An apparatus for varying localized absorption and scattering coefficients at a tissue measurement site in a controlled and reproducible manner during optical sampling of a tissue volume by controlling the pressure applied to a tissue measurement site by a spectroscopic analyzer allows applied pressure to be maintained at a constant level, or the applied pressure may be varied in a controlled, reproducible manner as a function of time. A rest for receiving a body part holds the body part in a fixed position and at a fixed elevation. A mechanical system advances a fiber optic probe until it makes contact with the body part with a constant amount of pressure. The applied force is supplied by a counterweight on a single arm balance. A temperature control allows the temperature of the fiber optic probe to be equilibrated with the temperature in the immediate vicinity of the tissue measurement site. Alternate embodiments allow the fiber optic probe to be brought into direct contact with the tissue measurement site, and displaced a known distance into the tissue. The invention is also embodied as a method in which the absorption and scattering coefficients for successive spectral measurements are calculated to determine optimum depth of penetration for detection of a target analyte.
|
1. An apparatus for varying localized absorption and scattering coefficients at a tissue measurement site in a controlled and reproducible manner during optical sampling comprising:
a subject interface for variably contacting with a tissue measurement site; means for measuring specular reflectance or spectral data of tissue at said tissue measurement site; means for varying and maintaining contact with said tissue measurement site by said subject interface in a controlled and reproducible manner according to any of said measured specular reflectance and said measured spectral data; and means for reproducibly positioning said tissue measurement site relative to said subject interface.
40. A method for varying localized absorption and scattering coefficients at a tissue measurement site in a controlled and reproducible manner during optical sampling of a tissue volume comprising the steps of:
providing a tissue measurement site; providing a spectroscopic analyzer having a subject interface adapted to make contact with said tissue measurement site during measurement; making an initial nir spectral measurement, for which any of applied pressure to the tissue measurement site by said subject interface and degree of displacement into the tissue of the tissue measurement site by said subject interface is known and maintained during said initial measurement; measuring nir spectral data of tissue at said tissue measurement site; varying and maintaining contact with said tissue measurement site by said subject interface in a controlled and reproducible manner according to said measured nir spectral data; calculating local absorbance and scattering coefficients for said measurements; making one or more subsequent nir spectral measurements in which any of applied pressure and displacement is varied by a known amount; calculating absorbance and scattering coefficients for each measurement; and determining an optimal sampling depth for detecting a target analyte, wherein a ratio of absorption coefficient to scattering coefficient is an indicator of said optimal depth.
2. The apparatus of
a fiber optic probe surrounded by a housing, wherein said probe delivers light energy to said tissue measurement site and collects light energy transmitted or reflected from said tissue measurement site.
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
a single arm balance with a counter weight, said single arm balance comprising a hinged beam attached to an upright mount at a point of attachment, wherein a bearing element allows said hinged beam to rotate freely about a point of rotation defined by said point of attachment, and wherein said beam has a first end and a second end; and a gimbal mount attached to said second end for receiving said subject interface; wherein adjusting said counter weight varies the amount of pressure applied to said tissue measurement site by said fiber optic probe.
10. The apparatus of
11. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
16. The apparatus of
a platform mounted on a support structure; an elbow guide; a wrist guide and a hand guide, all detachably mounted on said platform; and an aperture defined by said platform.
17. The apparatus of
18. The apparatus of
19. The apparatus of
20. The apparatus of
21. The apparatus of
22. The apparatus of
23. The apparatus of
24. The apparatus of
a system for raising and lowering said platform so that said fiber optic probe may be brought into contact with said tissue measurement site and then displaced into skin at the tissue measurement site by a known amount, where said subject interface is fixedly mounted; wherein said tissue measurement site is located on an arm of said subject.
25. The apparatus of
an elbow guide, a wrist guide and a hand guide for reproducibly positioning said arm, said wrist guide and said hand guide being slideable to accommodate arms of varying length; and wherein said platform has an aperture through which said fiber optic probe protrudes in order to make contact with the tissue measurement site.
26. The apparatus of
28. The apparatus of
29. The apparatus of
30. The apparatus of
31. The apparatus of
32. The apparatus of
33. The apparatus of
an LED situated at one side of said arm; a detector situated at the opposite side of said arm; wherein a signal from said LED is aimed directly above said fiber optic probe, and detected by said detector.
34. The apparatus of
35. The apparatus of
36. The apparatus of
37. The apparatus of
a hand crank; a lever arm; a scissors jack a hinge point in conjunction with a linear drive; and a worm drive.
38. The apparatus of
41. The method of
42. The method of
44. The method of
45. The method of
47. The method of
48. The method of
49. The method of
50. The method of
51. The method of
52. The method of
53. The method of
54. The method of
55. The method of
56. The method of
a hand crank; a lever arm; a scissors jack a hinge point in conjunction with a linear drive; and a worm drive.
|
1. Field of the invention
The invention relates to minimally invasive and non-invasive clinical testing. More particularly, the invention relates to an apparatus and method for modifying localized absorption and scattering coefficients at a tissue measurement site during optical sampling.
2. Description of the Related Art
Conventional methods of clinical testing have required the use of invasive procedures, such as biopsy and phlebotomy, to sample blood and tissue. Subsequently, the samples were transported to a central location, such as a laboratory, for examination and analysis. There is an increasing trend, however, toward point of care testing and even in-home testing. One of the benefits of this trend is to minimize the turnaround time from when a sample is taken to being able to take action based on the test results. At the same time, sampling procedures are becoming less and less invasive. Since they minimize or eliminate the need to handle blood and tissue specimens, minimally invasive and noninvasive procedures drastically reduce biohazard risk, both to the subject and the practitioner. Additionally, the decreased use of expendable reagents minimizes cost of testing and the environmental and health risks posed by the use of chemical substances.
Analyzers are being developed for point of care and in home use that either sample in a minimally invasive fashion or are completely noninvasive, often by sampling tissue optically. During use, it is necessary for many of these analyzers to contact the surface of a tissue measurement site directly, in order to control test conditions such as:
stability of the analyzer during measurement;
minimization of spectral reflectance;
avoidance of stray light; and
reproducibly hitting the targeted sampling area.
Pressure on the sampled tissue (skin) site induced by contact with the analyzer can result in localized sampling variations. For example, pressure applied to the tissue measurement site forces water from the vicinity of the site, decreasing the water concentration. As water concentration changes, there is a corresponding change in the local absorption coefficient. In addition, decreasing water concentration increases the density of the scattering centers present in the sampled tissue volume, thereby altering the reduced scattering coefficient. It would be desirable to modify local absorption and reduced scattering coefficients in a controlled, reproducible manner, allowing differential measurements to optimize the signal-to-noise ratio of one or more target analytes.
It would also be advantageous to provide sampling devices that either maintain a constant pressure or displacement between the analyzer and the subject's skin or that reproducibly control changes in pressure or displacement over time.
The invention provides a subject interface module for modifying localized absorption and scattering coefficients by controlling the pressure applied to a tissue measurement site by an analyzer during optical sampling; the applied pressure may be maintained at a constant level, or it may be applied in a controlled, reproducible manner as a function of time, so that absorption and reduced scattering coefficients may be varied in a controlled, reproducible manner. The invention is also embodied as a method of modifying localized absorption and scattering coefficients in a controlled and reproducible manner by varying pressure or displacement during optical sampling.
The preferred embodiment of the invention includes a placement device for receiving a body part such as an arm, so that the body part is held in a fixed position and at a fixed elevation. The invention further includes an applied force mechanism for advancing the fiber optic probe of an analyzer until it makes contact with the body part, and maintaining the contact at a constant pressure. The applied force is supplied by a counterweight on a single arm balance. The invention further provides a temperature control, for equilibrating the temperature of the fiber optic probe with the surface temperature in the immediate vicinity of the tissue measurement site.
Alternate embodiments of the invention provide a means for bringing the fiber optic probe into contact with the surface of the tissue measurement site, and then displacing it by a known distance. In one embodiment, an LED and a detector define a starting location prior to displacement and the fiber optic probe is displaced a given distance after the LED is detected. In another embodiment, the displacement of the probe is dictated by the elimination of spectral reflectance. In a further embodiment, the probe is displaced into the tissue until analysis of the spectral information indicates that the preferred depths of the sample are being probed.
The application of pressure to a sampling area in a noninvasive measurement may affect the measurement site in a number of ways, including:
localized changes in analyte concentration;
localized changes in physical parameters, such as temperature; and
changes in absorption and scattering coefficients.
For example, as pressure is applied to a region of the body, the localized water concentration changes due to the applied pressure forcing water out of the area. Subsequently, internal blood pressure is increased to maintain blood flow to the area. Both affects alter the localized water concentration with different time constants. As the water concentration changes, multiple additional localized parameters change. In the near-IR spectral region, the absorption coefficient, μa, decreases as water concentration decreases. With less water, the density of the scattering centers increases, with a resulting increase in the reduced scattering coefficient, μ's. Naturally, the μa/μ's ratio also changes, since both coefficients have changed. In addition, the concentrations of all analytes carried in the blood or interstitial fluid change over a localized volume as they are expelled from the area along with the water. As a result of water movement, non-aqueous analytes will also experience localized concentration changes. For example, as water departs a given volume of tissue, the relative concentration of the remaining non-aqueous analytes increases.
During a non-invasive measurement, the penetration of photons into the tissue layers is dependent upon the pressure applied to the tissue. As previously indicated, pressure applied to a localized area changes the water concentration, resulting in a localized change in the scattering and absorption coefficients. As the scattering properties of the tissue change, indicated by changes in the scattering coefficient, the depth of penetration of photons changes. As a result, the sampled volume of the tissue changes. Since the tissue measurement site is not of a homogeneous nature, but is rather composed of layers, alterations in sampled volume can have a pronounced affect on the measurement. To a first approximation, the skin comprises a series of layers, starting with the stratum corneum at the surface, followed in turn by the epidermis, the dermis, and a subcutaneous fat layer, with internal structures, such as organs and bone, finally found far beneath the skin. Each layer has a different mean concentration of each analyte and interferent. Accordingly, as the mean depth of penetration of the probing photons changes, so does the mean concentration of analytes and interferents. Thus, for a given sample, application of differing pressures results in spectra that sample different tissue volumes, each containing different concentrations of target analyte and interferents. Pressure on the measurement site must either be kept constant or varied in a controlled, reproducible manner, so that the impact of variation of pressure on the sampling site may be well characterized, allowing appropriate development of algorithms that compensate for or take advantage of the different sampled volumes.
In noninvasive analysis, pressure effects are most evident in the near-IR and mid-IR regions, which sample the surface layers. Applied pressure changes localized concentrations over a limited radial distance from the point of contact and to limited depths. Thus, photons that predominantly sample the affected area are most affected by pressure. The depth of penetration of near-IR and mid-IR photons is limited by the strong absorbance of water. Scattering centers in the tissue also limit the depth of penetration of light, from the ultraviolet through the visible and into the near-IR range. Since these spectral regions sample depths in tissue where pressure has the most effect, they will be the most sensitive to pressure. It should be noted that the affects will be observed the most in diffuse reflection based analyzers but will also affect transflectance based measurements and will have some affect on transmission based measurements.
Advantageously, the foregoing effects on localized absorption and scattering coefficients are applied in a method that utilizes differential spectral measurements during which the applied force is varied by a known amount to modify localized absorbance and scattering coefficients in a controlled manner. The resulting values for the μa/μ's ratio are then utilized in a differential measurement to enhance the signal-to-noise ratio of a target analyte signal. For example, the observed absorbances of particular components such as water, protein, fat or urea reach a known level or a given ratio versus another component. These ratios may be calibrated at known pressures or displacement levels for individuals or groups of subjects using any of a large number of combined wavelengths with known chemometric techniques.
In summary, the invented method includes the steps of:
providing a tissue measurement site;
a providing a spectroscopic analyzer having a subject interface adapted to make direct contact with the tissue measurement site during measurement;
making an initial spectral measurement, in which the applied pressure or displacement by the analyzer is known and maintained during the measurement;
calculating the absorbance and scattering coefficients;
making subsequent measurements in which the applied pressure or displacement is varied by a known amount, and calculating absorbance and scattering coefficients for each measurement; and
determining an optimal sampling depth for detecting a target analyte based on the ratio of the measured absorption coefficients and scattering coefficients.
The invention is further embodied as an apparatus for modifying localized absorption and scattering coefficients by varying pressure or displacement on a tissue measurement site in a controlled and reproducible manner. According to a preferred embodiment, the invention provides a subject interface module for adjustably maintaining pressure applied to a tissue measurement site from a fiber optic probe at a constant level during optical sampling. While the preferred embodiment of the invention utilizes a bifurcated fiber optic bundle that couples light from the light source of an analyzer to the tissue measurement site and from the tissue measurement site to the detector element of the analyzer, other means of coupling light from a light source to a target site would be suitable in the invention as well. The constant force subject interface module consists of two major elements: a placement guide for securing the subject's body part upon which the tissue measurement site is located, and an adjustable applied force mechanism.
While the invention has been described herein with reference to human subjects, this description is exemplary only and not intended to limit the scope of the invention. Additionally, the placement guide has been described with respect to the human arm. The principles of the invention will suggest other guides to those skilled in the art that are applicable to other limbs and body parts, both human and non-human, that are consistent with the spirit and scope of the invention. Referring now to
It is preferred that the subject be in a sitting position during actual sampling, to minimize the effects of size difference between subjects. During tests of the invented device, sampling with the subject in a sitting position resulted in only a 2" difference in the height of the arm between an adult male and 10 year old boy, allowing the current embodiment of the invention to be built with a relatively small range of travel being required by the movable fiber optic probe. The wrist/hand guide unit 15 is detachably mounted on a mechanical slide 20 (
As previously indicated, a fiber optic probe employs a bifurcated fiber optic cable 15 to deliver light energy to the tissue measurement sight from an energy source (not shown). The same probe collects light energy reflected or transmitted from the tissue measurement site and delivers it to detectors (not shown). A subject interface includes a cylindrical housing 16 with the fiber optic probe tip 17 protruding from a terminal surface of the cylindrical housing. An aperture 18 in the arm placement guide provides the subject interface access to the tissue measurement site.
The subject's arm is positioned in the arm guide 10 such that the lowest point of the suspended forearm is suspended directly over the tip of the fiber optic probe 17. While the arm is being positioned, the fiber probe tip 17 is locked into a `down` position using the beam movement brake 34 (
Once the arm is positioned, an applied force mechanism 30 incorporating a conventional single arm balance is employed to move the fiber optic probe tip 17 upward until it contacts the arm with a constant upward force 31, shown in FIG. 3. In order to apply a very small, known amount of force to the arm with the fiber optic probe, the point of contact between the forearm and the probe should be limited to the tip of the probe. It is preferable that the fiber optic probe be rectangular, with the long side of the rectangle oriented lengthwise on the arm, so that the entire probe may contact the arm with a minimal application of pressure. Additionally, the head of the fiber optic probe needs to be as small as possible; again, in order to minimize the amount of pressure required for complete contact between the probe and the tissue measurement site. In the current embodiment, the applied force is provided by a counterweight 33 on a single arm balance. The balance comprises a hinged beam 32, mounted on an upright mount 37, that rotates about a point of rotation defined by the point of attachment to the upright mount. A bearing 38 allows free movement of the beam about the point of rotation. As the adjustable weight 33 is moved along the axis of the beam, the force 31 applied to the tissue measurement site by the fiber optic probe is changed. An alternative arrangement (not shown) for the adjustable weight incorporates a weight that slides along the arm of the balance, which is provided with gradations for different pressure levels. A screw with a small circular weight mounted on it may be used for fine adjustments to the applied force. In the present embodiment of the invention, the total applied pressure may be varied in a continuous fashion from 0 to 2 kg/in2. Additional weights may be added to vary the applied force as required. Once the fiber optic probe is positioned, the probe may be locked into position with the beam movement brake/lock mechanism 34. The beam movement brake functions by means of a friction plate, which is compressed into the upright mount 37 to lock the beam at a desired position. In addition, the subject interface floats on a gimbal mount 35 to insure that the optical axis of the probe is normal to the subject's arm at the point of contact. The gimbal mount includes a gimbal locking mechanism 36 that locks the gimbal by means of a compression or pinch element. The fiber optic probe tip may be locked into position with the gimbal locking mechanism 36 to maintain the stability of the probe against the arm. In order to further assure the reproducibility of arm placement, it is necessary to protect the invented apparatus from structural deformation due to excessive pressure applied by the subject in the event that they lean on the analyzer. The entire structure of the current embodiment is designed, therefore, to withstand a force of 200 pounds exerted upon the arm support structure, without deforming.
In addition to pressure control, the apparatus is capable of controlling the temperature of the fiber optic probe so that it may equilibrate to the localized temperature in the vicinity of the tissue measurement site. In the current embodiment, the housing 16 is cylindrical and completely surrounds the fiber optic probe, with the probe tip 17 protruding from a terminal surface of the cylindrical housing 16. Within the housing is a metallic core that is maintained at a given temperature by means of a low voltage temperature device (not shown). In the current embodiment, the core is fabricated from aluminum, although other metals that are lightweight and conduct heat readily would also be suitable. The temperature device is equipped with a feedback control, allowing it to maintain a constant temperature. It should be noted that the temperature of the sampled area may be predicted from the near-IR spectra by using the shifts of the water bands, which absorb at 1450, 1950 and 2600 nm. As the temperature of the water increases, these bands shift to higher energy.
The localized temperature of the forearm may also be measured directly. A thermistor 19 encapsulated in a housing protrudes from the housing 16 into the forearm slightly at a distance of approximately 7 m from the edge of the fiber optic probe tip. In combination with temperature readings inside the housing, the localized forearm temperature at the tissue measurement site may be calculated.
One skilled in the art will recognize that the pressure may be applied by a variety of other means, including but not limited to: a lever arm, spring force, air pressure or counter weights. While the above system is calibrated with counter weights, one skilled in the art will recognize that the applied pressure may be measured by a variety of means, including but not limited to: balances, air pressure gauges, or by calculation.
An alternate version of the arm placement guide is reproducibly attached to the arm and has guide rods that couple to the spectrometer to aid in reproducibly coupling the sample to the analyzer.
While the preferred embodiment described above utilizes an applied force to generate an applied pressure between the analyzer and the tissue measurement site, in an alternate embodiment, the analyzer is brought into contact with the tissue measurement site and subsequently displaced a known distance against the skin at the tissue measurement site. In the current, alternate embodiment of the invention, the fiber optic probe is maintained in a fixed vertical position, as it protrudes from a platform upon which the subject's limb rests. The platform is raised and lowered, allowing the tip of the fiber optic probe to compress the skin at the tissue measurement site by varying amounts. Different versions of the current embodiment, each employing a different method for determining degree of displacement, are provided. First, an LED and detector define a starting location prior to displacement and the subject interface module may be displaced a given distance after the LED is detected. Second, the analyzer may be moved until spectral reflectance is removed, or, optionally, moved a fixed distance after elimination of spectrally reflected light. In the near-IR this would be-when the light intensity at 1950 nm, where water has a strong absorbance, approaches zero. Third, the analyzer may be displaced into the tissue until analysis of the spectral information indicates that the preferred depths of the sample are being probed, indicated by the detection of chemical bands that serve as markers for an individual subject or class of subjects; described in detail in the commonly assigned U.S patent application Ser. No. 09/359,191, An Intelligent System For Noninvasive Blood Analyte Prediction, S. Malin, T. Ruchti (Jul. 22, 1999). Each of these versions is described in greater detail below.
Referring now to
A second version of the constant displacement subject interface module defines the zero position of the translating arm support plane by detecting spectrally reflected light collected by the fiber optic probe. The zero position constitutes the point at which no spectrally reflected light is detected. When the tissue measurement site is not in contact with the surface of the fiber optic probe, spectrally reflected light may be collected in the probe and detected. This spectrally reflected light is an interferent that hinders analysis. When the tissue measurement site first makes complete contact with the tip of the fiber optic probe, the spectrally reflected light approaches zero intensity. In a diffuse reflectance based measurement of the skin in the near-IR region, water has several strong absorbance bands located at 1450, 1950 and 2600 nm. Two noninvasive diffuse reflectance spectra of a tissue measurement site on a human forearm are shown in FIG. 5. The top curve 50 shows that light is being detected at 1950 and 2500 nm, in a region where water has sufficiently high absorbance levels that a zero signal should be observed. The detection of light indicates that spectrally reflected light is being collected and that the fiber optic probe and the tissue measurement site are not in contact. The lower curve 51 shows zero intensity (noise limited intensity) at 1950 and 2500 nm, indicating that the fiber optic probe tip and the tissue measurement site are in direct contact. The zero point is defined as the point when intensity at 1950 nm first reaches zero. Known displacements beyond this point are determined using the distance of travel of the computerized arm support platform.
A third version of the constant displacement subject interface module establishes the displacement of the fiber optic probe into the forearm using spectral information. As previously discussed, the scattering and absorption coefficients of the sample change with different degrees of applied pressure. Therefore, the sampled volume and resulting spectra are a function of the displacement of the fiber versus the zero position. Thus, the spectra may be used to create a feedback to the linear drive system as to the desired displacement of the subject interface module.
Other systems for raising and lowering the arm support platform are possible, including: a hand crank, a lever arm, a scissors jack and drive, a hinge point in conjunction with a linear drive and a worm drive. Other systems consistent with the spirit and scope of the invention will be apparent to those skilled in the art.
There are many situations in which it is beneficial to control the amount of pressure exerted by an analyzer on the sample being analyzed. In the biomedical field, analyzers are under development for a variety of important analytes; for example, glucose, for monitoring diabetics, urea, for use with dialysis patients, and oxygen. As previously mentioned, point of care testing using minimally invasive and non-invasive methods is rapidly supplanting more conventional methods of sampling and laboratory analysis in the field of clinical testing. The invention finds application in any minimally invasive and non-invasive measurements of this type, in which an analyzer must make contact with a tissue measurement site.
While the foregoing description has presented the invention in the context of medical applications with human subjects, the invention finds broad application in a number of technical fields where solid samples are analyzed that are not homogeneous at or near the surface and are elastic, or where spectral reflectance must be eliminated by directly contacting a sample with an analyzer. For example, the invention may be readily adapted for veterinary or research use with non-human subjects. Additionally, optical sampling of agricultural products is exceedingly common. For example, analyses of fruits, vegetable and grains are affected by the degree of pressure applied to the sample by the analyzer. The invention also provides an apparatus for the removal of spectrally reflected light off of a sample in diffuse reflectance mode, which is critical to quantitative analysis of small analyte signals. Within the pharmaceutical and chemical arts, intimate contact of the analyzer with tablets, capsules, pellets, chips and other such items is beneficial in diffuse reflectance based measurements.
Although the invention has been described herein with reference to certain preferred embodiments, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the Claims included below.
Hazen, Kevin H., Abul-Haj, Roxanne E., Acosta, George, Abul-Haj, N. Alan
Patent | Priority | Assignee | Title |
10004402, | Sep 03 2002 | OMNI CONTINUUM, LLC | Measurement apparatus for physiological parameters |
10015582, | Aug 06 2014 | YUKKA MAGIC LLC | Earbud monitoring devices |
10041832, | Nov 18 2005 | OMNI CONTINUUM, LLC | Mid-infrared super-continuum laser |
10076253, | Jan 28 2013 | YUKKA MAGIC LLC | Physiological monitoring devices having sensing elements decoupled from body motion |
10076282, | Feb 25 2009 | Valencell, Inc. | Wearable monitoring devices having sensors and light guides |
10092245, | Feb 25 2009 | Valencell, Inc. | Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals |
10098546, | Jan 21 2013 | Omni Medsci, Inc. | Wearable devices using near-infrared light sources |
10105059, | Dec 31 2012 | Omni Medsci, Inc. | System configured for measuring physiological parameters |
10126283, | Dec 31 2012 | Omni Medsci, Inc. | Near-infrared time-of-flight imaging |
10136819, | Dec 31 2012 | Omni Medsci, Inc. | Short-wave infrared super-continuum lasers and similar light sources for imaging applications |
10159412, | Dec 01 2010 | WILLOW LABORATORIES, INC | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
10172523, | Dec 31 2012 | Omni Medsci, Inc. | Light-based spectroscopy with improved signal-to-noise ratio |
10188299, | Dec 31 2012 | Omni Medsci, Inc. | System configured for measuring physiological parameters |
10201283, | Dec 31 2012 | Omni Medsci, Inc. | Near-infrared laser diodes used in imaging applications |
10213113, | Dec 31 2012 | Omni Medsci, Inc. | Physiological measurement device using light emitting diodes |
10258243, | Dec 19 2006 | YUKKA MAGIC LLC | Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto |
10382839, | Sep 27 2014 | YUKKA MAGIC LLC | Methods for improving signal quality in wearable biometric monitoring devices |
10386230, | Dec 31 2012 | Omni Medsci, Inc. | Near-infrared time-of-flight remote sensing |
10413197, | Dec 19 2006 | YUKKA MAGIC LLC | Apparatus, systems and methods for obtaining cleaner physiological information signals |
10441176, | Dec 31 2012 | Omni Medsci, Inc. | Imaging using near-infrared laser diodes with distributed bragg reflectors |
10448840, | Feb 25 2009 | Valencell, Inc. | Apparatus for generating data output containing physiological and motion-related information |
10466102, | Nov 18 2005 | OMNI CONTINUUM, LLC | Spectroscopy system with laser and pulsed output beam |
10506310, | Sep 27 2014 | YUKKA MAGIC LLC | Wearable biometric monitoring devices and methods for determining signal quality in wearable biometric monitoring devices |
10512403, | Aug 02 2011 | YUKKA MAGIC LLC | Systems and methods for variable filter adjustment by heart rate metric feedback |
10517484, | Dec 31 2012 | OMNI MEDSCI, INC | Semiconductor diodes-based physiological measurement device with improved signal-to-noise ratio |
10536768, | Aug 06 2014 | YUKKA MAGIC LLC | Optical physiological sensor modules with reduced signal noise |
10542893, | Feb 25 2009 | Valencell, Inc. | Form-fitted monitoring apparatus for health and environmental monitoring |
10595730, | Dec 19 2006 | YUKKA MAGIC LLC | Physiological monitoring methods |
10610158, | Oct 23 2015 | YUKKA MAGIC LLC | Physiological monitoring devices and methods that identify subject activity type |
10623849, | Aug 06 2014 | YUKKA MAGIC LLC | Optical monitoring apparatus and methods |
10660526, | Dec 31 2012 | Omni Medsci, Inc.; OMNI MEDSCI, INC | Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors |
10677774, | Dec 31 2012 | OMNI MEDSCI, INC | Near-infrared time-of-flight cameras and imaging |
10716480, | Feb 25 2009 | Valencell, Inc. | Hearing aid earpiece covers |
10716481, | Dec 19 2006 | YUKKA MAGIC LLC | Apparatus, systems and methods for monitoring and evaluating cardiopulmonary functioning |
10729335, | Dec 01 2010 | WILLOW LABORATORIES, INC | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
10736518, | Aug 31 2015 | Masimo Corporation | Systems and methods to monitor repositioning of a patient |
10750954, | Feb 25 2009 | Valencell, Inc. | Wearable devices with flexible optical emitters and/or optical detectors |
10765367, | Oct 07 2014 | Masimo Corporation | Modular physiological sensors |
10779062, | Sep 27 2014 | YUKKA MAGIC LLC | Wearable biometric monitoring devices and methods for determining if wearable biometric monitoring devices are being worn |
10779098, | Jul 10 2018 | Masimo Corporation | Patient monitor alarm speaker analyzer |
10784634, | Feb 06 2015 | Masimo Corporation | Pogo pin connector |
10798471, | Sep 27 2014 | YUKKA MAGIC LLC | Methods for improving signal quality in wearable biometric monitoring devices |
10799160, | Oct 07 2013 | Masimo Corporation | Regional oximetry pod |
10799163, | Oct 12 2006 | Masimo Corporation | Perfusion index smoother |
10820807, | Dec 31 2012 | Omni Medsci, Inc. | Time-of-flight measurement of skin or blood using array of laser diodes with Bragg reflectors |
10825568, | Oct 11 2013 | Masimo Corporation | Alarm notification system |
10827979, | Jan 27 2011 | Valencell, Inc. | Wearable monitoring device |
10834483, | Sep 27 2014 | YUKKA MAGIC LLC | Wearable biometric monitoring devices and methods for determining if wearable biometric monitoring devices are being worn |
10842387, | Feb 25 2009 | Valencell, Inc. | Apparatus for assessing physiological conditions |
10842389, | Feb 25 2009 | Valencell, Inc. | Wearable audio devices |
10849554, | Apr 18 2017 | Masimo Corporation | Nose sensor |
10856749, | Jan 28 2013 | YUKKA MAGIC LLC | Physiological monitoring devices having sensing elements decoupled from body motion |
10856750, | Apr 28 2017 | Masimo Corporation | Spot check measurement system |
10856788, | Mar 01 2005 | WILLOW LABORATORIES, INC | Noninvasive multi-parameter patient monitor |
10863938, | Oct 12 2006 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
10869602, | Mar 25 2002 | Masimo Corporation | Physiological measurement communications adapter |
10874304, | Dec 31 2012 | Omni Medsci, Inc. | Semiconductor source based near infrared measurement device with improved signal-to-noise ratio |
10893835, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
10898083, | Feb 25 2009 | Valencell, Inc. | Wearable monitoring devices with passive and active filtering |
10912500, | Jul 03 2008 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
10912501, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
10912502, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
10912524, | Sep 22 2006 | Masimo Corporation | Modular patient monitor |
10918281, | Apr 26 2017 | Masimo Corporation | Medical monitoring device having multiple configurations |
10918287, | Dec 31 2012 | Omni Medsci, Inc. | System for non-invasive measurement using cameras and time of flight detection |
10925550, | Oct 13 2011 | Masimo Corporation | Medical monitoring hub |
10928374, | Dec 31 2012 | Omni Medsci, Inc.; OMNI MEDSCI, INC | Non-invasive measurement of blood within the skin using array of laser diodes with Bragg reflectors and a camera system |
10932705, | May 08 2017 | Masimo Corporation | System for displaying and controlling medical monitoring data |
10932729, | Jun 06 2018 | Masimo Corporation | Opioid overdose monitoring |
10939877, | Oct 14 2005 | Masimo Corporation | Robust alarm system |
10939878, | Jun 06 2018 | Masimo Corporation | Opioid overdose monitoring |
10942064, | Nov 18 2005 | OMNI CONTINUUM, LLC | Diagnostic system with broadband light source |
10943450, | Dec 21 2009 | Masimo Corporation | Modular patient monitor |
10945618, | Oct 23 2015 | YUKKA MAGIC LLC | Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type |
10945648, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
10952641, | Sep 15 2008 | Masimo Corporation | Gas sampling line |
10956950, | Feb 24 2017 | Masimo Corporation | Managing dynamic licenses for physiological parameters in a patient monitoring environment |
10959652, | Jul 02 2001 | Masimo Corporation | Low power pulse oximeter |
10966662, | Jul 08 2016 | YUKKA MAGIC LLC | Motion-dependent averaging for physiological metric estimating systems and methods |
10973415, | Feb 25 2009 | Valencell, Inc. | Form-fitted monitoring apparatus for health and environmental monitoring |
10973447, | Jan 24 2003 | Masimo Corporation | Noninvasive oximetry optical sensor including disposable and reusable elements |
10980432, | Aug 05 2013 | Masimo Corporation | Systems and methods for measuring blood pressure |
10980455, | Jul 02 2001 | Masimo Corporation | Low power pulse oximeter |
10980457, | Apr 21 2007 | Masimo Corporation | Tissue profile wellness monitor |
10984911, | Mar 01 2005 | WILLOW LABORATORIES, INC | Multiple wavelength sensor emitters |
10987005, | Dec 19 2006 | YUKKA MAGIC LLC | Systems and methods for presenting personal health information |
10987066, | Oct 31 2017 | Masimo Corporation | System for displaying oxygen state indications |
10991135, | Aug 11 2015 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
10993643, | Oct 12 2006 | Masimo Corporation | Patient monitor capable of monitoring the quality of attached probes and accessories |
10993662, | Mar 04 2016 | Masimo Corporation | Nose sensor |
11000190, | Dec 19 2006 | YUKKA MAGIC LLC | Apparatus, systems and methods for obtaining cleaner physiological information signals |
11000232, | Jun 19 2014 | Masimo Corporation | Proximity sensor in pulse oximeter |
11006867, | Oct 12 2006 | Masimo Corporation | Perfusion index smoother |
11020029, | Jul 25 2003 | Masimo Corporation | Multipurpose sensor port |
11020084, | Sep 20 2012 | Masimo Corporation | Acoustic patient sensor coupler |
11022466, | Jul 17 2013 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
11026588, | Feb 25 2009 | Valencell, Inc. | Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals |
11026604, | Jul 13 2017 | WILLOW LABORATORIES, INC | Medical monitoring device for harmonizing physiological measurements |
11033210, | Mar 04 2008 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
11069461, | Aug 01 2012 | Masimo Corporation | Automated assembly sensor cable |
11071480, | Apr 17 2012 | Masimo Corporation | Hypersaturation index |
11076777, | Oct 13 2016 | Masimo Corporation | Systems and methods for monitoring orientation to reduce pressure ulcer formation |
11076782, | Oct 07 2013 | Masimo Corporation | Regional oximetry user interface |
11082786, | Jul 10 2018 | Masimo Corporation | Patient monitor alarm speaker analyzer |
11083378, | Dec 19 2006 | YUKKA MAGIC LLC | Wearable apparatus having integrated physiological and/or environmental sensors |
11083397, | Feb 09 2012 | Masimo Corporation | Wireless patient monitoring device |
11086609, | Feb 24 2017 | Masimo Corporation | Medical monitoring hub |
11087875, | Mar 04 2009 | Masimo Corporation | Medical monitoring system |
11089963, | Aug 31 2015 | Masimo Corporation | Systems and methods for patient fall detection |
11089982, | Oct 13 2011 | Masimo Corporation | Robust fractional saturation determination |
11095068, | Aug 15 2017 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
11096631, | Feb 24 2017 | Masimo Corporation | Modular multi-parameter patient monitoring device |
11103134, | Sep 18 2014 | MASIMO SEMICONDUCTOR, INC. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
11109761, | Dec 31 2012 | Omni Medsci, Inc. | High signal-to-noise ratio light spectroscopy of tissue |
11109767, | Dec 19 2006 | YUKKA MAGIC LLC | Apparatus, systems and methods for obtaining cleaner physiological information signals |
11109770, | Jun 21 2011 | Masimo Corporation | Patient monitoring system |
11109818, | Apr 19 2018 | Masimo Corporation | Mobile patient alarm display |
11114188, | Oct 06 2009 | WILLOW LABORATORIES, INC | System for monitoring a physiological parameter of a user |
11132117, | Mar 25 2012 | Masimo Corporation | Physiological monitor touchscreen interface |
11133105, | Mar 04 2009 | Masimo Corporation | Medical monitoring system |
11145408, | Mar 04 2009 | Masimo Corporation | Medical communication protocol translator |
11147518, | Oct 07 2013 | Masimo Corporation | Regional oximetry signal processor |
11153089, | Jul 06 2016 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
11158421, | Mar 04 2009 | Masimo Corporation | Physiological parameter alarm delay |
11160455, | Dec 31 2012 | Omni Medsci, Inc. | Multi-wavelength wearable device for non-invasive blood measurements in tissue |
11160460, | Feb 25 2009 | Valencell, Inc. | Physiological monitoring methods |
11172890, | Jan 04 2012 | Masimo Corporation | Automated condition screening and detection |
11176801, | Aug 19 2011 | Masimo Corporation | Health care sanitation monitoring system |
11178776, | Feb 06 2015 | Masimo Corporation | Fold flex circuit for LNOP |
11179108, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices and methods using optical sensors |
11179111, | Jan 04 2012 | Masimo Corporation | Automated CCHD screening and detection |
11179114, | Oct 13 2011 | Masimo Corporation | Medical monitoring hub |
11185262, | Mar 10 2017 | Masimo Corporation | Pneumonia screener |
11185290, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices and methods using optical sensors |
11191484, | Apr 29 2016 | Masimo Corporation | Optical sensor tape |
11191485, | Jun 05 2006 | Masimo Corporation | Parameter upgrade system |
11202571, | Jul 07 2016 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
11219391, | Jul 02 2001 | Masimo Corporation | Low power pulse oximeter |
11224363, | Jan 16 2013 | Masimo Corporation | Active-pulse blood analysis system |
11229374, | Dec 09 2006 | Masimo Corporation | Plethysmograph variability processor |
11234655, | Jan 20 2007 | Masimo Corporation | Perfusion trend indicator |
11241156, | Dec 31 2012 | Omni Medsci, Inc.; OMNI MEDSCI, INC | Time-of-flight imaging and physiological measurements |
11241199, | Oct 13 2011 | Masimo Corporation | System for displaying medical monitoring data |
11252498, | Aug 06 2014 | YUKKA MAGIC LLC | Optical physiological monitoring devices |
11252499, | Aug 06 2014 | YUKKA MAGIC LLC | Optical physiological monitoring devices |
11259745, | Jan 28 2014 | Masimo Corporation | Autonomous drug delivery system |
11266319, | Jan 28 2013 | YUKKA MAGIC LLC | Physiological monitoring devices having sensing elements decoupled from body motion |
11272839, | Oct 12 2018 | Masimo Corporation | System for transmission of sensor data using dual communication protocol |
11272848, | Dec 19 2006 | YUKKA MAGIC LLC | Wearable apparatus for multiple types of physiological and/or environmental monitoring |
11272849, | Dec 19 2006 | YUKKA MAGIC LLC | Wearable apparatus |
11272852, | Jun 21 2011 | Masimo Corporation | Patient monitoring system |
11272883, | Mar 04 2016 | Masimo Corporation | Physiological sensor |
11289199, | Jan 19 2010 | JPMorgan Chase Bank, National Association | Wellness analysis system |
11291061, | Jan 18 2017 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
11291415, | May 04 2015 | WILLOW LABORATORIES, INC | Noninvasive sensor system with visual infographic display |
11295856, | Dec 19 2006 | YUKKA MAGIC LLC | Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto |
11298021, | Oct 19 2017 | Masimo Corporation | Medical monitoring system |
11317837, | Oct 12 2006 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
11324407, | Dec 19 2006 | YUKKA MAGIC LLC | Methods and apparatus for physiological and environmental monitoring with optical and footstep sensors |
11324445, | Jan 27 2011 | Valencell, Inc. | Headsets with angled sensor modules |
11330361, | Aug 06 2014 | YUKKA MAGIC LLC | Hearing aid optical monitoring apparatus |
11330996, | May 06 2010 | Masimo Corporation | Patient monitor for determining microcirculation state |
11331013, | Sep 04 2014 | Masimo Corporation | Total hemoglobin screening sensor |
11331043, | Feb 16 2009 | Masimo Corporation | Physiological measurement device |
11337655, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices and methods using optical sensors |
11342072, | Oct 06 2009 | WILLOW LABORATORIES, INC | Optical sensing systems and methods for detecting a physiological condition of a patient |
11350831, | Dec 19 2006 | YUKKA MAGIC LLC | Physiological monitoring apparatus |
11353440, | Dec 31 2012 | Omni Medsci, Inc. | Time-of-flight physiological measurements and cloud services |
11363960, | Feb 25 2011 | Masimo Corporation | Patient monitor for monitoring microcirculation |
11367529, | Nov 05 2012 | WILLOW LABORATORIES, INC | Physiological test credit method |
11375902, | Aug 02 2011 | YUKKA MAGIC LLC | Systems and methods for variable filter adjustment by heart rate metric feedback |
11389093, | Oct 11 2018 | Masimo Corporation | Low noise oximetry cable |
11395595, | Dec 19 2006 | YUKKA MAGIC LLC | Apparatus, systems and methods for monitoring and evaluating cardiopulmonary functioning |
11399722, | Mar 30 2010 | Masimo Corporation | Plethysmographic respiration rate detection |
11399724, | Dec 19 2006 | YUKKA MAGIC LLC | Earpiece monitor |
11399774, | Oct 13 2010 | Masimo Corporation | Physiological measurement logic engine |
11406286, | Oct 11 2018 | Masimo Corporation | Patient monitoring device with improved user interface |
11410507, | Feb 24 2017 | Masimo Corporation | Localized projection of audible noises in medical settings |
11412938, | Dec 19 2006 | YUKKA MAGIC LLC | Physiological monitoring apparatus and networks |
11412939, | Aug 31 2015 | Masimo Corporation | Patient-worn wireless physiological sensor |
11412964, | May 05 2008 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
11412988, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices and methods using optical sensors |
11417426, | Feb 24 2017 | Masimo Corporation | System for displaying medical monitoring data |
11426103, | Jul 03 2008 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
11426104, | Aug 11 2004 | Masimo Corporation | Method for data reduction and calibration of an OCT-based physiological monitor |
11426125, | Feb 16 2009 | Masimo Corporation | Physiological measurement device |
11430572, | Mar 01 2005 | WILLOW LABORATORIES, INC | Multiple wavelength sensor emitters |
11432771, | Feb 16 2009 | Masimo Corporation | Physiological measurement device |
11437768, | Feb 06 2015 | Masimo Corporation | Pogo pin connector |
11439329, | Jul 13 2011 | Masimo Corporation | Multiple measurement mode in a physiological sensor |
11445948, | Oct 11 2018 | Masimo Corporation | Patient connector assembly with vertical detents |
11452449, | Oct 30 2012 | Masimo Corporation | Universal medical system |
11464410, | Oct 12 2018 | Masimo Corporation | Medical systems and methods |
11471103, | Feb 25 2009 | Valencell, Inc. | Ear-worn devices for physiological monitoring |
11484205, | Mar 25 2002 | Masimo Corporation | Physiological measurement device |
11484229, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11484230, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11484231, | Mar 08 2010 | Masimo Corporation | Reprocessing of a physiological sensor |
11488711, | Oct 11 2013 | Masimo Corporation | Alarm notification system |
11488715, | Feb 13 2011 | Masimo Corporation | Medical characterization system |
11490861, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices and methods using optical sensors |
11504002, | Sep 20 2012 | Masimo Corporation | Physiological monitoring system |
11504058, | Dec 02 2016 | Masimo Corporation | Multi-site noninvasive measurement of a physiological parameter |
11504062, | Mar 14 2013 | Masimo Corporation | Patient monitor placement indicator |
11504066, | Sep 04 2015 | WILLOW LABORATORIES, INC | Low-noise sensor system |
11515664, | Mar 11 2009 | Masimo Corporation | Magnetic connector |
11534087, | Nov 24 2009 | WILLOW LABORATORIES, INC | Physiological measurement system with automatic wavelength adjustment |
11534110, | Apr 18 2017 | Masimo Corporation | Nose sensor |
11545263, | Mar 01 2005 | WILLOW LABORATORIES, INC | Multiple wavelength sensor emitters |
11557407, | Aug 01 2012 | Masimo Corporation | Automated assembly sensor cable |
11559275, | Dec 30 2008 | Masimo Corporation | Acoustic sensor assembly |
11564593, | Sep 15 2008 | Masimo Corporation | Gas sampling line |
11564642, | Jun 06 2018 | Masimo Corporation | Opioid overdose monitoring |
11571152, | Dec 04 2009 | Masimo Corporation | Calibration for multi-stage physiological monitors |
11576582, | Aug 31 2015 | Masimo Corporation | Patient-worn wireless physiological sensor |
11581091, | Aug 26 2014 | VCCB HOLDINGS, INC. | Real-time monitoring systems and methods in a healthcare environment |
11589812, | Feb 25 2009 | Valencell, Inc. | Wearable devices for physiological monitoring |
11596363, | Sep 12 2013 | WILLOW LABORATORIES, INC | Medical device management system |
11596365, | Feb 24 2017 | Masimo Corporation | Modular multi-parameter patient monitoring device |
11602289, | Feb 06 2015 | Masimo Corporation | Soft boot pulse oximetry sensor |
11605188, | Aug 11 2015 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
11607139, | Sep 20 2006 | Masimo Corporation | Congenital heart disease monitor |
11622733, | May 02 2008 | Masimo Corporation | Monitor configuration system |
11627919, | Jun 06 2018 | Masimo Corporation | Opioid overdose monitoring |
11637437, | Apr 17 2019 | Masimo Corporation | Charging station for physiological monitoring device |
11638532, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11638560, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices and methods using optical sensors |
11638561, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
11642036, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11642037, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11645905, | Mar 13 2013 | Masimo Corporation | Systems and methods for monitoring a patient health network |
11647914, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11647923, | Apr 21 2007 | Masimo Corporation | Tissue profile wellness monitor |
11653862, | May 22 2015 | WILLOW LABORATORIES, INC | Non-invasive optical physiological differential pathlength sensor |
11660006, | Feb 25 2009 | Valencell, Inc. | Wearable monitoring devices with passive and active filtering |
11660028, | Mar 04 2008 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
11672447, | Oct 12 2006 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
11673041, | Dec 13 2013 | Masimo Corporation | Avatar-incentive healthcare therapy |
11678829, | Apr 17 2019 | Masimo Corporation | Physiological monitoring device attachment assembly |
11679579, | Dec 17 2015 | Masimo Corporation | Varnish-coated release liner |
11684278, | Jan 28 2013 | YUKKA MAGIC LLC | Physiological monitoring devices having sensing elements decoupled from body motion |
11684296, | Dec 21 2018 | WILLOW LABORATORIES, INC | Noninvasive physiological sensor |
11690574, | Nov 05 2003 | Masimo Corporation | Pulse oximeter access apparatus and method |
11696712, | Jun 13 2014 | VCCB HOLDINGS, INC. | Alarm fatigue management systems and methods |
11699526, | Oct 11 2013 | Masimo Corporation | Alarm notification system |
11701043, | Apr 17 2019 | Masimo Corporation | Blood pressure monitor attachment assembly |
11705666, | Aug 15 2017 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
11706029, | Jul 06 2016 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
11717194, | Oct 07 2013 | Masimo Corporation | Regional oximetry pod |
11717210, | Sep 28 2010 | Masimo Corporation | Depth of consciousness monitor including oximeter |
11717218, | Oct 07 2014 | Masimo Corporation | Modular physiological sensor |
11721105, | Feb 13 2020 | Masimo Corporation | System and method for monitoring clinical activities |
11724031, | Jan 17 2006 | Masimo Corporation | Drug administration controller |
11730379, | Mar 20 2020 | Masimo Corporation | Remote patient management and monitoring systems and methods |
11744471, | Sep 17 2009 | Masimo Corporation | Optical-based physiological monitoring system |
11747178, | Oct 27 2011 | Masimo Corporation | Physiological monitor gauge panel |
11751773, | Jul 03 2008 | Masimo Corporation | Emitter arrangement for physiological measurements |
11751780, | Oct 07 2013 | Masimo Corporation | Regional oximetry sensor |
11752262, | May 20 2009 | Masimo Corporation | Hemoglobin display and patient treatment |
11759130, | Oct 12 2006 | Masimo Corporation | Perfusion index smoother |
11766198, | Feb 02 2018 | WILLOW LABORATORIES, INC | Limb-worn patient monitoring device |
11779247, | Jul 29 2009 | Masimo Corporation | Non-invasive physiological sensor cover |
11786183, | Oct 13 2011 | Masimo Corporation | Medical monitoring hub |
11803623, | Oct 18 2019 | Masimo Corporation | Display layout and interactive objects for patient monitoring |
11812229, | Jul 10 2018 | Masimo Corporation | Patient monitor alarm speaker analyzer |
11813036, | Apr 26 2017 | Masimo Corporation | Medical monitoring device having multiple configurations |
11816771, | Feb 24 2017 | Masimo Corporation | Augmented reality system for displaying patient data |
11816973, | Aug 19 2011 | Masimo Corporation | Health care sanitation monitoring system |
11825536, | Jan 18 2017 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
11830349, | Feb 24 2017 | Masimo Corporation | Localized projection of audible noises in medical settings |
11832940, | Aug 27 2019 | WILLOW LABORATORIES, INC | Non-invasive medical monitoring device for blood analyte measurements |
11839470, | Jan 16 2013 | Masimo Corporation | Active-pulse blood analysis system |
11839498, | Oct 14 2005 | Masimo Corporation | Robust alarm system |
11844634, | Apr 19 2018 | Masimo Corporation | Mobile patient alarm display |
11848515, | Mar 11 2009 | Masimo Corporation | Magnetic connector |
11850024, | Sep 18 2014 | MASIMO SEMICONDUCTOR, INC. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
11857315, | Oct 12 2006 | Masimo Corporation | Patient monitor capable of monitoring the quality of attached probes and accessories |
11857319, | Oct 12 2006 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
11864890, | Dec 22 2016 | WILLOW LABORATORIES, INC | Methods and devices for detecting intensity of light with translucent detector |
11864922, | Sep 04 2015 | WILLOW LABORATORIES, INC | Low-noise sensor system |
11872156, | Aug 22 2018 | Masimo Corporation | Core body temperature measurement |
11877824, | Aug 17 2011 | Masimo Corporation | Modulated physiological sensor |
11877867, | Feb 16 2009 | Masimo Corporation | Physiological measurement device |
11879960, | Feb 13 2020 | Masimo Corporation | System and method for monitoring clinical activities |
11883129, | Apr 24 2018 | WILLOW LABORATORIES, INC | Easy insert finger sensor for transmission based spectroscopy sensor |
11883190, | Jan 28 2014 | Masimo Corporation | Autonomous drug delivery system |
11886858, | Feb 24 2017 | Masimo Corporation | Medical monitoring hub |
11887728, | Sep 20 2012 | Masimo Corporation | Intelligent medical escalation process |
11894640, | Feb 06 2015 | Masimo Corporation | Pogo pin connector |
11900775, | Dec 21 2009 | Masimo Corporation | Modular patient monitor |
11901070, | Feb 24 2017 | Masimo Corporation | System for displaying medical monitoring data |
11903140, | Feb 06 2015 | Masimo Corporation | Fold flex circuit for LNOP |
11918353, | Feb 09 2012 | Masimo Corporation | Wireless patient monitoring device |
11923080, | Mar 04 2009 | Masimo Corporation | Medical monitoring system |
11925445, | Jun 21 2011 | Masimo Corporation | Patient monitoring system |
11931176, | Mar 04 2016 | Masimo Corporation | Nose sensor |
11937949, | Mar 08 2004 | Masimo Corporation | Physiological parameter system |
11944415, | Aug 05 2013 | Masimo Corporation | Systems and methods for measuring blood pressure |
11944431, | Mar 17 2006 | Masimo Corportation | Apparatus and method for creating a stable optical interface |
11951186, | Oct 25 2019 | WILLOW LABORATORIES, INC | Indicator compounds, devices comprising indicator compounds, and methods of making and using the same |
11957474, | Apr 17 2019 | Masimo Corporation | Electrocardiogram device |
11961616, | Aug 26 2014 | VCCB HOLDINGS, INC. | Real-time monitoring systems and methods in a healthcare environment |
11963736, | Jul 20 2009 | Masimo Corporation | Wireless patient monitoring system |
11963749, | Mar 13 2013 | Masimo Corporation | Acoustic physiological monitoring system |
11967009, | Aug 11 2015 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
11969269, | Feb 24 2017 | Masimo Corporation | Modular multi-parameter patient monitoring device |
11969645, | Dec 13 2013 | Masimo Corporation | Avatar-incentive healthcare therapy |
11974833, | Mar 20 2020 | Masimo Corporation | Wearable device for noninvasive body temperature measurement |
11974841, | Oct 16 2009 | Masimo Corporation | Respiration processor |
11986067, | Aug 19 2020 | Masimo Corporation | Strap for a wearable device |
11986289, | Nov 27 2018 | WILLOW LABORATORIES, INC | Assembly for medical monitoring device with multiple physiological sensors |
11986305, | Apr 17 2019 | Masimo Corporation | Liquid inhibiting air intake for blood pressure monitor |
11988532, | Jul 17 2013 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
11990706, | Feb 08 2012 | Masimo Corporation | Cable tether system |
11992308, | Oct 11 2018 | Masimo Corporation | Patient monitoring device with improved user interface |
11992311, | Jul 13 2017 | WILLOW LABORATORIES, INC | Medical monitoring device for harmonizing physiological measurements |
11992342, | Jan 02 2013 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
11992361, | Sep 20 2012 | Masimo Corporation | Acoustic patient sensor coupler |
11998362, | Oct 15 2009 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
12053280, | Oct 11 2018 | Masimo Corporation | Low noise oximetry cable |
12057222, | Mar 04 2009 | Masimo Corporation | Physiological alarm threshold determination |
12059274, | Oct 31 2017 | Masimo Corporation | System for displaying oxygen state indications |
12064217, | Mar 20 2020 | Masimo Corporation | Remote patient management and monitoring systems and methods |
12064240, | Dec 21 2018 | WILLOW LABORATORIES, INC | Noninvasive physiological sensor |
12066426, | Jan 16 2019 | Masimo Corporation | Pulsed micro-chip laser for malaria detection |
12067783, | Feb 13 2020 | Masimo Corporation | System and method for monitoring clinical activities |
12070293, | Jul 07 2016 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
12076126, | Jan 28 2013 | YUKKA MAGIC LLC | Physiological monitoring devices having sensing elements decoupled from body motion |
12076159, | Feb 07 2019 | Masimo Corporation | Combining multiple QEEG features to estimate drug-independent sedation level using machine learning |
12082926, | Aug 04 2020 | Masimo Corporation | Optical sensor with multiple detectors or multiple emitters |
12089968, | Dec 22 2006 | Masimo Corporation | Optical patient monitor |
12097043, | Jun 06 2018 | Masimo Corporation | Locating a locally stored medication |
12107960, | Jul 06 2016 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
12109012, | Dec 09 2006 | Masimo Corporation | Plethysmograph variability processor |
12109021, | Mar 08 2010 | Masimo Corporation | Reprocessing of a physiological sensor |
12109022, | Feb 09 2012 | Masimo Corporation | Wireless patient monitoring device |
12109048, | Jun 05 2006 | Masimo Corporation | Parameter upgrade system |
12114974, | Jan 13 2020 | Masimo Corporation | Wearable device with physiological parameters monitoring |
12121333, | Dec 01 2010 | WILLOW LABORATORIES, INC | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
12126683, | Aug 31 2021 | Masimo Corporation | Privacy switch for mobile communications device |
12127833, | Nov 24 2009 | WILLOW LABORATORIES, INC | Physiological measurement system with automatic wavelength adjustment |
12127834, | Feb 06 2015 | Masimo Corporation | Soft boot pulse oximetry sensor |
12127835, | Oct 12 2006 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
12127838, | Apr 22 2020 | WILLOW LABORATORIES, INC | Self-contained minimal action invasive blood constituent system |
12128213, | Jan 30 2020 | WILLOW LABORATORIES, INC | Method of operating redundant staggered disease management systems |
12131661, | Oct 03 2019 | WILLOW LABORATORIES, INC | Personalized health coaching system |
12133717, | Aug 31 2015 | Masimo Corporation | Systems and methods for patient fall detection |
12138079, | Nov 30 2016 | Masimo Corporation | Haemodynamic monitor with improved filtering |
12142136, | Mar 13 2013 | Masimo Corporation | Systems and methods for monitoring a patient health network |
12142875, | Aug 15 2017 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
12150739, | Aug 31 2015 | Masimo Corporation | Systems and methods for patient fall detection |
12150760, | May 22 2015 | WILLOW LABORATORIES, INC | Non-invasive optical physiological differential pathlength sensor |
12156732, | Oct 11 2018 | Masimo Corporation | Patient connector assembly with vertical detents |
12156733, | Apr 21 2007 | Masimo Corporation | Tissue profile wellness monitor |
12167913, | Apr 17 2012 | Masimo Corporation | Hypersaturation index |
12171552, | Oct 12 2006 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
12178559, | May 06 2010 | Masimo Corporation | Patient monitor for determining microcirculation state |
12178572, | Jun 11 2013 | Masimo Corporation | Blood glucose sensing system |
12178581, | Apr 17 2019 | Masimo Corporation | Patient monitoring systems, devices, and methods |
12178620, | Oct 14 2005 | Masimo Corporation | Robust alarm system |
12178852, | Sep 30 2020 | WILLOW LABORATORIES, INC | Insulin formulations and uses in infusion devices |
7543598, | Dec 29 2005 | Group Dekko, Inc | Vacuum break thermistor housing |
7713477, | Apr 26 2002 | Systems and methods for monitoring chemical and biological activities using differential measurements | |
8157730, | Dec 19 2006 | YUKKA MAGIC LLC | Physiological and environmental monitoring systems and methods |
8204786, | Dec 19 2006 | YUKKA MAGIC LLC | Physiological and environmental monitoring systems and methods |
8315681, | Nov 30 2005 | Toshiba Medical Systems Corporation | Method for noninvasive measurement of glucose and apparatus for noninvasive measurement of glucose |
8652040, | Dec 19 2006 | YUKKA MAGIC LLC | Telemetric apparatus for health and environmental monitoring |
8702607, | Dec 19 2006 | YUKKA MAGIC LLC | Targeted advertising systems and methods |
8989830, | Feb 25 2009 | Valencell, Inc. | Wearable light-guiding devices for physiological monitoring |
9044180, | Oct 25 2007 | YUKKA MAGIC LLC | Noninvasive physiological analysis using excitation-sensor modules and related devices and methods |
9055868, | Sep 03 2002 | OMNI MEDSCI, INC | System and method for voice control of medical devices |
9060687, | Oct 02 2009 | SHARP LIFE SCIENCE CORPORATION | Device for monitoring blood vessel conditions and method for monitoring same |
9131312, | Feb 25 2009 | Valencell, Inc. | Physiological monitoring methods |
9173604, | Mar 19 2010 | SHARP LIFE SCIENCE CORPORATION | Measurement device, measurement method, measurement result processing device, measurement system, measurement result processing method, control program, and recording medium |
9289135, | Feb 25 2009 | Valencell, Inc. | Physiological monitoring methods and apparatus |
9289175, | Feb 25 2009 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
9301696, | Feb 25 2009 | Valencell, Inc. | Earbud covers |
9314167, | Feb 25 2009 | Valencell, Inc. | Methods for generating data output containing physiological and motion-related information |
9351671, | Jul 16 2012 | ZYOMED HOLDINGS, INC | Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof |
9351672, | Jul 16 2012 | ZYOMED HOLDINGS, INC | Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof |
9375170, | Jul 16 2012 | ZYOMED HOLDINGS, INC | Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof |
9427191, | Jul 12 2012 | YUKKA MAGIC LLC | Apparatus and methods for estimating time-state physiological parameters |
9442065, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for synthesis of zyotons for use in collision computing for noninvasive blood glucose and other measurements |
9448164, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing |
9448165, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for control of illumination or radiation collection for blood glucose and other analyte detection and measurement using collision computing |
9453794, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for blood glucose and other analyte detection and measurement using collision computing |
9459201, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing |
9459202, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for collision computing for detection and noninvasive measurement of blood glucose and other substances and events |
9459203, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for generating and using projector curve sets for universal calibration for noninvasive blood glucose and other measurements |
9494567, | Dec 31 2012 | OMNI MEDSCI, INC | Near-infrared lasers for non-invasive monitoring of glucose, ketones, HBA1C, and other blood constituents |
9500634, | Dec 31 2012 | OMNI MEDSCI, INC | Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications |
9521962, | Jul 25 2011 | YUKKA MAGIC LLC | Apparatus and methods for estimating time-state physiological parameters |
9538921, | Jul 30 2014 | YUKKA MAGIC LLC | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
9554738, | Mar 30 2016 | ZYOMED HOLDINGS, INC | Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing |
9585604, | Jul 16 2012 | ZYOMED HOLDINGS, INC | Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof |
9610018, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for measurement of heart rate and other heart-related characteristics from photoplethysmographic (PPG) signals using collision computing |
9750462, | Feb 25 2009 | Valencell, Inc. | Monitoring apparatus and methods for measuring physiological and/or environmental conditions |
9757040, | Dec 31 2012 | Omni Medsci, Inc. | Short-wave infrared super-continuum lasers for early detection of dental caries |
9766126, | Jul 12 2013 | ZYOMED HOLDINGS, INC | Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof |
9788785, | Jul 25 2011 | YUKKA MAGIC LLC | Apparatus and methods for estimating time-state physiological parameters |
9794653, | Sep 27 2014 | YUKKA MAGIC LLC | Methods and apparatus for improving signal quality in wearable biometric monitoring devices |
9797876, | Dec 31 2012 | Omni Medsci, Inc. | Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications |
9801552, | Aug 02 2011 | YUKKA MAGIC LLC | Systems and methods for variable filter adjustment by heart rate metric feedback |
9808204, | Oct 25 2007 | YUKKA MAGIC LLC | Noninvasive physiological analysis using excitation-sensor modules and related devices and methods |
9861286, | Dec 31 2012 | Omni Medsci, Inc. | Short-wave infrared super-continuum lasers for early detection of dental caries |
9885698, | Dec 31 2012 | Omni Medsci, Inc. | Near-infrared lasers for non-invasive monitoring of glucose, ketones, HbA1C, and other blood constituents |
9897584, | Dec 31 2012 | Omni Medsci, Inc. | Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications |
9955919, | Feb 25 2009 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
9993159, | Dec 31 2012 | Omni Medsci, Inc.; OMNI MEDSCI, INC | Near-infrared super-continuum lasers for early detection of breast and other cancers |
9995722, | Dec 31 2012 | Omni Medsci, Inc. | Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications |
D897098, | Oct 12 2018 | Masimo Corporation | Card holder set |
D916135, | Oct 11 2018 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
D917550, | Oct 11 2018 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
D917564, | Oct 11 2018 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D917704, | Aug 16 2019 | Masimo Corporation | Patient monitor |
D919094, | Aug 16 2019 | Masimo Corporation | Blood pressure device |
D919100, | Aug 16 2019 | Masimo Corporation | Holder for a patient monitor |
D921202, | Aug 16 2019 | Masimo Corporation | Holder for a blood pressure device |
D925597, | Oct 31 2017 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D927699, | Oct 18 2019 | Masimo Corporation | Electrode pad |
D933232, | May 11 2020 | Masimo Corporation | Blood pressure monitor |
D933233, | Aug 16 2019 | Masimo Corporation | Blood pressure device |
D933234, | Aug 16 2019 | Masimo Corporation | Patient monitor |
D950738, | Oct 18 2019 | Masimo Corporation | Electrode pad |
D965789, | May 11 2020 | Masimo Corporation | Blood pressure monitor |
D967433, | Aug 16 2019 | Masimo Corporation | Patient monitor |
D973072, | Sep 30 2020 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D973685, | Sep 30 2020 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D973686, | Sep 30 2020 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D974193, | Jul 27 2020 | Masimo Corporation | Wearable temperature measurement device |
D979516, | May 11 2020 | Masimo Corporation | Connector |
D980091, | Jul 27 2020 | Masimo Corporation | Wearable temperature measurement device |
D985498, | Aug 16 2019 | Masimo Corporation | Connector |
D989112, | Sep 20 2013 | Masimo Corporation | Display screen or portion thereof with a graphical user interface for physiological monitoring |
D989327, | Oct 12 2018 | Masimo Corporation | Holder |
ER1157, | |||
ER1295, | |||
ER1410, | |||
ER1649, | |||
ER1714, | |||
ER1777, | |||
ER2016, | |||
ER2052, | |||
ER2198, | |||
ER2485, | |||
ER2496, | |||
ER2500, | |||
ER2928, | |||
ER31, | |||
ER3469, | |||
ER3532, | |||
ER3807, | |||
ER4099, | |||
ER4184, | |||
ER419, | |||
ER4196, | |||
ER4355, | |||
ER4402, | |||
ER4576, | |||
ER4945, | |||
ER4970, | |||
ER5109, | |||
ER5214, | |||
ER5450, | |||
ER5816, | |||
ER5893, | |||
ER5918, | |||
ER612, | |||
ER6173, | |||
ER6310, | |||
ER6654, | |||
ER6678, | |||
ER6679, | |||
ER6971, | |||
ER6997, | |||
ER7036, | |||
ER7053, | |||
ER7225, | |||
ER7394, | |||
ER7489, | |||
ER7535, | |||
ER7560, | |||
ER7626, | |||
ER7821, | |||
ER8765, | |||
ER9655, | |||
RE49007, | Mar 01 2010 | Masimo Corporation | Adaptive alarm system |
RE49034, | Jan 24 2002 | Masimo Corporation | Physiological trend monitor |
Patent | Priority | Assignee | Title |
4213462, | Aug 25 1977 | Optical assembly for detecting an abnormality of an organ or tissue and method | |
4548505, | Apr 22 1981 | SUMITOMO ELECTRIC INDUSTRIES, LTD , 15, KITAHAMA 5-CHOME, HIGAHSI-KU, OSAKA, JAPAN | Sensor for spectral analyzer for living tissues |
5036853, | Aug 26 1988 | POLARTECHNICS LTD | Physiological probe |
6097975, | May 13 1998 | SPIVAK, PAUL; SPIVAK, OLGA | Apparatus and method for noninvasive glucose measurement |
6240306, | Aug 05 1995 | RIO GRANDE MEDICAL TECHNOLOGIES, INC | Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration |
6353226, | Nov 23 1998 | Abbott Laboratories | Non-invasive sensor capable of determining optical parameters in a sample having multiple layers |
6403944, | Mar 07 1997 | Abbott Laboratories | System for measuring a biological parameter by means of photoacoustic interaction |
WO65988, | |||
WO109589, | |||
WO9959464, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 26 2000 | ACOSTA, GEORGE | Instrumentation Metrics, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010986 | /0950 | |
Jul 26 2000 | ABUL-HAJ, ROXANNE E | Instrumentation Metrics, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010986 | /0950 | |
Jul 26 2000 | ABUL-HAJ, N ALAN | Instrumentation Metrics, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010986 | /0950 | |
Jul 26 2000 | HAZEN, KEVIN | Instrumentation Metrics, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010986 | /0950 | |
Aug 02 2000 | Sensys Medical, Inc. | (assignment on the face of the patent) | / | |||
Jul 12 2002 | Instrumentation Metrics, Inc | SENSYS MEDICAL, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 013221 | /0126 | |
Mar 10 2006 | SENSYS MEDICAL INC | Silicon Valley Bank | SECURITY AGREEMENT | 017921 | /0274 | |
Sep 29 2008 | Silicon Valley Bank | SENSYS MEDICAL INC | RELEASE | 021603 | /0397 | |
Jan 20 2009 | SENSYS MEDICAL, INC | GLENN PATENT GROUP | LIEN SEE DOCUMENT FOR DETAILS | 022117 | /0887 | |
Apr 14 2009 | GLENN PATENT GROUP | SENSYS MEDICAL, INC | LIEN RELEASE | 022542 | /0360 | |
Apr 28 2012 | SENSYS MEDICAL, INC | SENSYS MEDICAL, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028714 | /0623 | |
Aug 29 2012 | SENSYS MEDICAL, LIMITED | GLT ACQUISITION CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028912 | /0036 |
Date | Maintenance Fee Events |
Aug 23 2006 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Oct 25 2010 | REM: Maintenance Fee Reminder Mailed. |
Mar 15 2011 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Mar 15 2011 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Nov 08 2012 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Nov 09 2012 | ASPN: Payor Number Assigned. |
Oct 24 2014 | REM: Maintenance Fee Reminder Mailed. |
Mar 18 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 18 2006 | 4 years fee payment window open |
Sep 18 2006 | 6 months grace period start (w surcharge) |
Mar 18 2007 | patent expiry (for year 4) |
Mar 18 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 18 2010 | 8 years fee payment window open |
Sep 18 2010 | 6 months grace period start (w surcharge) |
Mar 18 2011 | patent expiry (for year 8) |
Mar 18 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 18 2014 | 12 years fee payment window open |
Sep 18 2014 | 6 months grace period start (w surcharge) |
Mar 18 2015 | patent expiry (for year 12) |
Mar 18 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |