the invention provides a composition having laser engraving properties, comprising a host material and a laser enhancing additive. The host material comprises a material, such as a polymer, modified by a first process, whereby the host material as modified by the first process has increased thermal conductivity as compared to the host material before the first process. The laser enhancing additive comprises a first quantity of at least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AlI), and a second quantity of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester.
|
23. A method of engraving a host material by exposing the material to laser radiation, comprising:
providing a host material;
performing a first process on the host material to increase the thermal conductivity of the host material;
adding to the host material an effective amount of a laser sensitizing additive, the laser sensitizing additive comprising:
at least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AI); and
at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester; and
exposing the host material to laser radiation in a manner that causes the material to be engraved by the laser radiation.
1. A composition having laser engraving properties, comprising:
a host material, the host material comprising a material modified by a first process, whereby the host material as modified by the first process has increased thermal conductivity as compared to the host material before the first process; and
an effective amount of a laser sensitizing additive, the laser enhancing additive sensitizing the composition for laser engraving and comprising:
a first quantity of at least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AlI); and
a second quantity of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester.
20. An article of manufacture capable of being laser engraved with a grayscale image, comprising:
a core layer having a first surface;
a first layer comprising a first host material, the first host material comprising a material modified by a first process, whereby the host material as modified by the first process has increased thermal conductivity as compared to the host material before the first process, the host material further comprising an effective amount of a first laser sensitizing additive comprising at least one of one of copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AI); and
a second layer comprising a second host material, the second layer oriented in relation to the first host material such that a single laser beam can penetrate both at least a portion of the first layer and at least a portion of the second layer, the second host material comprising an effective amount of a second laser sensitizing additive, the second laser sensitizing additive selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester;
wherein the first and second layers are operably coupled to each other and at least one of the first and second layers is operably coupled to the first surface of the core layer.
3. The composition of
4. The composition of
5. The composition of
6. The composition of
7. The composition of
8. The composition of
9. The composition of
10. The composition of
11. The composition of
a first material, the first material comprising at least one of a coupling agent, a coupling primer, and material that forms relatively weak secondary bonds between at least one of (a) the host material and the laser sensitizing additive, and (b) a first portion of the laser sensitizing additive and a second portion of the laser sensitizing additive; and
a second material, the second material being more thermally conductive than the host material.
13. The composition of
14. The composition of
15. The composition of
16. The composition of
17. The composition of
18. The composition as recited in
19. The composition as recited in
21. The article of manufacture of
adding cross linked functionality to the host material;
adding a conductive material to the host material, the conductive material being a material that is more thermally conductive than the host material;
altering at least a portion of the free volume of the host material; and
processing the host material to change at least one of its orientation and density.
24. The method of
adding cross linked functionality to the host material;
adding a conductive material to the host material, the conductive material being a material that is more thermally conductive than the host material;
altering at least a portion of the free volume of the host material; and
processing the host material to change at least one of its orientation and density.
25. The composition as recited in
|
The present application is a continuation in part of “Laser Engraving Methods and Compositions, and Articles Having Laser Engraving Thereon”, Ser. No. 10/326,886, filed Dec. 20, 2002 now abandoned—Inventors Brian Labrec and Robert Jones and claims the priority of the following United States Provisional Applications, the contents of which are incorporated hereby by reference in their entirety:
The present application is related to U.S. patent application Ser. Nos. 09/747,735, filed Dec. 22, 2002, 09/602,313, filed Jun. 23, 2002, and Ser. No.10/094,593, filed Mar. 6, 2002, U.S. Provisional Patent Application No. 60/358,321, filed Feb. 19, 2002, as well as U.S. Pat. No. 6,066,594. Each of the above U.S. Patent documents is herein incorporated by reference. The present application also is related to the following U.S. patent application documents:
The invention generally relates to methods and compositions for laser marking or engraving that contain one or more laser enhancing additives, as well as methods for conveying information, images, and security features on data carriers through laser engraving and marking, including laser engraving and marking using such compositions. In particular, the invention relates to techniques and methods for decreasing the marking speeds of images using a laser for marking of ID documents by increasing the thermal conductivity of the host polymer and its' interpenetrating network (IPN).
Identification documents (hereafter “ID documents”) play a critical role in today's society. One example of an ID document is an identification card (“ID card”). ID documents are used on a daily basis—to prove identity, to verify age, to access a secure area, to evidence driving privileges, to cash a check, and so on. Airplane passengers are required to show an ID document during check in, security screening, and prior to boarding their flight. In addition, because we live in an ever-evolving cashless society, ID documents are used to make payments, access an ATM, debit an account, or make a payment, etc.
Many types of identification cards and documents, such as driving licenses, national or government identification cards, bank cards, credit cards, controlled access cards and smart cards, carry thereon certain items of information which relate to the identity of the bearer. Examples of such information include name, address, birth date, signature and photographic image; the cards or documents may in addition carry other variant data (i.e., data specific to a particular card or document, for example an employee number) and invariant data (i.e., data common to a large number of cards, for example the name of an employer). All of the cards described above will hereinafter be generically referred to as “ID documents”.
In the production of images useful in the field of identification documentation, it is oftentimes desirable to embody into a document (such as an ID card, drivers license, passport or the like) data or indicia representative of the document issuer (e.g., an official seal, or the name or mark of a company or educational institution) and data or indicia representative of the document bearer (e.g., a photographic likeness, name or address). Typically, a pattern, logo or other distinctive marking representative of the document issuer will serve as a means of verifying the authenticity, genuineness or valid issuance of the document. A photographic likeness or other data or indicia personal to the bearer will validate the right of access to certain facilities or the prior authorization to engage in commercial transactions and activities.
Identification documents, such as ID cards, having printed background security patterns, designs or logos and identification data personal to the card bearer have been known and are described, for example, in U.S. Pat. No. 3,758,970, issued Sep. 18, 1973 to M. Annenberg; in Great Britain Pat. No. 1,472,581, issued to G. A. O. Gesellschaft Fur Automation Und Organisation mbH, published Mar. 10, 1976; in International Patent Application PCT/GB82/00150, published Nov. 25, 1982 as Publication No. WO 82/04149; in U.S. Pat. No. 4,653,775, issued Mar. 31, 1987 to T. Raphael, et al.; in U.S. Pat. No. 4,738,949, issued Apr. 19, 1988 to G. S. Sethi, et al.; and in U.S. Pat. No. 5,261,987, issued Nov. 16, 1993 to J. W. Luening, et al. All of the aforementioned documents are hereby incorporated by reference.
The advent of commercial apparatus (printers) for producing dye images by thermal transfer has made relatively commonplace the production of color prints from electronic data acquired by a video camera. In general, this is accomplished by the acquisition of digital image information (electronic signals) representative of the red, green and blue content of an original, using color filters or other known means. These signals are then utilized to print an image onto a data carrier. For example, information can be printed using a printer having a plurality of small heating elements (e.g., pins) for imagewise heating of each of a series of donor sheets (respectively, carrying sublimable cyan, magenta and yellow dye). The donor sheets are brought into contact with an image-receiving element (which can, for example, be a substrate) which has a layer for receiving the dyes transferred imagewise from the donor sheets. Thermal dye transfer methods as aforesaid are known and described, for example, in U.S. Pat. No. 4,621,271, issued Nov. 4, 1986 to S. Brownstein and U.S. Pat. No. 5,024,989, issued Jun. 18, 1991 to Y. H. Chiang, et al. Each of these patents is hereby incorporated by reference.
Commercial systems for issuing ID documents are of two main types, namely so-called “central” issue (CI), and so-called “on-the-spot” or “over-the-counter” (OTC) issue.
CI type ID documents are not immediately provided to the bearer, but are later issued to the bearer from a central location. For example, in one type of CI environment, a bearer reports to a document station where data is collected, the data are forwarded to a central location where the card is produced, and the card is forwarded to the bearer, often by mail. Another illustrative example of a CI assembling process occurs in a setting where a driver passes a driving test, but then receives her license in the mail from a CI facility a short time later. Still another illustrative example of a CI assembling process occurs in a setting where a driver renews her license by mail or over the Internet, then receives a drivers license card through the mail.
Centrally issued identification documents can be produced from digitally stored information and generally comprise an opaque core material (also referred to as “substrate”), such as paper or plastic, sandwiched between two layers of clear plastic laminate, such as polyester, to protect the aforementioned items of information from wear, exposure to the elements and tampering. The materials used in such CI identification documents can offer the ultimate in durability. In addition, centrally issued digital identification documents generally offer a higher level of security than OTC identification documents because they offer the ability to pre-print the core of the central issue document with security features such as “micro-printing”, ultra-violet security features, security indicia and other features currently unique to centrally issued identification documents. Another security advantage with centrally issued documents is that the security features and/or secured materials used to make those features are centrally located, reducing the chances of loss or theft (as compared to having secured materials dispersed over a wide number of “on the spot” locations).
In addition, a CI assembling process can be more of a bulk process facility, in which many cards are produced in a centralized facility, one after another. The CI facility may, for example, process thousands of cards in a continuous manner. Because the processing occurs in bulk, CI can have an increase in efficiency as compared to some OTC processes, especially those OTC processes that run intermittently. Thus, CI processes can sometimes have a lower cost per ID document, if a large volume of ID documents are manufactured.
In contrast to CI identification documents, OTC identification documents are issued immediately to a bearer who is present at a document-issuing station. An OTC assembling process provides an ID document “on-the-spot”. (An illustrative example of an OTC assembling process is a Department of Motor Vehicles (“DMV”) setting where a driver's license is issued to person, on the spot, after a successful exam.). In some instances, the very nature of the OTC assembling process results in small, sometimes compact, printing and card assemblers for printing the ID document.
OTC identification documents of the types mentioned above can take a number of forms, depending on cost and desired features. Some OTC ID documents comprise highly plasticized polyvinyl chloride (PVC) or have a composite structure with polyester laminated to 0.5–2.0 mil (13–51 .mu.m) PVC film, which provides a suitable receiving layer for heat transferable dyes which form a photographic image, together with any variant or invariant data required for the identification of the bearer. These data are subsequently protected to varying degrees by clear, thin (0.125–0.250 mil, 3–6 .mu.m) overlay patches applied at the print head, holographic hot stamp foils (0.125–0.250 mil 3–6 .mu.m), or a clear polyester laminate (0.5–10 mil, 13–254 .mu.m) supporting common security features. These last two types of protective foil or laminate sometimes are applied at a laminating station separate from the print head. The choice of laminate dictates the degree of durability and security imparted to the system in protecting the image and other data.
Referring to
To protect the information 26a–c that is printed, an additional layer of overlaminate 24 can be coupled to the card blank 25 and printing 26a–c using, for example, 1 mil of adhesive (not shown). The overlaminate 24 can be substantially transparent. Materials suitable for forming such protective layers are known to those skilled in the art of making identification documents and any of the conventional materials may be used provided they have sufficient transparency. Examples of usable materials for overlaminates include biaxially oriented polyester or other optically clear durable plastic film.
The above-described printing techniques are not the only methods for printing information on data carriers such as ID documents. Laser beams, for example can be used for marking, writing, bar coding, and engraving many different types of materials, including plastics. Lasers have been used, for example, to mark plastic materials to create indicia such as bar codes, date codes, part numbers, batch codes, and company logos. It will be appreciated that laser engraving or marking generally involves a process of inscribing or engraving a document surface with identification marks, characters, text, tactile marks—including text, patterns, designs (such as decorative or security features), photographs, etc.
One way to laser mark thermoplastic materials involves irradiating a material, such as a thermoplastic, with a laser beam at a given radiation. The area irradiated by the laser absorbs the laser energy and produces heat which causes a visible discoloration in the thermoplastic. The visible discoloration serves as a “mark” or indicator; it will be appreciated that laser beams can be controlled to form patterns of “marks” that can form images, lines, numbers, letters, patterns, and the like. Depending on the type of laser and the type of material used, various types of marks (e.g., dark marks on light backgrounds, light marks on dark backgrounds, colored marks) can be produced. Some types of thermoplastics, such as polyvinylchloride (PVC), acrylonitrile butadiene styrene (ABS), and polyethylene terephthalate (PET), are capable of absorbing laser energy in their native states. Some materials which are transparent to laser energy in their native state, such as polyethylene, may require the addition of one or more additives to be responsive to laser energy.
For additional background, various laser marking and/or engraving techniques are disclosed, e.g., in U.S. Pat. Nos. 6,022,905, 5,298,922, 5,294,774, 5,215,864 and 4,732,410. Each of these patents is herein incorporated by reference. In addition, U.S. Pat. Nos. 4,816,372, 4,894,110, 5,005,872, 5,977,514, and 6,179,338 describe various implementations for using a laser to print information, and these patents are incorporated herein in their entirety.
Using laser beams to write or engrave information to ID cards presents a number of advantages over conventional printing. For example, the foaming of the thermoplastic that can occur with some types of laser engraving can be adapted to provide an indicium having a tactile feel, which is a useful authenticator of a data carrier that also can be very difficult to counterfeit or alter. In addition, laser engraving generally does not require the use of ink, which can reduce the cost of consumables used to manufacture an ID card. Laser engraving can also be more durable than ink printing, and more resistant to abrasion (which can be particularly useful if a counterfeiter attempts to “rub off” an indicium on an ID card). The resolution and print quality of laser engraving often can be higher than that of conventional ink-based printing. Laser engraving also can be a more environmentally friendly manufacturing process than printing with ink, especially because solvents and other chemicals often used with ink generally are not used with laser engraving.
Despite the advantages of laser engraving, certain limitations still exist. Even when using known laser-enhancing additives, laser marking of some types of materials does not produce an adequate contrast for all applications. Some types of materials, such as silica filled polyolefin, TESLIN core ID documents and TESLIN composite structures (TESLIN is available from PPG Industries, Inc., Pittsburgh, Pa.) using conventional over-laminate materials, are not easily laser engraved. Further, even with use of known laser additives, laser engraving can take too much time and/or too much laser energy to be useful in some manufacturing environments.
Another limitation of laser engraving has been marking speeds. The ability to mark a rastered image via a laser such as a diode pumped YAG laser requires understanding of at least three primary components: materials (e.g., card or other substrate), image information, and laser conditions. All three can work together to determine the speed at which an acceptable mark is made via laser engraving/marking. Depending on the speed required and the volume of documents to be made, a certain number of lasers will be needed to engrave the documents. Laser engraving machines are quite costly at present, and despite various improvements made to laser engraving machines to increase speed, laser engraving documents at an acceptable speed and throughput and image quality continues to require, in many instances, multiple laser engraving machines. We have found, however, that by making certain changes to the materials being engraved (which changes are described further herein), it is possible to decrease the time required for laser engraving/marking of images. Decreasing this marking speed can help to increase throughput and may help to reduce the number of laser engraving machines that are required.
In one aspect, we have found that laser engraving of some types of materials, including materials that are not easily engraved (such as laminated TESLIN core ID documents), can be improved by increasing the sensitivity to laser radiation of a laminate used with the material and/or increasing the sensitivity to laser radiation of a coating applied to the material.
One inventive technique disclosed herein improves the material being laser marked or laser engraved by introducing inventive laser enhancing additives to the material. The material can be a laminate, a coating, an article having a laminate or coating formed thereon, and even an image receiving layer/image capable layer that is used for receiving images printed in a manner such as D2T2, laser xerography, inkjet, and mass transfer printing. Components of the laser enhancing additive described herein also can be added, alone or combined with other components, to a series of materials having a laser-receptive optical path between them, to enhance the laser engraving of at least one material in the series. These additives facilitate material sensitivity, greatly improving the ability to laser engrave laminated ID documents. In some embodiments, these additives can also improve the performance of laser engraving even on even those structures (e.g., fused polycarbonate card structures, polyvinylchloride (PVC), polyethylene terephthalate (PET), and acrylonitrile butadiene styrene (ABS)) that can tend to be more easily engraved by laser energy.
The inventors have found that by using the inventive additives described herein, the processing time for polycarbonate and other ID card structures may be decreased. In addition, user of the laser enhancing additives described herein may enable laser engraving to be accomplished using less laser energy and/or lower levels of laser energy than in known methods. Another inventive technique disclosed herein improves the sensitivity of a material being laser engraved by applying a coating to the material, the coating containing at least one laser enhancing additive as described below. The material can be part of virtually any type of article to be laser marked or laser engraved. For example, in one embodiment the material is a core layer in an identification document.
In one embodiment, the additive used to enhance laser engraving comprises a mixture of at least one of copper potassium iodide (CuKI3) or Copper Iodide (CuI) or potassium iodide (KI) or sodium iodide (NaI) or aluminum iodide (AlI) along with at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate (e.g., RSO2Na or R—OSO2Na), and Thioester (e.g., substances containing —SH). This additive can be added to a laminate layer (where the laminate layer itself is to be laser engraved or marked) and/or to a coating (where the surface being coated is to be laser engraved or marked).
Advantageously, in one embodiment, the additive comprises an effective amount of copper iodide, potassium iodide, sodium iodide, aluminum iodide, and zinc sulfide in a host material. The host material can, for example, be a laminate or a coating. The host material also can be another material that is later added to a laminate or coating. The host material can, for example, be a thermoplastic or thermoset. The host material can be a material added or applied to another material to make that material more receptive to another type of printing or marking (e.g., an image receiving layer, such as is disclosed in commonly assigned U.S. Pat. No. 6,066,594, the contents of which are hereby incorporated by reference).
In another advantageous embodiment, the additive comprises an effective amount of any combination thereof of copper iodide, potassium iodide, sodium iodide, aluminum iodide, zinc sulfide, barium sulfide (BaS), alkyl sulfonate (e.g., RSO2Na or R—OSO2Na), and Thioester (e.g., substances containing —SH), in a host material. The host material can, for example, be a laminate or a coating. The host material also can be another material that is later added to a laminate or coating. The host material can, for example, be a thermoplastic or thermoset. The host material can be a material added or applied to another material to make that material more receptive to another type of printing or marking (e.g., an image receiving layer, such as is disclosed in commonly assigned U.S. Pat. No. 6,066,594, the contents of which are hereby incorporated by reference).
For laminates, the host material (as well as the laminate to which the host material may be added) generally can be any material whose laser engraving/marking properties are improved by the addition of the laser enhancing additive described herein, and it is expected that many materials developed in the future will be able to make use of the additive described herein. In at least one embodiment, the addition of the laser enhancing additive described herein enables the laminate to be laser engraved with a grayscale image. In another aspect of the invention, described further herein, we have found that for host materials that are polymers, improving the thermal conductivity of the host material and/or its interpenetrating network (IPN) (e.g., matrices) can help to decrease marking time for laser marking/engraving of images.
In at least one embodiment, the laminate containing the inventive laser enhancing additive can be applied to a layer of material and, after application of heat and pressure to the laminate (e.g., via a platen press), the laminate can commingle with the layer of material enough to actually improve the laser engraving properties of the layer of material that was laminated.
For coatings, in one embodiment, the additive comprises an effective amount of copper potassium iodide and zinc sulfide in a liquid carrier material, which together form a coating that can be applied to an article to be laser engraved. The liquid carrier material can be virtually any known material that can be used as a coating, including resins, polyesters, polycarbonates, vinyls, acrylates, urethanes, and cellulose-base coating. In one embodiment, the liquid carrier material is a material used for coating a surface of a core material (e.g., TESLIN, polycarbonate) of an identification document. The surface being coated generally can be any material (including laminates) whose laser engraving properties are improved by the addition of a coating containing the laser enhancing additive described herein. In at least one embodiment, the addition of the inventive additive to a coating enables the surface to be capable of being engraved with a grayscale image.
For coatings, in another embodiment, the additive comprises an effective amount of at least one of Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), aluminum iodide (AlI), copper potassium iodide, zinc sulfide, and any combination thereof, in a liquid carrier material, which together form a coating that can be applied to an article to be laser engraved. The liquid carrier material can be virtually any known material that can be used as a coating, including resins, polyesters, polycarbonates, vinyls, acrylates, urethanes, and cellulose-base coating. In one embodiment, the liquid carrier material is a material used for coating a surface of a core material (e.g., TESLIN, polycarbonate) of an identification document. The surface being coated generally can be any material (including laminates) whose laser engraving properties are improved by the addition of a coating containing the laser enhancing additive described herein. In at least one embodiment, the addition of the inventive additive to a coating enables the surface to be capable of being engraved with a grayscale image.
In at least one embodiment, the coating containing the inventive laser enhancing laminate can be applied to a layer of material and, after application of heat and pressure to the coating (e.g., via a platen press), the coating can commingle with the layer of material enough to actually improve the laser engraving properties of the layer of material that was coated.
For transparent laminates and/or coatings, the effective amount of the laser enhancing additive can vary depending on the tolerance for possible reduction in the transparency of the laminate or coating. In one embodiment, for transparent laminates or coating, the effective amount of the additive can range from 0.001% by weight up to about 0.1% by weight (based on the total weight of the material to which the additive is added.).
For non-transparent laminates and/or coatings (e.g. colored coatings, colored laminates and/or opaque laminates), the effective amount of the additive can be higher than 1% (e.g., 1%–100%). Those skilled in the art will recognize that the effective amount of the additive for a given use can depend on a number of factors, including the properties of the laminate or coating, the type of laser engraving being performed (e.g., grayscale or non-grayscale), the type of laser used, the desired properties or features of the article or surface being engraved, etc. Advantageously, for at least some transparent laminates and/or coatings used in forming identification documents, the effective amount of the additive is about 0.06% by weight.
In another advantageous embodiment, the constituents of the above-described additive can be present in one or more different layers through which a laser beam can pass. In one example, the copper potassium iodide (or copper Iodide (CuI) or potassium iodide (KI) or sodium iodide (NaI), aluminum iodide (AlI) and any combination thereof) can be present in a first layer of laminate and the zinc sulfide (or barium sulfide (BaS), alkyl sulfonate (e.g., RSO2Na or R—OSO2Na), Thioester (e.g., substances containing —SH) and combinations thereof).can be present in a second layer of laminate, where the first and second layers are either adjacent or separated by one or more layers of material (e.g., another laminate or an adhesive) that is transparent to laser radiation. When a laser beam is directed such that it passes through both of the layers, the combined action of the copper potassium iodide and zinc sulfide enable laser engraving to occur in either or both of the layers. In another example, an effective amount of copper potassium iodide can be present in a coating applied to an article and an effective amount of zinc sulfide can be present in a laminate applied over the coating.
In another example, each of the constituents of the inventive laser enhancing additive (e.g., copper, potassium, iodine, etc.) can be present in a separate layer of coating and/or laminate, where the respective layers are either adjacent or separated by one or more layers of material (e.g., another laminate or an adhesive) that is transparent to laser radiation. When a laser beam is directed such that it passes through all of the layers containing a constituent of the inventive laser enhancing additive, the combined action of the constituents enable laser engraving to occur in at least one of the respective layers. The constituents also can be combined with one or more other constituents, in different layers, in this manner. For example, an effective amount of copper iodide and sodium iodide can be present in a coating applied to an article and an effective amount of zinc sulfide and potassium iodide can be present in a laminate applied over the coating, and an effective amount of aluminum iodide can be present in a coating that is then applied over that laminate. This example is not, of course, limiting; those skilled in the art will appreciate that there are many different ways to combine and/or separate the constituents of the inventive laser enhancing additive into one or more layers of coatings and/or laminates.
In another aspect, the invention provides a composition having laser engraving properties, comprising a host material and an effective amount of a laser enhancing additive. The laser enhancing additive comprises a first quantity of least one of: copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), aluminum iodide (AlI), and any combination thereof, and a second quantity of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester, and any combination thereof. In one embodiment, the first and second quantities are the same (for example, one part copper iodide and one part barium sulfide). In one embodiment, the first and second quantities are different (for example, three parts potassium iodide to one part zinc sulfide, or 2 parts copper iodide to 4 parts thioester). In one embodiment, the composition is markable by at least one of an excimer, Nd:YAG, and C02 laser (including both light pumped and diode pumped Nd:YAG lasers).
In one embodiment, the laser enhancing additive is present in the composition in an amount from about 0.001 to 0.100 percent by weight based on the total weight of the composition. In one embodiment, the laser enhancing additive is present in an amount between 0.1 percent and 100 percent by weight based on the total weight of the composition. In one embodiment, the laser enhancing additive is present in an amount that is about 0.06 percent by weight based on the total weight of the composition. In one embodiment, the laser enhancing additive comprises 0.03 percent by weight of at least one of copper potassium iodide (CuKI3) Copper Iodide (CuI), Potassium Iodide (KI), Sodium Iodide (NaI), Aluminum Iodide (AlI) and any combination thereof, and 0.03 percent by weight of at least one of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester, or any combination thereof, each weight based on the total weight of the composition.
In one embodiment, the host material of the composition is be a material that is not sensitive and/or transparent to laser radiation, such as a material that, by itself, is unable to have acceptable gray scale images laser engraved onto it. The host material can be a laminate or a coating. For example, the host material can comprise at least one of a thermosetting material, thermoplastic, polymer, copolymer, polycarbonate, fused polycarbonate, polyester, amorphous polyester, polyolefin, silicon-filled polyolefin, TESLIN, foamed polypropylene film, polyvinyl chloride, polyethylene, thermoplastic resins, engineering thermoplastic, polyurethane, polyamide, polystyrene, expanded polypropylene, polypropylene, acrylonitrile butadiene styrene (ABS), ABS/PC, high impact polystyrene, polyethylene, polyethylene terephthalate (PET), PET-G, PET-F, polybutylene terephthalate PBT), acetal copolymer (POM), polyetherimide (PEI), polyacrylate, poly(4-vinylpyridine, poly(vinyl acetate), polyacrylonitrile, polymeric liquid crystal resin, polysulfone, polyether nitride, and polycaprolactone, and combinations thereof. In one advantageous embodiment, it has been found that selecting host materials with relatively high degrees of crystallinity (e.g., PET) can help to improve the thermal conductivity of the resultant host material when the inventive laser enhancing additive is added to it.
We have further discovered other techniques for improving thermal conductivity of the host material to improve laser engraving efficiency. In one embodiment, the host material comprises a material having cross-linked functionality. In one embodiment, the host material further comprises a second element, such as a transparent, conductive polymer, such as a cross-linked moiety such as polyurethane, glass beads, glass fibers, and CR-39 (a highly cross-linked thermoset prepared by polymerization of diethylene glycol bis(allyl carbonate) monomer, available from PPG Industries). In one advantageous embodiment, a very low concentration of the second element is blended with the host material. In one advantageous embodiment, the host material comprises at least one of glass beads, glass fibers, and glass threads along with a cross-linking agent.
In one embodiment, the thermal conductivity of the host material is changed by processing the host material to change its orientation and/or density. Those skilled in the art will be familiar with the various types of processes and operations that can operate to change orientation and/or density of a host material.
In at least one embodiment, the invention provides an article of manufacture (such as an identification document) capable of being laser engraved with a grayscale image, comprising a core layer, a first layer and a second layer. The core layer has a first surface. The first layer comprises a first host material, the first host material comprising an effective amount of a first laser enhancing additive comprising at least one of one of copper potassium iodide (CuKI3), Copper Iodide (CuI), Potassium Iodide (KI), Sodium Iodide (NaI), Aluminum Iodide (AlI) and any combination thereof. The second layer comprises a second host material and is oriented in relation to the first host material such that a single laser beam can penetrate both at least a portion of the first layer and at least a portion of the second layer. The second host material comprises an effective amount of at least one second laser enhancing additive selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester, and any combinations thereof. The first and second layers are operably coupled to each other and at least one of the first and second layers is operably coupled to the first surface of the core layer. In one embodiment, a grayscale image is laser engraved into at least one of the first and second layers.
In one embodiment, first layer is substantially transparent and the first laser enhancing additive is present in an amount from about 0.001 to 0.100 percent by weight based on the total weight of the first host material. In one embodiment, the second layer is substantially transparent, and the second laser enhancing additive is present in an amount from about 0.001 to 0.100 percent by weight based on the total weight of the second host material. In one embodiment, a third layer is disposed between the first and second layers; the third layer comprises a material that permits transmission of a laser beam therethrough.
In another aspect, the invention provides a method of engraving a material by exposing the material to laser radiation. An effective amount of a laser enhancing additive is added to the material. The laser enhancing additive comprises at least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), Potassium Iodide (KI), Sodium Iodide (NaI), Aluminum Iodide (AlI) and any combination thereof, and at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester, and any combinations thereof. The material is exposed to laser radiation in a manner that causes the material to be engraved by the laser radiation. In one embodiment, the effective amount of the laser enhancing additive comprises 0.01% to 0.1% by weight of the material, e.g. 0.06% by weight. In one embodiment, the effective amount of the laser enhancing additive comprises 0.1% to 100% by weight of the material. In one embodiment, an indicium is formed in grayscale in at least a portion of the material through the exposure of the portion of the material to laser radiation. In one embodiment, the laser engraved material is used in the manufacture of an identification document.
In another embodiment, the invention provides a method of laser engraving a grayscale image on an article having first and second layers. A first effective amount of least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), Potassium Iodide (KI), Sodium Iodide (NaI), Aluminum Iodide (AlI) and any combination thereof, is added to the first layer. A second effective amount of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester, and any combination thereof, is added to the second layer. A laser beam, such as a beam from at least one of an Nd:Yag laser and a C02 laser, is directed so that it passes through at least a portion of the first layer and at least a portion of the second layer to form a grayscale image in at least one of the first and second layers. In one embodiment, the laser beam is directed so that it that it passes through at least a portion of the first layer and at least a portion of the second layer such that the first and second layers become affixed to each other.
In at least one embodiment, the invention provides a multilayer identification document, comprising a core layer and a film layer. The film layer overlays at least a portion of the core layer and is affixed to the portion of the core layer. The film layer comprising an additive that comprises an effective amount of least one of copper potassium iodide (CuKI3), Copper Iodide (CuI),), Potassium Iodide (KI), Sodium Iodide (NaI), Aluminum Iodide (AlI) and any combination thereof, and an effective amount of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester, and any combination thereof. In one embodiment, the identification document bears a first indicium thereon, the indicia obtained by exposing the film layer to a laser beam. In one embodiment, the indicia comprises at least one of a gray scale image, photograph, text, tactile text, graphics, information, security pattern, security indicia, and a digital watermark.
In another aspect, the invention provides an identification document having improved laser engraving characteristics. The identification document comprises a TESLIN core coated with a coating containing the laser enhancing additive described above. A grayscale image representing variable data (e.g., personalized data) is laser engraved onto the TESLIN core using an Nd:YAG laser. Optionally, a laminate can be affixed to the TESLIN either before laser engraving or after laser engraving. If the laminate is applied before the TESLIN core is laser engraved, the laminate generally will be transparent to laser radiation.
In one embodiment, the invention provides a composition having laser engraving properties, comprising a host material and a laser enhancing additive. The host material comprises a material, such as a polymer, modified by a first process, whereby the host material as modified by the first process has increased thermal conductivity as compared to the host material before the first process. The laser enhancing additive comprises a first quantity of at least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AlI), and a second quantity of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester.
In another embodiment, the invention provides an article of manufacture, such as an identification document, capable of being laser engraved with a grayscale image, comprising a core layer, a first layer, and a second layer. The core layer has a first surface. The first layer comprises a first host material, the first host material comprising a material modified by a first process, whereby the host material as modified by the first process has increased thermal conductivity as compared to the host material before the first process, the host material further comprising an effective amount of a first laser enhancing additive comprising at least one of one of copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AI). The second layer comprises a second host material, the second layer being oriented in relation to the first host material such that a single laser beam can penetrate both at least a portion of the first layer and at least a portion of the second layer. The second host material comprises an effective amount of a second laser enhancing additive, the second laser enhancing additive selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester. The first and second layers are operably coupled to each other and at least one of the first and second layers is operably coupled to the first surface of the core layer.
In one embodiment, the first process comprises at least one of adding cross linked functionality to the host material, adding a conductive material to the host material, the conductive material being a material that is more thermally conductive than the host material, altering at least a portion of the free volume of the host material, and processing the host material to change at least one of its orientation and density.
In another embodiment, the invention provides a method of engraving a host material by exposing the material to laser radiation. A host material is provided, and a process is performed on the host material, such as at least one of adding cross linked functionality to the host material, adding a conductive material to the host material, the conductive material being a material that is more thermally conductive than the host material, altering at least a portion of the free volume of the host material, and processing the host material to change at least one of its orientation and density, to increase the thermal conductivity of the host material. An effective amount of a laser enhancing additive is added to the host material, the laser enhancing additive comprising at least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AI); and at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester. The host material is exposed to laser radiation in a manner that causes the material to be engraved by the laser radiation.
Although some companies offer laser engraving document materials, such materials and/or the amount of equipment required to laser engrave such materials (especially for high quality grayscale images on identification documents) can be prohibitively expensive. At least some embodiments of our invention can overcome at least some of these and other limitations of the prior art. At least some embodiments of our invention offer a less expensive option for laser engraving with improved grayscale engraving, and ease of manufacture, without giving up desired security features.
The foregoing and other features and advantages of the present invention will be even more readily apparent from the following Detailed Description, which proceeds with reference to the accompanying drawings.
The advantages, features, and aspects of embodiments of the invention will be more fully understood in conjunction with the following detailed description and accompanying drawings, wherein:
The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In addition, in the figures, like numbers refer to like elements. Relative dimensions of identification documents, laminate layers, indicia, etc., are provided for illustrative purposes only and are not limiting. Further, throughout this application, laser engraved indicia, information, identification documents, data, etc., may be shown as having a particular cross sectional shape (e.g., rectangular) but that is provided by way of example and illustration only and is not limiting, nor is the shape intended to represent the actual resultant cross sectional shape that occurs during laser engraving or manufacturing of identification documents.
A. Introduction and Definitions
In the foregoing discussion, the use of the word “ID document” is broadly defined and intended to include at least all types of ID documents, including (but are not limited to), documents, magnetic disks, credit cards, bank cards, phone cards, stored value cards, prepaid cards, smart cards (e.g., cards that include one more semiconductor chips, such as memory devices, microprocessors, and microcontrollers), contact cards, contactless cards, proximity cards (e.g., radio frequency (RFID) cards), passports, driver's licenses, network access cards, employee badges, debit cards, security cards, visas, immigration documentation, national ID cards, citizenship cards, social security cards and badges, certificates, identification cards or documents, voter registration and/or identification cards, police ID cards, border crossing cards, security clearance badges and cards, gun permits, badges, gift certificates or cards, membership cards or badges, tags, CD's, consumer products, knobs, keyboards, electronic components, etc., or any other suitable items or articles that may record information, images, and/or other data, which may be associated with a function and/or an object or other entity to be identified.
Note that, for the purposes of this disclosure, the terms “document,” “card,” “badge” and “documentation” are used interchangeably.
In addition, in the foregoing discussion, “identification” includes (but is not limited to) information, decoration, and any other purpose for which an indicia can be placed upon an article in the article's raw, partially prepared, or final state. Also, instead of ID documents, the inventive techniques can be employed with product tags, product packaging, business cards, bags, charts, maps, labels, etc., etc., particularly those items including engraving of an laminate or over-laminate structure. The term ID document thus is broadly defined herein to include these tags, labels, packaging, cards, etc.
“Personalization”, “Personalized data” and “variable” data are used interchangeably herein, and refer at least to data, images, and information that are printed at the time of card personalization. Personalized data can, for example, be “personal to” or “specific to” a specific cardholder or group of cardholders. Personalized data can include data that is unique to a specific cardholder (such as biometric information, image information), but is not limited to unique data. Personalized data can include some data, such as birthdate, height, weight, eye color, address, etc., that are personal to a specific cardholder but not necessarily unique to that cardholder (i.e., other cardholders might share the same personal data, such as birthdate). Depending on the application, however, personalized data can also include some types of data that are not different from card to card, but that are still provided at the time of card personalization. For example, a state seal that is laser engraved onto a portion of an overlaminate in an identification document, where the laser engraving occurs during the personalization of the card, could in some instances be considered to be “personalized” information.
The terms “laser engraving” and “laser marking” are used interchangeably herein.
The terms “indicium” and indicia as used herein cover not only markings suitable for human reading, but also markings intended for machine reading. Especially when intended for machine reading, such an indicium need not be visible to the human eye, but may be in the form of a marking visible only under infra-red, ultra-violet or other non-visible radiation. Thus, in at least some embodiments of the invention, an indicium formed on any layer in an identification document (e.g., the core layer) may be partially or wholly in the form of a marking visible only under non-visible radiation. Markings comprising, for example, a visible “dummy” image superposed over a non-visible “real” image intended to be machine read may also be used.
“Laminate” and “overlaminate” include (but are not limited to) film and sheet products. Laminates usable with at least some embodiments of the invention include those which contain substantially transparent polymers and/or substantially transparent adhesives, or which have substantially transparent polymers and/or substantially transparent adhesives as a part of their structure, e.g., as an extruded feature. Examples of usable laminates include at least polyester, polycarbonate, polystyrene, cellulose ester, polyolefin, polysulfone, or polyamide. Laminates can be made using either an amorphous or biaxially oriented polymer as well. The laminate can comprise a plurality of separate laminate layers, for example a boundary layer and/or a film layer.
The degree of transparency of the laminate can, for example, be dictated by the information contained within the identification document, the particular colors and/or security features used, etc. The thickness of the laminate layers is not critical, although in some embodiments it may be preferred that the thickness of a laminate layer be about 1–20 mils. Lamination of any laminate layer(s) to any other layer of material (e.g., a core layer) can be accomplished using any conventional lamination process, and such processes are will-known to those skilled in the production of articles such as identification documents. Of course, the types and structures of the laminates described herein are provided only by way of example, those skilled in the art will appreciated that many different types of laminates are usable in accordance with the invention.
For example, in ID documents, a laminate can provide a protective covering for the printed substrates and provides a level of protection against unauthorized tampering (e.g., a laminate would have to be removed to alter the printed information and then subsequently replaced after the alteration.). Various lamination processes are disclosed in assignee's U.S. Pat. Nos. 5,783,024, 6,007,660, 6,066,594, and 6,159,327. Other lamination processes are disclosed, e.g., in U.S. Pat. Nos. 6,283,188 and 6,003,581. Each of these U.S. Patents is herein incorporated by reference.
The material(s) from which a laminate is made may be transparent, but need not be. Laminates can include synthetic resin-impregnated or coated base materials composed of successive layers of material, bonded together via heat, pressure, and/or adhesive. Laminates also includes security laminates, such as a transparent laminate material with proprietary security technology features and processes, which protects documents of value from counterfeiting, data alteration, photo substitution, duplication (including color photocopying), and simulation by use of materials and technologies that are commonly available. Laminates also can include thermosetting materials, such as epoxy.
For purposes of illustration, the following description will proceed with reference to ID document structures (e.g., TESLIN-core, multi-layered ID documents) and fused polycarbonate structures. It should be appreciated, however, that the present invention is not so limited. Indeed, as those skilled in the art will appreciate, the inventive techniques can be applied to many other structures formed in many different ways to improve their laser engraving characteristics. Generally, the invention has applicability for virtually any product which is to be laser engraved, especially products being engraved with grayscale images. For example, in at least some embodiments, the invention is usable with virtually any product which is to be laser engraved or marked, especially articles to which a laminate and/or coating is applied, including articles formed from paper, wood, cardboard, paperboard, glass, metal, plastic, fabric, ceramic, rubber, along with many man-made materials, such as microporous materials, single phase materials, two phase materials, coated paper, synthetic paper (e.g., TYVEC, manufactured by Dupont Corp of Wilmington, Del.), foamed polypropylene film (including calcium carbonate foamed polypropylene film), plastic, polyolefin, polyester, polyethylenetelphthalate (PET), PET-G, PET-F, and polyvinyl chloride (PVC), and combinations thereof.
In addition, at least one embodiment of the invention relates to virtually any article formed from, laminated with, or at least partially covered by a material that not sufficiently responsive to laser radiation to form a desired indicium (e.g., a grayscale image) thereon, but which is rendered more responsive to laser radiation, at least to a sufficient degree to enable its surface to be marked as desired with a laser beam, by adding the inventive laser enhancing additive to the material itself or to another material (e.g., a coating or laminate) that is substantially adjacent to the material.
B. Laser Engraving
It is often desirable to mark a portion of a structure, such as a multi-layered structure (including after lamination), such as an ID document, with text, information, graphics, logos, security indicia, security features, marks, images and/or photographs. It would be advantageous if techniques were available to enable laser engraving to produce some or all of these features, especially gray scale and/or color images and photographs.
In some instances, however, some parts of a multi-layered ID document structure, (for example, a structure that includes polyester or polycarbonate laminate on a core such as TESLIN) can be non-conducive to acceptable engraving of specific types of information. For example, some materials can be laser engraved (using, for example, a C02 laser) with text information (e.g., dark on light), but cannot be satisfactorily laser engraved with usable grayscale information (e.g., grayscale information conveying up to 256 shades of gray), such as images or photographs, or full color information.
Other materials are difficult to laser engrave even with text information. For example, some materials, such as silica filled polyolefin, TESLIN, polycarbonate and fused polycarbonate, polyethylene, polypropylene (PPRO), polystyrene, polyolefin, and copolymers are not very sensitive to laser radiation and thus are not especially conducive to laser engraving. Attempts to laser engrave structures that include such non-sensitive and non-conducive materials can sometimes result in engraving that appears too faint to be usable to convey information visually (although the engraving might be useful to provide a tactile feel to the structure). Such a multi-layered structure lacks the sensitivity required for favorable laser engraving. The ability to provide gray scale images on an identification document using a laser, in accordance with the invention, can be advantageous because it can provide increased security of the identification document. In addition, it may be possible to use the invention incorporate additional security features (such as digital watermarks) into the laser engraved grayscale image.
As noted previously, three components work together to help determine the speed at which an acceptable laser engraving mark is made with a laser such as a diode pumped YAG laser: materials (card or other substrate), image information, laser conditions. What laser manufacturers have done to aid in this effort (to decrease laser marking time) has been to increase the power of the laser. In so doing, the heat generated per pixel of information is increased, and this heat is dissipated further out. A result of this is an effective decrease in the dots-per-inch (dpi), required of the incoming image data. Reduced dpi can help to decrease marking time. Further improvements, as described herein, have the potential to decrease marking time even further.
In a further aspect of the invention, we have found that, in some instances, certain properties of the material being laser engraved are important factors in the resultant speed of marking of a rastered image. As noted previously, the additives we propose herein can improve the quality of laser engraving, the efficiency of laser engraving, and/or the speed of laser engraving, in a host material to which they are added. We have also discovered various ways that the host material itself (i.e., the material to which the inventive laser enhancing additive is added) can be altered so that the resulting host material plus laser enhancing additive responds to the laser energy in a manner that can help to reduce the marking time. In particular, we have discovered various techniques for designing, processing, and/or selecting the host material to be more heat conductive, which can have an effect of decreasing marking time without requiring increased power from the laser machine.
As noted herein elsewhere herein, we have discovered that an additive system that includes the inventive laser enhancing additive described herein (e.g., an additive that comprises, in one embodiment, (a) an effective amount of least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AI); and (b) an effective amount of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester) can be very sensitive to laser energy. However, even with the use of our inventive laser enhancing additive, there may still be a limitation on dpi of the incoming image to be around 450–600 dpi. This is due at least in part to the thermal properties of amorphous polymers, which can cause amorphous polymers to act as insulators rather than conductors.
In one embodiment of the invention, we have found that increasing the thermal conductivity of the host material (which can, for example be a polymer) and its matrices can help to decrease the marking speed of images. Thermal conductivity relates to the chemical nature of the material and the distance at which heat must travel. Thermal energy generally prefers to travel along covalent bonds and not weak secondary ones. Thus, by performing actions on the host material that help to increase the amount of covalent bonds in the host material, it is possible to further improve the conductivity of the host material (and, of the host material with the inventive laser enhancing additive added to it).
Although we anticipate that nearly any method to increase thermal conductivity in a material can improve laser marking speed of that material, we have determined that for at least some advantageous embodiments of the invention, the material being laser engraved not only has its thermal conductivity has been improved using one or more of the techniques described herein, but also has added to it the inventive laser enhancing additive described herein. Many methods for increasing thermal conductivity in a material should be usable in accordance with the invention, and in certain applications it can be beneficial (or desirable) to increase the thermal conductivity in a manner that permits the host material to remain substantially optically clear to laser radiation.
Accordingly, we have found that any one or more of the following methods can help to improve the thermal conductivity of the host material and/or host material plus inventive laser enhancing additive system while still maintaining an substantially “optically clear to laser energy” polymer:
In one embodiment, we have found that addition of cross linked functionality in the host material, such as by using coupling agents/primers that are reactive and/or form weak secondary bonds between the host material and an additive and/or from additive to additive and/or from host material to additive, can help to improve thermal conductivity in the host material and/or in the host material plus inventive laser enhancing additive. Usable coupling agents include, for example, those that are used in composite systems to aid in mechanical properties. Such a coupling agent can, for example, form a “bridge” between moieties. For example, we have found for this embodiment that a good crosslinking agent that can be added to a host material is gamma-aminopropyltriethoxy silane, which is available from General Electric (GE) Silicones of Wilton, Conn.
We note, however, that virtually any silicon compounds, silicones, silanes, and/or related products are usable as cross linking/coupling agents/primers, as will be understood by those skilled in the art. In other embodiments of the invention, we have found that the technical manual entitled “Silicon Compounds, Register and Review, Silanes and Silicones for Creative Chemists” (5th ed.), published by Hüls America of Piscataway, N.J. (later purchased by United Chemical Technologies, inc., whose silicone business was later purchased by Crompton Corporation, whose organosilicone business was later purchased by GE). We also anticipate that many vinyl additives will be usable with at least some embodiments of the invention.
The amount of additional material required to add sufficient cross-linked functionality so as to improve thermal conductivity can be readily determined through experimentation, as those skilled in the art will appreciate. In at least some embodiments of the invention, the additional material can be added in any concentration that does not reduce optical transparency to laser radiation by an unacceptable degree. In at least one embodiment, the concentration of this additional material in the host material by weight is relatively low (e.g., less than 10%). In at least one embodiment, the concentration of this additional material in the host material, by weight, ranges from 0.001% to 75%.
In another embodiment, we have found that the addition to the host material of one or more polymers (or other materials) that are more thermally conductive than the host material and that are substantially optically transparent to laser radiation, can help to improve thermal conductivity in the host material and/or in the host material plus inventive laser enhancing additive. In one embodiment, such polymers can include one or more polymers such as glass beads, glass fibers, glass threads, and cross linked moieties, i.e. CR-39, polyurethane. Those skilled in the art will recognize that many different thermally conductive polymers which also are optically substantially transparent to laser radiation are known and could be usable in accordance with the invention. It also can be possible to use thermally conductive materials that are not necessarily substantially transparent to laser radiation as long as the presence and/or concentrations of the thermally conductive materials does not interfere with the host material's substantial optical transparency to laser radiation in a way that is unacceptable. Companies that can supply many different types of thermally conductive polymers include, for example, Cool Polymers, Inc., of Warwick, R.I., Epoxies, Etc., of Cranston, R.I., can supply.
The concentrations of “more conductive” polymer/material in the host material can be (as with cross linking agents) virtually any concentration that does not negatively impact the host material's optical transparency to laser radiation to an unacceptable degree. In at least one embodiment, the concentration of the “more conductive” polymer/material by weight is relatively low (e.g., less than 10%). In at least one embodiment, the concentration of this additional material in the host material, by weight, ranges from 0.001% to 75%.
In at least some embodiments, selection of a particular thermally conductive polymer will depend at least in part on the particular host material being used. We anticipate that it may be advantageous to select thermally conductive polymers that are readily miscible with the host material. For example, Cool Polymers product number E4503 is a thermally (and electrically) conductive polycarbonate that could be advantageously added to a polycarbonate host material.
In at least one advantageous embodiment, we have found that adding both a cross linking agent (as described above) and a glass product (e.g., beads, threads, and/or fibers, as described above) can provide noticeable improvements in the thermal conductivity of a host material.
We have also found, in accordance with at least some embodiments of the invention, that adding materials or performing processes on the host material to fill up or reduce at least a portion of the free volume in the host material (while still maintaining the optical transparency of the host material to laser radiation at an acceptable level) also can be used to improve the thermal conductivity of the host material. As is understood by those skilled in the art, the free volume of a polymer corresponds to the unoccupied regions of the polymer that are accessible to segmental motions; that is, the excluded volume of a polymer system, i.e. the space not taken up by the polymer atoms. The amount of free volume can be altered by changing the physical state of the polymer. For example, processes such as deformation under compression can reduce free volume. Processes such as adding a volume filling material to the host material also can reduce free volume. Volume filling materials can, for example, include the other techniques and methods described herein that involve adding another material or substance to the host material. We presume that those skilled in the art are aware of processes, materials, and techniques for filling up portions, free volume in material, such as a polymer material.
Another technique that we have found for increasing thermal conductivity of a host material, in accordance with one embodiment of the invention, involves processing the host material to change its orientation and/or density. We have determined that because the thermal conductivity of materials such as polymers can be at least partially dependent on orientation of the polymer, changing properties of the polymer such as orientation may increase thermal conductivity in a manner that can, in accordance with at least one embodiment of the invention, improve the speed and/or efficiency of laser engraving the polymer.
Those skilled in the art will be familiar with the various types of processes and operations that can operate to change orientation and/or density of a host material. For example, in one embodiment of the invention, the host material is processed using a so-called “blowing tunnels” technique. The host material is blown into an elongated tunnel (e.g., a vertical tunnel) and the host material is stretched or oriented in all directions (e.g., cross directions and/or machine directions) to give a strong, substantially stiff material that has a predetermined orientation or high density. Note that oriented polymers can be stiffer along the chain direction than unoriented polymers, and can be much stiffer than those polymers oriented in a transverse direction. Stretching polymer chains, as by the process known as molecular orientation, can cause the polymer chains to orient preferentially in a particular direction (e.g., monaxial orientation), and this type of orientation can, in at least one embodiment of the invention, increase thermal conductivity of the polymer (or other host material). These methods is not, of course, limiting, and other methods (e.g., spinning, photomanipulation, ribbon extrusion, tubular extrusion, etc.) can, of course, be usable and are intended within the scope of at least some embodiments of the invention. In one embodiment, we anticipate that processing the host material so that it becomes oriented biaxially can be advantageous for increasing the thermal conductivity of the host material to improve laser marking speed.
In at least some embodiments, we have found that selecting host materials having relatively high degrees of crystallinity (e.g., selecting a material such as PET or polyethylene over PC) can help to increase thermal conductivity and speed of laser engraving. Those skilled in the art will appreciate that many other host materials having high degrees of crystallinity (or which have been processed to have high degrees of crystallinity) can be usable as host materials in these embodiments provides such materials do not impact the optical transparency to laser radiation in an unacceptable manner.
C. First Aspect of the Invention
C. 1 Features
In a first aspect, one embodiment of the invention involves sensitizing at least one of the layers in a multi-layered structure, such as at least one laminate layer, to help to overcome the problem of the laminate material not being responsive to laser engraving and/or not being responsive enough to be capable of having grayscale images laser engraved thereon. We have found that the quality of laser engraving can be improved, while reducing engraving time, through over-laminate sensitization using one or more of the inventive formulations described herein. In one implementation of this embodiment, a layer of laminate is modified by adding an effective amount of one or more laser sensitive additives to the laminate material. We also have found that the laser sensitive additives described herein can be divided over two or more layers to provide improved laser engraving performance. Moreover (as described later herein in the second and third aspects of the invention), we have found that the laser sensitive additives also will improve laser engraving if they are present in a coating applied to a material to be engraved.
A least one embodiment of the first aspect of the invention is based on the surprising discovery that the process of laser engraving of materials such as laminates is improved and enhanced by adding to the laminate a first effective amount of a first composition, the first composition being at least one of copper potassium iodide (CuKI3), copper iodide (CuI), Potassium Iodide (KI), Sodium Iodide(NaI), and Aluminum Iodide(AlI), and any combination thereof, together with a second effective amount of a second composition, the second composition being at least one of the following: zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate (e.g., RSO2Na or R—OSO2Na), and Thioester (e.g., substances containing —SH), and any combination thereof. The combination of the first composition and the second composition will hereinafter be referred to as the “inventive laser enhancing additive”. The components of the inventive laser enhancing additive, namely the component comprising at least one of copper potassium iodide (CuKI3) copper iodide (CuI), Potassium Iodide (KI), Sodium Iodide(NaI), and Aluminum Iodide(AlI), and the component comprising at least one of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate (e.g., RSO2Na or R—OSO2Na), and Thioester, will sometimes be referred to as the “inventive laser enhancing additives”).
As those skilled in the art will appreciate, the effective amounts of the first and second compositions can vary depending on the material to which the inventive laser enhancing additive is added and on the laser engraving technique being employed. In at least one embodiment, the inventive laser enhancing additive includes equivalent amounts of the first and second compositions. In at least one embodiment, the inventive laser enhancing additive includes more of the second composition than the first composition. In at least one embodiment, the inventive laser enhancing additive includes more of the first composition than the second composition.
We have also found an advantageous embodiment of the invention wherein the laser enhancing additive comprises copper iodide (CuI), Potassium Iodide (KI), Sodium Iodide(NaI), Aluminum Iodide(AlI), together with Zinc Sulfide (ZnS).
In addition, we also have found advantageous embodiment of the invention wherein a first part of the inventive laser enhancing additive has been chemically analyzed to have the composition shown in Table 1, below, and a second part of the inventive laser enhancing additive has been chemically analyzed to have the composition shown in Table 2, below.
TABLE 1
Breakdown of one embodiment of first part of the additive
Element
% by Weight
% by Volume
Sodium (Na)
3–7%
9–20%
Aluminum (Al)
0–5%
0–12%
Chlorine (Cl)
0–2%
0–4%
Potassium (K)
10–20%
24–38%
Copper (Cu)
0.5–5%
0.5–6%
Iodine (I)
70–80%
40–50%
TABLE 2
Breakdown of one embodiment of second part of the additive
Element
% by Weight
% by Volume
Zinc (Zn)
60–70%
40–50%
Sulfur (S)
30–40%
48–58%
Note that although the above tables show relative concentrations of particular constituents that make up the additive, these tables do not necessarily represent their respective concentrations when the inventive laser enhancing additive is added to the host material. For example (as discussed further herein), referring to Table 3 in a given embodiment the respective concentrations of materials in the additive itself may be as follows:
TABLE 3
Breakdown of one embodiment of the additive
Element
% by Weight
% by Volume
Sodium (Na)
5%
25%
Aluminum (Al)
3%
5%
Chlorine (Cl)
0%
0%
Potassium (K)
17%
32%
Copper (Cu)
4%
4%
Iodine (I)
75%
45%
Zinc (Zn)
65%
47%
Sulfur (S)
35%
54%
However, the overall percentage of the additive in the host material (e.g., a laminate) in this illustrative embodiment is 0.06%. The respective breakdown of the percentages of constituent material in the laminate would thus have to be multiplied by 0.06%, as shown in Table 4 below:
TABLE 4
Example of concentrations of constituents in
host material containing inventive laser enhancing
additive of one embodiment of the additive
% by Weight
in host
Element
material
Sodium (Na)
0.5
Aluminum (Al)
0.18
Chlorine (Cl)
0.00
Potassium (K)
1.02
Copper (Cu)
0.24
Iodine (I)
4.50
Zinc (Zn)
3.9
Sulfur (S)
2.16
The exact nature of the mechanism by which our various embodiments of the inventive laser enhancing additives work is not yet established. It is possible that the inventive laser enhancing additive increases the molecular activity within the laminate when the heat from the laser is applied, enabling the laminate to respond faster and/or more intensely to the laser energy. It also is possible that the additive increases the opacity of the laminate, enabling it to better respond to laser energy. It also is possible that the components of the inventive laser enhancing additive react with each other and/or with the host material to form black species within the host material.
Using the inventive laser enhancing additive, high quality images and other engravings can be formed on articles such as multi-layered ID documents at acceptable throughput rates by modifying the materials being engraved by adding the inventive laser enhancing additives to the material (or by coating the material with a coating containing the inventive laser enhancing additive, as discussed further in the second aspect of the invention). The inventive laser enhancing additive can not only make a material that is non-sensitive to laser radiation more sensitive to laser radiation, but also can reduce the laser engraving time as well. In addition, because the inventive laser enhancing additive can improve the responsiveness of the material being laser engraved to laser energy, high definition images, such as gray scale images (which can be used on identification documents), can be created with the laser engraving process. We have also found that in situations where a first material containing the laser enhancing additive is able to co-mingle or otherwise mix with a second material during processing (e.g., during application of heat and/or pressure), the responsiveness to laser energy of the second material is improved.
In at least one embodiment, use of any of the above laser enhancement formulations improves the quality of the laser engraving by increasing the contrast, (including at least dark colors on light backgrounds) that can occur when using a laser having a given power level. In at least some embodiments, the increased contrast resulting from use of one of the above-described laser enhancing additives may enable the laser engraving to be accomplished using a lower-power laser than would need to be used without user of the laser enhancing additive. It at least some embodiments, the increased sensitivity resulting from use of one of the above-described laser enhancing additives may reduce the time necessary to accomplish the laser engraving.
In accordance with at least some embodiments of the first aspect of the invention, any of the above-described inventive laser enhancing additives can be added to virtually any material (including all known thermoplastics and thermosets) to enhance the process of laser marking and/or laser engraving of either the material to which the inventive laser enhancing additive is added or any material disposed substantially adjacent thereto. Advantageously, the addition of the inventive laser enhancing additive enables whatever material(s) it has been added to be laser engraved with a grayscale image.
In accordance with another embodiment of the first aspect of the invention, a first part of the inventive laser enhancing additive (i.e., a part that contains an effective amount of at least one of CuI, KI, NaI, an AlI and all combinations thereof) can be added to a first layer of laminate and a second part of the inventive laser enhancing additive (i.e., a second part that contains an effective amount at least one of ZnS, BaS, alkyl sulfonate, and thioester and all combinations thereof) can be added to a second layer of laminate, wherein a single laser beam passes through both layers and enables the laser engraving of either or both layers. In accordance with still another embodiment of the first aspect invention, the inventive laser enhancing additive can be added to a core material that is laminated with a material that is transparent to laser radiation, wherein the core material also can be laser engraved.
In at least one advantageous embodiment, the inventive laser enhancing additive is added to core, laminate and/or over laminate materials used in the manufacture of identification documents, to improve the process of laser engraving or marking of the identification documents and to enable laser engraving of a grayscale image on the identification documents.
In another advantageous embodiment, the inventive laser enhancing additive is added to an image receptive layer (such as the image receiving layer described in U.S. Pat. No. 6,066,594), to make the image receptive layer a layer that can be imaged both with laser energy and with another printing method (e.g., D2T2 printing).
Note that the laser enhancing additives in accordance with the invention are usable for both materials that usually are not sensitive to laser radiation as well as materials that are already sensitive to laser radiation. The inventive laser enhancing additive can be present in a material, such as a laminate, at the same time that other compositions (e.g., other laser enhancing or absorbing additives, reinforcing fillers, antioxidants, flame retardants, stabilizers, plasticizers, lubricants, dispersants, and the like) are present in the same material and/or a separate layer of material. We also note that the presence of other materials (e.g., contaminants) within the additive, in small amounts, does not appear to negatively impact the laser enhancing function of the inventive laser enhancing additive. For example, in one embodiment, chemical analysis (see
Illustrative examples of laminate materials to which the inventive laser enhancing additive may be added include (but are not limited to) polyester, polycarbonate (PC), fused polycarbonate, polyvinyl chloride (PVC), polyethylene, thermosets, thermoplastic and thermoplastic resins (including those that foam when heated), engineering thermoplastics (ETP), polyurethane, polyamides, expanded polypropylene (EPP), polypropylene, acrylonitrile butadiene styrene (ABS), ABS/PC and ABS/PC products, high impact polystyrene (HIPS), polyethylene terephthalate (PET), PET-G, PET-F, polybutylene terephthalate (PBS), acetal copolymer (POM), and polyetherimide (PEI), polymer, copolymer, polyester, amorphous polyester, polyolefin, silicon-filled polyolefin, TESLIN, foamed polypropylene film, polystyrene, polyacrylate, poly(4-vinylpyridine, poly(vinyl acetate), polyacrylonitrile, polymeric liquid crystal resin, polysulfone, polyether nitride, and polycaprolactone, as well as virtually any known plastic or polymer. Of course, it will be appreciated that embodiments of the invention have applicability for the laser engraving and/or marking of plastic materials used to make many different articles formed by virtually any known method, including molding and extruding.
In at least some embodiments, the resultant concentration of the inventive laser enhancing additive in the laminate, by weight, ranges from 0.001% to 0.1% by weight. Note that in at least some embodiments, the inventive laser enhancing additive is added at larger concentrations (e.g., from 0.1% to 100%). At concentrations larger than 0.1%, the inventive laser enhancing additive can still be used to enhance laser marking or engraving, but at possible sacrifice of some of the transparency of the laminating material (if, in fact, the laminating material is substantially transparent or translucent to begin with).
Advantageously, in at least one embodiment, the laser enhancing additive is about 0.06% by weight in the laminate. In another advantageous embodiment, the 0.06% by weight includes 0.03% by weight of at least one of CuI, CuKI3, KI, NaI, and AlI (and any combinations thereof), and 0.03% by weight of at least one of ZnS, BaS, alkyl sulfonate, and thioester (and any combinations thereof). Of course, those skilled in the art will appreciate that other concentration ranges for the laser enhancing formulations may be usable, especially when using opaque materials and colored materials. In addition, it will be appreciated that the proportions of the at least one of CuI, KI, NaI, AlI, and CuKI3 (and any combinations thereof) and of the at least one of ZnS, BaS, alkyl sulfonate, and thioester (and any combinations thereof) also can vary.
The concentration of the inventive laser enhancing additive that is usable with a given laminate is at least in part dependent on the properties of the laminate and the ultimate use, durability, environmental conditions, etc., to which the laminate is subject. It is possible that higher concentrations of the laser enhancing formulations in the laminate may affect one or more properties of the laminate, such as transparency, durability, malleability, opacity, rigidity, etc. Of course, appropriate quantities of the additives can be determined for a particular over-laminate application without undue experimentation. Additional factors may include engraving time and process, base over-laminate material or composition, and desired engraving quality.
It is contemplated that the inventive laser enhancing additive can be added to a laminate that is affixed (e.g., by adhesive, lamination, chemical reaction, etc.) to virtually any product, to enable the laminate to be laser engraved, especially with a grayscale image, thereby producing (especially if the laminate is substantially transparent or translucent) a laser engraving or marking on the laminate affixed to the article. Accordingly, we believe that the inventive laser enhancing laminate has applicability to the manufacture many different articles that can be laminated, including but not limited to identification documents, identification cards, credit cards, prepaid cards, phone cards, smart cards, contact cards, contactless cards, combination contact-contactless cards, proximity cards (e.g., radio frequency (RFID) cards), electronic components, tags, packaging, containers, building materials, construction materials, plumbing materials, automotive, aerospace, and military products, computers, recording media, labels, tools and tooling, medical devices, consumer products, and toys. Further, we contemplate that entire articles of manufacture could be formed wholly or partially using a material that contains the inventive laser enhancing additive and then laser engraved or marked.
C.2 Preparation/Manufacture
The inventive laser enhancing additive can be added to the laminate in many different ways. The following technique describes the preparation and addition of the inventive laser enhancing additive to the laminate in accordance with one embodiment of the first aspect of the invention. By way of example only, the technique will be described in connection with an illustrative embodiment wherein the laminate comprises polycarbonate and the inventive laser enhancing additive comprises CuI, KI, NaI, and AlI and ZnS, but illustration of this particular formulation should not be viewed as limiting.
In this example, preparation of the inventive laser enhancing additive can be accomplished by using a twin screw extruder to create a highly concentrated polymer blend (so-called “masterbatch”) of the inventive laser enhancing additive. The masterbatch is created by combining the desired host material (e.g., polycarbonate) with the inventive laser enhancing additive, (e.g., ZnS and CuI, KI, NaI, and AlI). The host material and the inventive laser enhancing additive are dried prior to blending to minimize any degradation of each of the components. The following are illustrative examples of inventive laser enhancing additive preparations that can be utilized in at least some embodiments of the invention:
The above masterbatch formulations are taken and drawn down to the desired concentration using a single screw extruder to form a monolayer film. To reduce costs, a colayer can be made whereby sensitized material (i.e., material to which the inventive laser enhancing additive is added) is extruded against nonsensitive material. In one embodiment, the optimum concentration for marking of polycarbonate and maximizing optical properties is 0.06% by weight. Concentrations can be used up to 0.1% by weight; concentrations higher than 0.1% may cause visible reductions of the transparency of transparent materials. In one embodiment, more than one of the previously described inventive laser-enhancing additives can be used as an additive (e.g., ZnS and CuI, KI, NaI, and AlI, along with CuKI3 along with BaS and CuI), and other known laser-enhancing additives can also be combined with one or more of the previously described inventive laser-enhancing additives in the above techniques.
Of course, those skilled in the art will appreciate that the above examples of masterbatch formulations and materials are provided by way of example and are not limiting. For example, those skilled in the art will readily understand how the inventive laser enhancing additive can be adapted to work with acrylics, acetates, polystyrenes, urethanes, polyesters (aromatic and aliphatic), polyether nitrides, ABS and polyvinyl chloride, as well as the other laminate materials previously described.
C.3 Illustrative Examples
After the film for the laminate is made, various known processes can be used to adapt it for use with the article being laser engraved or marked. In the example of an ID document to be laser engraved or marked, the following are illustrative exemplary embodiments for constructing an ID document using a film and/or laminate containing the inventive laser enhancing additive.
In this example, the core material 50 is 10 mils of a substantially opaque white laminate core, such as a TESLIN-based core. Prior to lamination, the core material 50 can be pre-printed to include an indicium 54A such as fixed or variable information or data. The pre-printing can include screen-printing, offset printing, laser or ink-jet printing, flexography printing, or the like. “Fixed” information may include non-individual dependent information, such as department or company information, state information, etc., etc. Variable information, or information that is unique to the ID document holder, can be printed, for example, via a color laser XEROGRAPHY process.
The fixed and/or variable information can also include one or more built in security features, as well, to help reduce identity fraud. For example, in one embodiment of the invention, portions of the ID document 10, including either or both of the core material 50 and/or the laminate 52, can include a security feature such as a security indicia or security pattern. The security pattern can be applied in an ordered arrangement having a tightly-printed pattern, i.e., having a plurality of finely-divided printed and unprinted areas in close proximity to one another. A tightly-printed pattern may, for example, appear as an often-repeated logo or design or a fine-line printed security pattern such is used in the printing of banknote paper, stock certificates and like and may take the form of filigree, guilloche or other fine-line printing. U.S. Pat. No. 4,653,775 provides an example of such security printing and is hereby incorporated by reference. Note that the laser engraving facilitated by the invention can be used to print a security indicia or security pattern.
In addition, the laser engraving facilitated by the invention can be used to add a digital watermark to any indicia printed (whether conventionally or by laser engraving) on any layer of the ID document 10. Digital watermarking is a process for modifying physical or electronic media to embed a machine-readable code therein. The media may be modified such that the embedded code is imperceptible or nearly imperceptible to the user, yet may be detected through an automated detection process. The code may be embedded, e.g., in a photograph, text, graphic, image, substrate or laminate texture, and/or a background pattern or tint of the photo-identification document. The code can even be conveyed through ultraviolet or infrared inks and dyes.
Digital watermarking systems typically have two primary components: an encoder that embeds the digital watermark in a host media signal, and a decoder that detects and reads the embedded digital watermark from a signal suspected of containing a digital watermark. The encoder embeds a digital watermark by altering a host media signal. To illustrate, if the host media signal includes a photograph, the digital watermark can be embedded in the photograph, and the embedded photograph can be printed on a photo-identification document. The decoding component analyzes a suspect signal to detect whether a digital watermark is present. In applications where the digital watermark encodes information (e.g., a unique identifier), the decoding component extracts this information from the detected digital watermark.
Several particular digital watermarking techniques have been developed. The reader is presumed to be familiar with the literature in this field. Particular techniques for embedding and detecting imperceptible watermarks in media are detailed, e.g., in Digimarc's co-pending U.S. patent application Ser. No. 09/503,881 and U.S. Pat. No. 6,122,403. Techniques for embedding digital watermarks in identification documents are even further detailed, e.g., in Digimarc's co-pending U.S. patent application Ser. No. 10/094,593, filed Mar. 6, 2002, and Ser. No. 10/170,223, filed Jun. 10, 2002, co-pending U.S. Provisional Patent Application No. 60/358,321, filed Feb. 19, 2002, and U.S. Pat. No. 5,841,886. Each of the above-mentioned U.S. Patent documents is herein incorporated by reference. Additionally, it is noted that the invention encompasses ID documents including more or less features than the illustrated ID document 10.
Referring again to
In at least some embodiments of the first aspect of the invention, usable laminates usable include those which contain substantially transparent polymers and/or substantially transparent adhesives, or which have substantially transparent polymers and/or substantially transparent adhesives as a part of their structure, e.g., as an extruded feature. The first laminate 52 can comprise a plurality of separate laminate layers, for example a boundary layer and/or a film layer. The first laminate 52 can comprise an optically clear durable plastic film, such as amorphous or biaxially oriented polyester. In at least some embodiments, the laminate need not be substantially transparent, but can be colored or opaque, so long as a grayscale image can be laser engraved onto it. Of course, the types and structures of the laminates described herein are provided only by way of example, those skilled in the art will appreciated that many different types of laminates are usable in accordance with the invention.
In at least some embodiments, the first laminate layers 52 can provide additional security features for the identification document 10. For example, the first laminate 52 may include a low cohesivity polymeric layer, an optically variable ink, an image printed in an ink which is readable in the infra-red or ultraviolet but is invisible in normal white light, an image printed in a fluorescent or phosphorescent ink, or any other available security feature which protects the document against tampering or counterfeiting, and which does not compromise the ability of the first laminate 52 to be laser engraved.
In at least one embodiment (not shown), the first laminate is formed into a pouch into which the core material 50 slips. With a pouch, methods such as heat, pressure, adhesives, and the like, are usable to bond the core material 50 to the first laminate 52 formed into a pouch. Those skilled in the art will appreciate that many known structures and configurations for laminating are usable with the invention.
Referring again to
When first laminate 52 is appropriately coupled to the core material 50, the ID document 10 is ready for laser engraving. In at least one embodiment, the laser engraving is used to personalize the ID document. In at least one embodiment, a usable laser for engraving is a neodymium:yttrium aluminum gamet (Nd:YAG) laser using both 3 Watt (W) (103D) and 10W (Powerline E) power outputs (a laser that is usable with at least one embodiment of the invention can be purchased from Rofin Baasel Lasertech of Boxborough, Mass.). The 10 W laser of this device uses a true grey scale marking software compared to the 3 W which does not. In at least one embodiment, the Nd:YAG laser emits light at a wavelength of about 1064 nanometers (nm).
Because the inventive laser enhancing additive improves the responsiveness of the first laminate 52 to the laser, the time to laser engrave a given area can be decreased as compare to the time to mark a given area in a laminate that does not have the inventive laser enhancing additive, when using the same laser”. In addition, the improvement in responsiveness can enable grayscale images, such as images with up to 256 different shades of gray, to be laser engraved into the laminate 52, especially when an Nd:Yag laser (including lamp pumped YAG lasers, diode pumped Nd:Yag lasers, and light pumped Nd:Yag lasers) is used. Those skilled in the art will appreciate that the effective amount of the inventive laser enhancing additive used and the material in which it is used can be adapted to achieve similar improvements in laser engraving when using other types of lasers, such as, excimer lasers and C02 lasers.
In addition, use of the inventive laser enhancing additive can improve the laser engraving of so-called “vector information” of an identification document. Vector information is non-captured information (such as logos) in an identification document and generally does not include so-called “pixel” information, which is information that is captured, such as signature images and/or photographic images. When the inventive laser enhancing additive is added to a material being laser engraved with vector information, it is possible to sufficiently sensitize the material such that the vector information can be engraved to achieve the “tactile feel” known in the art of laser engraving.
Referring again to
Although the embodiment of
For example,
It should be understood that although the example of
Referring again to
In at least one embodiment, the first laminate 52 can be made from a material that is inherently (i.e., even without the addition of the inventive laser enhancing additive or any portion thereof) more responsive to laser radiation than is the second laminate 55. In this embodiment, when a laser beam is directed through the second and first laminate layers 55, 52, the area in the first laminate 52 that is irradiated can “bubble up” to the second layer 55, to form a bond 68 between the first laminate 52, second laminate 55, and (optionally) the third layer.
In one embodiment, the ID document 10 of the embodiment of
The core material 50 and first laminate 52 are fused (e.g., using heat and pressure, such as by a platen press) together to form a structure 53, which helps to deter delaminating attempts. The structure 53 in this example is a solid PC ID document 10. Adjusting the time, temperature and pressure can help to bond the first laminate 52 to the polycarbonate core material 50. The second laminate 55 can be an overlaminate material.
In one experiment, we compared the engraving properties of an inventive fused polycarbonate structure, including a titanium dioxide filled polycarbonate core and polycarbonate over-laminates with ZnS and (CuI+KI+NaI+AlI) additives, against a Muhlbauer polycarbonate card. The comparison involved engraving a 0.75 by 1.0 inch photograph at 750 dpi. The Muhlbauer engraving required between 20 and 25 seconds, while the inventive fused polycarbonate structure required 11–15 seconds engraving time to achieve similar acceptable gray scale tones by adjusting the frequency of the laser.
The inventive laser enhancing additive also can be used in a laminate that has one or more additional laminate layers bonded over it. For example,
Although
We have found that the inventive laminates described herein may offer one or more advantages. For example, using the inventive laminates can enable the inventive laminates to be laser marked or engraved with usable grayscale images. In addition, using the inventive laminates can enable faster laser engraving or marking at lower laser power levels. Further, the laser engraving that is possible using the inventive laminates is durable, abrasion resistant, and environmentally friendly.
C.4 Additional Embodiments of First Aspect of the Invention
We anticipate that at least the following combinations, and others like them, can be useful embodiments of the first aspect of the invention:
1. A composition having laser engraving properties, comprising:
a host material; and
an effective amount of a laser enhancing additive, the laser enhancing additive comprising:
2. The composition as recited in 1 above, wherein the laser enhancing additive is present in an amount from about 0.001 to 100 percent by weight based on the total weight of the composition.
3. The composition as recited in 1 above wherein host material is substantially transparent and the laser enhancing additive is present in an amount from about 0.001 to 0.1 percent by weight based on the total weight of the composition.
4. The composition as recited in 1 above wherein the laser enhancing additive is present in an amount that is about 0.06 percent by weight based on the total weight of the composition.
5. The composition as recited in 4 above, wherein the first and second quantities each comprise about 0.03 percent by weight based on the total weight of the composition.
6. The composition as recited in 1 above wherein the first quantity and the second quantity are the same.
7. The composition as recited in 1 above wherein the first quantity is greater than the second quantity.
8. The composition as recited in 1 above wherein the first quantity is less than the second quantity.
9. The composition as recited in 1 above wherein the composition is laser engraveable by at least one of a diode pumped Nd:Yag laser, light pumped Nd:Yag laser, C02 laser and excimer laser.
10. The composition as recited in 8 above wherein the composition is laser engraveable to form a grayscale image.
11. The composition as recited in 1 above wherein the host material comprises a material that is not, by itself, sufficiently sensitive to laser radiation to permit gray scale images to be laser engraved in the host material.
12. The composition as recited in 1 above wherein the host material comprises at least one material selected from the group consisting of thermosetting material, thermoplastic, polymer, copolymer, polycarbonate, fused polycarbonate, polyester, amorphous polyester, polyolefin, silicon-filled polyolefin, TESLIN, foamed polypropylene film, polyvinyl chloride, polyethylene, thermoplastic resins, engineering thermoplastic, polyurethane, polyamide, polystyrene, expanded polypropylene, polypropylene, acrylonitrile butadiene styrene (ABS), ABS/PC, high impact polystyrene, polyethylene terephthalate (PET), PET-G, PET-F, polybutylene terephthalate PBT), acetal copolymer (POM), polyetherimide (PEI), polyacrylate, poly(4-vinylpyridine, poly(vinyl acetate), polyacrylonitrile, polymeric liquid crystal resin, polysulfone, polyether nitride, and polycaprolactone.
13. An article of manufacture capable of being laser engraved with a grayscale image, comprising:
a core layer having a first surface;
a first layer comprising a first host material, the first host material comprising an effective amount of a first laser enhancing additive comprising at least one of one of copper potassium iodide (CuKI3), Copper Iodide (CuI), Potassium Iodide (KI), Sodium Iodide (NaI), and Aluminum Iodide (AlI); and
a second layer comprising a second host material, the second layer oriented in relation to the first host material such that a single laser beam can penetrate both at least a portion of the first layer and at least a portion of the second layer, the second host material comprising an effective amount of a second laser enhancing additive, the second laser enhancing additive selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester;
wherein the first and second layers are operably coupled to each other and at least one of the first and second layers is operably coupled to the first surface of the core layer.
14. The article of manufacture as recited in 13 above, further comprising a grayscale image laser engraved into at least one of the first and second layers.
15. The article of manufacture recited in 13 above, wherein the article of manufacture is an identification document.
16. The article of manufacture of recited in 13 above, wherein the first layer is substantially transparent and the first laser enhancing additive is present in an amount from about 0.001 to 0.100 percent by weight based on the total weight of the first host material.
17. The article of manufacture recited in 13 above, wherein the second layer is substantially transparent and the second laser enhancing additive is present in an amount from about 0.001 to 1.00 percent by weight based on the total weight of the second host material.
18. The article of manufacture recited in 13 above wherein at least one of the first and second host materials comprises a material that is less sensitive to laser radiation than the other of the first and second host materials.
19. The article of manufacture recited in 13 above, wherein at least one of the first and second host materials comprises at least one material selected from the group consisting of thermosetting material, thermoplastic, polymer, copolymer, polycarbonate, fused polycarbonate, polyester, amorphous polyester, polyolefin, silicon-filled polyolefin, foamed polypropylene film, polyvinyl chloride, polyethylene, thermoplastic resins, engineering thermoplastic, polyurethane, polyamide, polystyrene, expanded polypropylene, polypropylene, acrylonitrile butadiene styrene (ABS), ABS/PC, high impact polystyrene, polyethylene terephthalate (PET), PET-G, PET-F, polybutylene terephthalate PBT), acetal copolymer (POM), polyetherimide (PEI), polyacrylate, poly(4-vinylpyridine, poly(vinyl acetate), polyacrylonitrile, polymeric liquid crystal resin, polysulfone, polyether nitride, and polycaprolactone.
20. The article of manufacture recited in 13 above further comprising a third layer disposed between the first and second layers, the third layer comprising a material that permits transmission of a laser beam therethrough.
21. The article of manufacture recited in 13 above, wherein the first and second layers are substantially transparent.
22. The article of manufacture recited in 13 above, wherein the core layer is substantially opaque.
23. A method of engraving a material by exposing the material to laser radiation, comprising:
adding to the material an effective amount of a laser enhancing additive, the laser enhancing additive comprising:
exposing the material to laser radiation in a manner that causes the material to be engraved by the laser radiation.
24. The method recited in 23 above wherein the effective amount of the laser enhancing additive comprises 0.001% to 100% by weight of the material.
25. The method recited in 23 above wherein the material is substantially transparent and wherein the effective amount of the laser enhancing additive comprises 0.001% to 0.1% by weight of the material.
26. The method recited in 23 above further comprising laser engraving an indicium in grayscale in at least a portion of the material.
27. The method recited in 23 above further comprising using the laser engraved material in the manufacture of an identification document.
28. A method of laser engraving a gray scale image on an article having first and second layers, comprising:
adding to the first layer a first effective amount of least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), Potassium Iodide (KI), Sodium Iodide (NaI), and Aluminum Iodide (AlI);
adding to the second layer a second effective amount of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester; and
directing a laser beam so that it passes through at least a portion of the first layer and at least a portion of the second layer to form a grayscale image in at least one of the first and second layers.
29. The method recited in 23 above, further comprising:
directing a laser beam so that it that it passes through at least a portion of the first layer and at least a portion of the second layer such that the first and second layers become affixed to each other.
30. The method recited in 28 above wherein the first effective amount and the second effective amount together comprise about 0.001 to 0.1 percent by weight of the total weight of the first and second layers.
31. The method recited in 28 above further comprising using the material in the manufacture of an identification document.
32. A multilayer identification document, comprising:
a core layer;
a film layer overlaying at least a portion of the core layer and affixed to the portion of the core layer, the film layer comprising an additive that comprises:
33. The identification document recited in 32 above, wherein the identification document bears a first indicium thereon, the indicia obtained by exposing the film layer to a laser beam.
34. The identification document recited in 33 above, wherein the indicia comprises at least one of a gray scale image, photograph, text, tactile text, graphics, information, security pattern, security indicia, and digital watermark.
35. The identification document recited in 33 above wherein the first indicium comprises variable information.
36. The identification document recited in 32 above, wherein the film layer is substantially transparent and wherein the additive comprises about 0.001 to 0.10 percent by weight of the film layer.
37. The identification document recited in 36 above, wherein the film layer further comprises:
a first sub layer comprising an effective amount of least one of copper potassium iodide (CuKI3), Copper Iodide (CuI), Potassium Iodide (KI), Sodium Iodide (NaI), and Aluminum Iodide (AlI); and
a second sub layer comprising an effective amount of at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester.
38. A process for making an identification document, comprising:
overlaying at least a portion of a core layer with a film layer, the film layer comprising:
at least one substance selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester; and affixing the film layer to the portion of the core layer.
39. The process recited in 38 above, further comprising directing a laser beam to at least a portion of the film layer to produce a first grayscale indicium in the portion of the film layer.
D. Second Aspect of the Invention
D.1 Features
In a second aspect of the invention, the above-described inventive laser enhancing additive can be added to a coating on a at least a portion of a surface to be laser engraved or marked, to help to overcome the problem that the material being laser engraved or marked is responsive to laser engraving and/or is not responsive enough to be capable of having grayscale images laser engraved thereon. We have found that the ability to laser engrave at least some materials can be improved and/or the time to laser engrave at least some materials can be reduced, by coating the area of the given material to be engraved with a coating that contains the inventive laser enhancing additive. Note also that the coating containing the inventive laser enhancing additive can be applied to a laminate or another coating. We also have found that the compounds that make up the inventive laser sensitive additives described herein can be divided over two or more coatings, or a coating and a laminate, to provide improved laser engraving performance.
A least one embodiment of the second aspect of the invention is based on the surprising discovery that the process of laser engraving of materials, especially materials used in the manufacture of identification documents, is improved and enhanced by coating the area of the material to be engraved with a coating that includes a first effective amount of a first composition, the first composition being at least one of copper potassium iodide (CuKI3), copper iodide (CuI), Potassium Iodide (KI), Sodium Iodide (NaI), and Aluminum Iodide (AlI) (and any combination thereof) together with a second effective amount of a second composition, the second composition being at least one of the following: zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate (e.g., RSO2Na or R—OSO2Na), and Thioester (e.g., substances containing —SH) (and any combination thereof). As with the first aspect of the invention, the combination of at least one of CuI, KI, NaI, AlI (and any combination thereof), and CuKI3 together with at least one of ZnS, BaS, alkyl sulfonate, and thioester (and any combination thereof) continues to be referred to as the “inventive laser enhancing additive”.
In at least some embodiments, the resultant concentration of the inventive laser enhancing additive in the coating, by weight, ranges from 0.001% to 0.1% by weight. In at least some embodiments, the inventive laser enhancing additive is added at larger concentrations (e.g., from 0.1% to 100%). At concentrations larger than 0.1%, the inventive laser enhancing additive can still be used to enhance laser marking or engraving of an article or surface being coated, but at possible sacrifice of some of the transparency of the coating (if, in fact, the coating is substantially transparent or translucent to begin with). Advantageously, in at least one embodiment, the laser enhancing additive is about 0.06% by weight in the coating. In another advantageous embodiment, the 0.06% by weight includes 0.03% by weight of at least one of CuI, KI, NaI, AlI, and CuKI3 (and any combination thereof) and 0.03% by weight of at least one of ZnS, BaS, alkyl sulfonate, and thioester (and any combination thereof).
We further note that the previous examples and concentrations discussed in connection with
Of course, those skilled in the art will appreciate that other concentration ranges for the laser enhancing formulations may be usable, especially when the coating is applied to opaque materials and colored materials. In addition, it will be appreciated that the proportions of the at least one of CuI, KI, NaI, AlI, and CuKI3 can vary, as can proportions of the at least one of ZnS, BaS, alkyl sulfonate, and thioester also can vary. That is, a given composition could have, for example (using for purely illustrative purposes the example of a composition containing CuI and BaS), equal amounts of CuI and BaS, or 3 parts CuI to 5 parts BaS, 2 parts CuI to 1 part BaS, etc. We expect that those skilled in the art will be able to determine optimum proportions without undue experimentation. In addition, we note that at least one advantageous compound that we have tested uses the two sub compositions (e.g., the CuI and BaS, in this example) in equal proportions.
The concentration of the inventive laser enhancing additive that is usable with a given coating is at least in part dependent on the properties of the coating (especially the binder material in the coating) laminate and the ultimate use, durability, environmental conditions, etc., to which the coating is subject. It is possible that higher concentrations of the laser enhancing formulations in the coating may affect one or more properties of the coating, such as transparency, durability, malleability, opacity, rigidity, etc. Of course, appropriate quantities of the additives can be determined for a particular coating application without undue experimentation. Additional factors may include engraving time and process and desired engraving quality.
It is contemplated that the inventive laser enhancing additive can be added to a coating that is applied (by virtually any known method) to virtually any surface, article, or product., to enable the surface, article, or product to be laser engraved, especially with a high quality grayscale image. Accordingly, we believe that the inventive laser enhancing laminate has applicability to the manufacture many different articles that can be coated, including but not limited to identification documents, identification cards, credit cards, prepaid cards, phone cards, smart cards, contact cards, contactless cards, combination contact-contactless cards, proximity cards (e.g., radio frequency (RFID) cards), electronic components, tags, packaging, containers, building materials, construction materials, plumbing materials, automotive, aerospace, and military products, computers, recording media, labels, tools and tooling, medical devices, consumer products, and toys. Further, we contemplate that entire articles of manufacture could be formed wholly or partially using a coating material that contains the inventive laser enhancing additive and then laser engraved or marked.
As those skilled in the art will appreciate, the effective amounts of the first and second compositions that are added to the coating can vary depending on the type of coating (e.g., the binder material and/or other additives present in the coating), the material being coated, and on the laser engraving technique being employed. In at least one embodiment, the inventive laser enhancing additive in the coating includes equivalent amounts of the first and second compositions described above. In at least one embodiment, the coating includes more of the second composition than the first composition. In at least one embodiment, the coating includes more of the first composition than the second composition.
As those skilled in the art also will appreciate, the inventive laser enhancing additive can be added to many different types of coatings, including organic coatings and aqueous coatings, substantially transparent coatings and non-transparent coatings. In addition, in at least some embodiments, the coating containing the inventive laser enhancing additive can further comprise a binder, which can be, for example, latex, emulsion, a thermoset binder or a thermoplastic binder. Illustrative examples of binder materials which we have found to be usable include resins, polyesters, polycarbonates, vinyls, acrylates, urethanes, and cellulose based materials. We anticipate that those skilled in the art will readily be able to formulate coatings containing the inventive laser enhancing additive using many other binder materials, such as lacquer, varnish, latex, acrylic, epoxy resins, nitrocellulose, alkyd resins, melamine formalaldehyde, polyamides, silicone, and polyvinyl butyral. Those skilled in the art also will appreciate that virtually any resin able to be formed into a coating could be used with the invention. Of course, a coating containing the inventive laser enhancing additive can also include other additives known in the art, such as colorants (e.g., pigments or dyes), stabilizers, lubricants, adhesion promoting agents, toners, surfactants, anti-static agents, thickeners, thixotropic agents, and the like.
By applying a coating containing the inventive laser enhancing additive (also referred to herein as the “inventive coating”) to a surface of a material to be laser engraved, we have found that we can form high quality images and other engravings on articles such as multi-layered ID documents, at acceptable throughput rates. The high quality images can include both grayscale laser engraved images (as described herein) and full color laser engraved images (which are more particularly described in applicants' commonly assigned U.S. patent application, application Ser. No. 10/330,034, entitled “Systems, Compositions, and Methods for Full Color Laser Engraving of ID Documents,” attorney docket no. P0734D, filed Dec. 24, 2002). Further, we anticipate that the inventive coating can be applied to virtually any part of the surface of any article where laser marking, especially laser engraving of grayscale images, is desired. The entire article or surface need not be coated.
We believe that the laser engraving or marking of various articles, including but not limited to identification documents, identification cards, credit cards, prepaid cards, phone cards, smart cards, contact cards, contactless cards, combination contact-contactless cards, proximity cards (e.g., radio frequency (RFID) cards), electronic components, tags, packaging, containers, building materials, construction materials, plumbing materials, automotive, aerospace, and military products, computers, recording media, labels, tools and tooling, medical devices, consumer products, toys, etc., can be improved by coating the surface of the article to be engraved with the inventive coating. This improvement can be achieved on articles whose surface is a laminate to be laser engraved. In addition, the inventive coating, as contemplated herein, can be applied over other coatings (or materials) that cover the surface of an article to be laser engraved or marked, so long as the “intervening” materials between the surface being laser engraved or marked and the inventive coating are transparent to laser radiation.
In at least one embodiment, the inventive coating is used to improve the manufacture of an identification document, such as the identification document 10 shown in
In one embodiment, the inventive coating is applied to an identification document and the issuing authority for the identification document (e.g., a state's DMV, a passport authority, etc.) can be involved with the design layout, creating unique coating patterns for the document's core. The coating layout can be held secret, further enhancing the security of the document, while creating obstacles for the counterfeiter. Changing the coating materials (e.g., the binder)or additive concentration or adhesive will alter the coating placement and response, creating even further obstacles for the counterfeiter and may make one or more portions of the identification document impossible to engrave with a usable indicia and difficult to duplicate.
Note also that use of the inventive coating described herein may provide at least some of the same advantages (especially in the production of grayscale images) previously described in connection with use of the inventive laser enhancing laminate, and they are not repeated here. Further, the lasers previously described in connection with the first aspect of the invention are similarly usable in this second aspect of the invention, and their description is not repeated here.
In another embodiment of the invention (illustrated further herein in connection with
For example, assume that a layer that is optically “closer” to the laser beam (e.g., a top layer) has a first concentration of the inventive laser enhancing additives and a second layer that is optically more distant (e.g., a layer below the top layer) has a second, higher concentration of the inventive laser enhancing additives. When these two layers are laser engraved, the bottom layer will have a visible laser engraved image (e.g., a grayscale image) and the top layer will have a so-called “latent” laser engraved image that can be fainter but still visually perceptible to the naked human eye. It also is contemplated that the either of the two layers could contain colorants (e.g., both visible and non visible (e.g., IR, UV) colorants that further differentiate between the visible laser engraved image and the latent laser engraved image.
By “optically adjacent”, it is meant that a laser can pass through from one layer (e.g., a laminate) to another layer (e.g., a second laminate or a core layer or layer having a coating thereon), such that both layers can be laser engraved by the same laser beam at substantially the same time. Two layers that are optically adjacent need not be literally adjacent, although they can be. The two layers can be directly adjacent (e.g., two layers that are fused together), or can be separated by a material that permits the laser beam to pass therethrough but does not itself necessarily have to react to the laser beam. As an example, for optical adjacency, the two layers can be separated by an adhesive that permits laser light to pass therethrough), or can be separated by another type of layer (e.g., a thin film layer) that permits laser light to pass through).
By “dividing the laser enhancing additive”, at least any one or more of the following embodiments is included:
(a) the entire additive in the entire desired concentration, e.g. 0.06% by weight, is divided between two optically adjacent layers, for example 0.03% in a first layer of laminate and 0.03% in a coating applied to a second laminate that is optically adjacent to the first laminate, or 0.06% by weight in one layer comprising a coating and 0.03% by weight in another layer comprising a coating); or
(b) a first component of the inventive laser enhancing additive is provided in a first layer (the “first component” is one of the two components in the inventive laser enhancing additive, either the component comprising at least one of copper iodide, copper potassium iodide, potassium iodide, sodium iodide, and aluminum iodide (and any combination thereof) or the component comprising at least one of zinc sulfide, barium sulfide, alkyl sulfonate, and thioester (and any combination thereof)) and a second component of the inventive laser enhancing additive (e.g., the other of the two components in the inventive laser enhancing additive) is provided in another layer that is optically adjacent to the first layer; or
(c) Each of the constituents of the inventive laser enhancing additive (e.g., copper, potassium, iodine, etc.) can be present in a separate layer of coating and/or laminate, where the respective layers are either adjacent or separated by one or more layers of material (e.g., another laminate or an adhesive) that is transparent to laser radiation. When a laser beam is directed such that it passes through all of the layers containing a constituent of the inventive laser enhancing additive, the combined action of the constituents enable laser engraving to occur in at least one of the respective layers. The constituents also can be combined with one or more other constituents, in different layers, in this manner. For example, an effective amount of copper iodide and sodium iodide can be present in a coating applied to an article and an effective amount of zinc sulfide and potassium iodide can be present in a laminate applied over the coating, and an effective amount of aluminum iodide can be present in a coating that is then applied over that laminate. This example is not, of course, limiting; those skilled in the art will appreciate that there are many different ways to combine and/or separate the constituents of the inventive laser enhancing additive into one or more layers of coatings and/or laminates.
For any of (a), (b), and (c), above, the layers can be, for example:
(i) a plurality of laminates
(ii) a plurality of coatings applied to a given laminate;
(iii) a plurality of coatings applied to a given coating;
(iv) a mixture of a plurality of laminates and/or a plurality of coatings
(v) a core layer with a one or more coatings and one or more laminates coupled to the core layer;
(vi) at least on layer of laminate and at least one layer of coating applied over the at least one layer of laminate;
(vii) at least a first laminate with a coating coupled to at least a second laminate with a coating.
Finally, in another aspect of the invention, we have made the surprising discovery, however, that the LAZERFLAIR pigment can be added to a coating (in a similar manner as adding the above described inventive laser enhancing additive to a coating) to enable the laser engraving or marking of grayscale indicia on the article. It is known that the LAZERFLAIR pigment is a laser enhancing additive when added to the actual material to be engraved (see, e.g., the Internet web page http://www.empigments.com/LazerFlair.cfm) such that contrast can be improved. Our testing has shown, however, that LAZERFLAIR also can be added to a coating to improve the laser engraving of an article (e.g., a core layer in an identification document) to which the coating is applied. The LAZERFLAIR additive is available from EM Pigments (EM Pigments can be contacted through 7 Skyline Drive, Hawthorne, N.Y. 10532 USA)
D.2 Preparation/Manufacture
Embodiments of the inventive coating can be prepared in any customary manner known to those skilled in the art. For example, in one embodiment where the inventive coating comprises an organic polymeric binder, copper potassium iodide, and zinc sulfide, the copper potassium iodide and zinc sulfide can be mixed into the organic polymeric binder during mixing using a blender; the additive can be ground using, for example, a ball mill to reduce particle size.
In another embodiment, the inventive laser enhancing additive can be added to the coating as part of a masterbatch, such as was described previously for the inventive laser enhancing additives that were added to laminates. For example, a masterbatch containing 0.03% by weight of at least one of copper potassium iodide, copper iodide, potassium iodide, sodium iodide, and aluminum iodide and 0.03% by weight of zinc sulfide can be produced and mixed with org), each of the two compounds.
Although at least one advantageous embodiment of the invention uses a coating that is a liquid form when applied to the ID document, use of a liquid coating is not necessary. For example, those skilled in the art can, without undue experimentation, use the inventive laser enhancing additive in a coating that is applied in a non-liquid form (e.g., solid or powder that liquefies upon heating).
D.3 Illustrative Examples
In
Another anti-fraud advantage can be seen in the embodiment of
In
The inventive coating 70 can be applied to the surface 67 by any known method (e.g., by offset, flexography, screen-printing, spraying, dipping, immersion, brushing, rolling, masking desired coating areas, etc.). The thickness of the coating 70 is dependent on the article being coated, but can range from about 0.01 microns to about 50 microns for ID documents such as ID cards. It will be appreciated that other articles being laser engraved may require or use coatings having different thicknesses.
Although
We have found that the inventive coatings described herein may offer one or more advantages. For example, using the inventive coatings can enable the materials being coated to be laser marked or engraved with usable grayscale images. In addition, using the inventive coatings can enable faster laser engraving or marking, at lower laser power levels. Also, the inventive coatings can be selectively applied to articles such as identification documents to increase security and deter fraud. Further, the laser engraving that is possible using the inventive coatings is durable, abrasion resistant, and environmentally friendly.
D.4 Additional Embodiments of the Second Aspect of the Invention
We anticipate that at least the following combinations, and others like them, can be useful embodiments of the second aspect of the invention:
1. A coating having laser engraving properties, comprising:
a liquid carrier material; and
an effective amount of a laser enhancing additive, the laser enhancing additive comprising:
2. The coating recited in 1 above wherein the laser enhancing additive is present in an amount from about 0.001 to 100 percent by weight based on the total weight of the composition.
3. The coating recited in 1 above wherein the liquid carrier material is substantially transparent and the laser enhancing additive is present in an amount from about 0.001 to 0.1 percent by weight based on the total weight of the composition.
4. The coating recited in 1 above wherein the laser enhancing additive is present in an amount that is about 0.06 percent by weight based on the total weight of the composition.
5. The coating recited in 4 above, wherein the first and second quantities each comprise about 0.03 percent by weight based on the total weight of the composition.
6. The coating recited in 1 above wherein the first quantity and the second quantity are the same.
7. The coating recited in 1 above wherein the first quantity is greater than the second quantity.
8. The coating recited in 1 above wherein the first quantity is less than the second quantity.
9. The coating recited in 1 above wherein a substrate coated with the coating is laser engraveable by at least one of a diode pumped Nd:Yag laser, light pumped Nd:Yag laser, C02 laser and excimer laser.
10. The coating recited in 1 above wherein the liquid carrier material comprises at least one material selected from the group consisting of resins, polyesters, polycarbonates, vinyls, acrylates, urethanes, and cellulose based materials, thermosetting material, thermoplastic, polymer, copolymer, polycarbonate, fused polycarbonate, polyester, amorphous polyester, polyolefin, silicon-filled polyolefin, TESLIN, foamed polypropylene film, polyvinyl chloride, polyethylene, thermoplastic resins, engineering thermoplastic, polyurethane, polyamide, polystyrene, expanded polypropylene, polypropylene, acrylonitrile butadiene styrene (ABS), ABS/PC, high impact polystyrene, polyethylene terephthalate (PET), PET-G, PET-F, polybutylene terephthalate PBT), acetal copolymer (POM), polyetherimide (PEI), polyacrylate, poly(4-vinylpyridine, poly(vinyl acetate), polyacrylonitrile, polymeric liquid crystal resin, polysulfone, polyether nitride, and polycaprolactone.
11. A substrate capable of being laser engraved with a grayscale indicia, comprising:
a core layer having a first surface; and
a coating applied to at least a first area of the first surface, the coating comprising:
wherein laser energy directed at the first area of the core layer is capable of forming a grayscale indicium therein.
12. A substrate capable of being laser engraved with a grayscale indicia, comprising:
a core layer having a first surface;
a first coating applied to at least a first area of the first surface, the first coating comprising an effective amount of a first laser enhancing additive comprising at least one of one of copper potassium iodide (CuKI3), copper iodide (CuI), potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AlI); and
a second coating applied to at least a second area of the core layer, the second coating comprising an effective amount of a second laser enhancing additive, the second laser enhancing additive selected from the group consisting of zinc sulfide (ZnS), barium sulfide (BaS), alkyl sulfonate, and thioester;
the first and second areas at least partially overlapping on the core layer to define a third area on the core layer;
wherein laser energy directed at the third area of the core layer is capable of forming a grayscale indicium therein.
13. A method of producing an identification document, comprising:
providing a core including a top surface and a bottom surface; and
coating at least a portion of the top surface with a laser sensitive additive, the laser sensitive additive comprising:
14. The method recited in 13 above further comprising laminating at least the top surface of the core with a laminate.
15. The method recited in 13 above further comprising directing a laser beam so that it passes through at least a portion of the coating and reaches the core layer to form a grayscale indicium on the core layer.
16 The method recited in 13 above, wherein the core comprises at least one of TESLIN, polycarbonate, polyester, and polyvinyl chloride.
17. The method of recited in 13 above wherein the coating comprises Copper Iodide (CuI) potassium iodide (KI), sodium iodide (NaI), and aluminum iodide (AlI).
E. Third Aspect of the Invention.
In a third aspect of the invention, the invention utilizes the inventive laser enhancing laminate (or components thereof) in more than one layer on the identification document. Several embodiments of this aspect already have been presented above in the first and second aspects of the invention. Still another embodiment of this aspect is provided below.
In the embodiment of
The latent indicia 82, 84 can be advantageous as a security feature because a counterfeiter may remove the middle laminate 78 in an attempt to alter information in the middle laminate 78, but the information will still be present on the core layer 50 that has the first coating 76. Similarly, a counterfeiter may attempt to remove then replace the middle laminate 78, in order to alter information on the core layer 78, but the latent indicia 82, 84 will still be present and visible in the middle laminate 78. As those skilled in the art will appreciate, the type and placement of an indicia is formed on the core layer 50 depends on the particular type of laser used the manner in which the laser is used (e.g., pumped), and the duration of the application of laser energy.
It should be understood that although the example of
Concluding Remarks
Depending on the availability of lasers, identification documents manufactured in accordance with the invention can be produced in both over the counter and central issue environments. One example of a printing device that may be usable for at least some over the counter embodiments of the invention is the DATACARD DCL30 Desktop Card Laser Personalization System, available from Datacard Group of Minnetonka, Minn.
In one embodiment, following lamination and laser engraving, the ID document 10 is cooled and is cut (e.g., by die-cutting) to a predetermined size. In at least one embodiment, however, the substrate and laminate can be sized such that cutting the laminated printed substrate is not necessary.
The identification document 10 of the invention may be manufactured in any desired size. For example, identification documents can range in size from standard business card size (47.6.times.85.7 mm) up to identification booklet documents (127.times.177.8 mm), and can have thicknesses in the range of from about 0.3 to about 1.3 mm. At least some identification documents produced in accordance with embodiments of the invention conform to all the requirements of ISO 7810, 1985 and will thus be of the CR-80 size, 85.47–85.73 mm wide, 53.92–54.03 mm high and 0.69–0.84 mm thick. The corners of such CR-80 documents are rounded with a radius of 2.88–3.48 mm.
In addition, while the preferred embodiments have been described with reference to cyan, magenta and yellow dyes, the present invention is not so limited. The present invention can include addition color, alternative color schemes and even spot colors. Also, while the present invention has been described with reference to NIR, the inventive technique can be expanded to include dyes responsive in the ultra-violet spectrum and other IR ranges.
Further, while some of the examples above are disclosed with specific core components (e.g., TESLIN), we note that our inventive compositions, methods, articles, features, and processes can be applied to other core-based identification documents as well, including those documents manufactured from other materials. For example, where an embodiment has shown polycarbonate or polyester as an example over-laminate, those skilled in the art will appreciate that many other over laminate materials can be used as well.
We specifically contemplate that embodiments of the invention described herein will be usable and can be combined with at least some of the card structures disclosed in many of our previous patent applications, including at least commonly assigned patent application Ser. No. 60/471,429 entitled “Identification Document” (especially card structures that include polycarbonate) and in commonly assigned patent application Ser. No. 60/500,204, entitled “Identification Document with Optical Memory and Related Method of Manufacture”. The contents of these patent documents are incorporated by reference in their entirety.
We also specifically contemplate that embodiments of the invention described herein will be usable and can be combined with the teachings of commonly assigned patent application Ser. No. 10/330,034, entitled “Systems, Compositions, and Methods for Full Color Laser Engraving of ID Documents”.
We further specifically contemplate that embodiments of the invention described herein will be usable and can be combined with the teachings of a commonly assigned patent application Ser. No. 10/663,439 filed on Sep. 15, 2003, entitled “Enhanced Shadow Reduction System and Related Technologies for Digital Image Capture”.
The inventive coatings described herein may be used to sensitize other core components as well. Also, we note that the coating can be applied to both a document core and to an over-laminate, and that the laser engraving can be preformed in both (or either) the core and over-laminate.
To provide a comprehensive disclosure without unduly lengthening the specification, applicants herein incorporate by reference each of the patent documents referenced previously, along with U.S. Pat. Nos. 6,022,905, 5,298,922, 5,294,774, 4,652,722, 5,824,715 and 5,633,119, and U.S. Pat. Ser. No. 09/747,735 (filed Dec. 22, 2000) and Ser. No. 09/969,200 (filed Oct. 2, 2001).
Having described and illustrated the principles of the technology with reference to specific implementations, it will be recognized that the technology can be implemented in many other, different, forms.
Although certain words, languages, phrases, terminology, and product brands have been used herein to describe the various features of the embodiments of the invention, their use is not intended as limiting. Use of a given word, phrase, language, terminology, or product brand is intended to include all grammatical, literal, scientific, technical, and functional equivalents. The terminology used herein is for the purpose of description and not limitation.
The technology disclosed herein can be used in combination with other technologies. Examples include the technology detailed in the following applications, the disclosures of which are incorporated herein by reference: Ser. No. 09/747,735 (filed Dec. 22, 2000), Ser. No. 09/969,200 (filed Oct. 2, 2001). Also, instead of ID documents, the inventive techniques can be employed with product tags, product packaging, business cards, bags, charts, maps, labels, etc., etc., particularly those items including engraving of an over-laminate structure. The term ID document is broadly defined herein to include these tags, labels, packaging, cards, etc. In addition, while some of the examples above are disclosed with specific core components, it is noted that-laminates can be sensitized for use with other core components.
To provide a comprehensive disclosure without unduly lengthening the specification, applicant hereby incorporates by reference each of the patents and patent applications referenced above.
The particular combinations of elements and features in the above-detailed embodiments are exemplary only; the interchanging and substitution of these teachings with other teachings in this and the incorporated-by-reference patents/applications are also expressly contemplated. As those skilled in the art will recognize, variations, modifications, and other implementations of what is described herein can occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention as claimed. Accordingly, the foregoing description is by way of example only and is not intended as limiting. The invention's scope is defined in the following claims and the equivalents thereto.
Patent | Priority | Assignee | Title |
10017001, | May 20 2011 | 3M Innovative Properties Company | Laser-personalizable security articles |
10269197, | Aug 16 2006 | Isonas, Inc. | System and method for integrating and adapting security control systems |
10388090, | Aug 16 2006 | Isonas, Inc. | Security control and access system |
10699504, | Aug 16 2006 | Isonas, Inc. | System and method for integrating and adapting security control systems |
10881310, | Aug 25 2012 | The Board of Trustees of the Leland Stanford Junior University | Motion artifact mitigation methods and devices for pulse photoplethysmography |
11094154, | Aug 16 2006 | Isonas, Inc. | System and method for integrating and adapting security control systems |
11125646, | Sep 11 2017 | Trelleborg Sealing Solutions Germany GmbH | Sealing detection system and method |
11341797, | Aug 16 2006 | Isonas, Inc. | Security control and access system |
11557163, | Aug 16 2006 | Isonas, Inc. | System and method for integrating and adapting security control systems |
8662386, | Aug 16 2006 | ISONAS, INC | Method and system for controlling access to an enclosed area |
8883900, | Oct 25 2010 | SHPP GLOBAL TECHNOLOGIES B V | Electroless plating performance of laser direct structuring materials |
9153083, | Jul 09 2010 | ISONAS, INC | System and method for integrating and adapting security control systems |
9336633, | Jul 09 2010 | ISONAS, INC ; ISONAS INC | Security control access system |
9558606, | Aug 16 2006 | Isonas, Inc. | System and method for integrating and adapting security control systems |
9589400, | Aug 16 2006 | ISONAS, INC ; ISONAS INC | Security control and access system |
9972152, | Aug 16 2006 | Isonas, Inc. | System and method for integrating and adapting security control systems |
Patent | Priority | Assignee | Title |
3153166, | |||
3413171, | |||
3569619, | |||
3571957, | |||
3582439, | |||
3601913, | |||
3614839, | |||
3647275, | |||
3665162, | |||
3703628, | |||
3737226, | |||
3758970, | |||
3802101, | |||
3805238, | |||
3838444, | |||
3845391, | |||
3860558, | |||
3914877, | |||
3922074, | |||
3975291, | Mar 03 1973 | Bayer Aktiengesellschaft | Process for producing laser light |
3984624, | Jul 25 1974 | Weston Instruments, Inc. | Video system for conveying digital and analog information |
4032691, | Mar 22 1974 | Fuji Photo Film Co., Ltd. | Recording material |
4035740, | Mar 13 1974 | Bayer Aktiengesellschaft | Dyestuff laser |
4051374, | Jun 04 1976 | Eastman Kodak Company | Imaging device having improved blue response |
4069487, | Dec 26 1974 | Canon Kabushiki Kaisha | Recording member and process for recording |
4072911, | May 04 1974 | Bayer Aktiengesellschaft | Dyestuff laser |
4096015, | Jul 18 1975 | Fuji Photo Film Co., Ltd. | Method of making laminated plastic cards |
4097279, | Feb 04 1972 | WHITEHEAD, N PETER | Process for preparing an identification card |
4100509, | Jul 04 1975 | Bayer Aktiengesellschaft | Dyestuff laser |
4119361, | Aug 14 1975 | Landis & Gyr | Multilayer identification card |
4131337, | Feb 18 1976 | Hoechst Aktiengesellschaft | Comparison reader for holographic identification cards |
4171766, | Mar 26 1976 | Siemens Aktiengesellschaft | Falsification-proof identification card having a Lippmann-Bragg hologram |
4179686, | Nov 03 1976 | System for checking the authenticity of identification papers | |
4225967, | Jan 09 1978 | Fujitsu Limited | Broadcast acknowledgement method and system |
4230990, | Mar 16 1979 | JOHN G LERT, JR | Broadcast program identification method and system |
4231113, | Jun 26 1964 | International Business Machines Corporation | Anti-jam communications system |
4238849, | Dec 22 1977 | NOKIA DEUTSCHLAND GMBH | Method of and system for transmitting two different messages on a carrier wave over a single transmission channel of predetermined bandwidth |
4252995, | Feb 25 1977 | U.S. Philips Corporation | Radio broadcasting system with transmitter identification |
4256900, | Feb 05 1977 | Bayer Aktiengesellschaft | Fluorescent azolyl benzocoumarin dyestuffs |
4270130, | Jan 08 1979 | Eastman Kodak Company | Thermal deformation record device with bleachable dye |
4271395, | Jan 05 1977 | Bayer Aktiengesellschaft | Dyestuff laser |
4274062, | Jan 05 1977 | Bayer Aktiengesellschaft | Dyestuff laser |
4289957, | Apr 19 1978 | La Telemecanique Electrique | Reading stroke codes |
4301091, | Sep 23 1978 | Bayer Aktiengesellschaft | Fluorescent dyestuffs |
4304809, | Dec 14 1978 | HOECHST AKTIENGESELLSCHAFT, A CORP OF GERMANY | Identity card with grid images |
4313197, | Apr 09 1980 | Bell Telephone Laboratories, Incorporated | Spread spectrum arrangement for (de)multiplexing speech signals and nonspeech signals |
4313984, | Dec 30 1978 | Hoechst Aktiengesellschaft | Laminated identity card having separation-resistant laminae and method of manufacturing same |
4317782, | Feb 22 1978 | Bayer Aktiengesellschaft | Distyryl compounds |
4324421, | Dec 30 1978 | Hoechst Aktiengesellschaft | Identity card with incorporated fibrids |
4326066, | Jan 23 1979 | Bayer Aktiengesellschaft | Triazolyl coumarin compounds, processes for their preparation and their use as whiteners and laser dyestuffs |
4338258, | Sep 20 1979 | Bayer Aktiengesellschaft | Fluorescent dyestuffs, processes for their preparation and their use as laser dyestuffs |
4356052, | Jan 12 1979 | Hoechst Aktiengesellschaft | Method and apparatus for selective lamination of thermoplastic layers |
4367488, | Dec 08 1980 | Sterling Television Presentations Inc. Video Data Systems Division | Data encoding for television |
4379947, | Feb 02 1979 | MUZAK, LLC AND MUZAK HOLDINGS, LLC | System for transmitting data simultaneously with audio |
4380027, | Dec 08 1980 | STERLING TELEVISION PRESENTATIONS, INC | Data encoding for television |
4384973, | Sep 03 1980 | Bayer Aktiengesellschaft | Dimethine compounds of the coumarin series, a process for their preparation and their use as luminous dyestuffs |
4395600, | Nov 26 1980 | PROACTIVE SYSTEMS, INC | Auditory subliminal message system and method |
4425642, | Jan 08 1982 | APPLIED SPECTRUM TECHNOLOGIES, INC | Simultaneous transmission of two information signals within a band-limited communications channel |
4450024, | Aug 07 1980 | GAO Gesellschaft fur Automation und Organisation mbH | Identification card with an IC-module and method for producing it |
4467209, | Dec 31 1980 | GAO Gesellschaft fur Automation und Organisation mbH | Method of producing identification cards and a device for carrying out same |
4468468, | Jun 27 1981 | Bayer Aktiengesellschaft | Process for the selective analysis of individual trace-like components in gases and liquid |
4476468, | Jun 22 1981 | LIGHT SIGNATURES, INC , 1901 AVENUE OF THE STARS, LOS ANGELES CA 90067 | Secure transaction card and verification system |
4506148, | Nov 05 1981 | HERA ROTTERDAM B V | Identification card |
4507346, | Apr 08 1982 | GAO Gesellschaft fur Automation und Organisation mbH | Multilayer identification card and a method of producing it |
4510311, | Jan 30 1982 | Bayer Aktiengesellschaft | Water-insoluble azolystyryl optical brighteners |
4523508, | Nov 02 1983 | GENERAL DYNAMICS ARMAMENT SYSTEMS, INC | In-line annular piston fixed bolt regenerative liquid propellant gun |
4523777, | Dec 23 1980 | GAO Gesellschaft fur Automation und Organisation mbH | Identification card and a method of producing same |
4527059, | Jun 27 1981 | Bayer Aktiengesellschaft | Laser activated mass spectrometer for the selective analysis of individual trace-like components in gases and liquids |
4528588, | Sep 26 1980 | Method and apparatus for marking the information content of an information carrying signal | |
4529992, | Nov 13 1982 | Oji Paper Company Limited | Multicolor record material |
4532508, | Apr 01 1983 | Siemens Corporate Research & Support, Inc. | Personal authentication system |
4536013, | Aug 17 1979 | GAO Gesellschaft Fur Automation und Organisation | Multilayered indentification card |
4544181, | Feb 22 1979 | GAO Gesellschaft fur Automation und Organisation mbH | Identification card |
4547804, | Mar 21 1983 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Method and apparatus for the automatic identification and verification of commercial broadcast programs |
4551265, | Sep 20 1979 | Bayer Aktiengesellschaft | Fluorescent dyestuffs, processes for their preparation and their use as laser dyestuffs |
4553261, | May 31 1983 | Document and data handling and retrieval system | |
4579754, | Dec 24 1981 | GAO Gesellschaft fur Automation und Organisation mbH | Identification card having laser inscribed indicia and a method of producing it |
4590366, | Jul 01 1983 | Esselte Security Systems AB | Method of securing simple codes |
4595950, | Sep 26 1980 | Method and apparatus for marking the information content of an information carrying signal | |
4596409, | Dec 23 1980 | GAO Gesellschaft fuer Automation und Oganisation mbH | Identification card and method of producing it |
4597592, | Dec 31 1982 | GAO Gesellschaft fur Automation und Organisation mbH | Identification card with duplicate data |
4597593, | Apr 20 1983 | GAO Gesellschaft fur Automation und Organisation mbH | Identification card and a method of producing same |
4617216, | Aug 07 1980 | GAO Gesellschaft fur Automation und Organisation mbH | Multi-layer identification card |
4621271, | Sep 23 1985 | Eastman Kodak Company | Apparatus and method for controlling a thermal printer apparatus |
4629215, | Dec 23 1980 | GAO Gesellschaft fuer Automation und Organisation mbH | Identification card and a method of producing same |
4637051, | Jul 18 1983 | Pitney Bowes Inc. | System having a character generator for printing encrypted messages |
4652722, | Apr 05 1984 | Marconi Data Systems Inc | Laser marking apparatus |
4653775, | Oct 21 1985 | YAMA CAPITAL, LLC | Preprinted image-receiving elements for laminated documents |
4653862, | Oct 01 1982 | Seiko Epson Corporation | Liquid crystal display device having color filters sized to prevent light leakage between pixels |
4654290, | Feb 01 1985 | Freescale Semiconductor, Inc | Laser markable molding compound, method of use and device therefrom |
4654867, | Jul 13 1984 | Motorola, Inc. | Cellular voice and data radiotelephone system |
4660221, | Jul 18 1983 | Pitney Bowes Inc. | System for printing encrypted messages with bar-code representation |
4663518, | Sep 04 1984 | YAMA CAPITAL, LLC | Optical storage identification card and read/write system |
4665431, | Jun 24 1982 | Technology Licensing Corporation | Apparatus and method for receiving audio signals transmitted as part of a television video signal |
4670882, | Oct 07 1978 | Bayer Aktiengesellschaft | Dyestuff laser |
4672605, | Mar 20 1984 | APPLIED SPECTRUM TECHNOLOGIES, INC | Data and voice communications system |
4672891, | Dec 31 1982 | GAO Gesellschaft fur Automation und Organisation mbH | Method of producing an identification card |
4675746, | Jul 22 1983 | Data Card Corporation | System for forming picture, alphanumeric and micrographic images on the surface of a plastic card |
4677435, | Jul 23 1984 | Communaute Europeenne de l'Energie Atomique (Euratom); Association pour la Promotion de la Technologie (Promotech) | Surface texture reading access checking system |
4682794, | Jul 22 1985 | PHOTON IMAGING CORP , A DE CORP | Secure identification card and system |
4687526, | Jan 08 1986 | LASERCARD COMPANY L P | Method of making an identification card |
4689477, | Jun 23 1980 | Light Signatures, Inc. | Verification system for document substance and content |
4703476, | Sep 16 1983 | ASONIC DATA SERVICES, INC | Encoding of transmitted program material |
4711690, | Aug 24 1982 | HAGHIRI-TEHRANI, YAHYA | Method for making an identification card having features for testing in incident and transmitted light |
4712103, | Dec 03 1985 | Door lock control system | |
4718106, | May 12 1986 | PRETESTING COMPANY, INC , THE | Survey of radio audience |
4723072, | Jan 11 1984 | Kabushiki Kaisha Toshiba | Apparatus for discriminating sheets |
4732410, | Dec 23 1980 | GAO Gesellschaft fuer Automation und Organisation mbH | Identification card and a method of producing same |
4735670, | Dec 23 1980 | GAO Gesellschaft fuer Automation und Organisation mbH | Method of producing an identification card |
4738949, | Dec 29 1986 | Eastman Kodak Company | High-security identification card obtained by thermal dye transfer |
4739377, | Oct 10 1986 | Eastman Kodak Company | Confidential document reproduction method and apparatus |
4741042, | Dec 16 1986 | CORNELL RESEARCH ROUNDATION, INC , A CORP OF N Y | Image processing system for detecting bruises on fruit |
4748452, | Apr 20 1983 | GAO Gesellschaft fur Automation und Organisation mbH | Method of producing an identification card |
4750173, | May 21 1985 | POLYGRAM INTERNATIONAL HOLDING B V , A CORP OF THE NETHERLANDS | Method of transmitting audio information and additional information in digital form |
4751525, | May 07 1985 | DE LA RUE COMPANY PLC, THE, DE LA RUE HOUSE, A BRITISH COMPANY | Scanning system and method of scanning |
4754128, | Feb 18 1985 | Dai Nippon Insatsu Kabushiki Kaisha | Optical cards and processes for preparing the same |
4765656, | Oct 15 1985 | GAO Gesellschaft fur Automation und Organisation mbH | Data carrier having an optical authenticity feature and methods for producing and testing said data carrier |
4766026, | Oct 15 1985 | GAO GESELLSCHAFT FUR AUTOMATION UND ORGANISATION, MBH | Identification card with a visible authenticity feature and a method of manufacturing said card |
4775901, | Dec 04 1985 | Sony Corporation | Apparatus and method for preventing unauthorized dubbing of a recorded signal |
4776013, | Apr 18 1986 | Rotlex Optics Ltd. | Method and apparatus of encryption of optical images |
4782342, | Aug 04 1986 | Proximity identification system with lateral flux paths | |
4790566, | Oct 11 1984 | MATRA | Identity document difficult to falsify and a process for manufacturing such a document |
4803114, | Dec 14 1985 | UNILEVER PATENT HOLDINGS B V | PVC film for the production of identity cards |
4805020, | Mar 21 1983 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Television program transmission verification method and apparatus |
4807031, | Oct 20 1987 | KOPLAR INTERACTIVE SYSTEMS INTERNATIONAL, L L C | Interactive video method and apparatus |
4811357, | Jan 04 1988 | Rembrandt Communications, LP | Secondary channel for digital modems using spread spectrum subliminal induced modulation |
4811408, | Nov 13 1987 | Light Signatures, Inc. | Image dissecting document verification system |
4816372, | Sep 26 1986 | Agfa-Gevaert Aktiengesellschaft | Heat development process and color photographic recording material suitable for this process |
4816374, | Apr 12 1985 | Societe d'Applications Plastiques Rhone-Alpes (SAPRA) | Method of making a plastic material sensitive to laser radiation and enabling it to be marked by a laser, and articles obtained thereby |
4820912, | Sep 19 1985 | N. V. Bekaert S.A. | Method and apparatus for checking the authenticity of documents |
4822973, | Mar 30 1984 | Bayer Aktiengesellschaft | Composite plastic with laser altered internal material properties |
4835517, | Jan 26 1984 | The University of British Columbia | Modem for pseudo noise communication on A.C. lines |
4837422, | Sep 08 1987 | DETHLOFF, JAN; DETHLOFF, NINA | Multi-user card system |
4855827, | Jul 21 1987 | PHYXATION, INC | Method of providing identification, other digital data and multiple audio tracks in video systems |
4861620, | Nov 14 1986 | Mitsubishi Denki Kabushiki Kaisha | Method of laser marking |
4864618, | Nov 26 1986 | Pitney Bowes Inc | Automated transaction system with modular printhead having print authentication feature |
4866771, | Jan 20 1987 | The Analytic Sciences Corporation | Signaling system |
4876617, | May 06 1986 | MEDIAGUIDE HOLDINGS, LLC | Signal identification |
4877713, | Jan 21 1986 | KYODO PRINTING CO , LTD , A CORP OF JAPAN | Preformatted optical recording card and method of producing the same |
4879747, | Mar 21 1988 | YAMA CAPITAL, LLC | Method and system for personal identification |
4884139, | Dec 24 1986 | Etat Francais, Represente Par Le Secretariat D'etat Aux Post Es Et | Method of digital sound broadcasting in television channels with spectrum interlacing |
4888798, | Apr 19 1985 | QMS, INC , A DE CORP | Modular software security |
4889749, | Dec 03 1986 | MITSUBISHI DENKI K K | Identification card |
4894110, | Oct 15 1985 | GAO Gesellschaft fur Automation und Organisation mbH | Identification card with a visible authenticity feature |
4903301, | Feb 27 1987 | Hitachi, Ltd. | Method and system for transmitting variable rate speech signal |
4908836, | Oct 11 1988 | UNISYS CORPORATION, BLUE BELL, PA , A CORP OF DE | Method and apparatus for decoding multiple bit sequences that are transmitted simultaneously in a single channel |
4908873, | May 13 1983 | TOLTEK ELECTRONICS CORPORATION | Document reproduction security system |
4915237, | Sep 11 1986 | INEX VISTECH TECHNOLOGIES, INC | Comprehensive container inspection system |
4916300, | Apr 15 1986 | Omron Tateisi Electronics Co. | Optically readable/writable card |
4921278, | Apr 01 1985 | Chinese Academy of Sciences | Identification system using computer generated moire |
4939515, | Sep 30 1988 | GENERAL ELECTRIC COMPANY, A CORP OF NEW YORK | Digital signal encoding and decoding apparatus |
4941150, | May 06 1987 | Victor Company of Japan, Ltd. | Spread spectrum communication system |
4943973, | Mar 31 1989 | AT&T Company; AT&T INFORMATION SYSTEMS INC , 100 SOUTHGATE PARKWAY, MORRISTOWN, NJ 07960, A CORP OF DE; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, 550 MADISON AVE , NEW YORK, NY 10022-3201, A CORP OF NY | Spread-spectrum identification signal for communications system |
4943976, | Sep 16 1988 | Victor Company of Japan, Ltd. | Spread spectrum communication system |
4944036, | Dec 28 1970 | Signature filter system | |
4945215, | Oct 15 1986 | Kyodo Printing Co., Ltd. | Optical recording card having hologram contained therein and method of producing the same |
4947028, | Jul 19 1988 | Visa International Service Association | Automated order and payment system |
4959406, | Feb 18 1988 | Bayer Aktiengesellschaft | Laser-writable material |
4963998, | Apr 20 1988 | Thorn EM plc | Apparatus for marking a recorded signal |
4965827, | May 19 1987 | GENERAL ELECTRIC COMPANY THE, P L C , 1 STANHOPE GATE, LONDON W1A 1EH,UNITED KINGDOM | Authenticator |
4967273, | Apr 15 1985 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Television program transmission verification method and apparatus |
4968063, | Sep 19 1989 | Minnesota Mining and Manufacturing Company | Transparent tamper-indicating document overlay |
4969041, | Sep 23 1988 | Tektronix, Inc | Embedment of data in a video signal |
4972471, | May 15 1989 | Encoding system | |
4972476, | May 11 1989 | Counterfeit proof ID card having a scrambled facial image | |
4977594, | Oct 14 1986 | ELECTRONIC PUBLISHING RESOURCES, INC | Database usage metering and protection system and method |
4979210, | Jul 08 1987 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for protection of signal copy |
4990759, | Dec 22 1987 | Gemplus Card International | Chip card structure |
4993068, | Nov 27 1989 | Motorola, Inc. | Unforgeable personal identification system |
4994831, | Dec 11 1989 | Beattie Systems, Inc. | Floating image camera |
4996530, | Nov 27 1989 | Agilent Technologies Inc | Statistically based continuous autocalibration method and apparatus |
4999065, | Jun 09 1987 | Lasercard Company L.P. | Method of making an identification card |
5005872, | Sep 22 1987 | GAO Gesellschaft fur Automation und Organisation mbH | Multilayer identity card usable as a printing block and a method of producing it |
5010405, | Feb 02 1989 | Massachusetts Institute of Technology | Receiver-compatible enhanced definition television system |
5013900, | Dec 28 1982 | GAO Gesellschaft fur Automation und Organisation mbH | Identification card with integrated circuit |
5023907, | Sep 30 1988 | Hewlett-Packard Company | Network license server |
5024989, | Apr 25 1990 | Polaroid Corporation | Process and materials for thermal imaging |
5027401, | Jul 03 1990 | ZERCO SYSTEMS INTERNATONAL, INC | System for the secure storage and transmission of data |
5036513, | Jun 21 1989 | ACADEMY OF APPLIED SCIENCE INC , 98 WASHINGTON ST NH, A CORP OF MA | Method of and apparatus for integrated voice (audio) communication simultaneously with "under voice" user-transparent digital data between telephone instruments |
5053956, | Jun 17 1985 | COATS VIYELL PLC A BRITISH COMPANY | Interactive system for retail transactions |
5060981, | Sep 19 1989 | Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY, ST PAUL, MN A CORP OF DELAWARE | Transparent overlay for protecting a document from tampering |
5061341, | Jan 25 1990 | CLINICAL DIAGNOSTIC SYSTEMS INC | Laser-ablating a marking in a coating on plastic articles |
5062341, | Jan 28 1989 | PLAYTIME PRODUCTS, INC A NY CORP | Portable drum sound simulator generating multiple sounds |
5063446, | Aug 11 1989 | General Electric Company | Apparatus for transmitting auxiliary signal in a TV channel |
5073899, | Jul 13 1988 | U S PHILIPS CORPORATION | Transmission system for sending two signals simultaneously on the same communications channel |
5075195, | Aug 18 1989 | Ciba-Geigy Corporation | Laser marking of plastics objects of any desired shape with special effects |
5079648, | Apr 20 1988 | Thorn EMI plc | Marked recorded signals |
5086469, | Jun 29 1990 | ENTERASYS NETWORKS, INC | Encryption with selective disclosure of protocol identifiers |
5095196, | Dec 28 1988 | OKI ELECTRIC INDUSTRY CO , LTD | Security system with imaging function |
5100711, | Feb 03 1989 | NIPPON PAPER INDUSTRIES CO , LTD | Optical recording medium optical recording method, and optical recording device used in method |
5103459, | Jun 25 1990 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | System and method for generating signal waveforms in a CDMA cellular telephone system |
5113445, | Jul 09 1990 | Symbol Technologies Inc. | System for encoding data in machine readable graphic form |
5113518, | Jun 03 1988 | PITNEY BOWES INC , WALTER H WHEELER, JR DR , STAMFORD, CT , A CORP OF DE | Method and system for preventing unauthorized use of software |
5122813, | Sep 22 1987 | GAO Gesellschaft fur Automation und Organisation mbH. | Method of making a multilayer identification card usable as a printing block |
5128779, | Feb 12 1988 | JDS Uniphase Corporation | Non-continuous holograms, methods of making them and articles incorporating them |
5138070, | Sep 13 1989 | LANXESS Deutschland GmbH | Pentamethine dyestuffs and derivatives |
5138604, | Apr 12 1988 | Dai Nippon Insatsu Kabushiki Kaisha | Optical recording method having two degrees of reflectivity and a diffraction grating or hologram formed integrally thereon and process for making it |
5138712, | Oct 02 1989 | SUN MICROSYSTEMS, INC , A CORP OF DE | Apparatus and method for licensing software on a network of computers |
5146457, | Sep 16 1988 | U.S. Philips Corporation | Device for transmitting data words representing a digitalized analog signal and device for receiving the transmitted data words |
5148498, | Aug 01 1990 | AWARE, INC , A CORP OF MA | Image coding apparatus and method utilizing separable transformations |
5150409, | Aug 13 1987 | Device for the identification of messages | |
5156938, | Mar 30 1989 | PGI Graphics Imaging LLC | Ablation-transfer imaging/recording |
5157424, | Sep 14 1990 | L-1 SECURE CREDENTIALING, INC | Method and apparatus for manufacturing tamper-resistant identification cards |
5161210, | Nov 10 1988 | U S PHILIPS CORPORATION | Coder for incorporating an auxiliary information signal in a digital audio signal, decoder for recovering such signals from the combined signal, and record carrier having such combined signal recorded thereon |
5166676, | Feb 15 1984 | Destron Fearing Corporation | Identification system |
5169707, | May 08 1991 | Minnesota Mining and Manufacturing Company | Retroreflective security laminates with dual level verification |
5171625, | Jan 31 1991 | E I DU PONT NEMOURS AND COMPANY | All polyester film composite useful for credit and identification cards |
5173840, | May 07 1990 | Mitsubishi Denki Kabushiki Kaisha | Molded IC card |
5176986, | Mar 17 1989 | BASF Drucksysteme GmbH | Liquid cleaner composition for removing polymeric materials from a surface |
5179392, | Apr 05 1990 | MINOLTA CAMERA KABUSHIKI KAISHA, A CORPORATION OF JAPAN | Multi-color image forming apparatus |
5181786, | Nov 15 1989 | N V NEDERLANDSCHE APPARATENFABRIEK NEDAP A LIMITED COMPANY OF THE NETHERLANDS | Method and apparatus for producing admission tickets |
5185736, | May 12 1989 | ALCATEL NETWORK SYSTEMS, INC | Synchronous optical transmission system |
5199081, | Dec 15 1989 | Kabushiki Kaisha Toshiba | System for recording an image having a facial image and ID information |
5200822, | Apr 23 1991 | NATIONAL BROADCASTING COMPANY, INC | Arrangement for and method of processing data, especially for identifying and verifying airing of television broadcast programs |
5208450, | Apr 20 1988 | Matsushita Electric Industrial Co., Ltd. | IC card and a method for the manufacture of the same |
5212551, | Oct 16 1989 | Method and apparatus for adaptively superimposing bursts of texts over audio signals and decoder thereof | |
5213337, | Jul 06 1988 | RPX Corporation | System for communication using a broadcast audio signal |
5215864, | Sep 28 1990 | Novanta Corporation | Method and apparatus for multi-color laser engraving |
5216543, | Mar 04 1987 | Minnesota Mining and Manufacturing Company | Apparatus and method for patterning a film |
5228056, | Dec 14 1990 | InterDigital Technology Corp | Synchronous spread-spectrum communications system and method |
5237164, | May 12 1989 | Sony Corporation | Card having retroreflective bar codes and a magnetic stripe |
5243423, | Dec 20 1991 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Spread spectrum digital data transmission over TV video |
5244861, | Jan 17 1992 | Eastman Kodak Company; EASTMAN KODAK COMPANY A NJ CORP | Receiving element for use in thermal dye transfer |
5245329, | Feb 27 1989 | SECURITY PEOPLE INC | Access control system with mechanical keys which store data |
5249546, | Aug 22 1990 | Bookmark | |
5253078, | Mar 14 1990 | LSI Logic Corporation | System for compression and decompression of video data using discrete cosine transform and coding techniques |
5258998, | Oct 07 1985 | Canon Kabushiki Kaisha | Data communication apparatus permitting confidential communication |
5259025, | Jun 12 1992 | Audio Digitalimaging, Inc. | Method of verifying fake-proof video identification data |
5259311, | Jul 15 1992 | MARK TRECE INC | Laser engraving of photopolymer printing plates |
5261987, | Jun 05 1992 | Eastman Kodak Company | Method of making an identification card |
5262860, | Apr 23 1992 | International Business Machines Corporation | Method and system communication establishment utilizing captured and processed visually perceptible data within a broadcast video signal |
5267334, | May 24 1991 | Apple Inc | Encoding/decoding moving images with forward and backward keyframes for forward and reverse display |
5267755, | Jan 31 1989 | Dai Nippon Insatsu Kabushiki Kaisha | Heat transfer recording media |
5272039, | May 04 1992 | Eastman Kodak Company | Preparation of magnetic carrier particles |
5280537, | Nov 26 1991 | Nippon Telegraph and Telephone Corporation | Digital communication system using superposed transmission of high speed and low speed digital signals |
5284364, | Jun 10 1992 | Anvik Corporation; ANVIK, INC | Increased-security identification card system |
5288976, | Jul 15 1991 | Verizon Patent and Licensing Inc | Bar code use in information, transactional and other system and service applications |
5293399, | Oct 08 1987 | DATAMARS SA | Identification system |
5294774, | Aug 03 1993 | Videojet Systems International, Inc. | Laser marker system |
5294944, | Mar 06 1991 | Ricoh Company, Ltd. | Color image forming apparatus having means for properly superimposing image colors on each other |
5295203, | Mar 26 1992 | GENERAL INSTRUMENT CORPORATION GIC-4 | Method and apparatus for vector coding of video transform coefficients |
5298922, | Dec 02 1988 | GAO Gesellschaft fur Automation und Organisation mbH | Multilayer data carrier and methods for writing on a multilayer data carrier |
5299019, | Feb 28 1992 | Samsung Electronics Co., Ltd. | Image signal band compressing system for digital video tape recorder |
5304513, | Jul 16 1987 | GAO Gesellschaft fur Automation und Organisation mbH | Method for manufacturing an encapsulated semiconductor package using an adhesive barrier frame |
5304789, | Oct 19 1990 | GESELLSCHAFT FUR AUTOMATION UND ORGANISATION MBH GAO | Multilayer card-shaped data carrier and method for producing same |
5305400, | Dec 05 1990 | Deutsche ITT Industries GmbH | Method of encoding and decoding the video data of an image sequence |
5315098, | Dec 27 1990 | Xerox Corporation; XEROX CORPORATION, A CORP OF NY | Methods and means for embedding machine readable digital data in halftone images |
5319453, | Jun 22 1989 | Airtrax | Method and apparatus for video signal encoding, decoding and monitoring |
5319724, | Apr 19 1990 | RICOH COMPANY, LTD A CORP OF JAPAN; RICOH CORPORATION A CORP OF DELAWARE | Apparatus and method for compressing still images |
5319735, | Dec 17 1991 | Raytheon BBN Technologies Corp | Embedded signalling |
5321751, | Feb 18 1993 | Eastman Kodak Company | Method and apparatus for credit card verification |
5325167, | May 11 1992 | CANON INC | Record document authentication by microscopic grain structure and method |
5334573, | Dec 02 1991 | POLAROID CORPORATION FMR OEP IMAGING OPERATING CORP | Sheet material for thermal transfer imaging |
5336657, | Mar 20 1987 | Dai Nippon Insatsu Kabushiki Kaisha | Process for heat transfer recording |
5336871, | Feb 07 1992 | OPSEC SECURITY GROUP, INC | Holographic enhancement of card security |
5337361, | Jan 05 1990 | Symbol Technologies, Inc. | Record with encoded data |
5351302, | May 26 1993 | Method for authenticating objects identified by images or other identifying information | |
5354097, | Jun 15 1990 | UNICATE B V | Security of objects or documents |
5374675, | Oct 05 1991 | BASF Aktiengesellschaft | Thermoplastic molding materials containing inorganic subgroup metal salts |
5374976, | Dec 13 1990 | Joh. Enschede En Zonen Grafische Inrichting B.V. | Support provided with a machine detectable copying security element |
5379344, | Apr 27 1990 | SCANDIC INTERNATIONAL PTY LTD | Smart card validation device and method |
5379345, | Jan 29 1993 | NIELSEN COMPANY US , LLC, THE | Method and apparatus for the processing of encoded data in conjunction with an audio broadcast |
5380695, | Apr 22 1994 | YAMA CAPITAL, LLC | Image-receiving element for thermal dye transfer method |
5384846, | Apr 26 1993 | Pitney Bowes Inc. | System and apparatus for controlled production of a secure identification card |
5385371, | Mar 08 1994 | Map in which information which can be coded is arranged in invisible state and a method for coding the content of the map | |
5387013, | Jan 31 1989 | Dai Nippon Insatsu Kabushiki Kaisha | Heat transfer recording media |
5393099, | May 21 1993 | American Bank Note Holographics, Inc. | Anti-counterfeiting laminated currency and method of making the same |
5394274, | Jan 22 1988 | Anti-copy system utilizing audible and inaudible protection signals | |
5396559, | Aug 24 1990 | Anticounterfeiting method and device utilizing holograms and pseudorandom dot patterns | |
5404377, | Apr 08 1994 | Intel Corporation | Simultaneous transmission of data and audio signals by means of perceptual coding |
5408542, | May 12 1992 | Apple Inc | Method and apparatus for real-time lossless compression and decompression of image data |
5409797, | Mar 04 1991 | FUJIFILM Corporation | Heat-sensitive recording material for laser recording |
5421619, | Dec 22 1993 | ASSA ABLOY AB | Laser imaged identification card |
5422230, | Apr 12 1994 | Intellectual Ventures I LLC | Slide blank, and process for producing a slide therefrom |
5422963, | Oct 15 1993 | American Telephone and Telegraph Company | Block transform coder for arbitrarily shaped image segments |
5422995, | Mar 30 1992 | International Business Machiens Corporation | Method and means for fast writing of run length coded bit strings into bit mapped memory and the like |
5428607, | Dec 20 1993 | AT&T IPM Corp | Intra-switch communications in narrow band ATM networks |
5428731, | May 10 1993 | Apple Inc | Interactive multimedia delivery engine |
5432870, | Jun 30 1993 | Ricoh Company, LTD | Method and apparatus for compressing and decompressing images of documents |
5436970, | Feb 18 1993 | Eastman Kodak Company | Method and apparatus for transaction card verification |
5446273, | Mar 13 1992 | Credit card security system | |
5448053, | Mar 01 1993 | PACIFIC NORTHWEST TRUST CO , AS CUSTODIAN FOR WILLIAM Y CONWELL | Method and apparatus for wide field distortion-compensated imaging |
5449200, | Oct 19 1993 | DOMTAR, INC | Security paper with color mark |
5450490, | Mar 31 1994 | THE NIELSEN COMPANY US , LLC | Apparatus and methods for including codes in audio signals and decoding |
5450492, | May 01 1990 | IPC UNIPOST SC | Transponder system with variable frequency transmission |
5451478, | Apr 12 1994 | Intellectual Ventures I LLC | Slide blank, and process for producing a slide therefrom |
5463209, | Nov 29 1993 | Symbol Technologies, Inc | Point-of-sale product information dissemination arrangement and method |
5466012, | Jan 07 1993 | TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD | Facsimile security system |
5469506, | Jun 27 1994 | Pitney Bowes Inc. | Apparatus for verifying an identification card and identifying a person by means of a biometric characteristic |
5471533, | Jan 05 1990 | Symbol Technologies, Inc. | Record with encoded data |
5473631, | Apr 08 1924 | Intel Corporation | Simultaneous transmission of data and audio signals by means of perceptual coding |
5474875, | Jan 29 1992 | BASF Lacke+Farben | Photosensitive mixture for producing relief and printing plates |
5479168, | May 29 1991 | Microsoft Technology Licensing, LLC | Compatible signal encode/decode system |
5489639, | Aug 18 1994 | General Electric Company | Copper salts for laser marking of thermoplastic compositions |
5490217, | Mar 05 1993 | Symbol Technologies, Inc | Automatic document handling system |
5493677, | Jun 08 1994 | Apple Inc | Generation, archiving, and retrieval of digital images with evoked suggestion-set captions and natural language interface |
5493971, | Apr 13 1994 | Presstek, Inc. | Laser-imageable printing members and methods for wet lithographic printing |
5495411, | Dec 22 1993 | STAMPS COM, INC | Secure software rental system using continuous asynchronous password verification |
5495581, | Sep 17 1993 | Method and apparatus for linking a document with associated reference information using pattern matching | |
5496071, | Aug 02 1993 | Method of providing article identity on printed works | |
5499294, | Nov 24 1993 | The United States of America as represented by the Administrator of the | Digital camera with apparatus for authentication of images produced from an image file |
5505494, | Sep 17 1993 | FOX RIDGE, LLC | System for producing a personal ID card |
5509693, | Feb 07 1994 | NCR Corporation | Protected printed identification cards with accompanying letters or business forms |
5515081, | Nov 30 1993 | Borland Software Corporation | System and methods for improved storage and processing of BITMAP images |
5522623, | Mar 29 1990 | TECHNICAL SYSTEMS CORP | Coded identification card and other standardized documents |
5523125, | Aug 27 1993 | Russell Brands, LLC | Laser engraving and coating process for forming indicia on articles |
5524933, | May 29 1992 | Alpvision SA | Method for the marking of documents |
5528222, | Sep 09 1994 | INTERMEC IP CORP , A CORPORATION OF DELAWARE | Radio frequency circuit and memory in thin flexible package |
5529345, | Feb 07 1994 | NCR Corporation | Printed identification cards with accompanying letters or business forms |
5530852, | Dec 20 1994 | Sun Microsystems, Inc | Method for extracting profiles and topics from a first file written in a first markup language and generating files in different markup languages containing the profiles and topics for use in accessing data described by the profiles and topics |
5534372, | Jul 28 1993 | DAI NIPPON PRINTING CO , LTD 50% | IC card having image information |
5548645, | Dec 22 1993 | STAMPS COM, INC | Secure software rental system using distributed software |
5550346, | Jun 21 1994 | Laser sheet perforator | |
5553143, | Feb 04 1994 | RPX Corporation | Method and apparatus for electronic licensing |
5576377, | Mar 30 1994 | LANXESS Deutschland GmbH | Polymer moulding materials for producing a partial color change by laser energy, particularly for the production of colored markings |
5579479, | Oct 03 1994 | Plum Hall Inc. | Computer software licensing authentication method and apparatus |
5579694, | Aug 30 1995 | YAMA CAPITAL, LLC | Printer adapted for use with silica-based print media |
5594226, | Jul 11 1994 | RPX Corporation | Automated check verification and tracking system using bar code information |
5594809, | Apr 28 1995 | Xerox Corporation | Automatic training of character templates using a text line image, a text line transcription and a line image source model |
5612943, | Jul 05 1994 | System for carrying transparent digital data within an audio signal | |
5613004, | Jun 07 1995 | Wistaria Trading Ltd | Steganographic method and device |
5617119, | Jun 08 1994 | Apple Inc | Protection of an electronically stored image in a first color space by the alteration of a digital component in a second color space |
5629980, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of digital works |
5633119, | Mar 21 1996 | Eastman Kodak Company | Laser ablative imaging method |
5634012, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of digital works having a fee reporting mechanism |
5635012, | Sep 17 1993 | FOX RIDGE, LLC | System for producing a personal ID card |
5636276, | Apr 18 1994 | III Holdings 2, LLC | Device for the distribution of music information in digital form |
5636292, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Steganography methods employing embedded calibration data |
5638443, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of composite digital works |
5639819, | Jan 08 1992 | E. I. du Pont de Nemours and Company; Du Pont Canada Inc. | Polyamide compositions |
5640193, | Aug 15 1994 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Multimedia service access by reading marks on an object |
5640647, | Nov 27 1995 | Xerox Corporation | Method and apparatus for selectively scanning pages within a document stack |
5646997, | Dec 14 1994 | Sony Corporation | Method and apparatus for embedding authentication information within digital data |
5646999, | Oct 27 1994 | PIRACY PROTECTION LLC | Data coypright management method |
5652626, | Sep 03 1993 | Kabushiki Kaisha Toshiba | Image processing apparatus using pattern generating circuits to process a color image |
5652714, | Sep 30 1994 | Apple Computer, Inc.; Apple Computer, Inc | Method and apparatus for capturing transient events in a multimedia product using an authoring tool on a computer system |
5657462, | Nov 17 1993 | HOBSONS, INC | Method and apparatus for displaying animated characters upon a computer screen in which a composite video display is merged into a static background such that the border between the background and the video is indiscernible |
5659164, | Nov 05 1992 | ECOPY, INC | Method of and system for apparatus for two-way automatically creating, identifying, routing and storing digitally scanned documents |
5659726, | Feb 23 1995 | Regents of the University of California, The | Data embedding |
5663766, | Oct 31 1994 | Alcatel-Lucent USA Inc | Digital data encoding in video signals using data modulated carrier signals at non-peaks in video spectra |
5664018, | Mar 12 1996 | Watermarking process resilient to collusion attacks | |
5665951, | Feb 08 1996 | Customer indicia storage and utilization system | |
5668636, | Dec 20 1995 | Xerox Corporation | Embedded data controlled digital highlight color copier |
5669995, | Jan 29 1996 | INTERMAG, INC | Method for writing and reading data on a multi-layer recordable interferometric optical disc and method for fabricating such |
5671005, | Feb 21 1995 | Agfa Corporation | Method and apparatus for maintaining contact between the recording media and media support surface of a scanning system |
5671282, | Jan 23 1995 | Ricoh Company, Ltd. | Method and apparatus for document verification and tracking |
5673316, | Mar 29 1996 | International Business Machines Corporation | Creation and distribution of cryptographic envelope |
5680223, | Mar 20 1992 | RED ANVIL LLC | Method and system for labeling a document for storage, manipulation, and retrieval |
5681356, | May 10 1991 | GAO Gesellschaft fur Automation und Organisation mbH | Method and apparatus for producing a plastic molded chip card having reduced wall thickness |
5684885, | Sep 27 1995 | Xerox Corporation | Binary glyph codes based on color relationships |
5687191, | Feb 26 1996 | Verance Corporation | Post-compression hidden data transport |
5687236, | Jun 07 1995 | Wistaria Trading Ltd | Steganographic method and device |
5689620, | Apr 28 1995 | Xerox Corporation | Automatic training of character templates using a transcription and a two-dimensional image source model |
5691757, | Dec 22 1993 | Nippon Kayaku Kabushiki Kaisha; Kansai Paint Kabushiki Kaisha | Laser marking method and aqueous laser marking composition |
5694471, | Aug 03 1994 | SSL SERVICES LLC | Counterfeit-proof identification card |
5698296, | Apr 30 1992 | The Standard Register Company | Business document having security features |
5706364, | Apr 28 1995 | Xerox Corporation | Method of producing character templates using unsegmented samples |
5715403, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of digital works having attached usage rights where the usage rights are defined by a usage rights grammar |
5717018, | Sep 21 1995 | LANXESS Deutschland GmbH | Laser-inscribable polymer moulding compositions |
5719667, | Jul 30 1996 | Siemens Healthcare Diagnostics Inc | Apparatus for filtering a laser beam in an analytical instrument |
5721583, | Nov 27 1995 | Matsushita Electric Industrial Co., Ltd. | Interactive television system for implementing electronic polling or providing user-requested services based on identification of users or of remote control apparatuses which are employed by respective users to communicate with the system |
5721781, | Sep 13 1995 | Microsoft Technology Licensing, LLC | Authentication system and method for smart card transactions |
5721788, | Jul 31 1992 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and system for digital image signatures |
5734119, | Dec 19 1996 | HEADSPACE, INC NOW KNOWN AS BEATNIK, INC | Method for streaming transmission of compressed music |
5734752, | Sep 24 1996 | Xerox Corporation | Digital watermarking using stochastic screen patterns |
5740244, | Apr 09 1993 | Washington University | Method and apparatus for improved fingerprinting and authenticating various magnetic media |
5742845, | Jun 22 1995 | WI-LAN TECHNOLOGIES INC | System for extending present open network communication protocols to communicate with non-standard I/O devices directly coupled to an open network |
5744792, | Oct 05 1993 | Canon Kabushiki Kaisha | Hybrid information recording medium |
5745308, | Jul 30 1996 | Siemens Healthcare Diagnostics Inc | Methods and apparatus for an optical illuminator assembly and its alignment |
5745604, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Identification/authentication system using robust, distributed coding |
5748763, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Image steganography system featuring perceptually adaptive and globally scalable signal embedding |
5751854, | Aug 03 1992 | Ricoh Company, Ltd. | Original-discrimination system for discriminating special document, and image forming apparatus, image processing apparatus and duplicator using the original-discrimination system |
5754675, | Mar 23 1994 | Gemplus Card International | Identity checking system having card-bearer biometrical features-stored in codified form |
5760386, | Nov 23 1995 | Eastman Kodak Company | Recording of images |
5761686, | Jun 27 1996 | Xerox Corporation | Embedding encoded information in an iconic version of a text image |
5763868, | Jul 25 1994 | DAI NIPPON PRINTING CO , LTD | Optical card |
5765152, | Oct 13 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | System and method for managing copyrighted electronic media |
5768001, | Jun 10 1996 | GSI GROUP LIMITED | Rotating beam deflector having an integral wave front correction element |
5768426, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Graphics processing system employing embedded code signals |
5769301, | Jul 14 1994 | Agfa Corporation | Method and apparatus for pivotally mounted media transport bridge with improved counterbalance system |
5774168, | May 18 1994 | ORGA Kartensysteme GmbH | Identity card and process for its production |
5774452, | Mar 14 1995 | VERANCE CORPORATION, DELAWARE CORPORATION | Apparatus and method for encoding and decoding information in audio signals |
5776278, | Jun 17 1992 | Round Rock Research, LLC | Method of manufacturing an enclosed transceiver |
5778102, | May 17 1995 | The Regents of the University of California, Office of Technology | Compression embedding |
5783024, | Apr 12 1996 | L-1 SECURE CREDENTIALING, INC | Apparatus for applying heat bondable lamina to a substrate |
5786587, | Aug 10 1995 | OPSEC SECURITY GROUP, INC | Enhancement of chip card security |
5787186, | Mar 21 1994 | I.D. Tec, S.L. | Biometric security process for authenticating identity and credit cards, visas, passports and facial recognition |
5790662, | Nov 15 1994 | OVD Kinegram AG | Data carrier and write/read device therefor |
5790703, | Jan 21 1997 | Xerox Corporation | Digital watermarking using conjugate halftone screens |
5795643, | Oct 29 1992 | EMTEC Magnetics GmbH | Anticopying film |
5799092, | Feb 28 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Self-verifying identification card |
5801687, | Sep 30 1994 | Apple Inc | Authoring tool comprising nested state machines for use in a computer system |
5801857, | Sep 28 1989 | GAO Gesellschaft fur Automation und Organisation mbH | Data carrier having an optically variable element and methods for producing it |
5804803, | Apr 02 1996 | International Business Machines Corporation | Mechanism for retrieving information using data encoded on an object |
5808758, | Dec 23 1994 | Giesecke & Devrient GmbH | Data carrier with an optically variable element |
5809139, | Sep 13 1996 | Intel Corporation | Watermarking method and apparatus for compressed digital video |
5809160, | Jul 31 1992 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method for encoding auxiliary data within a source signal |
5809317, | Dec 30 1992 | Intel Corporation | Creating and maintaining hypertext links among heterogeneous documents by the establishment of anchors and connections among anchors |
5809633, | Sep 05 1994 | Infineon Technologies AG | Method for producing a smart card module for contactless smart cards |
5815292, | Feb 21 1996 | Advanced Deposition Technologies, Inc. | Low cost diffraction images for high security application |
5816619, | Oct 12 1995 | KBA-NotaSys SA | Process for the production of documents with a security feature in the form of a foil component and document with such a security feature |
5818441, | Jun 15 1995 | Intel Corporation | System and method for simulating two-way connectivity for one way data streams |
5822436, | Apr 25 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Photographic products and methods employing embedded information |
5824715, | Jun 24 1994 | Nippon Kayaku Kabushiki Kaisha | Marking composition and laser marking method |
5825892, | Oct 28 1996 | RPX Corporation | Protecting images with an image watermark |
5828325, | Apr 03 1996 | VERANCE CORPORATION, DELAWARE CORPORATION | Apparatus and method for encoding and decoding information in analog signals |
5835639, | Dec 18 1996 | Intellectual Ventures Fund 83 LLC | Method for detecting rotation and magnification in images |
5838814, | Jan 02 1996 | Security check method and apparatus | |
5840142, | Nov 22 1996 | STEVENSON, MICHAEL | Decoration and printing on polyolefin surfaces |
5840791, | May 24 1996 | Bayer Aktiengesellschaft | Laser-markable polymer moulding compositions |
5841886, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Security system for photographic identification |
5841978, | Mar 17 1994 | DIGIMARC CORPORATION AN OREGON CORPORATION | Network linking method using steganographically embedded data objects |
5844685, | Jul 30 1996 | Siemens Healthcare Diagnostics Inc | Reference laser beam sampling apparatus |
5845281, | Feb 01 1995 | Rovi Solutions Corporation | Method and system for managing a data object so as to comply with predetermined conditions for usage |
5848413, | Jan 13 1995 | RICOH COMPANY, LTD A CORPORATION OF JAPAN; Ricoh Corporation | Method and apparatus for accessing and publishing electronic documents |
5848424, | Nov 18 1996 | SAP PORTALS, INC | Data navigator interface with navigation as a function of draggable elements and drop targets |
5852673, | Mar 27 1996 | Silicon Valley Bank | Method for general image manipulation and composition |
5853955, | Dec 11 1995 | McDonnell Douglas Corporation | Substrates and methods for laser marking same |
5855969, | Jun 10 1996 | Infosight Corp. | CO2 laser marking of coated surfaces for product identification |
5857038, | Jun 29 1993 | Canon Kabushiki Kaisha | Image processing apparatus and method for synthesizing first and second image data |
5859920, | Nov 30 1995 | Intellectual Ventures Fund 83 LLC | Method for embedding digital information in an image |
5861662, | Feb 24 1997 | General Instrument Corporation | Anti-tamper bond wire shield for an integrated circuit |
5862260, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for surveying dissemination of proprietary empirical data |
5864622, | Nov 20 1992 | Pitney Bowes Inc. | Secure identification card and method and apparatus for producing and authenticating same |
5864623, | Jul 15 1996 | INTELLICHECK, INC | Authentication system for driver licenses |
5866644, | Mar 17 1997 | SABIC GLOBAL TECHNOLOGIES B V | Composition for laser marking |
5867199, | Mar 28 1995 | Agfa Corporation | Media guidance system for a scanning system |
5869819, | Dec 28 1994 | Metrologic Instruments, Inc | Internet-based system and method for tracking objects bearing URL-encoded bar code symbols |
5871615, | Jun 14 1994 | Arjo Wiggins Fine Papers Limited | Method for the manufacture of security paper |
5872589, | Mar 18 1994 | Interactive Return Service, Inc.; INTERACTIVE RETURN SERVICE, INC | Interactive TV system for mass media distribution |
5872627, | Jul 30 1996 | Siemens Healthcare Diagnostics Inc | Method and apparatus for detecting scattered light in an analytical instrument |
5875249, | Jan 08 1997 | TREND MICRO INCORPORATED | Invisible image watermark for image verification |
5879502, | May 27 1994 | ASSA ABLOY AB | Method for making an electronic module and electronic module obtained according to the method |
5879784, | Dec 17 1996 | Docusystems Inc. | Tickets with extruded security stripe and method of making same |
5888624, | Feb 04 1994 | Giesecke & Devrient GmbH | Data carrier with an electronic module and a method for producing the same |
5892661, | Oct 31 1996 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Smartcard and method of making |
5892900, | Aug 30 1996 | INTERTRUST TECHNOLOGIES CORP | Systems and methods for secure transaction management and electronic rights protection |
5893910, | Jan 04 1996 | Softguard Enterprises Inc. | Method and apparatus for establishing the legitimacy of use of a block of digitally represented information |
5895074, | Oct 02 1997 | BARRY FIALA, INC | Identification card and method of making |
5897938, | Jan 08 1996 | Nippon Kayaku Kabushiki Kaisha | Laser marking article and laser marking method |
5900608, | Oct 16 1997 | DENTSU INC | Method of purchasing personal recording media, system for purchasing personal recording media, and media recorded with personal recording media purchasing program |
5902353, | Sep 23 1996 | HANGER SOLUTIONS, LLC | Method, system, and article of manufacture for navigating to a resource in an electronic network |
5903729, | Sep 23 1996 | HANGER SOLUTIONS, LLC | Method, system, and article of manufacture for navigating to a resource in an electronic network |
5905248, | Sep 11 1990 | Metrologic Instruments | System and method for carrying out information-related transactions using web documents embodying transaction enabling applets automatically launched and executed in response to reading URL-encoded symbols pointing thereto |
5905251, | Nov 24 1993 | Metrologic Instruments, Inc. | Hand-held portable WWW access terminal with visual display panel and GUI-based WWW browser program integrated with bar code symbol reader in a hand-supportable housing |
5905800, | Jan 17 1996 | Wistaria Trading Ltd | Method and system for digital watermarking |
5907149, | Jun 27 1994 | L-1 SECURE CREDENTIALING, INC | Identification card with delimited usage |
5912974, | May 04 1994 | International Business Machines Corporation | Apparatus and method for authentication of printed documents |
5913210, | Mar 27 1998 | PRODUCT ASSOCIATION TECHNOLOGIES, LLC | Methods and apparatus for disseminating product information via the internet |
5915027, | Nov 05 1996 | NEC PERSONAL COMPUTERS, LTD | Digital watermarking |
5915588, | Sep 14 1995 | CORY CONSULTANTS, INC | System for and method of dispensing lottery tickets |
5918213, | Dec 22 1995 | Verizon Patent and Licensing Inc | System and method for automated remote previewing and purchasing of music, video, software, and other multimedia products |
5918214, | Oct 25 1996 | PERKOWSKI, THOMAS J | System and method for finding product and service related information on the internet |
5919853, | Jan 30 1996 | Otis Elevator Company | Method and compositions for laser imprinting and articles imprinted using such methods and composition |
5920861, | Feb 25 1997 | INTERTRUST TECHNOLOGIES CORP | Techniques for defining using and manipulating rights management data structures |
5920878, | Nov 14 1996 | ACHATES REFERENCE PUBLISHING, INC | Method for hiding a binary encoded message in an electronic document by modulating the case of the characters in a case-insensitive markup language |
5925500, | Jun 25 1993 | BARCLAYS BANK PLC, AS SUCCESSOR COLLATERAL AGENT | Method of making laser imaged printing plates utilizing ultraviolet absorbing layer |
5926822, | Sep 06 1996 | Financial Engineering Associates, Inc.; FINANCIAL ENGINEERING ASSOCIATES, INC | Transformation of real time data into times series and filtered real time data within a spreadsheet application |
5928989, | Jun 01 1995 | Dai Nippon Printing Co., Ltd. | Thermal transfer film for protective layer and print |
5930369, | Sep 28 1995 | NEC Corporation | Secure spread spectrum watermarking for multimedia data |
5930377, | Jul 31 1992 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method for image encoding |
5930767, | May 28 1997 | HANGER SOLUTIONS, LLC | Transaction methods systems and devices |
5932863, | May 25 1994 | Marshall Feature Recognition, LLC | Method and apparatus for accessing electric data via a familiar printed medium |
5933798, | Jul 16 1996 | CIVOLUTION B V | Detecting a watermark embedded in an information signal |
5933829, | Nov 08 1996 | NM, LLC | Automatic access of electronic information through secure machine-readable codes on printed documents |
5936986, | Jul 30 1996 | Siemens Healthcare Diagnostics Inc | Methods and apparatus for driving a laser diode |
5938726, | Oct 17 1996 | HANGER SOLUTIONS, LLC | Apparatus for reading an electronic network navigation device and a peripheral for use therewith |
5938727, | Feb 01 1996 | Communication system and method via digital codes | |
5939695, | May 20 1997 | AVAYA Inc | Product identification system using hand-held customer assistant unit with a code reader |
5939699, | May 28 1997 | ADVENTURE GALLERY SOFTWARE LIMITED LIABILITY COMPANY | Bar code display apparatus |
5940595, | Sep 23 1996 | HANGER SOLUTIONS, LLC | Electronic network navigation device and method for linking to an electronic address therewith |
5943422, | Aug 12 1996 | Intertrust Technologies Corp.; INTERTRUST TECHNOLOGIES CORP | Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels |
5944356, | Dec 23 1992 | GAO Gesellschaft Fur Automation und Organisation | Identity card with a humanly visible authenticity feature |
5949055, | Oct 23 1997 | Xerox Corporation | Automatic geometric image transformations using embedded signals |
5950173, | Oct 25 1996 | PERKOWSKI, THOMAS J | System and method for delivering consumer product related information to consumers within retail environments using internet-based information servers and sales agents |
5951055, | Jun 11 1997 | The Standard Register Company | Security document containing encoded data block |
5953710, | Oct 09 1996 | Children's credit or debit card system | |
5955021, | May 19 1997 | CARDXX, INC | Method of making smart cards |
5955961, | Dec 09 1991 | Programmable transaction card | |
5958528, | Dec 21 1994 | Giesecke & Devrient GmbH | Data carrier and method for producting it |
5962840, | Dec 23 1994 | Giesecke & Devrient GmbH | Data carrier with electronic module and embedded coil feature |
5963916, | Sep 13 1990 | INTOUCH GROUP, INC | Network apparatus and method for preview of music products and compilation of market data |
5965242, | Feb 19 1997 | Eastman Kodak Company | Glow-in-the-dark medium and method of making |
5969324, | Apr 10 1997 | TUMBLEWEED HOLDINGS LLC | Accounting methods and systems using transaction information associated with a nonpredictable bar code |
5971277, | Apr 02 1996 | International Business Machines Corporation | Mechanism for retrieving information using data encoded on an object |
5973842, | Jul 30 1996 | Siemens Healthcare Diagnostics Inc | Method and apparatus for an optical illuminator assembly and its alignment |
5974141, | Mar 31 1995 | PIRACY PROTECTION LLC | Data management system |
5974548, | Jul 12 1996 | Apple Inc | Media-independent document security method and apparatus |
5975583, | Mar 29 1994 | Industrial Automation Integrators (IAI) B.V. | Carrier representing value and comprising patterns applied by a laser beam |
5977514, | Jun 13 1997 | M A HANNA COLOR, A DIVIDION OF M A HANNA COMPANY; M A HANNA COLOR, A DIVISION OF M A HANNA COMPANY | Controlled color laser marking of plastics |
5978773, | Jun 20 1995 | NM, LLC | System and method for using an ordinary article of commerce to access a remote computer |
5979757, | Sep 05 1996 | Symbol Technologies, LLC | Method and system for presenting item information using a portable data terminal |
5983218, | Jun 30 1997 | Xerox Corporation | Multimedia database for use over networks |
5984366, | Jul 26 1994 | TRANSPACIFIC SILICA, LLC | Unalterable self-verifying articles |
5985078, | Oct 17 1991 | Leonard Kurz GmbH & Co | Method of producing marking on a surface by means of laser radiation and use of an embossing foil in such a method |
5991876, | Apr 01 1996 | COPYRIGHT CLEARANCE CENTER, INC. | Electronic rights management and authorization system |
5995105, | Oct 04 1996 | HANGER SOLUTIONS, LLC | Methods and systems for providing a resource in an electronic network |
6000607, | Dec 08 1995 | Hitachi, Ltd. | IC card reader/writer and method of operation thereof |
6002383, | Mar 30 1995 | DAI NIPPON PRINTING CO , LTD | Polymer dispersed liquid crystal (PDLC) film using heat or an electric field to change state and the other to change back |
6003581, | Mar 04 1996 | Nippon Petrochemicals Company, Limited | Apparatus for laminating webs |
6007660, | Apr 12 1996 | L-1 SECURE CREDENTIALING, INC | Method for applying heat bondable lamina to a substrate |
6007929, | Feb 20 1997 | Infosight Corporation | Dual paint coat laser-marking labeling system, method and product |
6012641, | Dec 06 1995 | Watada Printing Co., Ltd.; Nagase & Co., Ltd. | Laminated stretched and unstretched polyester card for IC card |
6017972, | Jun 13 1997 | M.A. HannaColor | Controlled color laser marking of plastics |
6022905, | Jun 13 1997 | M.A. HannaColor | Controlled color laser marking of plastics |
6024287, | Nov 28 1996 | NEC PERSONAL COMPUTERS, LTD | Card recording medium, certifying method and apparatus for the recording medium, forming system for recording medium, enciphering system, decoder therefor, and recording medium |
6026193, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Video steganography |
6028134, | Jul 12 1995 | Teijin Limited | Thermoplastic resin composition having laser marking ability |
6036099, | Oct 07 1996 | LEIGHTON, KEITH; LEIGHTON, LOIS; JANUZZI, ROLAND A ; JANUZZI, CONSTANCE J; NIEDZWIECKI, CARL J; NIEDZWIECKI, CATHERINE M ; KING, BRIAN P | Hot lamination process for the manufacture of a combination contact/contactless smart card and product resulting therefrom |
6036807, | Dec 12 1995 | ING Groep NV | Method for applying a security code to an article |
6037102, | Oct 02 1995 | XSYS Print Solutions Deutschland, GmbH | Multilayer recording element suitable for the production of flexographic printing plates by digital information transfer |
6042249, | Jul 30 1996 | Bayer Corporation | Illuminator optical assembly for an analytical instrument and methods of alignment and manufacture |
6047888, | Jan 08 1996 | Method system and portable data medium for paying for purchases | |
6049463, | Jul 25 1997 | Motorola, Inc | Microelectronic assembly including an antenna element embedded within a polymeric card, and method for forming same |
6052486, | Mar 10 1997 | VENTURE INVESTMENT MANAGEMENT COMPANY LLC | Protection mechanism for visual link objects |
6054170, | Oct 02 1997 | Moore U.S.A., Inc. | Identification card and method of making |
6060981, | Apr 23 1999 | Caterpillar Inc. | Vehicle security system for unattended idle operations |
6064764, | Mar 30 1998 | Seiko Epson Corporation | Fragile watermarks for detecting tampering in images |
6065119, | May 30 1997 | Los Alamos National Security, LLC | Data validation |
6066437, | Oct 11 1996 | SCHREINER ETIKETTEN UND SELBSTKLEBETECHNIK GMBH & CO | Film which can be lettered using a laser beam |
6066594, | Sep 18 1998 | L-1 SECURE CREDENTIALING, INC | Identification document |
6075223, | Sep 08 1997 | Thermark, LLC | High contrast surface marking |
6078664, | Dec 20 1996 | Wistaria Trading Ltd | Z-transform implementation of digital watermarks |
6086971, | Dec 04 1996 | BRADY WORLDWIDE, INC | Identification card strip and ribbon assembly |
6100804, | Jul 16 1998 | Intecmec IP Corp. | Radio frequency identification system |
6101602, | Dec 08 1997 | United States Air Force | Digital watermarking by adding random, smooth patterns |
6104812, | Jan 12 1998 | Juratrade, Limited | Anti-counterfeiting method and apparatus using digital screening |
6110864, | Sep 28 1993 | 3M Innovative Properties Company | Security card and method for making same |
6111506, | Oct 15 1996 | Iris Corporation Berhad | Method of making an improved security identification document including contactless communication insert unit |
6122403, | Jul 27 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Computer system linked by using information in data objects |
6127475, | Sep 25 1998 | SABIC GLOBAL TECHNOLOGIES B V | Composition for laser marking |
6127928, | Feb 10 1998 | E-TAG Systems, Inc. | Method and apparatus for locating and tracking documents and other objects |
6128401, | Feb 10 1989 | Canon Kabushiki Kaisha | Image reading or processing with ability to prevent copying of certain originals |
6131161, | Oct 04 1995 | U S PHILIPS CORPORATION | Marking a digitally encoded video and/or audio signal |
6141438, | Feb 28 1994 | Method and control device for document authentication | |
6143852, | Oct 23 1998 | Bayer Aktiengesellschaft | Copolymers for rapid prototyping |
6148091, | Sep 05 1997 | IDENTISCAN COMPANY, LLC, THE | Apparatus for controlling the rental and sale of age-controlled merchandise and for controlling access to age-controlled services |
6157330, | Jan 27 1997 | U S PHILIPS CORPORATION | Embedding supplemental data in an encoded signal, such as audio / video watermarks |
6159327, | Sep 12 1996 | L-1 SECURE CREDENTIALING, INC | Apparatus and method for applying heat bondable lamina to a substrate |
6160526, | Jun 23 1997 | Rohm Co., Ltd. | IC module and IC card |
6163842, | Dec 14 1994 | Sony Corporation | Method and apparatus for embedding authentication information within digital data |
6165696, | Nov 28 1996 | ORGA Kartensysteme GmbH | Process for applying marks letterings and structures on the surface of an identity card or a different card |
6179338, | Dec 23 1992 | GAO Gesellschaft Fur Automation und Organisation | Compound film for an identity card with a humanly visible authenticity feature |
6185312, | Jan 28 1997 | Nippon Telegraph and Telephone Corporation | Method for embedding and reading watermark-information in digital form, and apparatus thereof |
6185316, | Nov 12 1997 | Unisys Corporation | Self-authentication apparatus and method |
6185683, | Feb 13 1995 | Intertrust Technologies Corp. | Trusted and secure techniques, systems and methods for item delivery and execution |
6186404, | May 29 1998 | Welch Allyn Data Collection, Inc; GTech Corporation; OBERTHUR GAMING TECHNOLOGIES | Security document voiding system |
6196460, | Aug 13 1998 | Cardcom, Inc.; CARDCOM, INC | Age verification device |
6199144, | Dec 31 1997 | INSTITUTE FOR THE DEVELOPMENT OF EMERGING ARCHITECTURES, L L C C O HEWLETT-PACKARD COMPANY | Method and apparatus for transferring data in a computer system |
6202932, | Apr 02 1997 | contactless coupling between a host unit and a smart card | |
6205249, | Apr 02 1998 | Wistaria Trading Ltd | Multiple transform utilization and applications for secure digital watermarking |
6207344, | Sep 29 1999 | SABIC GLOBAL TECHNOLOGIES B V | Composition for laser marking |
6208735, | Sep 10 1997 | NEC Corporation | Secure spread spectrum watermarking for multimedia data |
6209923, | Apr 14 1999 | TAYLOR COMMUNICATIONS, INC | Security document and authentication scheme |
6214916, | Apr 29 1998 | SABIC GLOBAL TECHNOLOGIES B V | Composition for laser marking |
6214917, | May 05 1994 | BASF SE | Laser-markable plastics |
6221552, | Jan 19 2000 | Xerox Corporation | Permanent photoreceptor marking system |
6226387, | Aug 30 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and apparatus for scene-based video watermarking |
6233347, | May 21 1998 | Massachusetts Institute of Technology | System method, and product for information embedding using an ensemble of non-intersecting embedding generators |
6233684, | Feb 28 1997 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of rendered digital works through watermaking |
6237786, | Feb 13 1995 | INTERTRUST TECHNOLOGIES CORP | Systems and methods for secure transaction management and electronic rights protection |
6238840, | Nov 12 1997 | Hitachi Chemical Company, Ltd. | Photosensitive resin composition |
6238847, | Oct 16 1997 | Ferro Corporation | Laser marking method and apparatus |
6240121, | Jul 09 1997 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method for watermark data insertion and apparatus and method for watermark data detection |
6243480, | Apr 30 1998 | Thomson Licensing | Digital authentication with analog documents |
6244514, | Apr 20 1998 | WADA, AYAO | Smart card for storage and retrieval of digitally compressed color images |
6246775, | Sep 17 1997 | Pioneer Electronic Corporation | Method and appartus for superposing a digital watermark and method and apparatus for detecting a digital watermark |
6246777, | Mar 19 1999 | International Business Machines Corporation | Compression-tolerant watermarking scheme for image authentication |
6247644, | Apr 28 1998 | AXIS AB | Self actuating network smart card device |
6250554, | Jun 23 1998 | HANGER SOLUTIONS, LLC | Chip card comprising an imaged-receiving layer |
6256736, | Apr 13 1998 | IBM Corporation; International Business Machines Corporation | Secured signal modification and verification with privacy control |
6257486, | Nov 23 1998 | CARDIS ENTERPRISES INTERNATIONAL N V | Smart card pin system, card, and reader |
6259506, | Feb 18 1997 | Spectra Science Corporation | Field activated security articles including polymer dispersed liquid crystals, and including micro-encapsulated field affected materials |
6264106, | Dec 27 1999 | Symbol Technologies, LLC | Combination bar code scanner/RFID circuit |
6268058, | Oct 24 1997 | Innolux Corporation | Security card comprising a thin glass layer |
6272176, | Jul 16 1998 | NIELSEN COMPANY US , LLC, THE | Broadcast encoding system and method |
6272634, | Aug 30 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking to resolve multiple claims of ownership |
6275599, | Aug 28 1998 | International Business Machines Corporation | Compressed image authentication and verification |
6283188, | Sep 25 1998 | Zebra Technologies Corporation | Card laminating apparatus |
6285775, | Oct 01 1998 | The Trustees of The University of Princeton | Watermarking scheme for image authentication |
6285776, | Oct 21 1994 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for identifying equipment used in counterfeiting |
6286036, | Aug 06 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Audio- and graphics-based linking to internet |
6286761, | Dec 03 1999 | Eastman Kodak Company | Identification document having embedding information related to the subject |
6289108, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for detecting alteration of audio and images |
6291551, | Sep 13 1999 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Laser-markable plastics |
6292092, | Feb 19 1993 | Her Majesty the Queen in right of Canada, as represented by the Minister of | Secure personal identification instrument and method for creating same |
6302444, | Feb 19 1997 | Industrial Automation Integrators (I.A.I.) B.V. | Document made fraud-proof by an irreversibly distortable weakening pattern |
6311214, | Aug 06 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Linking of computers based on optical sensing of digital data |
6313436, | Sep 08 1997 | Thermark, LLC | High contrast surface marking using metal oxides |
6314192, | May 21 1998 | Massachusetts Institute of Technology | System, method, and product for information embedding using an ensemble of non-intersecting embedding generators |
6314457, | Apr 21 1999 | DESCARTES U S HOLDINGS, INC ; THE DESCARTES SYSTEMS GROUP INC | Method for managing printed medium activated revenue sharing domain name system schemas |
6321981, | Dec 22 1998 | Intellectual Ventures Fund 83 LLC | Method and apparatus for transaction card security utilizing embedded image data |
6324091, | Jan 14 2000 | North Carolina State University; Regents of the University of California, The | Tightly coupled porphyrin macrocycles for molecular memory storage |
6324573, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Linking of computers using information steganographically embedded in data objects |
6326128, | Mar 20 1997 | XSYS Print Solutions Deutschland GmbH | Production of a photosensitive recording material |
6327576, | Sep 21 1999 | Fujitsu Limited | System and method for managing expiration-dated products utilizing an electronic receipt |
6332031, | Jan 20 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Multiple watermarking techniques for documents and other data |
6332194, | Jun 05 1998 | NEC Corporation | Method for data preparation and watermark insertion |
6334187, | Jul 03 1997 | Sovereign Peak Ventures, LLC | Information embedding method, information extracting method, information embedding apparatus, information extracting apparatus, and recording media |
6343138, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Security documents with hidden digital data |
6345104, | Mar 17 1994 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarks and methods for security documents |
6355395, | Dec 23 1998 | BASF Drucksysteme GmbH | Photopolymerizable printing plates with top layer for producing relief printing plates |
6357664, | May 24 2001 | IDENTICARD WISCONSIN CORPORATION | Identification card utilizing an integrated circuit |
6369904, | Aug 18 1998 | Seiko Epson Corporation | User verification by zero-knowledge interactive proof |
6370258, | Jun 11 1997 | Canon Kabushiki Kaisha | Image processing apparatus and method |
6372394, | Feb 20 1997 | Securency PTY LTD | Laser marking of articles |
6381415, | Jul 21 1999 | Olympus Corporation | Flash apparatus and camera using the same |
6389151, | Nov 19 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Printing and validation of self validating security documents |
6390375, | Nov 29 1999 | ASK S.A. | Contactless or hybrid contact-contactless smart card designed to limit the risks of fraud |
6398245, | Aug 13 1998 | SANDPIPER CDN, LLC | Key management system for digital content player |
6400386, | Apr 12 2000 | COMMERCIAL COPY INNOVATIONS, INC | Method of printing a fluorescent image superimposed on a color image |
6404643, | Oct 15 1998 | Avante International Technology, Inc | Article having an embedded electronic device, and method of making same |
6408082, | Apr 25 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark detection using a fourier mellin transform |
6411392, | Apr 15 1998 | Massachusetts Institute of Technology | Method and apparatus for data hiding in printed images |
6413399, | Oct 28 1999 | KAI Technologies, Inc.; KAI TECHNOLOGIES, INC | Soil heating with a rotating electromagnetic field |
6413687, | Nov 10 1999 | DAI NIPPON PRINTING CO , LTD 50% | Transfer foil and image recording material, and method for preparing image recording material |
6413699, | Oct 11 1999 | CITIBANK, N A | UV-absorbing support layers and flexographic printing elements comprising same |
6418232, | Aug 28 1998 | Hitachi, Ltd. | Method of authenticating digital-watermark pictures |
6421013, | Oct 04 1999 | Avante International Technology, Inc | Tamper-resistant wireless article including an antenna |
6424029, | Oct 20 1999 | NXP B V | Chip card |
6424249, | May 08 1995 | LEXISNEXIS RISK SOLUTIONS GA INC | Positive identity verification system and method including biometric user authentication |
6424725, | May 16 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Determining transformations of media signals with embedded code signals |
6425081, | Aug 20 1997 | Canon Kabushiki Kaisha | Electronic watermark system electronic information distribution system and image filing apparatus |
6427020, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and devices for recognizing banknotes and responding accordingly |
6427140, | Feb 13 1995 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
6439465, | Sep 24 1999 | Xerox Corporation | Encoding small amounts of embedded digital data at arbitrary locations within an image |
6442284, | Mar 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark detection utilizing regions with higher probability of success |
6444068, | May 30 1998 | tesa SE | Use of a laser-sensitive coating for the production of a laser-inscribable sheet of glass |
6446865, | Sep 21 1995 | BRADY WORLDWIDE, INC | Reflective badge security identification system |
6456726, | Oct 26 1999 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Methods and apparatus for multi-layer data hiding |
6463416, | Jul 15 1996 | INTELLICHECK MOBILISA, INC | Authentication system for identification documents |
6466012, | Mar 30 1999 | MOURI, KANEO; Stanley Electric Corporation | MI element made of thin film magnetic material |
6470090, | Jun 01 1998 | NEC Corporation; National Institute of Information and Communications Technology | Digital watermark insertion system and digital watermark characteristic table creating device |
6475588, | Aug 07 2001 | SABIC INNOVATIVE PLASTICS IP B V | Colored digital versatile disks |
6478228, | Dec 27 1996 | Rohm Co., Ltd | Card mounted with circuit chip and circuit chip module |
6482495, | Feb 06 1997 | Hitachi Maxwell, Ltd. | Information carrier and process for production thereof |
6485319, | Sep 22 1998 | CoActive Technologies, Inc | Card detecting connector |
6487301, | Apr 30 1998 | MediaSec Technologies LLC | Digital authentication with digital and analog documents |
6496933, | Oct 14 1998 | Canon Sales, Inc.; CANON SALES, INC ; CANON SALES CO , INC | Document authentication using a mark that is separate from document information |
6503310, | Jun 22 1999 | Ferro GmbH | Laser marking compositions and method |
6512837, | Oct 11 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermarks carrying content dependent signal metrics for detecting and characterizing signal alteration |
6519352, | Oct 21 1994 | DIGIMARC CORPORATION AN OREGON CORPORATION | Encoding and decoding in accordance with steganographically-conveyed data |
6536665, | Dec 22 1998 | Monument Peak Ventures, LLC | Method and apparatus for transaction card security utilizing embedded image data |
6542618, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for watermark decoding |
6542933, | Apr 05 1999 | NM, LLC | System and method of using machine-readable or human-readable linkage codes for accessing networked data resources |
6546112, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Security document with steganographically-encoded authentication data |
6577746, | Dec 28 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark-based object linking and embedding |
6577759, | Aug 17 1999 | Koninklijke Philips Electronics N V | System and method for performing region-based image retrieval using color-based segmentation |
6580819, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods of producing security documents having digitally encoded data and documents employing same |
6581839, | Sep 07 1999 | Liberty Peak Ventures, LLC | Transaction card |
6605410, | Jun 25 1993 | CITIBANK, N A | Laser imaged printing plates |
6608911, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digitally watermaking holograms for use with smart cards |
6609659, | Jun 24 1997 | Passport system and methods utilizing multi-application passport cards | |
6614914, | May 16 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark embedder and reader |
6616993, | Mar 03 2000 | DAI NIPPON PRINTING CO , LTD | Protective layer transfer sheet |
6625295, | Sep 13 1996 | Purdue Research Foundation | Authentication of signals using watermarks |
6627385, | Mar 23 2000 | XSYS Print Solutions Deutschland GmbH | Use of graft copolymers for the production of laser-engravable relief printing elements |
6636615, | Jan 20 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and systems using multiple watermarks |
6638635, | Jan 25 2001 | DAI NIPPON PRINTING CO , LTD 50% | IC-mounted card substrate and IC-mounted personal-data certification card |
6650761, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermarked business cards and methods |
6668068, | May 15 1998 | NEC Corporation | Image attribute altering device and electronic watermark embedding device |
6671387, | Jul 21 2000 | Wen-Hsing, Hsu | Watermarking of a digitized image |
6674886, | Nov 03 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and system for recognizing security documents |
6679425, | Jun 18 1997 | EXPRESS TECHNOLOGY, INC | Systems, apparatus and processes to verify a person's age to determine if the person is authorized |
6687345, | Aug 25 1993 | Symbol Technologies, Inc. | Wireless telephone for acquiring data encoded in bar code indicia |
6704869, | |||
6709333, | Jun 20 2001 | Bally Gaming, Inc | Player identification using biometric data in a gaming environment |
6711465, | Jan 07 2002 | PHARMA HOLDINGS INTERNATIONAL, INC | Vending machine having a biometric verification system for authorizing the sales of regulated products |
6712397, | Oct 02 1998 | Giesecke & Devrient GmbH | Embossed data carrier |
6732924, | Feb 29 2000 | Kabushiki Kaisha Toshiba | Automatic ticket checking apparatus |
6748533, | Jan 30 1999 | Kent Ridge Digital Labs | Method and apparatus for protecting the legitimacy of an article |
6752432, | Jun 23 1999 | L-1 SECURE CREDENTIALING, INC | Identification card with embedded halftone image security feature perceptible in transmitted light |
6756181, | Jun 25 1993 | CITIBANK, N A | Laser imaged printing plates |
6761316, | Mar 27 2001 | Symbol Technologies, LLC | Compact auto ID reader and radio frequency transceiver data collection module |
6764014, | Sep 07 1999 | Liberty Peak Ventures, LLC | Transaction card |
6768808, | Oct 21 1994 | Digimarc Corporation | Encoding and decoding methods in which decryption data is conveyed steganographically within audio or visual content |
6776095, | Dec 18 2001 | XSYS Print Solutions Deutschland GmbH | Method for laser engraving flexographic printing forms, and printing forms obtained thereby |
6786420, | Jul 10 1998 | GOOGLE LLC | Data distribution mechanism in the form of ink dots on cards |
6788800, | Jul 25 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Authenticating objects using embedded data |
6794115, | Jan 08 2001 | XSYS Print Solutions Deutschland GmbH | Method for the production of thermally cross-linked laser engravable flexographic elements |
6803114, | Jul 01 1999 | Axalto SA | Manufacturing process for laminated cards with intermediate PETG layer |
6804378, | Nov 18 1993 | Digimarc Corporation | Methods and products employing biometrics and steganography |
6823075, | Jul 25 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Authentication watermarks for printed objects and related applications |
6825265, | Nov 21 2000 | TE Connectivity Solutions GmbH | Pigments and compositions for use in laser marking |
6827277, | Oct 02 2001 | L-1 SECURE CREDENTIALING, INC | Use of pearlescent and other pigments to create a security document |
6827283, | Sep 21 2000 | U-NICA Technology AG | Product with a security element |
6843422, | Dec 24 2001 | L-1 SECURE CREDENTIALING, INC | Contact smart cards having a document core, contactless smart cards including multi-layered structure, pet-based identification document, and methods of making same |
6869023, | Feb 12 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Linking documents through digital watermarking |
6882737, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digitally watermarking holograms for identity documents |
6883716, | Dec 07 1999 | Oracle America, Inc | Secure photo carrying identification device, as well as means and method for authenticating such an identification device |
6900767, | Sep 28 2001 | Konica Corporation | IC card |
6910628, | Jun 24 1997 | Travel system and methods utilizing multi-application airline passenger cards | |
6913199, | Dec 18 2002 | Symbol Technologies, LLC | System and method for verifying optical character recognition of optical code reads |
6923378, | Dec 22 2000 | L-1 SECURE CREDENTIALING, INC | Identification card |
6926203, | Jun 24 1997 | Travel system and methods utilizing multi-application traveler devices | |
6932378, | Aug 29 2003 | Key Safety Systems, Inc.; Key Safety Systems, Inc | Passenger air bag module with cover coupling mechanism |
6944650, | Mar 15 1999 | CP8 Technologies | System for accessing an object using a “web” browser co-operating with a smart card |
6947571, | Jun 29 1999 | Digimarc Corporation | Cell phones with optical capabilities, and related applications |
6954293, | Sep 28 1989 | GAO Gesellschaft für Automation und Organisation mbH | Data carrier having an optically variable element and methods for producing it |
6958346, | Sep 18 1997 | Bayer Schering Pharma Aktiengesellschaft | 4-heteroaryl-tetrahydroquinolines and their use as inhibitors of the cholesterin-ester transfer protein |
6959098, | Nov 30 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and system for determining image transformation |
6970573, | Aug 09 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Self validating security documents utilizing watermarks |
6975746, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Integrating digital watermarks in multimedia content |
6978036, | Jul 31 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Tamper-resistant authentication techniques for identification documents |
6991174, | Aug 09 2002 | Brite Smart Corporation | Method and apparatus for authenticating a shipping transaction |
6999936, | May 06 1997 | Electronic ticketing system and methods utilizing multi-service visitor cards | |
7007852, | Jul 15 1997 | Google Inc | Data distribution mechanism in the form of ink dots on cards |
7016516, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Authentication of identification documents |
7024563, | Sep 26 2000 | Seiko Epson Corporation | Apparatus, system and method for authenticating personal identity, computer readable medium having personal identity authenticating program recorded thereon method of registering personal identity authenticating information, method of verifying personal identity authenticating information, and recording medium having personal identity authenticating information recorded thereon |
7113596, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Embedding information related to a subject of an identification document in the identification document |
7152786, | Feb 12 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Identification document including embedded data |
7159116, | Dec 07 1999 | Wistaria Trading Ltd | Systems, methods and devices for trusted transactions |
7167844, | Dec 22 1999 | Accenture Global Services Limited | Electronic menu document creator in a virtual financial environment |
7181042, | Aug 24 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital authentication with digital and analog documents |
7185201, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Content identifiers triggering corresponding responses |
7191156, | May 01 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking systems |
7199456, | Jul 04 2001 | SMARTRAC INVESTMENT B V | Injection moulded product and a method for its manufacture |
7206820, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | System for linking from object to remote resource |
7289643, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method, apparatus and programs for generating and utilizing content signatures |
20010002035, | |||
20010007975, | |||
20010008557, | |||
20010020270, | |||
20010021144, | |||
20010024510, | |||
20010026377, | |||
20010028725, | |||
20010028727, | |||
20010037455, | |||
20010040980, | |||
20010047478, | |||
20010051996, | |||
20010052076, | |||
20010053235, | |||
20010054144, | |||
20010054149, | |||
20020010684, | |||
20020011519, | |||
20020015509, | |||
20020018430, | |||
20020019767, | |||
20020023148, | |||
20020023218, | |||
20020027359, | |||
20020033844, | |||
20020034305, | |||
20020037091, | |||
20020037093, | |||
20020046171, | |||
20020049908, | |||
20020052885, | |||
20020054317, | |||
20020059880, | |||
20020061120, | |||
20020061121, | |||
20020061122, | |||
20020064298, | |||
20020064759, | |||
20020067914, | |||
20020068987, | |||
20020070280, | |||
20020071556, | |||
20020073317, | |||
20020077380, | |||
20020080396, | |||
20020095577, | |||
20020096562, | |||
20020097873, | |||
20020097891, | |||
20020105679, | |||
20020106102, | |||
20020112171, | |||
20020114458, | |||
20020122568, | |||
20020146549, | |||
20020150277, | |||
20020158137, | |||
20020164051, | |||
20020170966, | |||
20020176114, | |||
20030002710, | |||
20030005303, | |||
20030031340, | |||
20030038174, | |||
20030039360, | |||
20030050961, | |||
20030089764, | |||
20030099374, | |||
20030117262, | |||
20030141358, | |||
20030178487, | |||
20030178495, | |||
20030211296, | |||
20030234286, | |||
20040026496, | |||
20040064415, | |||
20040076310, | |||
20040158724, | |||
20040181671, | |||
20040245346, | |||
20050003297, | |||
20050063027, | |||
20050063562, | |||
20050092849, | |||
20050094848, | |||
20050095408, | |||
20050258248, | |||
20060016107, | |||
20060040726, | |||
20070016790, | |||
CA2235002, | |||
CH689680, | |||
DE2943436, | |||
DE3806411, | |||
EP58482, | |||
EP279104, | |||
EP372601, | |||
EP411232, | |||
EP441702, | |||
EP479265, | |||
EP493091, | |||
EP581317, | |||
EP629972, | |||
EP637514, | |||
EP642060, | |||
EP650146, | |||
EP697433, | |||
EP705025, | |||
EP734870, | |||
EP739748, | |||
EP975147, | |||
EP991014, | |||
EP1035503, | |||
EP1041815, | |||
EP1077570, | |||
EP1134710, | |||
EP1147495, | |||
EP1173001, | |||
EP1202250, | |||
EP190997, | |||
EP1909971, | |||
GB1088318, | |||
GB1472581, | |||
GB2063018, | |||
GB2067871, | |||
GB2132136, | |||
GB2196167, | |||
GB2204984, | |||
GB2227570, | |||
GB2240948, | |||
GB2325765, | |||
GB2346110, | |||
GB2346111, | |||
JP10171758, | |||
JP10177613, | |||
JP11259620, | |||
JP3185585, | |||
JP4248771, | |||
JP5242217, | |||
JP7115474, | |||
WO45344, | |||
WO39953, | |||
WO43214, | |||
WO43216, | |||
WO78554, | |||
WO100719, | |||
WO105075, | |||
WO108405, | |||
WO1096112, | |||
WO129764, | |||
WO139121, | |||
WO143080, | |||
WO145559, | |||
WO173997, | |||
WO197128, | |||
WO2053499, | |||
WO207425, | |||
WO207442, | |||
WO2077380, | |||
WO2078965, | |||
WO217631, | |||
WO219589, | |||
WO226507, | |||
WO227647, | |||
WO242371, | |||
WO3055684, | |||
WO2003005291, | |||
WO2003055684, | |||
WO2003056507, | |||
WO2004102353, | |||
WO8204149, | |||
WO8908915, | |||
WO9116722, | |||
WO9403333, | |||
WO9427228, | |||
WO9509084, | |||
WO9510835, | |||
WO9513597, | |||
WO9514289, | |||
WO9520291, | |||
WO9603286, | |||
WO9626494, | |||
WO9627259, | |||
WO9636163, | |||
WO9701446, | |||
WO9743736, | |||
WO9814887, | |||
WO9819869, | |||
WO9820411, | |||
WO9820642, | |||
WO9824050, | |||
WO9840823, | |||
WO9849813, | |||
WO99024934, | |||
WO9934277, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 30 2003 | L-1 Secure Credentialing, Inc. | (assignment on the face of the patent) | / | |||
May 20 2004 | LABREC, BRIAN | Digimarc Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015375 | /0312 | |
Aug 05 2008 | L-1 SECURE CREDENTIALING, INC | BANK OF AMERICA, N A | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 022584 | /0307 | |
Aug 13 2008 | Digimarc Corporation | L-1 SECURE CREDENTIALING, INC | MERGER CHANGE OF NAME | 022169 | /0842 |
Date | Maintenance Fee Events |
Jul 02 2013 | ASPN: Payor Number Assigned. |
Jan 06 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 06 2014 | M1554: Surcharge for Late Payment, Large Entity. |
Jan 15 2018 | REM: Maintenance Fee Reminder Mailed. |
May 18 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 18 2018 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Jan 17 2022 | REM: Maintenance Fee Reminder Mailed. |
Jul 04 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 01 2013 | 4 years fee payment window open |
Dec 01 2013 | 6 months grace period start (w surcharge) |
Jun 01 2014 | patent expiry (for year 4) |
Jun 01 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 01 2017 | 8 years fee payment window open |
Dec 01 2017 | 6 months grace period start (w surcharge) |
Jun 01 2018 | patent expiry (for year 8) |
Jun 01 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 01 2021 | 12 years fee payment window open |
Dec 01 2021 | 6 months grace period start (w surcharge) |
Jun 01 2022 | patent expiry (for year 12) |
Jun 01 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |