in the log-polar coordinate system to find rotation and scale parameters (110, 112). A variety of correlation processes may be used to implement this phase. For example, there is a general class of such correlation processes that are referred to as generalized matched filters. One implementation employs a generalized matched filter to determine the rotation and scale parameters for the block of interest. Alternatively, one may employ specialized correlation filters to perform correlation. The location in log polar space that provides the highest measure of correlation provides an estimate of the rotation and scale parameters.
Having determined rotation and scale parameters, the detection process proceeds to conduct further correlation to find the translation parameter for the block of interest (114). Using the rotation and scale parameters as a starting point, the detection process conducts additional block matching on the spatial image data to determine the translation parameters (116). In particular, one implementation rotates and scales the block of interest and then searches the block to find the location within the block that most closely matches the watermark pattern. This location provides the translation parameters, e.g., the coordinates of a reference position within the block.
Before elaborating on implementation details, it is helpful to begin with an overview of the watermark structure. As noted above, the watermark may be implemented in a variety of ways. In the context of images, for example, it may be applied to the original content in the spatial domain, in a frequency domain, or some combination of these domains. The specific values of the watermark used to alter discrete samples of the image may be expressed in the spatial or frequency domain. For example, the watermark samples may be expressed as having some value and location in the spatial and or frequency domain. In addition, the value of a watermark sample may be a function of position in a given domain and may be a function of the corresponding image sample that it alters. For example, it may be expressed as a "delta function" that alters the corresponding image sample depending on the value of that image sample. For additional description of watermark encoding, please see copending applications 09/503,881 and 09/452,021, which are hereby incorporated by reference.
Components of the watermark may perform the function of conveying information content, identifying the watermark's orientation, or both of these functions. The detection process is primarily concerned with the watermark's ability to identify its orientation.
The watermark used in the implementation illustrated in
One property is the extent to which the pattern is symmetric about one or more axes. For example, if the detection pattern is symmetrical about the horizontal and vertical axes, it is referred to as being quad symmetric. If it is further symmetrical about diagonal axes at an angle of 45 degrees, it is referred to as being octally symmetric (repeated in a symmetric pattern 8 times about the origin). Such symmetry aids in identifying the watermark in a suspect signal, and aids in extracting the rotation angle. However, in the case of an octally symmetric pattern, the detector includes an additional step of testing which of the four quadrants the orientation angle falls into.
Also, impulse functions defined in the Fourier transform domain should have conjugate symmetry so that they map to a real image in the spatial domain.
The orientation points shown in the example of
The impulse functions may have random, or more particularly, "pseudo random" phase. Pseudo random refers to the case where the impulse functions or other orientation signal components have random phase, yet the phase of each component is known. The known phase attributes enable automated detection processes to determine the position of a watermark in a suspect signal, even in cases where the signal has been translated (shifted, offset) subsequent to encoding of the watermark. This type of misregistration occurs, for example, where the detection process starts at some arbitrary location in an audio or image signal, or the signal has been clipped, shifted or offset.
Another criterion is the position of the orientation points and the frequency range that they reside in. Preferably, the orientation points fall in a mid frequency range. If they are located in a low frequency range, they may be noticeable in the watermarked image. If they are located in the high frequency range, they are more difficult to recover. Also, they should be selected so that scaling, rotation, and other manipulation of the watermarked signal does not push the orientation points outside the range of the detector. Finally, the orientation points should preferably not fall on the vertical or horizontal axes, and each orientation point should have a unique horizontal and vertical location.
While
As explained below, the detector performs correlation processes between this orientation pattern (or a transformed version of it) and transformed data sets extracted from the target image.
Returning to the process depicted in
Next, the detector process performs a log polar sampling of the transformed block. The type of sampling in this implementation is referred to as a Fourier Mellin transform. The Fourier Mellin transform is a geometric transform that warps the image frequency domain data from a Cartesian Coordinate System to a log polar coordinate system. As depicted in the plot 206 shown in
Next, the detector performs a correlation 210 between the transformed image block and the transformed orientation signal 212. At a high level, the correlation process slides the orientation signal over the transformed image (in a selected transform domain, such as a spatial frequency domain) and measures the correlation at an array of discrete positions. Each such position has a corresponding scale and rotation parameter associated with it. Ideally, there is a position that clearly has the highest correlation relative to all of the others. In practice, there may be several candidates with a promising measure of correlation. As explained further below, these candidates may be subjected to one or more additional correlation stages to select the one that provides the best match for the orientation pattern.
There are a variety of ways to implement the correlation process. Any number of generalized matched filters may be implemented for this purpose.
When there are several viable candidates, the detector selects a set of the top candidates and applies an additional correlation stage. Each candidate has a corresponding rotation and scale parameter. The correlation stage rotates and scales the FFT of the orientation signal and performs a matching operation with the rotated and scaled orientation signal on the FFT of the target image. The matching operation multiplies the values of the transformed orientation signal (rotated and scaled) with sample values at corresponding positions in the Fourier magnitude data of the target image and accumulates the result to yield a measure of the correlation. The detector repeats this process for each of the candidates and picks the one with the highest measure of correlation. As shown in
The detector applies the scale and rotation to the target data block in the spatial domain 216 and then performs another correlation process between the orientation signal 218 and the scaled and rotated data block 216. The correlation process 220, in this example, is a generalized matched filter operation. It provides a measure of correlation for an array of positions that each has an associated translation parameter (e.g., an x, y position). Again, the location with the highest measure of correlation determines the translation parameters.
The phase attributes of an embedded code signal, such as the orientation signal, may be used to determine the position of the embedded code signal in a suspect media signal. Similarly, they may be used to determine translation of the media signal relative to its position at the time of encoding of the embedded code signal. Consider the case where the orientation signal has known phase attributes, such as components (e.g., impulse functions) with known phases. An example is the set of impulse functions with pseudo random phase described previously. To determine translation, the detector may apply phase only matching between the orientation signal and the suspect signal to find the location (or translation parameter(s)) where the phase attributes of both signals provide the best match. For example, matched filtering may be performed to determine the translation parameters (e.g., x and y position in a 2D signal) that provide the highest measure of correlation. Such phase matching may be performed in one (e.g., audio), two (e.g., image), or higher dimensional signals (e.g., video). This process may be used to determine the location of an embedded code signal in a suspect signal, and may also be used to determine a transformation that has been applied to a media signal subsequent to being encoded with the embedded code signal.
At this point, the detector has recovered the following orientation parameters: rotation, scale and translation. For many applications, these parameters may be sufficient to enable accurate reading of the watermark. In a watermark read operation, the reader applies the orientation parameters to re-orient the target image and then proceeds to extract the watermark signal. In some applications, the watermarked image may be stretched more in one spatial dimension than another. This type of distortion is sometimes referred to as differential scale or shear. Consider that the original image blocks are square. As a result of differential scale, each square may be warped into a parallelogram with unequal sides. Differential scale parameters define the nature and extent of this stretching.
There are several alternative ways to recover the differential scale parameters. One general class of techniques is to use the known parameters (e.g., the computed scale, rotation, and translation) as a starting point to find the differential scale parameters. Assuming the known parameters to be valid, this approach warps either the orientation signal or the target image with selected amounts of differential scale and picks the differential scale parameters that yield the best correlation.
Another approach to determination of differential scale is set forth in application Ser. No. 09/452,022.
Yet another approach is to perform log-log sampling to convert scale in each of two dimensions to translation in each of the two dimensions of the log-log sampled signal. Then, matched filtering between an orientation signal and the sampled signal can be used to find the scale parameters in each dimension that provide the best correlation.
FIG. 5 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the invention may be implemented. The invention is implemented in program modules comprising executable instructions that run on a computer. It may also be implemented in hardware (e.g., a ASIC) or a combination of hardware or software.
Generally, program modules include routines, programs, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The invention may be ported to other computer system configurations, including handheld devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like. The invention may also be implemented in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
The system bus may comprise any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using a bus architecture such as PCI, VESA, Microchannel (MCA), ISA and EISA, to name a few.
The system memory includes read only memory (ROM) 524 and random access memory (RAM) 525. A basic input/output system 526 (BIOS), containing the basic routines that help to transfer information between elements within the computer 520, such as during start-up, is stored in ROM 524.
The computer 520 further includes a hard disk drive 527, a magnetic disk drive 528, e.g., to read from or write to a removable disk 529, and an optical disk drive 530, e.g., for reading a CD-ROM disk 531 or to read from or write to other optical media. The hard disk drive 527, magnetic disk drive 528, and optical disk drive 530 are connected to the system bus 523 by a hard disk drive interface 532, a magnetic disk drive interface 533, and an optical drive interface 534, respectively. The drives and their associated computer-readable media provide nonvolatile storage of data, data structures, computer-executable instructions (program code such as dynamic link libraries, and executable files), etc. for the computer 520.
Although the description of computer-readable media above refers to a hard disk, a removable magnetic disk and a CD, it can also include other types of media that are readable by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, and the like.
A number of program modules may be stored in the drives and RAM 525, including an operating system 535, one or more application programs 536, other program modules 537, and program data 538.
A user may enter commands and information into the personal computer 520 through a keyboard 540 and pointing device, such as a mouse 542. Other input devices may include a microphone, joystick, game pad, satellite dish, digital camera, scanner, or the like. A digital camera or scanner 543 may be used to capture the target image for the detection process described above. The camera and scanner are each connected to the computer via a standard interface 544. Currently, there are digital cameras designed to interface with a Universal Serial Bus (USB), Peripheral Component Interconnect (PCI), and parallel port interface. Two emerging standard peripheral interfaces for cameras include USB2 and 1394 (also known as firewire and iLink).
These and other input devices are often connected to the processing unit 521 through a serial port interface 546 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game port or a universal serial bus (USB).
A monitor 547 or other type of display device is also connected to the system bus 523 via an interface, such as a video adapter 548. In addition to the monitor, personal computers typically include other peripheral output devices (not shown), such as speakers and printers.
The computer 520 operates in a networked environment using logical connections to one or more remote computers, such as a remote computer 549. The remote computer 549 may be a server, a router, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer 520, although only a memory storage device 550 has been illustrated in FIG. 5. The logical connections depicted in
When used in a LAN networking environment, the computer 520 is connected to the local network 551 through a network interface or adapter 553. When used in a WAN networking environment, the personal computer 520 typically includes a modem 54 or other means for establishing communications over the wide area network 552, such as the Internet. The modem 554, which may be internal or external, is connected to the system bus 523 via the serial port interface 546.
In a networked environment, program modules depicted relative to the personal computer 520, or portions of them, may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary and that other means of establishing a communications link between the computers may be used.
Having described and illustrated the principles of the invention with reference to specific implementations, it will be recognized that the principles thereof can be implemented in many other, different, forms. For example, the nature of the orientation implemented in many other, different, forms. For example, the nature of the orientation parameters extracted during the detection process may vary. Also, the order in which these parameters are extracted may vary as well.
The specific matching techniques described above are only examples of suitable correlation processes. Instead of generalized matched filters, the correlation processes may be implemented using impulse matched filters. Some of the matching operations detailed above operate on data transformed into a frequency domain. The correlation processes may be performed in different domains, such as the spatial domain or temporal domain, and transform domains, including but not limited to wavelet, DCT, or Fourier transform domains.
To provide a comprehensive disclosure without unduly lengthening the specification, applicants incorporate by reference the patents and patent applications referenced above. The particular combinations of elements and features in the above-detailed embodiments are exemplary only; the interchanging and substitution of these teachings with other teachings in this and the incorporated-by-reference patents/applications are also contemplated.
Rhoads, Geoffrey B., Sharma, Ravi K.
Patent | Priority | Assignee | Title |
10134035, | Jan 23 2015 | ISLAND INTELLECTUAL PROPERTY, LLC | Invariant biohash security system and method |
10235465, | Jun 22 2004 | Digimarc Corporation | Internet and database searching with handheld devices |
10303988, | Aug 14 2015 | Digimarc Corporation | Visual search methods and systems |
10304152, | Mar 24 2000 | Digimarc Corporation | Decoding a watermark and processing in response thereto |
10438310, | Dec 23 2008 | Digimarc Corporation | Signal decoding methods, apparatus and systems |
10623182, | Jan 23 2015 | ISLAND INTELLECTUAL PROPERTY, LLC | Invariant biohash security system and method |
10832317, | Jan 23 2015 | ISLAND INTELLECTUAL PROPERTY, LLC | Systems, methods, and program products for performing deposit sweep transactions |
10853968, | Sep 29 2017 | Digimarc Corporation | Watermark sensing methods and arrangements |
10880451, | Jun 08 2018 | Digimarc Corporation | Aggregating detectability metrics to determine signal robustness |
10958807, | Feb 08 2018 | Digimarc Corporation | Methods and arrangements for configuring retail scanning systems |
11450025, | Sep 29 2017 | Digimarc Corporation | Watermark sensing methods and arrangements |
11831833, | Feb 08 2018 | Digimarc Corporation | Methods and arrangements for triggering detection, image correction or fingerprinting |
6529927, | Mar 31 2000 | Los Alamos National Security, LLC | Logarithmic compression methods for spectral data |
6567532, | Dec 02 1999 | Eastman Kodak Company | Method and computer program for extracting an embedded message from a digital image |
6608911, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digitally watermaking holograms for use with smart cards |
6675140, | Jan 28 1999 | United Kingdom Research and Innovation | Mellin-transform information extractor for vibration sources |
6700990, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermark decoding method |
6757407, | May 12 1998 | Lucent Technologies Inc. | Transform domain image watermarking method and system |
6775411, | Oct 18 2002 | SLOAN, ALAND D | Apparatus and method for image recognition |
6782115, | Apr 16 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark holograms |
6782117, | Nov 28 2001 | Sony Corporation; Sony Electronics Inc. | Method and apparatus to detect watermark that are resistant to arbitrary deformations |
6795565, | Mar 08 2001 | Sony Corporation; Sony Electronics Inc. | Method to detect watermark resistant to resizing and translation |
6845170, | Jan 11 2001 | Sony Corporation; Sony Electronics, Inc. | Watermark resistant to resizing and rotation |
6865273, | Jun 05 2002 | Sony Corporation; Sony Electronics Inc. | Method and apparatus to detect watermark that are resistant to resizing, rotation and translation |
6869023, | Feb 12 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Linking documents through digital watermarking |
6882737, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digitally watermarking holograms for identity documents |
6975745, | Oct 25 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Synchronizing watermark detectors in geometrically distorted signals |
6985601, | Jan 11 2001 | Sony Corporation; Sony Electronics Inc. | Watermark resistant to rotation and resizing |
7035867, | Nov 28 2001 | Google Technology Holdings LLC | Determining redundancies in content object directories |
7039214, | Nov 05 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Embedding watermark components during separate printing stages |
7046819, | Apr 25 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Encoded reference signal for digital watermarks |
7076082, | Mar 22 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Media signal filtering for use in digital watermark reading |
7116781, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Counteracting geometric distortions in watermarking |
7123744, | Nov 30 2001 | Kabushiki Kaisha Toshiba | Digital watermark embedding method, digital watermark embedding apparatus, digital watermark detecting method, and digital watermark detecting apparatus |
7139408, | Aug 26 1997 | DIGIMARC CORPORATION AN OREGON CORPORATION | Transform domain watermarking of image signals |
7152021, | Aug 15 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Computing distortion of media signals embedded data with repetitive structure and log-polar mapping |
7184546, | Feb 13 2001 | Arkion S.L. | Method based on an algorithm capable of being graphically implemented to be used for the generation of filtering of data sequences and crytographic applications |
7231061, | Jan 22 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Adaptive prediction filtering for digital watermarking |
7277871, | Mar 11 2002 | Panasonic Intellectual Property Corporation of America | Digital watermark system |
7302577, | Dec 13 2001 | Sony United Kingdom Limited | Data processing apparatus and method |
7305117, | Sep 11 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and tangible objects employing machine readable data |
7317811, | Nov 28 2001 | Sony Electronics INC; Sony Corporation | Method to decode temporal watermarks in compressed video |
7330563, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Documents, articles and authentication of documents and articles |
7349555, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Documents and apparatus to encode documents |
7369678, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermark and steganographic decoding |
7433489, | Nov 28 2001 | Sony Electronics INC; Sony Corporation | Method to ensure temporal synchronization and reduce complexity in the detection of temporal watermarks |
7463389, | Dec 10 2003 | Canon Kabushiki Kaisha | Image processing method, image processing device and program |
7487355, | Dec 13 2001 | Sony United Kingdom Limited | Data processing apparatus and method |
7489796, | Feb 02 2004 | Nippon Telegraph and Telephone Corporation | Electronic watermark embedding device, electronic watermark detection device, method thereof, and program |
7502937, | Apr 30 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking security systems |
7529647, | Aug 15 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Computing distortion of media signals using embedded data with repetitive structure and log-polar mapping |
7555139, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Secure documents with hidden signals, and related methods and systems |
7567721, | Jan 22 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking of low bit rate video |
7577841, | Aug 15 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark placement in watermarking of time varying media signals |
7578001, | Aug 12 2003 | Pioneer Corporation | Information recording and reproducing apparatus, information recording and reproducing method and information recording and reproducing program |
7602936, | Mar 08 2001 | Sony Electronics INC; Sony Corporation | Method to make wavelet watermarks resistant to affine transformations |
7688996, | Jan 22 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Adaptive prediction filtering for digital watermarking |
7697719, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for analyzing electronic media including video and audio |
7720249, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark embedder and reader |
7720924, | Dec 12 2003 | SYNIVERSE ICX, LLC | System providing methodology for the restoration of original media quality in messaging environments |
7724920, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital authentication with analog documents |
7728048, | Dec 20 2002 | L-1 SECURE CREDENTIALING, INC | Increasing thermal conductivity of host polymer used with laser engraving methods and compositions |
7744001, | Dec 18 2001 | L-1 SECURE CREDENTIALING, INC | Multiple image security features for identification documents and methods of making same |
7789311, | Apr 16 2003 | L-1 SECURE CREDENTIALING, INC | Three dimensional data storage |
7806322, | Feb 12 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Authentication methods and systems including embedded auxiliary data |
7824029, | May 10 2002 | L-1 SECURE CREDENTIALING, INC | Identification card printer-assembler for over the counter card issuing |
7853098, | Jul 08 2003 | Canon Kabushiki Kaisha | Image registration method improvement |
7930546, | May 16 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods, systems, and sub-combinations useful in media identification |
7945781, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and systems for inserting watermarks in digital signals |
7949147, | Aug 26 1997 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermarking compressed data |
7953270, | Nov 12 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and arrangements employing digital content items |
7953824, | Aug 06 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Image sensors worn or attached on humans for imagery identification |
7957553, | Apr 24 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking apparatus and methods |
7958359, | Apr 30 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Access control systems |
7961949, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Extracting multiple identifiers from audio and video content |
7965863, | Feb 19 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarks as a gateway and control mechanism |
7970166, | Apr 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Steganographic encoding methods and apparatus |
7970167, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Deriving identifying data from video and audio |
7974436, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods, apparatus and programs for generating and utilizing content signatures |
7978874, | Oct 21 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking for workflow by tracking content or content identifiers with respect to time |
7980596, | Dec 24 2001 | L-1 Secure Credentialing, Inc. | Increasing thermal conductivity of host polymer used with laser engraving methods and compositions |
7983443, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for managing content using intentional degradation and insertion of steganographic codes |
7986845, | Jul 27 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Steganographic systems and methods |
7991182, | Jan 20 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for steganographic encoding media |
7991186, | Feb 15 2005 | European Central Bank | Banknotes with a printed security image that can be detected with one-dimensional signal processing |
7992003, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and systems for inserting watermarks in digital signals |
8000495, | Jul 27 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking systems and methods |
8005254, | Nov 12 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Background watermark processing |
8010632, | Nov 18 1993 | Digimarc Corporation | Steganographic encoding for video and images |
8023691, | Apr 24 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods involving maps, imagery, video and steganography |
8023695, | Nov 18 1993 | Digimarc Corporation | Methods for analyzing electronic media including video and audio |
8025239, | Dec 18 2001 | L-1 Secure Credentialing, Inc. | Multiple image security features for identification documents and methods of making same |
8027509, | Apr 19 2000 | Digimarc Corporation | Digital watermarking in data representing color channels |
8027510, | Jan 13 2000 | Digimarc Corporation | Encoding and decoding media signals |
8027520, | Nov 12 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and arrangements employing digital content items |
8036419, | Apr 16 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarks |
8036420, | Dec 28 1999 | Digimarc Corporation | Substituting or replacing components in sound based on steganographic encoding |
8045748, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark embedding functions adapted for transmission channels |
8051169, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and systems useful in linking from objects to remote resources |
8051295, | Apr 20 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Benchmarks for digital watermarking |
8055014, | Jun 01 2000 | Digimarc Corporation | Bi-directional image capture methods and apparatuses |
8068679, | May 08 1995 | Digimarc Corporation | Audio and video signal processing |
8073933, | Nov 18 1993 | Digimarc Corporation | Audio processing |
8077911, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods, apparatus and programs for generating and utilizing content signatures |
8078697, | May 08 1995 | Digimarc Corporation | Network linking methods and apparatus |
8091025, | Mar 24 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Systems and methods for processing content objects |
8094869, | Jul 02 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Fragile and emerging digital watermarks |
8099403, | Jul 20 2000 | Digimarc Corporation | Content identification and management in content distribution networks |
8103053, | Nov 04 1999 | Digimarc Corporation | Method and apparatus for associating identifiers with content |
8103542, | Jun 29 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digitally marked objects and promotional methods |
8103879, | Apr 25 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Processing audio or video content with multiple watermark layers |
8107674, | Feb 04 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Synchronizing rendering of multimedia content |
8108484, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Fingerprints and machine-readable codes combined with user characteristics to obtain content or information |
8116516, | May 08 1995 | Digimarc Corporation | Controlling use of audio or image content |
8123134, | Aug 31 2001 | Digimarc Corporation | Apparatus to analyze security features on objects |
8126201, | Sep 11 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark decoding from streaming media |
8150032, | May 08 1995 | Digimarc Corporation | Methods for controlling rendering of images and video |
8155378, | Feb 14 2000 | Digimarc Corporation | Color image or video processing |
8160304, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Interactive systems and methods employing wireless mobile devices |
8165341, | Apr 16 1998 | Digimarc Corporation | Methods and apparatus to process imagery or audio content |
8165342, | Feb 14 2000 | Digimarc Corporation | Color image or video processing |
8170273, | Apr 25 2001 | Digimarc Corporation | Encoding and decoding auxiliary signals |
8180844, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | System for linking from objects to remote resources |
8181884, | Nov 17 2003 | DIGIMARC CORPORATION AN OREGON CORPORATION | Machine-readable features for objects |
8184849, | May 07 1996 | Digimarc Corporation | Error processing of steganographic message signals |
8184851, | Nov 18 1993 | Digimarc Corporation | Inserting watermarks into portions of digital signals |
8194915, | Feb 14 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Wavelet domain watermarks |
8229159, | Sep 28 2007 | Dolby Laboratories Licensing Corporation | Multimedia coding and decoding with additional information capability |
8230337, | Oct 17 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Associating objects with corresponding behaviors |
8243980, | Apr 25 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Image processing using embedded registration data to determine and compensate for geometric transformation |
8249992, | Mar 22 2007 | CITIBANK, N A | Digital rights management and audience measurement systems and methods |
8256665, | May 19 1999 | Digimarc Corporation | Methods and systems for interacting with physical objects |
8301453, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark synchronization signals conveying payload data |
8301893, | Aug 13 2003 | DIGIMARC CORPORATION AN OREGON CORPORATION | Detecting media areas likely of hosting watermarks |
8312168, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for linking from objects to remote resources |
8315427, | Jan 22 2002 | Digimarc Corporation | Adaptive prediction filtering for encoding/decoding digital signals in media content |
8316239, | Apr 30 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Decoding information to allow access to computerized systems |
8355525, | Feb 14 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Parallel processing of digital watermarking operations |
8355526, | Apr 16 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digitally watermarking holograms |
8364966, | Feb 20 1997 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermark systems and methods |
8379908, | Aug 06 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Embedding and reading codes on objects |
8391851, | Nov 03 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Gestural techniques with wireless mobile phone devices |
8411898, | May 08 1995 | Digimarc Corporation | Digital authentication with analog documents |
8429205, | Jul 27 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Associating data with media signals in media signal systems through auxiliary data steganographically embedded in the media signals |
8447067, | May 19 1999 | Digimarc Corporation | Location-based arrangements employing mobile devices |
8457208, | Dec 19 2007 | Dolby Laboratories Licensing Corporation | Adaptive motion estimation |
8457346, | Apr 24 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking image signals on-chip |
8457449, | May 19 1999 | Digimarc Corporation | Wireless mobile phone methods |
8483426, | May 07 1996 | Digimarc Corporation | Digital watermarks |
8489598, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and devices employing content identifiers |
8509474, | Dec 11 2009 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking methods, apparatus and systems |
8520900, | May 19 1999 | Digimarc Corporation | Methods and devices involving imagery and gestures |
8528103, | Oct 01 1998 | Digimarc Corporation | System for managing display and retrieval of image content on a network with image identification and linking to network content |
8538064, | May 19 1999 | Digimarc Corporation | Methods and devices employing content identifiers |
8542870, | Dec 21 2000 | Digimarc Corporation | Methods, apparatus and programs for generating and utilizing content signatures |
8543661, | May 19 1999 | Digimarc Corporation | Fingerprints and machine-readable codes combined with user characteristics to obtain content or information |
8543823, | Apr 30 2001 | Digimarc Corporation | Digital watermarking for identification documents |
8565473, | Feb 04 2004 | DIGIMARC CORPORATION AN OREGON CORPORATION | Noise influenced watermarking methods and apparatus |
8571256, | Sep 28 2007 | Dolby Laboratories Licensing Corporation | Multimedia coding and decoding with additional information capability |
8607354, | Apr 20 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Deriving multiple fingerprints from audio or video content |
8615471, | May 02 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and related toy and game applications using encoded information |
8638978, | Jan 22 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking of low bit rate video |
8644548, | Apr 16 1998 | Digimarc Corporation | Digital watermarks |
8645838, | Oct 01 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method for enhancing content using persistent content identification |
8792675, | Feb 14 2000 | Digimarc Corporation | Color image or video processing |
8825518, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Media methods and systems |
8913780, | Dec 23 2008 | Digimarc Corporation | Digital watermarking methods, apparatus and systems |
8953908, | Jun 22 2004 | DIGIMARC CORPORATION AN OREGON CORPORATION | Metadata management and generation using perceptual features |
8976998, | Apr 24 2001 | Digimarc Corporation | Methods involving maps, imagery, video and steganography |
9058388, | Jun 22 2004 | DIGIMARC CORPORATION AN OREGON CORPORATION | Internet and database searching with handheld devices |
9179033, | Apr 19 2000 | Digimarc Corporation | Digital watermarking in data representing color channels |
9275053, | Mar 24 2000 | Digimarc Corporation | Decoding a watermark and processing in response thereto |
9317888, | Dec 23 2008 | Digimarc Corporation | Digital watermarking methods, apparatus and systems |
9466307, | May 22 2007 | DIGIMARC CORPORATION AN OREGON CORPORATION | Robust spectral encoding and decoding methods |
9483762, | Jan 23 2015 | ISLAND INTELLECTUAL PROPERTY, LLC | Invariant biohash security system and method |
9497341, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and systems for user-association of visual stimuli with corresponding responses |
9569773, | Jan 23 2015 | ISLAND INTELLECTUAL PROPERTY, LLC | Invariant biohash security system and method |
9665919, | Dec 23 2008 | Digimarc Corporation | Digital watermarking methods, apparatus and systems |
9773504, | May 22 2007 | Digimarc Corporation | Robust spectral encoding and decoding methods |
9792661, | Apr 24 2001 | Digimarc Corporation | Methods involving maps, imagery, video and steganography |
9805344, | Jan 23 2015 | ISLAND INTELLECTUAL PROPERTY, LLC | Notification system and method |
9843846, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark and fingerprint systems for media |
9904914, | Jan 23 2015 | ISLAND INTELLECTUAL PROPERTY, LLC | Notification system and method |
9928560, | Dec 23 2008 | Digimarc Corporation | Signal decoding methods, apparatus and systems |
9940685, | Apr 19 2000 | Digimarc Corporation | Digital watermarking in data representing color channels |
9965750, | Jan 23 2015 | ISLAND INTELLECTUAL PROPERTY, LLC | Notification system and method |
Patent | Priority | Assignee | Title |
2630525, | |||
3493674, | |||
3562420, | |||
3569619, | |||
3585290, | |||
3655162, | |||
3703628, | |||
3805238, | |||
3809806, | |||
3838444, | |||
3845391, | |||
3914877, | |||
3922074, | |||
3971917, | Aug 27 1971 | Labels and label readers | |
3982064, | Sep 04 1973 | The General Electric Company Limited | Combined television/data transmission system |
3984624, | Jul 25 1974 | Weston Instruments, Inc. | Video system for conveying digital and analog information |
4025851, | Nov 28 1975 | A.C. Nielsen Company | Automatic monitor for programs broadcast |
4179586, | Aug 02 1972 | The United States of America as represented by the Secretary of the Army | System of encoded speech transmission and reception |
4225967, | Jan 09 1978 | Fujitsu Limited | Broadcast acknowledgement method and system |
4230990, | Mar 16 1979 | JOHN G LERT, JR | Broadcast program identification method and system |
4231113, | Jun 26 1964 | International Business Machines Corporation | Anti-jam communications system |
4237484, | Aug 08 1979 | Bell Telephone Laboratories, Incorporated | Technique for transmitting digital data together with a video signal |
4238849, | Dec 22 1977 | NOKIA DEUTSCHLAND GMBH | Method of and system for transmitting two different messages on a carrier wave over a single transmission channel of predetermined bandwidth |
4252995, | Feb 25 1977 | U.S. Philips Corporation | Radio broadcasting system with transmitter identification |
4262329, | Mar 27 1978 | COMPUTER PLANNING, INC | Security system for data processing |
4313197, | Apr 09 1980 | Bell Telephone Laboratories, Incorporated | Spread spectrum arrangement for (de)multiplexing speech signals and nonspeech signals |
4367488, | Dec 08 1980 | Sterling Television Presentations Inc. Video Data Systems Division | Data encoding for television |
4379947, | Feb 02 1979 | MUZAK, LLC AND MUZAK HOLDINGS, LLC | System for transmitting data simultaneously with audio |
4380027, | Dec 08 1980 | STERLING TELEVISION PRESENTATIONS, INC | Data encoding for television |
4389671, | Sep 29 1980 | Harris Corporation | Digitally-controlled analog encrypton |
4395600, | Nov 26 1980 | PROACTIVE SYSTEMS, INC | Auditory subliminal message system and method |
4423415, | Jun 23 1980 | LIGHT SIGNATURES, INC , FORMERLY NEW LSI, INC , 1901 AVENUE OF THE STARS, LOS ANGELES CA 90067 A CORP OF CA | Non-counterfeitable document system |
4425642, | Jan 08 1982 | APPLIED SPECTRUM TECHNOLOGIES, INC | Simultaneous transmission of two information signals within a band-limited communications channel |
4425661, | Sep 03 1981 | APPLIED SPECTRUM TECHNOLOGIES, INC | Data under voice communications system |
4476468, | Jun 22 1981 | LIGHT SIGNATURES, INC , 1901 AVENUE OF THE STARS, LOS ANGELES CA 90067 | Secure transaction card and verification system |
4495620, | Aug 05 1982 | AT&T Bell Laboratories | Transmitting data on the phase of speech |
4528588, | Sep 26 1980 | Method and apparatus for marking the information content of an information carrying signal | |
4532508, | Apr 01 1983 | Siemens Corporate Research & Support, Inc. | Personal authentication system |
4547804, | Mar 21 1983 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Method and apparatus for the automatic identification and verification of commercial broadcast programs |
4553261, | May 31 1983 | Document and data handling and retrieval system | |
4590366, | Jul 01 1983 | Esselte Security Systems AB | Method of securing simple codes |
4595950, | Sep 26 1980 | Method and apparatus for marking the information content of an information carrying signal | |
4637051, | Jul 18 1983 | Pitney Bowes Inc. | System having a character generator for printing encrypted messages |
4639779, | Mar 21 1983 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Method and apparatus for the automatic identification and verification of television broadcast programs |
4644582, | Jan 28 1983 | Hitachi, Ltd. | Image registration method |
4647974, | Apr 12 1985 | RCA Corporation | Station signature system |
4654867, | Jul 13 1984 | Motorola, Inc. | Cellular voice and data radiotelephone system |
4660221, | Jul 18 1983 | Pitney Bowes Inc. | System for printing encrypted messages with bar-code representation |
4663518, | Sep 04 1984 | YAMA CAPITAL, LLC | Optical storage identification card and read/write system |
4665431, | Jun 24 1982 | Technology Licensing Corporation | Apparatus and method for receiving audio signals transmitted as part of a television video signal |
4672605, | Mar 20 1984 | APPLIED SPECTRUM TECHNOLOGIES, INC | Data and voice communications system |
4675746, | Jul 22 1983 | Data Card Corporation | System for forming picture, alphanumeric and micrographic images on the surface of a plastic card |
4677435, | Jul 23 1984 | Communaute Europeenne de l'Energie Atomique (Euratom); Association pour la Promotion de la Technologie (Promotech) | Surface texture reading access checking system |
4677466, | Jul 29 1985 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Broadcast program identification method and apparatus |
4682794, | Jul 22 1985 | PHOTON IMAGING CORP , A DE CORP | Secure identification card and system |
4697209, | Apr 26 1984 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Methods and apparatus for automatically identifying programs viewed or recorded |
4703476, | Sep 16 1983 | ASONIC DATA SERVICES, INC | Encoding of transmitted program material |
4712103, | Dec 03 1985 | Door lock control system | |
4718106, | May 12 1986 | PRETESTING COMPANY, INC , THE | Survey of radio audience |
4739377, | Oct 10 1986 | Eastman Kodak Company | Confidential document reproduction method and apparatus |
4750173, | May 21 1985 | POLYGRAM INTERNATIONAL HOLDING B V , A CORP OF THE NETHERLANDS | Method of transmitting audio information and additional information in digital form |
4765656, | Oct 15 1985 | GAO Gesellschaft fur Automation und Organisation mbH | Data carrier having an optical authenticity feature and methods for producing and testing said data carrier |
4775901, | Dec 04 1985 | Sony Corporation | Apparatus and method for preventing unauthorized dubbing of a recorded signal |
4776013, | Apr 18 1986 | Rotlex Optics Ltd. | Method and apparatus of encryption of optical images |
4805020, | Mar 21 1983 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Television program transmission verification method and apparatus |
4807031, | Oct 20 1987 | KOPLAR INTERACTIVE SYSTEMS INTERNATIONAL, L L C | Interactive video method and apparatus |
4811357, | Jan 04 1988 | Rembrandt Communications, LP | Secondary channel for digital modems using spread spectrum subliminal induced modulation |
4811408, | Nov 13 1987 | Light Signatures, Inc. | Image dissecting document verification system |
4820912, | Sep 19 1985 | N. V. Bekaert S.A. | Method and apparatus for checking the authenticity of documents |
4827508, | Oct 14 1985 | ELECTRONIC PUBLISHING RESOURCES, INC | Database usage metering and protection system and method |
4835517, | Jan 26 1984 | The University of British Columbia | Modem for pseudo noise communication on A.C. lines |
4855827, | Jul 21 1987 | PHYXATION, INC | Method of providing identification, other digital data and multiple audio tracks in video systems |
4864618, | Nov 26 1986 | Pitney Bowes Inc | Automated transaction system with modular printhead having print authentication feature |
4866771, | Jan 20 1987 | The Analytic Sciences Corporation | Signaling system |
4874936, | Apr 08 1988 | UNITED PARCEL SERVICE OF AMERICA, INC , A DE CORP | Hexagonal, information encoding article, process and system |
4876617, | May 06 1986 | MEDIAGUIDE HOLDINGS, LLC | Signal identification |
4879747, | Mar 21 1988 | YAMA CAPITAL, LLC | Method and system for personal identification |
4884139, | Dec 24 1986 | Etat Francais, Represente Par Le Secretariat D'etat Aux Post Es Et | Method of digital sound broadcasting in television channels with spectrum interlacing |
4885632, | Feb 29 1988 | AGB TELEVISION RESEARCH AGB , 9145 GUILFORD ROAD, COLUMBIA, MD 21046 | System and methods for monitoring TV viewing system including a VCR and/or a cable converter |
4903301, | Feb 27 1987 | Hitachi, Ltd. | Method and system for transmitting variable rate speech signal |
4908836, | Oct 11 1988 | UNISYS CORPORATION, BLUE BELL, PA , A CORP OF DE | Method and apparatus for decoding multiple bit sequences that are transmitted simultaneously in a single channel |
4908873, | May 13 1983 | TOLTEK ELECTRONICS CORPORATION | Document reproduction security system |
4920503, | May 27 1988 | GALLUP, PATRICIA; HALL, DAVID | Computer remote control through a video signal |
4921278, | Apr 01 1985 | Chinese Academy of Sciences | Identification system using computer generated moire |
4939615, | Jan 20 1987 | Pass & Seymour, Inc. | Latching and release system for ground fault receptacle |
4941150, | May 06 1987 | Victor Company of Japan, Ltd. | Spread spectrum communication system |
4943973, | Mar 31 1989 | AT&T Company; AT&T INFORMATION SYSTEMS INC , 100 SOUTHGATE PARKWAY, MORRISTOWN, NJ 07960, A CORP OF DE; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, 550 MADISON AVE , NEW YORK, NY 10022-3201, A CORP OF NY | Spread-spectrum identification signal for communications system |
4943976, | Sep 16 1988 | Victor Company of Japan, Ltd. | Spread spectrum communication system |
4944036, | Dec 28 1970 | Signature filter system | |
4963998, | Apr 20 1988 | Thorn EM plc | Apparatus for marking a recorded signal |
4965827, | May 19 1987 | GENERAL ELECTRIC COMPANY THE, P L C , 1 STANHOPE GATE, LONDON W1A 1EH,UNITED KINGDOM | Authenticator |
4967273, | Apr 15 1985 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Television program transmission verification method and apparatus |
4969041, | Sep 23 1988 | Tektronix, Inc | Embedment of data in a video signal |
4972471, | May 15 1989 | Encoding system | |
4972476, | May 11 1989 | Counterfeit proof ID card having a scrambled facial image | |
4977594, | Oct 14 1986 | ELECTRONIC PUBLISHING RESOURCES, INC | Database usage metering and protection system and method |
4979210, | Jul 08 1987 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for protection of signal copy |
4993068, | Nov 27 1989 | Motorola, Inc. | Unforgeable personal identification system |
4996530, | Nov 27 1989 | Agilent Technologies Inc | Statistically based continuous autocalibration method and apparatus |
5008752, | Jun 16 1989 | Eastman Kodak Company | Digital image interpolator with multiple interpolation algorithms |
5010405, | Feb 02 1989 | Massachusetts Institute of Technology | Receiver-compatible enhanced definition television system |
5027401, | Jul 03 1990 | ZERCO SYSTEMS INTERNATONAL, INC | System for the secure storage and transmission of data |
5036513, | Jun 21 1989 | ACADEMY OF APPLIED SCIENCE INC , 98 WASHINGTON ST NH, A CORP OF MA | Method of and apparatus for integrated voice (audio) communication simultaneously with "under voice" user-transparent digital data between telephone instruments |
5040059, | Aug 03 1987 | VEXCEL IMAGING CORPORATION | Method and apparatus of image mensuration with selectively visible and invisible reseau grid marks |
5050213, | Oct 14 1986 | Electronic Publishing Resources, Inc. | Database usage metering and protection system and method |
5063446, | Aug 11 1989 | General Electric Company | Apparatus for transmitting auxiliary signal in a TV channel |
5063604, | Nov 08 1989 | CAREFUSION 303, INC | Method and means for recognizing patterns represented in logarithmic polar coordinates |
5067019, | Mar 31 1989 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION | Programmable remapper for image processing |
5073899, | Jul 13 1988 | U S PHILIPS CORPORATION | Transmission system for sending two signals simultaneously on the same communications channel |
5075773, | Dec 07 1987 | British Broadcasting Corporation | Data transmission in active picture period |
5077608, | Sep 19 1990 | PRODUCT ACTIVATION CORPORATION | Video effects system able to intersect a 3-D image with a 2-D image |
5077795, | Sep 28 1990 | Xerox Corporation | Security system for electronic printing systems |
5079648, | Apr 20 1988 | Thorn EMI plc | Marked recorded signals |
5083224, | Apr 14 1989 | U.S. Philips Corporation | Apparatus for recording an audio signal with protection against re-recording thereof, and recording apparatus which indicates the presence of such protection |
5086469, | Jun 29 1990 | ENTERASYS NETWORKS, INC | Encryption with selective disclosure of protocol identifiers |
5091966, | Jul 31 1990 | XEROX CORPORATION, STAMFORD, CT, A CORP OF NY | Adaptive scaling for decoding spatially periodic self-clocking glyph shape codes |
5095196, | Dec 28 1988 | OKI ELECTRIC INDUSTRY CO , LTD | Security system with imaging function |
5103306, | Mar 28 1990 | CAREFUSION 303, INC | Digital image compression employing a resolution gradient |
5103459, | Jun 25 1990 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | System and method for generating signal waveforms in a CDMA cellular telephone system |
5113437, | Oct 25 1988 | MEDIAGUIDE HOLDINGS, LLC | Signal identification system |
5128525, | Jul 31 1990 | XEROX CORPORATION, STAMFORD, CT A CORP OF NY | Convolution filtering for decoding self-clocking glyph shape codes |
5134496, | May 26 1989 | Technicolor Videocassette of Michigan Inc. | Bilateral anti-copying device for video systems |
5144660, | Aug 31 1988 | Securing a computer against undesired write operations to or read operations from a mass storage device | |
5146457, | Sep 16 1988 | U.S. Philips Corporation | Device for transmitting data words representing a digitalized analog signal and device for receiving the transmitted data words |
5148498, | Aug 01 1990 | AWARE, INC , A CORP OF MA | Image coding apparatus and method utilizing separable transformations |
5150409, | Aug 13 1987 | Device for the identification of messages | |
5161210, | Nov 10 1988 | U S PHILIPS CORPORATION | Coder for incorporating an auxiliary information signal in a digital audio signal, decoder for recovering such signals from the combined signal, and record carrier having such combined signal recorded thereon |
5166676, | Feb 15 1984 | Destron Fearing Corporation | Identification system |
5168146, | Nov 09 1989 | UBS AG, STAMFORD BRANCH, AS ADMINISTRATIVE AGENT | Bi-directional snap-action register display mechanism |
5181786, | Nov 15 1989 | N V NEDERLANDSCHE APPARATENFABRIEK NEDAP A LIMITED COMPANY OF THE NETHERLANDS | Method and apparatus for producing admission tickets |
5185736, | May 12 1989 | ALCATEL NETWORK SYSTEMS, INC | Synchronous optical transmission system |
5199081, | Dec 15 1989 | Kabushiki Kaisha Toshiba | System for recording an image having a facial image and ID information |
5200822, | Apr 23 1991 | NATIONAL BROADCASTING COMPANY, INC | Arrangement for and method of processing data, especially for identifying and verifying airing of television broadcast programs |
5200993, | May 10 1991 | Verizon Patent and Licensing Inc | Public telephone network including a distributed imaging system |
5212551, | Oct 16 1989 | Method and apparatus for adaptively superimposing bursts of texts over audio signals and decoder thereof | |
5213337, | Jul 06 1988 | RPX Corporation | System for communication using a broadcast audio signal |
5228056, | Dec 14 1990 | InterDigital Technology Corp | Synchronous spread-spectrum communications system and method |
5243423, | Dec 20 1991 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Spread spectrum digital data transmission over TV video |
5245165, | Dec 27 1991 | Xerox Corporation | Self-clocking glyph code for encoding dual bit digital values robustly |
5245329, | Feb 27 1989 | SECURITY PEOPLE INC | Access control system with mechanical keys which store data |
5247364, | Nov 29 1991 | Cisco Technology, Inc | Method and apparatus for tuning data channels in a subscription television system having in-band data transmissions |
5253078, | Mar 14 1990 | LSI Logic Corporation | System for compression and decompression of video data using discrete cosine transform and coding techniques |
5257199, | Sep 11 1985 | Omron Tateisi Electronics | Apparatus for identifying tools and for managing tool data |
5258998, | Oct 07 1985 | Canon Kabushiki Kaisha | Data communication apparatus permitting confidential communication |
5259025, | Jun 12 1992 | Audio Digitalimaging, Inc. | Method of verifying fake-proof video identification data |
5267334, | May 24 1991 | Apple Inc | Encoding/decoding moving images with forward and backward keyframes for forward and reverse display |
5278400, | Aug 19 1991 | Xerox Corporation | Multiple threshold encoding of machine readable code |
5280537, | Nov 26 1991 | Nippon Telegraph and Telephone Corporation | Digital communication system using superposed transmission of high speed and low speed digital signals |
5293399, | Oct 08 1987 | DATAMARS SA | Identification system |
5295203, | Mar 26 1992 | GENERAL INSTRUMENT CORPORATION GIC-4 | Method and apparatus for vector coding of video transform coefficients |
5299019, | Feb 28 1992 | Samsung Electronics Co., Ltd. | Image signal band compressing system for digital video tape recorder |
5305400, | Dec 05 1990 | Deutsche ITT Industries GmbH | Method of encoding and decoding the video data of an image sequence |
5315098, | Dec 27 1990 | Xerox Corporation; XEROX CORPORATION, A CORP OF NY | Methods and means for embedding machine readable digital data in halftone images |
5315448, | Mar 18 1993 | Macrovision Corporation | Copy protection for hybrid digital video tape recording and unprotected source material |
5319453, | Jun 22 1989 | Airtrax | Method and apparatus for video signal encoding, decoding and monitoring |
5319724, | Apr 19 1990 | RICOH COMPANY, LTD A CORP OF JAPAN; RICOH CORPORATION A CORP OF DELAWARE | Apparatus and method for compressing still images |
5319735, | Dec 17 1991 | Raytheon BBN Technologies Corp | Embedded signalling |
5325167, | May 11 1992 | CANON INC | Record document authentication by microscopic grain structure and method |
5327237, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Transmitting data with video |
5337361, | Jan 05 1990 | Symbol Technologies, Inc. | Record with encoded data |
5337362, | Apr 15 1993 | RICOH COMPANY, LTD , A CORP OF JAPAN; RICOH CORPORATION, A DE CORP | Method and apparatus for placing data onto plain paper |
5349655, | May 24 1991 | Symantec Corporation | Method for recovery of a computer program infected by a computer virus |
5351302, | May 26 1993 | Method for authenticating objects identified by images or other identifying information | |
5374976, | Dec 13 1990 | Joh. Enschede En Zonen Grafische Inrichting B.V. | Support provided with a machine detectable copying security element |
5379345, | Jan 29 1993 | NIELSEN COMPANY US , LLC, THE | Method and apparatus for the processing of encoded data in conjunction with an audio broadcast |
5387941, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Data with video transmitter |
5394274, | Jan 22 1988 | Anti-copy system utilizing audible and inaudible protection signals | |
5396559, | Aug 24 1990 | Anticounterfeiting method and device utilizing holograms and pseudorandom dot patterns | |
5398283, | Sep 21 1992 | KRYPTOFAX PARTNERS L P | Encryption device |
5404160, | Jun 24 1993 | Berkeley Varitronics Systems, Inc. | System and method for identifying a television program |
5404377, | Apr 08 1994 | Intel Corporation | Simultaneous transmission of data and audio signals by means of perceptual coding |
5408542, | May 12 1992 | Apple Inc | Method and apparatus for real-time lossless compression and decompression of image data |
5410598, | Oct 14 1986 | Electronic Publishing Resources, Inc. | Database usage metering and protection system and method |
5418853, | Jul 24 1992 | Sony Corporation | Apparatus and method for preventing unauthorized copying of video signals |
5422963, | Oct 15 1993 | American Telephone and Telegraph Company | Block transform coder for arbitrarily shaped image segments |
5422995, | Mar 30 1992 | International Business Machiens Corporation | Method and means for fast writing of run length coded bit strings into bit mapped memory and the like |
5425100, | Nov 25 1992 | NIELSEN COMPANY US , LLC, THE | Universal broadcast code and multi-level encoded signal monitoring system |
5428606, | Jun 30 1993 | Wistaria Trading Ltd | Digital information commodities exchange |
5428607, | Dec 20 1993 | AT&T IPM Corp | Intra-switch communications in narrow band ATM networks |
5432542, | Aug 31 1992 | AMBATO MEDIA, LLC | Television receiver location identification |
5432870, | Jun 30 1993 | Ricoh Company, LTD | Method and apparatus for compressing and decompressing images of documents |
5446273, | Mar 13 1992 | Credit card security system | |
5450122, | Nov 22 1991 | NIELSEN COMPANY US , LLC, THE | In-station television program encoding and monitoring system and method |
5450490, | Mar 31 1994 | THE NIELSEN COMPANY US , LLC | Apparatus and methods for including codes in audio signals and decoding |
5459586, | Oct 16 1991 | Fuji Xerox Co., Ltd. | Image processing system provided with image enchasing and synthesizing function |
5461426, | Aug 20 1993 | SAMSUNG ELECTRONICS CO , LTD | Apparatus for processing modified NTSC television signals, with digital signals buried therewithin |
5469222, | Dec 23 1992 | Intel Corporation | Non-linear pixel interpolator function for video and graphic processing |
5469506, | Jun 27 1994 | Pitney Bowes Inc. | Apparatus for verifying an identification card and identifying a person by means of a biometric characteristic |
5473631, | Apr 08 1924 | Intel Corporation | Simultaneous transmission of data and audio signals by means of perceptual coding |
5479168, | May 29 1991 | Microsoft Technology Licensing, LLC | Compatible signal encode/decode system |
5481294, | Oct 27 1993 | NIELSEN COMPANY US , LLC | Audience measurement system utilizing ancillary codes and passive signatures |
5488664, | Apr 22 1994 | YEDA RESEARCH AND DEVELOPMENT CO , LTD | Method and apparatus for protecting visual information with printed cryptographic watermarks |
5499294, | Nov 24 1993 | The United States of America as represented by the Administrator of the | Digital camera with apparatus for authentication of images produced from an image file |
5509074, | Jan 27 1994 | AT&T Corp. | Method of protecting electronically published materials using cryptographic protocols |
5515081, | Nov 30 1993 | Borland Software Corporation | System and methods for improved storage and processing of BITMAP images |
5521372, | Dec 22 1993 | Xerox Corporation | Framing codes for robust synchronization and addressing of self-clocking glyph codes |
5524936, | Jul 12 1995 | Control Systems, Inc. | Torque tight locking device |
5526427, | Jul 22 1994 | NIELSEN COMPANY US , LLC, THE, A DELAWARE LIMITED LIABILITY COMPANY | Universal broadcast code and multi-level encoded signal monitoring system |
5530751, | Jun 30 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Embedded hidden identification codes in digital objects |
5530759, | Feb 01 1995 | International Business Machines Corporation | Color correct digital watermarking of images |
5530852, | Dec 20 1994 | Sun Microsystems, Inc | Method for extracting profiles and topics from a first file written in a first markup language and generating files in different markup languages containing the profiles and topics for use in accessing data described by the profiles and topics |
5532920, | Apr 29 1992 | International Business Machines Corporation | Data processing system and method to enforce payment of royalties when copying softcopy books |
5537216, | Jan 31 1991 | Sony Corporation | Circuit for including a copy-inhibit signal with a video signal |
5537223, | Jun 02 1994 | Xerox Corporation | Rotating non-rotationally symmetrical halftone dots for encoding embedded data in a hyperacuity printer |
5539471, | May 03 1994 | Rovi Technologies Corporation | System and method for inserting and recovering an add-on data signal for transmission with a video signal |
5539735, | Jun 30 1993 | Wistaria Trading Ltd | Digital information commodities exchange |
5541662, | Sep 30 1994 | Intel Corporation | Content programmer control of video and data display using associated data |
5541741, | Sep 30 1991 | Canon Kabushiki Kaisha | Image processing with anti-forgery provision |
5544255, | Aug 31 1994 | CIC ACQUISTION CORP ; CIC ACQUISITION CORP | Method and system for the capture, storage, transport and authentication of handwritten signatures |
5548646, | Sep 15 1994 | Sun Microsystems, Inc | System for signatureless transmission and reception of data packets between computer networks |
5557333, | Jun 14 1991 | PLYMOUTH DEWITT, INC | System for transparent transmission and reception of a secondary data signal with a video signal in the video band |
5559559, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Transmitting a secondary signal with dynamic injection level control |
5568179, | May 19 1992 | THOMSON CONSUMER ELECTRONICS S A | Method and apparatus for device control by data transmission in TV lines |
5568268, | Jun 15 1994 | FUJI XEROX CO , LTD | Image forming device with forgery prevention |
5568570, | Sep 30 1994 | Intellectual Ventures Fund 83 LLC | Method and apparatus for reducing quantization artifacts in a hierarchical image storage and retrieval system |
5572010, | Jan 03 1995 | Xerox Corporation | Distributed type labeling for embedded data blocks |
5572247, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Processor for receiving data from a video signal |
5574787, | Jul 25 1994 | Macrovision Corporation | Apparatus and method for comprehensive copy protection for video platforms and unprotected source material |
5576532, | Jan 03 1995 | Xerox Corporation | Interleaved and interlaced sync codes and address codes for self-clocking glyph codes |
5579124, | Nov 16 1992 | THE NIELSEN COMPANY US , LLC | Method and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto |
5581800, | Sep 30 1991 | THE NIELSEN COMPANY US , LLC | Method and apparatus for automatically identifying a program including a sound signal |
5582103, | Jun 04 1992 | NATIONAL PRINTING BUREAU INCORPORATTED ADMINISTRATIVE AGENCY, JAPAN | Method for making an anti-counterfeit latent image formation object for bills, credit cards, etc. |
5587743, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Signal processors for transparent and simultaneous transmission and reception of a data signal in a video signal |
5590197, | Apr 04 1995 | SSL SERVICES LLC | Electronic payment system and method |
5602920, | May 31 1995 | L G Electronics Inc | Combined DCAM and transport demultiplexer |
5606609, | Sep 19 1994 | SILANIS TECHNOLOGY INC | Electronic document verification system and method |
5611575, | Jan 03 1995 | Xerox Corporation | Distributed state flags or other unordered information for embedded data blocks |
5612943, | Jul 05 1994 | System for carrying transparent digital data within an audio signal | |
5613004, | Jun 07 1995 | Wistaria Trading Ltd | Steganographic method and device |
5613012, | Nov 28 1994 | Open Invention Network, LLC | Tokenless identification system for authorization of electronic transactions and electronic transmissions |
5614940, | Oct 21 1994 | Intel Corporation | Method and apparatus for providing broadcast information with indexing |
5617148, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Filter by-pass for transmitting an additional signal with a video signal |
5627655, | Jul 28 1992 | HITACHI CONSUMER ELECTRONICS CO , LTD | Recording apparatus and reproducing apparatus for video signals |
5629770, | Dec 20 1993 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Document copying deterrent method using line and word shift techniques |
5629980, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of digital works |
5636292, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Steganography methods employing embedded calibration data |
5638443, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of composite digital works |
5638446, | Aug 28 1995 | NYTELL SOFTWARE LLC | Method for the secure distribution of electronic files in a distributed environment |
5642167, | Jul 23 1992 | TV picture compression and expansion | |
5646997, | Dec 14 1994 | Sony Corporation | Method and apparatus for embedding authentication information within digital data |
5647017, | Aug 31 1994 | Peripheral Vision Limited; CIC ACQUISITION CORP | Method and system for the verification of handwritten signatures |
5649054, | Dec 23 1993 | U S PHILIPS CORPORATION | Method and apparatus for coding digital sound by subtracting adaptive dither and inserting buried channel bits and an apparatus for decoding such encoding digital sound |
5652626, | Sep 03 1993 | Kabushiki Kaisha Toshiba | Image processing apparatus using pattern generating circuits to process a color image |
5659613, | Jun 29 1994 | Macrovision Corporation | Method and apparatus for copy protection for various recording media using a video finger print |
5659726, | Feb 23 1995 | Regents of the University of California, The | Data embedding |
5659732, | May 17 1995 | Google, Inc | Document retrieval over networks wherein ranking and relevance scores are computed at the client for multiple database documents |
5661574, | Sep 30 1994 | Canon Kabushiki Kaisha | Image processing method and apparatus for adding identifying information to an image portion and forming the portion at a lower of plural resolutions |
5663766, | Oct 31 1994 | Alcatel-Lucent USA Inc | Digital data encoding in video signals using data modulated carrier signals at non-peaks in video spectra |
5664018, | Mar 12 1996 | Watermarking process resilient to collusion attacks | |
5666487, | Jun 28 1995 | Verizon Patent and Licensing Inc | Network providing signals of different formats to a user by multplexing compressed broadband data with data of a different format into MPEG encoded data stream |
5671277, | Jun 30 1992 | Minolta Camera Kabushiki Kaisha | Image forming apparatus and copy management system |
5680223, | Mar 20 1992 | RED ANVIL LLC | Method and system for labeling a document for storage, manipulation, and retrieval |
5687191, | Feb 26 1996 | Verance Corporation | Post-compression hidden data transport |
5689587, | Feb 09 1996 | Massachusetts Institute of Technology | Method and apparatus for data hiding in images |
5689623, | Mar 27 1995 | SPREAD SPECTRUM SCREENING LLC | Spread spectrum digital screening |
5709932, | Nov 21 1994 | Bollore Technologies | Ultra thin heat-shrinkable monolayer polyethylene films |
5710834, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and apparatus responsive to a code signal conveyed through a graphic image |
5712920, | Dec 05 1992 | Deutsche Thomson-Brandt GmbH | Method for the compatible transmission and/or storage and decoding of an auxiliary signal |
5719937, | Sep 12 1996 | Verance Corporation | Multi-media copy management system |
5719984, | Apr 03 1986 | Canon Kabushiki Kaisha | Video signal recording apparatus with facility for displaying of identification information relating to the video signal |
5721788, | Jul 31 1992 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and system for digital image signatures |
5727092, | May 17 1995 | The Regents of the University of California | Compression embedding |
5737025, | Feb 28 1995 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Co-channel transmission of program signals and ancillary signals |
5737026, | Feb 28 1995 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Video and data co-channel communication system |
5739864, | Aug 24 1994 | Rovi Solutions Corporation | Apparatus for inserting blanked formatted fingerprint data (source ID, time/date) in to a video signal |
5745569, | Jan 17 1996 | Wistaria Trading Ltd | Method for stega-cipher protection of computer code |
5745604, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Identification/authentication system using robust, distributed coding |
5748763, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Image steganography system featuring perceptually adaptive and globally scalable signal embedding |
5748783, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and apparatus for robust information coding |
5761686, | Jun 27 1996 | Xerox Corporation | Embedding encoded information in an iconic version of a text image |
5764763, | Mar 31 1994 | THE NIELSEN COMPANY US , LLC | Apparatus and methods for including codes in audio signals and decoding |
5764770, | Nov 07 1995 | Trimble Navigation Limited | Image authentication patterning |
5765152, | Oct 13 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | System and method for managing copyrighted electronic media |
5768426, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Graphics processing system employing embedded code signals |
5774452, | Mar 14 1995 | VERANCE CORPORATION, DELAWARE CORPORATION | Apparatus and method for encoding and decoding information in audio signals |
5778102, | May 17 1995 | The Regents of the University of California, Office of Technology | Compression embedding |
5781629, | Oct 28 1994 | WORLDGATE MANAGEMENT, LLC; Surety, LLC | Digital document authentication system |
5784461, | May 23 1996 | Eastman Kodak Company | Security system for controlling access to images and image related services |
5796785, | Oct 04 1995 | U S PHILIPS CORPORATION | Digital audio broadcast receiver having circuitry for retrieving embedded data and for supplying the retrieved data to peripheral devices |
5799081, | Sep 18 1995 | LG Electronics Inc. | Illegal view/copy protection method and apparatus for digital broadcasting system |
5799082, | Nov 07 1995 | Trimble Navigation Limited | Secure authentication of images |
5809139, | Sep 13 1996 | Intel Corporation | Watermarking method and apparatus for compressed digital video |
5819289, | Apr 02 1996 | Los Alamos National Security, LLC | Data embedding employing degenerate clusters of data having differences less than noise value |
5822360, | Sep 06 1995 | Verance Corporation | Method and apparatus for transporting auxiliary data in audio signals |
5822432, | Jan 17 1996 | Wistaria Trading Ltd | Method for human-assisted random key generation and application for digital watermark system |
5826227, | Dec 18 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Hiding a source identifier within a signal |
5826892, | Feb 20 1996 | Expresso Deutschland Transportgerate GmbH | Push luggage cart |
5828325, | Apr 03 1996 | VERANCE CORPORATION, DELAWARE CORPORATION | Apparatus and method for encoding and decoding information in analog signals |
5832119, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for controlling systems using control signals embedded in empirical data |
5835639, | Dec 18 1996 | Intellectual Ventures Fund 83 LLC | Method for detecting rotation and magnification in images |
5845281, | Feb 01 1995 | Rovi Solutions Corporation | Method and system for managing a data object so as to comply with predetermined conditions for usage |
5850249, | Oct 12 1995 | NIELSEN COMPANY US , LLC, THE, A DELAWARE LIMITED LIABILITY COMPANY | Receiver monitoring system with local encoding |
5850481, | Mar 17 1994 | DIGIMARC CORPORATION AN OREGON CORPORATION | Steganographic system |
5857038, | Jun 29 1993 | Canon Kabushiki Kaisha | Image processing apparatus and method for synthesizing first and second image data |
5859920, | Nov 30 1995 | Intellectual Ventures Fund 83 LLC | Method for embedding digital information in an image |
5862218, | Apr 04 1996 | FLASHPOINT TECHNOLOGY, INC | Method and apparatus for in-camera image marking and authentication |
5862260, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for surveying dissemination of proprietary empirical data |
5878010, | Aug 06 1994 | Hitachi Maxell, Ltd | Method and apparatus for recording digital signal |
5889868, | Jul 02 1996 | Wistaria Trading Ltd | Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data |
5892900, | Aug 30 1996 | INTERTRUST TECHNOLOGIES CORP | Systems and methods for secure transaction management and electronic rights protection |
5893067, | May 31 1996 | Massachusetts Institute of Technology | Method and apparatus for echo data hiding in audio signals |
5905505, | May 13 1996 | TTI Inventions C LLC | Method and system for copy protection of on-screen display of text |
5905819, | Feb 05 1996 | Apple Inc | Method and apparatus for hiding one image or pattern within another |
5907443, | May 30 1990 | Canon Kabushiki Kaisha | Recording and reproducing apparatus adapted to selectively control the number of copies made |
5929920, | Jan 25 1996 | Alcatel-Lucent USA Inc | System and method for encoding digital information in a television signal |
5930369, | Sep 28 1995 | NEC Corporation | Secure spread spectrum watermarking for multimedia data |
5937000, | Sep 06 1995 | Verance Corporation | Method and apparatus for embedding auxiliary data in a primary data signal |
5949055, | Oct 23 1997 | Xerox Corporation | Automatic geometric image transformations using embedded signals |
5960151, | May 26 1992 | Canon Kabushiki Kaisha | Recording and reproducing apparatus which prohibits copying of an externally supplied signal and allows unlimited copying of an internally generated signal |
5970140, | Aug 02 1996 | Los Alamos National Security, LLC | Modular error embedding |
5987459, | Mar 15 1996 | Regents of the University of Minnesota | Image and document management system for content-based retrieval |
5991500, | Apr 02 1993 | Sony Corporation | Copy control for a video signal with copyright signals superimposed as predetermined bits in the VBID data of the video signal |
6000621, | Dec 21 1995 | Xerox Corporation | Tilings of mono-code and dual-code embedded data pattern strips for robust asynchronous capture |
6086706, | Dec 20 1993 | WSOU Investments, LLC | Document copying deterrent method |
6091844, | Oct 14 1993 | Omron Corporation | Image processing device and method for identifying an input image and copier including same |
6185312, | Jan 28 1997 | Nippon Telegraph and Telephone Corporation | Method for embedding and reading watermark-information in digital form, and apparatus thereof |
DE2943436, | |||
DE3806411, | |||
EP58482, | |||
EP366381, | |||
EP372601, | |||
EP411232, | |||
EP418964, | |||
EP441702, | |||
EP493091, | |||
EP551016, | |||
EP581317, | |||
EP605208, | |||
EP629972, | |||
EP642060, | |||
EP649074, | |||
EP650146, | |||
EP651554, | |||
EP705025, | |||
EP905967, | |||
GB2063018, | |||
GB2067871, | |||
GB2196167, | |||
GB2204984, | |||
JP4248771, | |||
JP5242217, | |||
JP830759, | |||
WO8908915, | |||
WO9325038, | |||
WO9510835, | |||
WO9514289, | |||
WO9520291, | |||
WO9626494, | |||
WO9627259, | |||
WO9731440, | |||
WO9746012, | |||
WO9917536, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 08 2000 | Digimarc Corporation | (assignment on the face of the patent) | / | |||
Nov 06 2000 | RHOADS, GEOFFREY B | Digimarc Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011308 | /0212 | |
Nov 06 2000 | SHARMA, RAVI K | Digimarc Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011308 | /0212 | |
Aug 01 2008 | DIGIMARC CORPORATION A DELAWARE CORPORATION | DMRC LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025217 | /0508 | |
Aug 01 2008 | DMRC LLC | DMRC CORPORATION | MERGER SEE DOCUMENT FOR DETAILS | 025227 | /0808 | |
Sep 03 2008 | DMRC CORPORATION | Digimarc Corporation | MERGER SEE DOCUMENT FOR DETAILS | 025227 | /0832 | |
Oct 24 2008 | L-1 SECURE CREDENTIALING, INC FORMERLY KNOWN AS DIGIMARC CORPORATION | DIGIMARC CORPORATION FORMERLY DMRC CORPORATION | CONFIRMATION OF TRANSFER OF UNITED STATES PATENT RIGHTS | 021785 | /0796 | |
Apr 30 2010 | DIGIMARC CORPORATION A DELAWARE CORPORATION | DIGIMARC CORPORATION AN OREGON CORPORATION | MERGER SEE DOCUMENT FOR DETAILS | 024369 | /0582 |
Date | Maintenance Fee Events |
Dec 28 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 22 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 04 2011 | ASPN: Payor Number Assigned. |
Feb 28 2014 | REM: Maintenance Fee Reminder Mailed. |
Jul 23 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 23 2005 | 4 years fee payment window open |
Jan 23 2006 | 6 months grace period start (w surcharge) |
Jul 23 2006 | patent expiry (for year 4) |
Jul 23 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 23 2009 | 8 years fee payment window open |
Jan 23 2010 | 6 months grace period start (w surcharge) |
Jul 23 2010 | patent expiry (for year 8) |
Jul 23 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 23 2013 | 12 years fee payment window open |
Jan 23 2014 | 6 months grace period start (w surcharge) |
Jul 23 2014 | patent expiry (for year 12) |
Jul 23 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |