An apparatus for varying localized absorption and scattering coefficients at a tissue measurement site in a controlled and reproducible manner during optical sampling of a tissue volume by controlling the pressure applied to a tissue measurement site by a spectroscopic analyzer allows applied pressure to be maintained at a constant level, or the applied pressure may be varied in a controlled, reproducible manner as a function of time. A rest for receiving a body part holds the body part in a fixed position and at a fixed elevation. A mechanical system advances a fiber optic probe until it makes contact with the body part with a constant amount of pressure. The applied force is supplied by a counterweight on a single arm balance. A temperature control allows the temperature of the fiber optic probe to be equilibrated with the temperature in the immediate vicinity of the tissue measurement site. Alternate embodiments allow the fiber optic probe to be brought into direct contact with the tissue measurement site, and displaced a known distance into the tissue. The invention is also embodied as a method in which the absorption and scattering coefficients for successive spectral measurements are calculated to determine optimum depth of penetration for detection of a target analyte.

Patent
   6534012
Priority
Aug 02 2000
Filed
Aug 02 2000
Issued
Mar 18 2003
Expiry
Mar 14 2021
Extension
224 days
Assg.orig
Entity
Large
384
10
EXPIRED
1. An apparatus for varying localized absorption and scattering coefficients at a tissue measurement site in a controlled and reproducible manner during optical sampling comprising:
a subject interface for variably contacting with a tissue measurement site;
means for measuring specular reflectance or spectral data of tissue at said tissue measurement site;
means for varying and maintaining contact with said tissue measurement site by said subject interface in a controlled and reproducible manner according to any of said measured specular reflectance and said measured spectral data; and
means for reproducibly positioning said tissue measurement site relative to said subject interface.
40. A method for varying localized absorption and scattering coefficients at a tissue measurement site in a controlled and reproducible manner during optical sampling of a tissue volume comprising the steps of:
providing a tissue measurement site;
providing a spectroscopic analyzer having a subject interface adapted to make contact with said tissue measurement site during measurement;
making an initial nir spectral measurement, for which any of applied pressure to the tissue measurement site by said subject interface and degree of displacement into the tissue of the tissue measurement site by said subject interface is known and maintained during said initial measurement;
measuring nir spectral data of tissue at said tissue measurement site;
varying and maintaining contact with said tissue measurement site by said subject interface in a controlled and reproducible manner according to said measured nir spectral data;
calculating local absorbance and scattering coefficients for said measurements;
making one or more subsequent nir spectral measurements in which any of applied pressure and displacement is varied by a known amount;
calculating absorbance and scattering coefficients for each measurement; and
determining an optimal sampling depth for detecting a target analyte, wherein a ratio of absorption coefficient to scattering coefficient is an indicator of said optimal depth.
2. The apparatus of claim 1, wherein said subject interface comprises:
a fiber optic probe surrounded by a housing, wherein said probe delivers light energy to said tissue measurement site and collects light energy transmitted or reflected from said tissue measurement site.
3. The apparatus of claim 2, wherein a tip of said fiber optic probe contacts said tissue measurement site, where said tissue measurement site is located on a limb of said subject.
4. The apparatus of claim 3, wherein said fiber optic probe is rectangular and wherein said probe tip contacts said limb in a lengthwise manner so that contact of said probe tip with said tissue measurement site is maximized, with a minimum of applied pressure to said tissue measurement site by said probe tip being required.
5. The apparatus of claim 2, wherein said housing comprises a cylinder surrounding said fiber optic probe and wherein said probe tip protrudes from a terminal surface of said housing.
6. The apparatus of claim 5, wherein said housing is fabricated from a lightweight, heat conductive material.
7. The apparatus of claim 6, wherein said housing further comprises means for heating said fiber optic probe so that probe temperature is equilibrated with surface temperature at said tissue measurement site.
8. The apparatus of claim 7, said subject interface further comprising means for detecting surface temperature at said tissue measurement site.
9. The apparatus of claim 2, wherein said means for varying and maintaining contact with said tissue measurement site by said subject interface in a controlled and reproducible manner comprises:
a single arm balance with a counter weight, said single arm balance comprising a hinged beam attached to an upright mount at a point of attachment, wherein a bearing element allows said hinged beam to rotate freely about a point of rotation defined by said point of attachment, and wherein said beam has a first end and a second end; and
a gimbal mount attached to said second end for receiving said subject interface;
wherein adjusting said counter weight varies the amount of pressure applied to said tissue measurement site by said fiber optic probe.
10. The apparatus of claim 9, wherein said subject interface floats on said gimbal mount so that the optical axis of said fiber optic probe is normal to a limb of said subject whereon the tissue measurement site is located when the fiber optic probe is pressing against said tissue measurement site.
11. The apparatus of claim 10, wherein said gimbal mount is equipped with a gimbal locking mechanism, said gimbal locking mechanism comprising any of a compression and a pinch element and wherein said gimbal locking mechanism is operative to maintain stability of said fiber optic probe tip against said tissue measurement site.
12. The apparatus of claim 9, wherein said counter weight comprises an adjustable weight attached at said first end of said hinged beam.
13. The apparatus of claim 9, wherein said counter weight comprises a larger weight that slides along said beam, where said beam has gradations for different pressure levels, and wherein a screw with a smaller weight attached at said first end allows fine adjustments to applied pressure.
14. The apparatus of claim 9, further comprising a beam movement brake mechanism, said beam movement brake mechanism comprising a friction plate, said friction plate being operative to lock said beam into a desired position by being compressed against said upright mount.
15. The apparatus of claim 1, wherein said means for reproducibly positioning said tissue measurement site relative to said subject interface comprises a limb guide for receiving a limb of said subject, whereon said tissue measurement site is located.
16. The apparatus of claim 15, wherein said limb guide comprises an arm guide, said arm guide comprising:
a platform mounted on a support structure;
an elbow guide; a wrist guide and a hand guide, all detachably mounted on said platform; and
an aperture defined by said platform.
17. The apparatus of claim 16, wherein said arm guide receives said subject's arm, so that the subject's elbow is resting in the elbow guide, the subject's wrist is resting on the wrist guide and the subject's hand is resting on the hand guide such that a tissue measurement site on a lower surface of said arm is aligned with said aperture.
18. The apparatus of claim 17, wherein said subject interface, mounted on said means for varying and maintaining contact with said tissue measurement site protrudes upward through said aperture to contact said tissue measurement site.
19. The apparatus of claim 16, wherein said wrist guide and said hand guide are formed as a single unit, and wherein said unit is slideably mounted on said platform, so that said unit is positionable according to the length of said subject's forearm.
20. The apparatus of claim 19, wherein said elbow guide and said assembly are ergonomically molded.
21. The apparatus of claim 20, wherein said elbow guide and said assembly are custom molded according to subject.
22. The apparatus of claim 17, wherein said subject's arm is positioned such that the arm is at the subject's side and flexed to an angle of ninety degrees.
23. The apparatus of claim 16, wherein said arm guide is adapted to receive one of a right arm and a left arm.
24. The apparatus of claim 2, wherein said means for reproducibly positioning said tissue measurement site relative to said subject interface comprises a platform, said platform being supported by and attached to said means for varying and maintaining contact with said tissue measurement site by said subject interface in a controlled and reproducible manner, said means for varying and making contact comprising:
a system for raising and lowering said platform so that said fiber optic probe may be brought into contact with said tissue measurement site and then displaced into skin at the tissue measurement site by a known amount, where said subject interface is fixedly mounted;
wherein said tissue measurement site is located on an arm of said subject.
25. The apparatus of claim 24, wherein said platform has detachably mounted thereon;
an elbow guide, a wrist guide and a hand guide for reproducibly positioning said arm, said wrist guide and said hand guide being slideable to accommodate arms of varying length; and
wherein said platform has an aperture through which said fiber optic probe protrudes in order to make contact with the tissue measurement site.
26. The apparatus of claim 25, wherein said elbow guide, said wrist guide and said hand guide are ergonomically molded.
27. The apparatus of claim 25, wherein said guides are custom molded according to subject.
28. The apparatus of claim 25, wherein said subject's arm is positioned such that the arm is at the subject's side and flexed to an angle of ninety degrees.
29. The apparatus of claim 25, wherein said system for raising and lowering said platform comprises a linear slide mechanism, said linear slide mechanism comprising an actuator arm and a plurality of vertical guides.
30. The apparatus of claim 29, said system for raising and lowering said platform further comprising an electric motor for driving said linear slide mechanism.
31. The apparatus of claim 30, wherein said motor is computer-controlled.
32. The apparatus of claim 31, wherein a zero point constitutes the elevation at which full contact between said arm and said fiber optic probe first occurs.
33. The apparatus of claim 32, said system further comprising:
an LED situated at one side of said arm;
a detector situated at the opposite side of said arm;
wherein a signal from said LED is aimed directly above said fiber optic probe, and detected by said detector.
34. The apparatus of claim 33, wherein said arm is lowered until said zero point is reached, said zero point constituting the elevation at which said LED signal is undetectable.
35. The apparatus of claim 32, wherein said zero point is determinable by analyzing successive spectral measurements for spectrally reflected light, and wherein an absence of spectrally reflected light indicates said zero point.
36. The apparatus of claim 32, wherein said subject's arm is positioned at said zero point and subsequently lowered onto said fiber optic probe so that said probe is displaced into the skin of said tissue measurement site by a preferred amount, said preferred amount indicated by target values for absorption and scattering coefficients, said coefficients being calculated for successive spectral measurements.
37. The apparatus of claim 25, wherein said system for raising and lowering said platform comprises one of:
a hand crank;
a lever arm;
a scissors jack
a hinge point in conjunction with a linear drive; and
a worm drive.
38. The apparatus of claim 1, wherein said means for reproducibly positioning said tissue measurement site relative to said subject interface comprises a placement guide, said placement guide being reproducibly attachable to a subject's body part whereon said tissue measurement site is located, said guide having an aperture through which said subject interface protrudes to contact said tissue measurement site, said placement guide also having one or more guide rods for reproducibly coupling an analyzer bearing said subject interface to said tissue measurement site.
39. The apparatus of claim 38, wherein said body part comprises a limb of said subject.
41. The method of claim 40, wherein increased pressure at said tissue measurement site forces water from said sampled tissue volume, and wherein the local absorption coefficient decreases as water concentration within said tissue volume decreases.
42. The method of claim 41, wherein density of scattering centers within said sampled tissue increases as water concentration decreases, and wherein said scattering coefficient increases as density of scattering centers increases.
43. The method of claim 42, wherein said tissue measurement site is on a limb of a living subject.
44. The method of claim 43, wherein said limb is an arm.
45. The method of claim 42, wherein said subject interface comprises a fiber optic probe having a tip, and wherein said probe delivers light energy to said tissue measurement site and collects light energy transmitted or reflected from said tissue measurement site.
46. The method of claim 45, wherein said tip contacts said tissue measurement site.
47. The method of claim 42, wherein a guide positions said tissue measurement sight relative to said subject interface in a controlled and reproducible manner.
48. The method of claim 47, wherein said guide includes an aperture, wherein said subject interface protrudes through said aperture to contact said tissue measurement site.
49. The method of claim 42, wherein said applied pressure is varied and controlled by means of a single arm balance having an adjustable counter weight, said balance comprising a beam having a first end and a second end, wherein said pressure is controlled and varied by adjusting said counterweight.
50. The method of claim 49, wherein said balance further comprises a gimbal mount attached to an end of said balance, wherein said subject interface floats on said gimbal mount.
51. The method of claim 50, wherein said balance further comprises a locking mechanism so that said beam may be locked into a desired position.
52. The method of claim 42, wherein said degree of displacement is varied and controlled by a platform having one or more guides for reproducibly positioning said tissue measurement site, said platform being supported on and attached to a system for raising and lowering said platform so that said subject interface may contact said tissue measurement site and then be displaced into skin at the tissue measurement site by a known amount, where said subject interface is fixedly mounted.
53. The method of claim 52, wherein a zero point constitutes the first point of full contact between said subject interface and said tissue measurement site, wherein said tissue measurement site is first lowered to said zero point and subsequently lowered a further known amount to displace said subject interface further into the tissue measurement site.
54. The method of claim 52, wherein said means for raising and lowering said platform comprises a linear actuator, said linear actuator powered by an electric motor.
55. The method of claim 54, wherein said electric motor is digitally-controlled.
56. The method of claim 52, wherein said means for raising and lowering said platform comprises one of:
a hand crank;
a lever arm;
a scissors jack
a hinge point in conjunction with a linear drive; and
a worm drive.

1. Field of the invention

The invention relates to minimally invasive and non-invasive clinical testing. More particularly, the invention relates to an apparatus and method for modifying localized absorption and scattering coefficients at a tissue measurement site during optical sampling.

2. Description of the Related Art

Conventional methods of clinical testing have required the use of invasive procedures, such as biopsy and phlebotomy, to sample blood and tissue. Subsequently, the samples were transported to a central location, such as a laboratory, for examination and analysis. There is an increasing trend, however, toward point of care testing and even in-home testing. One of the benefits of this trend is to minimize the turnaround time from when a sample is taken to being able to take action based on the test results. At the same time, sampling procedures are becoming less and less invasive. Since they minimize or eliminate the need to handle blood and tissue specimens, minimally invasive and noninvasive procedures drastically reduce biohazard risk, both to the subject and the practitioner. Additionally, the decreased use of expendable reagents minimizes cost of testing and the environmental and health risks posed by the use of chemical substances.

Analyzers are being developed for point of care and in home use that either sample in a minimally invasive fashion or are completely noninvasive, often by sampling tissue optically. During use, it is necessary for many of these analyzers to contact the surface of a tissue measurement site directly, in order to control test conditions such as:

stability of the analyzer during measurement;

minimization of spectral reflectance;

avoidance of stray light; and

reproducibly hitting the targeted sampling area.

Pressure on the sampled tissue (skin) site induced by contact with the analyzer can result in localized sampling variations. For example, pressure applied to the tissue measurement site forces water from the vicinity of the site, decreasing the water concentration. As water concentration changes, there is a corresponding change in the local absorption coefficient. In addition, decreasing water concentration increases the density of the scattering centers present in the sampled tissue volume, thereby altering the reduced scattering coefficient. It would be desirable to modify local absorption and reduced scattering coefficients in a controlled, reproducible manner, allowing differential measurements to optimize the signal-to-noise ratio of one or more target analytes.

It would also be advantageous to provide sampling devices that either maintain a constant pressure or displacement between the analyzer and the subject's skin or that reproducibly control changes in pressure or displacement over time.

The invention provides a subject interface module for modifying localized absorption and scattering coefficients by controlling the pressure applied to a tissue measurement site by an analyzer during optical sampling; the applied pressure may be maintained at a constant level, or it may be applied in a controlled, reproducible manner as a function of time, so that absorption and reduced scattering coefficients may be varied in a controlled, reproducible manner. The invention is also embodied as a method of modifying localized absorption and scattering coefficients in a controlled and reproducible manner by varying pressure or displacement during optical sampling.

The preferred embodiment of the invention includes a placement device for receiving a body part such as an arm, so that the body part is held in a fixed position and at a fixed elevation. The invention further includes an applied force mechanism for advancing the fiber optic probe of an analyzer until it makes contact with the body part, and maintaining the contact at a constant pressure. The applied force is supplied by a counterweight on a single arm balance. The invention further provides a temperature control, for equilibrating the temperature of the fiber optic probe with the surface temperature in the immediate vicinity of the tissue measurement site.

Alternate embodiments of the invention provide a means for bringing the fiber optic probe into contact with the surface of the tissue measurement site, and then displacing it by a known distance. In one embodiment, an LED and a detector define a starting location prior to displacement and the fiber optic probe is displaced a given distance after the LED is detected. In another embodiment, the displacement of the probe is dictated by the elimination of spectral reflectance. In a further embodiment, the probe is displaced into the tissue until analysis of the spectral information indicates that the preferred depths of the sample are being probed.

FIG. 1 provides a three-dimensional view of an arm support guide, according to the invention;

FIG. 2 provides a three-dimensional view of the arm support guide of FIG. 1 with a wrist guide and hand guide removed, according to the invention;

FIG. 3 shows a schematic view of an applied force mechanism for advancing a fiber optic probe, according to the invention;

FIG. 4 provides a three-dimensional view of a constant displacement subject interface module, according to the invention; and

FIG. 5 provides two noninvasive diffuse reflectance spectra of a tissue measurement site on a human forearm, according to the invention.

The application of pressure to a sampling area in a noninvasive measurement may affect the measurement site in a number of ways, including:

localized changes in analyte concentration;

localized changes in physical parameters, such as temperature; and

changes in absorption and scattering coefficients.

For example, as pressure is applied to a region of the body, the localized water concentration changes due to the applied pressure forcing water out of the area. Subsequently, internal blood pressure is increased to maintain blood flow to the area. Both affects alter the localized water concentration with different time constants. As the water concentration changes, multiple additional localized parameters change. In the near-IR spectral region, the absorption coefficient, μa, decreases as water concentration decreases. With less water, the density of the scattering centers increases, with a resulting increase in the reduced scattering coefficient, μ's. Naturally, the μa/μ's ratio also changes, since both coefficients have changed. In addition, the concentrations of all analytes carried in the blood or interstitial fluid change over a localized volume as they are expelled from the area along with the water. As a result of water movement, non-aqueous analytes will also experience localized concentration changes. For example, as water departs a given volume of tissue, the relative concentration of the remaining non-aqueous analytes increases.

During a non-invasive measurement, the penetration of photons into the tissue layers is dependent upon the pressure applied to the tissue. As previously indicated, pressure applied to a localized area changes the water concentration, resulting in a localized change in the scattering and absorption coefficients. As the scattering properties of the tissue change, indicated by changes in the scattering coefficient, the depth of penetration of photons changes. As a result, the sampled volume of the tissue changes. Since the tissue measurement site is not of a homogeneous nature, but is rather composed of layers, alterations in sampled volume can have a pronounced affect on the measurement. To a first approximation, the skin comprises a series of layers, starting with the stratum corneum at the surface, followed in turn by the epidermis, the dermis, and a subcutaneous fat layer, with internal structures, such as organs and bone, finally found far beneath the skin. Each layer has a different mean concentration of each analyte and interferent. Accordingly, as the mean depth of penetration of the probing photons changes, so does the mean concentration of analytes and interferents. Thus, for a given sample, application of differing pressures results in spectra that sample different tissue volumes, each containing different concentrations of target analyte and interferents. Pressure on the measurement site must either be kept constant or varied in a controlled, reproducible manner, so that the impact of variation of pressure on the sampling site may be well characterized, allowing appropriate development of algorithms that compensate for or take advantage of the different sampled volumes.

In noninvasive analysis, pressure effects are most evident in the near-IR and mid-IR regions, which sample the surface layers. Applied pressure changes localized concentrations over a limited radial distance from the point of contact and to limited depths. Thus, photons that predominantly sample the affected area are most affected by pressure. The depth of penetration of near-IR and mid-IR photons is limited by the strong absorbance of water. Scattering centers in the tissue also limit the depth of penetration of light, from the ultraviolet through the visible and into the near-IR range. Since these spectral regions sample depths in tissue where pressure has the most effect, they will be the most sensitive to pressure. It should be noted that the affects will be observed the most in diffuse reflection based analyzers but will also affect transflectance based measurements and will have some affect on transmission based measurements.

Advantageously, the foregoing effects on localized absorption and scattering coefficients are applied in a method that utilizes differential spectral measurements during which the applied force is varied by a known amount to modify localized absorbance and scattering coefficients in a controlled manner. The resulting values for the μa/μ's ratio are then utilized in a differential measurement to enhance the signal-to-noise ratio of a target analyte signal. For example, the observed absorbances of particular components such as water, protein, fat or urea reach a known level or a given ratio versus another component. These ratios may be calibrated at known pressures or displacement levels for individuals or groups of subjects using any of a large number of combined wavelengths with known chemometric techniques.

In summary, the invented method includes the steps of:

providing a tissue measurement site;

a providing a spectroscopic analyzer having a subject interface adapted to make direct contact with the tissue measurement site during measurement;

making an initial spectral measurement, in which the applied pressure or displacement by the analyzer is known and maintained during the measurement;

calculating the absorbance and scattering coefficients;

making subsequent measurements in which the applied pressure or displacement is varied by a known amount, and calculating absorbance and scattering coefficients for each measurement; and

determining an optimal sampling depth for detecting a target analyte based on the ratio of the measured absorption coefficients and scattering coefficients.

The invention is further embodied as an apparatus for modifying localized absorption and scattering coefficients by varying pressure or displacement on a tissue measurement site in a controlled and reproducible manner. According to a preferred embodiment, the invention provides a subject interface module for adjustably maintaining pressure applied to a tissue measurement site from a fiber optic probe at a constant level during optical sampling. While the preferred embodiment of the invention utilizes a bifurcated fiber optic bundle that couples light from the light source of an analyzer to the tissue measurement site and from the tissue measurement site to the detector element of the analyzer, other means of coupling light from a light source to a target site would be suitable in the invention as well. The constant force subject interface module consists of two major elements: a placement guide for securing the subject's body part upon which the tissue measurement site is located, and an adjustable applied force mechanism.

While the invention has been described herein with reference to human subjects, this description is exemplary only and not intended to limit the scope of the invention. Additionally, the placement guide has been described with respect to the human arm. The principles of the invention will suggest other guides to those skilled in the art that are applicable to other limbs and body parts, both human and non-human, that are consistent with the spirit and scope of the invention. Referring now to FIG. 1, shown is an arm placement guide 10. The arm placement guide is equipped with an elbow guide 11 and a wrist guide 12. While the invented guide also aids in supporting and immobilizing the arm, its primary function is to enable reproducible placement of the tissue measurement site on the analyzer, critical in producing accurate, consistent noninvasive measurements. During use, a subject in a sitting position places the arm to be sampled in the arm placement guide, so that the elbow is received by the elbow guide 11 and the wrist and hand are positioned on the ergonomically shaped wrist guide 12 and hand guide 13. In the resulting position, the sample arm is at the subject's side with the elbow flexed to 90°C. In the current embodiment, the arm placement device exhibits "handedness;" that is, arm placement devices are separately adapted to receive right or left arms, respectively.

It is preferred that the subject be in a sitting position during actual sampling, to minimize the effects of size difference between subjects. During tests of the invented device, sampling with the subject in a sitting position resulted in only a 2" difference in the height of the arm between an adult male and 10 year old boy, allowing the current embodiment of the invention to be built with a relatively small range of travel being required by the movable fiber optic probe. The wrist/hand guide unit 15 is detachably mounted on a mechanical slide 20 (FIG. 2) allowing the wrist support to be positioned directly under the subject's wrist regardless of arm length. For optimal reproducibility in placement of the arm on the analyzer, a custom elbow guide 11 and wrist/hand guide 14 are constructed by creating custom molds of a subject's elbow, wrist and hand. In the preferred embodiment, the molds are formed from a substance such as the 5-minute RTV (room temperature vulcanization) silicone putty supplied by Micro-Mark of Berkeley Heights N.J., which is FDA approved for skin contact. However, other products used for mold making having the appropriate toxicity profile would be equally suitable.

As previously indicated, a fiber optic probe employs a bifurcated fiber optic cable 15 to deliver light energy to the tissue measurement sight from an energy source (not shown). The same probe collects light energy reflected or transmitted from the tissue measurement site and delivers it to detectors (not shown). A subject interface includes a cylindrical housing 16 with the fiber optic probe tip 17 protruding from a terminal surface of the cylindrical housing. An aperture 18 in the arm placement guide provides the subject interface access to the tissue measurement site.

The subject's arm is positioned in the arm guide 10 such that the lowest point of the suspended forearm is suspended directly over the tip of the fiber optic probe 17. While the arm is being positioned, the fiber probe tip 17 is locked into a `down` position using the beam movement brake 34 (FIG. 3) described in greater detail below.

Once the arm is positioned, an applied force mechanism 30 incorporating a conventional single arm balance is employed to move the fiber optic probe tip 17 upward until it contacts the arm with a constant upward force 31, shown in FIG. 3. In order to apply a very small, known amount of force to the arm with the fiber optic probe, the point of contact between the forearm and the probe should be limited to the tip of the probe. It is preferable that the fiber optic probe be rectangular, with the long side of the rectangle oriented lengthwise on the arm, so that the entire probe may contact the arm with a minimal application of pressure. Additionally, the head of the fiber optic probe needs to be as small as possible; again, in order to minimize the amount of pressure required for complete contact between the probe and the tissue measurement site. In the current embodiment, the applied force is provided by a counterweight 33 on a single arm balance. The balance comprises a hinged beam 32, mounted on an upright mount 37, that rotates about a point of rotation defined by the point of attachment to the upright mount. A bearing 38 allows free movement of the beam about the point of rotation. As the adjustable weight 33 is moved along the axis of the beam, the force 31 applied to the tissue measurement site by the fiber optic probe is changed. An alternative arrangement (not shown) for the adjustable weight incorporates a weight that slides along the arm of the balance, which is provided with gradations for different pressure levels. A screw with a small circular weight mounted on it may be used for fine adjustments to the applied force. In the present embodiment of the invention, the total applied pressure may be varied in a continuous fashion from 0 to 2 kg/in2. Additional weights may be added to vary the applied force as required. Once the fiber optic probe is positioned, the probe may be locked into position with the beam movement brake/lock mechanism 34. The beam movement brake functions by means of a friction plate, which is compressed into the upright mount 37 to lock the beam at a desired position. In addition, the subject interface floats on a gimbal mount 35 to insure that the optical axis of the probe is normal to the subject's arm at the point of contact. The gimbal mount includes a gimbal locking mechanism 36 that locks the gimbal by means of a compression or pinch element. The fiber optic probe tip may be locked into position with the gimbal locking mechanism 36 to maintain the stability of the probe against the arm. In order to further assure the reproducibility of arm placement, it is necessary to protect the invented apparatus from structural deformation due to excessive pressure applied by the subject in the event that they lean on the analyzer. The entire structure of the current embodiment is designed, therefore, to withstand a force of 200 pounds exerted upon the arm support structure, without deforming.

In addition to pressure control, the apparatus is capable of controlling the temperature of the fiber optic probe so that it may equilibrate to the localized temperature in the vicinity of the tissue measurement site. In the current embodiment, the housing 16 is cylindrical and completely surrounds the fiber optic probe, with the probe tip 17 protruding from a terminal surface of the cylindrical housing 16. Within the housing is a metallic core that is maintained at a given temperature by means of a low voltage temperature device (not shown). In the current embodiment, the core is fabricated from aluminum, although other metals that are lightweight and conduct heat readily would also be suitable. The temperature device is equipped with a feedback control, allowing it to maintain a constant temperature. It should be noted that the temperature of the sampled area may be predicted from the near-IR spectra by using the shifts of the water bands, which absorb at 1450, 1950 and 2600 nm. As the temperature of the water increases, these bands shift to higher energy.

The localized temperature of the forearm may also be measured directly. A thermistor 19 encapsulated in a housing protrudes from the housing 16 into the forearm slightly at a distance of approximately 7 m from the edge of the fiber optic probe tip. In combination with temperature readings inside the housing, the localized forearm temperature at the tissue measurement site may be calculated.

One skilled in the art will recognize that the pressure may be applied by a variety of other means, including but not limited to: a lever arm, spring force, air pressure or counter weights. While the above system is calibrated with counter weights, one skilled in the art will recognize that the applied pressure may be measured by a variety of means, including but not limited to: balances, air pressure gauges, or by calculation.

An alternate version of the arm placement guide is reproducibly attached to the arm and has guide rods that couple to the spectrometer to aid in reproducibly coupling the sample to the analyzer.

While the preferred embodiment described above utilizes an applied force to generate an applied pressure between the analyzer and the tissue measurement site, in an alternate embodiment, the analyzer is brought into contact with the tissue measurement site and subsequently displaced a known distance against the skin at the tissue measurement site. In the current, alternate embodiment of the invention, the fiber optic probe is maintained in a fixed vertical position, as it protrudes from a platform upon which the subject's limb rests. The platform is raised and lowered, allowing the tip of the fiber optic probe to compress the skin at the tissue measurement site by varying amounts. Different versions of the current embodiment, each employing a different method for determining degree of displacement, are provided. First, an LED and detector define a starting location prior to displacement and the subject interface module may be displaced a given distance after the LED is detected. Second, the analyzer may be moved until spectral reflectance is removed, or, optionally, moved a fixed distance after elimination of spectrally reflected light. In the near-IR this would be-when the light intensity at 1950 nm, where water has a strong absorbance, approaches zero. Third, the analyzer may be displaced into the tissue until analysis of the spectral information indicates that the preferred depths of the sample are being probed, indicated by the detection of chemical bands that serve as markers for an individual subject or class of subjects; described in detail in the commonly assigned U.S patent application Ser. No. 09/359,191, An Intelligent System For Noninvasive Blood Analyte Prediction, S. Malin, T. Ruchti (Jul. 22, 1999). Each of these versions is described in greater detail below.

Referring now to FIG. 4, the current embodiment of the invention provides ergonomically designed elbow 11, wrist 12 and hand 13 guides mounted on an arm support platform 40. Protruding through the arm support platform 40 is the fiber optic probe 17. The arm support platform 40 is moved vertically up and down by a linear actuator mechanism composed of an actuator arm 41 and vertical guides 42. The linear actuator mechanism is driven by a conventional electric motor 45, which is, in turn, controlled by a digital processor (not shown). An LED 43 situated at one side of the subject's arm aims directly above the fiber bundle 17 and is detected by a detector 44 situated at the opposite side of the subject's arm. During use, the subject rests their arm on the provided elbow 11, wrist 12, and hand guides 13. The linear actuator lowers the platform bearing the subject's arm toward the fiber optic probe by lowering the arm support platform 40. As the arm breaks the plane defined by the LED 43 and the corresponding detector 44, the LED signal is lost, and the system recognizes that the tissue measurement site is a known distance from the tip of the fiber optic probe 17, the zero position. The arm support plane may be further lowered in a controlled manner allowing known displacements of the fiber optic probe into the subject's forearm. Naturally, the elasticity of living tissue allows varying pressures to be applied to the surface of the tissue measurement site without actual penetration of the fiber bundle into the skin of the arm.

A second version of the constant displacement subject interface module defines the zero position of the translating arm support plane by detecting spectrally reflected light collected by the fiber optic probe. The zero position constitutes the point at which no spectrally reflected light is detected. When the tissue measurement site is not in contact with the surface of the fiber optic probe, spectrally reflected light may be collected in the probe and detected. This spectrally reflected light is an interferent that hinders analysis. When the tissue measurement site first makes complete contact with the tip of the fiber optic probe, the spectrally reflected light approaches zero intensity. In a diffuse reflectance based measurement of the skin in the near-IR region, water has several strong absorbance bands located at 1450, 1950 and 2600 nm. Two noninvasive diffuse reflectance spectra of a tissue measurement site on a human forearm are shown in FIG. 5. The top curve 50 shows that light is being detected at 1950 and 2500 nm, in a region where water has sufficiently high absorbance levels that a zero signal should be observed. The detection of light indicates that spectrally reflected light is being collected and that the fiber optic probe and the tissue measurement site are not in contact. The lower curve 51 shows zero intensity (noise limited intensity) at 1950 and 2500 nm, indicating that the fiber optic probe tip and the tissue measurement site are in direct contact. The zero point is defined as the point when intensity at 1950 nm first reaches zero. Known displacements beyond this point are determined using the distance of travel of the computerized arm support platform.

A third version of the constant displacement subject interface module establishes the displacement of the fiber optic probe into the forearm using spectral information. As previously discussed, the scattering and absorption coefficients of the sample change with different degrees of applied pressure. Therefore, the sampled volume and resulting spectra are a function of the displacement of the fiber versus the zero position. Thus, the spectra may be used to create a feedback to the linear drive system as to the desired displacement of the subject interface module.

Other systems for raising and lowering the arm support platform are possible, including: a hand crank, a lever arm, a scissors jack and drive, a hinge point in conjunction with a linear drive and a worm drive. Other systems consistent with the spirit and scope of the invention will be apparent to those skilled in the art.

There are many situations in which it is beneficial to control the amount of pressure exerted by an analyzer on the sample being analyzed. In the biomedical field, analyzers are under development for a variety of important analytes; for example, glucose, for monitoring diabetics, urea, for use with dialysis patients, and oxygen. As previously mentioned, point of care testing using minimally invasive and non-invasive methods is rapidly supplanting more conventional methods of sampling and laboratory analysis in the field of clinical testing. The invention finds application in any minimally invasive and non-invasive measurements of this type, in which an analyzer must make contact with a tissue measurement site.

While the foregoing description has presented the invention in the context of medical applications with human subjects, the invention finds broad application in a number of technical fields where solid samples are analyzed that are not homogeneous at or near the surface and are elastic, or where spectral reflectance must be eliminated by directly contacting a sample with an analyzer. For example, the invention may be readily adapted for veterinary or research use with non-human subjects. Additionally, optical sampling of agricultural products is exceedingly common. For example, analyses of fruits, vegetable and grains are affected by the degree of pressure applied to the sample by the analyzer. The invention also provides an apparatus for the removal of spectrally reflected light off of a sample in diffuse reflectance mode, which is critical to quantitative analysis of small analyte signals. Within the pharmaceutical and chemical arts, intimate contact of the analyzer with tablets, capsules, pellets, chips and other such items is beneficial in diffuse reflectance based measurements.

Although the invention has been described herein with reference to certain preferred embodiments, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the Claims included below.

Hazen, Kevin H., Abul-Haj, Roxanne E., Acosta, George, Abul-Haj, N. Alan

Patent Priority Assignee Title
10004402, Sep 03 2002 OMNI CONTINUUM, LLC Measurement apparatus for physiological parameters
10015582, Aug 06 2014 YUKKA MAGIC LLC Earbud monitoring devices
10041832, Nov 18 2005 OMNI CONTINUUM, LLC Mid-infrared super-continuum laser
10076253, Jan 28 2013 YUKKA MAGIC LLC Physiological monitoring devices having sensing elements decoupled from body motion
10076282, Feb 25 2009 Valencell, Inc. Wearable monitoring devices having sensors and light guides
10092245, Feb 25 2009 Valencell, Inc. Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals
10098546, Jan 21 2013 Omni Medsci, Inc. Wearable devices using near-infrared light sources
10105059, Dec 31 2012 Omni Medsci, Inc. System configured for measuring physiological parameters
10126283, Dec 31 2012 Omni Medsci, Inc. Near-infrared time-of-flight imaging
10136819, Dec 31 2012 Omni Medsci, Inc. Short-wave infrared super-continuum lasers and similar light sources for imaging applications
10159412, Dec 01 2010 Cercacor Laboratories, Inc. Handheld processing device including medical applications for minimally and non invasive glucose measurements
10172523, Dec 31 2012 Omni Medsci, Inc. Light-based spectroscopy with improved signal-to-noise ratio
10188299, Dec 31 2012 Omni Medsci, Inc. System configured for measuring physiological parameters
10201283, Dec 31 2012 Omni Medsci, Inc. Near-infrared laser diodes used in imaging applications
10213113, Dec 31 2012 Omni Medsci, Inc. Physiological measurement device using light emitting diodes
10258243, Dec 19 2006 YUKKA MAGIC LLC Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto
10382839, Sep 27 2014 YUKKA MAGIC LLC Methods for improving signal quality in wearable biometric monitoring devices
10386230, Dec 31 2012 Omni Medsci, Inc. Near-infrared time-of-flight remote sensing
10413197, Dec 19 2006 YUKKA MAGIC LLC Apparatus, systems and methods for obtaining cleaner physiological information signals
10441176, Dec 31 2012 Omni Medsci, Inc. Imaging using near-infrared laser diodes with distributed bragg reflectors
10448840, Feb 25 2009 Valencell, Inc. Apparatus for generating data output containing physiological and motion-related information
10466102, Nov 18 2005 OMNI CONTINUUM, LLC Spectroscopy system with laser and pulsed output beam
10506310, Sep 27 2014 YUKKA MAGIC LLC Wearable biometric monitoring devices and methods for determining signal quality in wearable biometric monitoring devices
10512403, Aug 02 2011 YUKKA MAGIC LLC Systems and methods for variable filter adjustment by heart rate metric feedback
10517484, Dec 31 2012 OMNI MEDSCI, INC Semiconductor diodes-based physiological measurement device with improved signal-to-noise ratio
10536768, Aug 06 2014 YUKKA MAGIC LLC Optical physiological sensor modules with reduced signal noise
10542893, Feb 25 2009 Valencell, Inc. Form-fitted monitoring apparatus for health and environmental monitoring
10595730, Dec 19 2006 YUKKA MAGIC LLC Physiological monitoring methods
10610158, Oct 23 2015 YUKKA MAGIC LLC Physiological monitoring devices and methods that identify subject activity type
10623849, Aug 06 2014 YUKKA MAGIC LLC Optical monitoring apparatus and methods
10660526, Dec 31 2012 Omni Medsci, Inc.; OMNI MEDSCI, INC Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
10677774, Dec 31 2012 OMNI MEDSCI, INC Near-infrared time-of-flight cameras and imaging
10716480, Feb 25 2009 Valencell, Inc. Hearing aid earpiece covers
10716481, Dec 19 2006 YUKKA MAGIC LLC Apparatus, systems and methods for monitoring and evaluating cardiopulmonary functioning
10729335, Dec 01 2010 Cercacor Laboratories, Inc. Handheld processing device including medical applications for minimally and non invasive glucose measurements
10736518, Aug 31 2015 Masimo Corporation Systems and methods to monitor repositioning of a patient
10750954, Feb 25 2009 Valencell, Inc. Wearable devices with flexible optical emitters and/or optical detectors
10765367, Oct 07 2014 Masimo Corporation Modular physiological sensors
10779062, Sep 27 2014 YUKKA MAGIC LLC Wearable biometric monitoring devices and methods for determining if wearable biometric monitoring devices are being worn
10779098, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
10784634, Feb 06 2015 Masimo Corporation Pogo pin connector
10798471, Sep 27 2014 YUKKA MAGIC LLC Methods for improving signal quality in wearable biometric monitoring devices
10799160, Oct 07 2013 Masimo Corporation Regional oximetry pod
10799163, Oct 12 2006 Masimo Corporation Perfusion index smoother
10820807, Dec 31 2012 Omni Medsci, Inc. Time-of-flight measurement of skin or blood using array of laser diodes with Bragg reflectors
10825568, Oct 11 2013 Masimo Corporation Alarm notification system
10827979, Jan 27 2011 Valencell, Inc. Wearable monitoring device
10834483, Sep 27 2014 YUKKA MAGIC LLC Wearable biometric monitoring devices and methods for determining if wearable biometric monitoring devices are being worn
10842387, Feb 25 2009 Valencell, Inc. Apparatus for assessing physiological conditions
10842389, Feb 25 2009 Valencell, Inc. Wearable audio devices
10849554, Apr 18 2017 Masimo Corporation Nose sensor
10856749, Jan 28 2013 YUKKA MAGIC LLC Physiological monitoring devices having sensing elements decoupled from body motion
10856750, Apr 28 2017 Masimo Corporation Spot check measurement system
10856788, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
10863938, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
10869602, Mar 25 2002 Masimo Corporation Physiological measurement communications adapter
10874304, Dec 31 2012 Omni Medsci, Inc. Semiconductor source based near infrared measurement device with improved signal-to-noise ratio
10893835, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
10898083, Feb 25 2009 Valencell, Inc. Wearable monitoring devices with passive and active filtering
10912500, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10912501, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10912502, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10912524, Sep 22 2006 Masimo Corporation Modular patient monitor
10918281, Apr 26 2017 Masimo Corporation Medical monitoring device having multiple configurations
10918287, Dec 31 2012 Omni Medsci, Inc. System for non-invasive measurement using cameras and time of flight detection
10925550, Oct 13 2011 Masimo Corporation Medical monitoring hub
10928374, Dec 31 2012 Omni Medsci, Inc.; OMNI MEDSCI, INC Non-invasive measurement of blood within the skin using array of laser diodes with Bragg reflectors and a camera system
10932705, May 08 2017 Masimo Corporation System for displaying and controlling medical monitoring data
10932729, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
10939877, Oct 14 2005 Masimo Corporation Robust alarm system
10939878, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
10942064, Nov 18 2005 OMNI CONTINUUM, LLC Diagnostic system with broadband light source
10943450, Dec 21 2009 Masimo Corporation Modular patient monitor
10945618, Oct 23 2015 YUKKA MAGIC LLC Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
10945648, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10952641, Sep 15 2008 Masimo Corporation Gas sampling line
10956950, Feb 24 2017 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
10959652, Jul 02 2001 Masimo Corporation Low power pulse oximeter
10966662, Jul 08 2016 YUKKA MAGIC LLC Motion-dependent averaging for physiological metric estimating systems and methods
10973415, Feb 25 2009 Valencell, Inc. Form-fitted monitoring apparatus for health and environmental monitoring
10973447, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
10980432, Aug 05 2013 Masimo Corporation Systems and methods for measuring blood pressure
10980455, Jul 02 2001 Masimo Corporation Low power pulse oximeter
10980457, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
10984911, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
10987005, Dec 19 2006 YUKKA MAGIC LLC Systems and methods for presenting personal health information
10987066, Oct 31 2017 Masimo Corporation System for displaying oxygen state indications
10991135, Aug 11 2015 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
10993643, Oct 12 2006 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
10993662, Mar 04 2016 Masimo Corporation Nose sensor
11000190, Dec 19 2006 YUKKA MAGIC LLC Apparatus, systems and methods for obtaining cleaner physiological information signals
11000232, Jun 19 2014 Masimo Corporation Proximity sensor in pulse oximeter
11006867, Oct 12 2006 Masimo Corporation Perfusion index smoother
11020029, Jul 25 2003 Masimo Corporation Multipurpose sensor port
11020084, Sep 20 2012 Masimo Corporation Acoustic patient sensor coupler
11022466, Jul 17 2013 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
11026588, Feb 25 2009 Valencell, Inc. Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals
11026604, Jul 13 2017 CERCACOR LABORATORIES, INC Medical monitoring device for harmonizing physiological measurements
11033210, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
11069461, Aug 01 2012 Masimo Corporation Automated assembly sensor cable
11071480, Apr 17 2012 Masimo Corporation Hypersaturation index
11076777, Oct 13 2016 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
11076782, Oct 07 2013 Masimo Corporation Regional oximetry user interface
11082786, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
11083378, Dec 19 2006 YUKKA MAGIC LLC Wearable apparatus having integrated physiological and/or environmental sensors
11083397, Feb 09 2012 Masimo Corporation Wireless patient monitoring device
11086609, Feb 24 2017 Masimo Corporation Medical monitoring hub
11087875, Mar 04 2009 Masimo Corporation Medical monitoring system
11089963, Aug 31 2015 Masimo Corporation Systems and methods for patient fall detection
11089982, Oct 13 2011 Masimo Corporation Robust fractional saturation determination
11095068, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
11096631, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
11103134, Sep 18 2014 MASIMO SEMICONDUCTOR, INC. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
11109761, Dec 31 2012 Omni Medsci, Inc. High signal-to-noise ratio light spectroscopy of tissue
11109767, Dec 19 2006 YUKKA MAGIC LLC Apparatus, systems and methods for obtaining cleaner physiological information signals
11109770, Jun 21 2011 Masimo Corporation Patient monitoring system
11109818, Apr 19 2018 Masimo Corporation Mobile patient alarm display
11114188, Oct 06 2009 Cercacor Laboratories, Inc. System for monitoring a physiological parameter of a user
11132117, Mar 25 2012 Masimo Corporation Physiological monitor touchscreen interface
11133105, Mar 04 2009 Masimo Corporation Medical monitoring system
11145408, Mar 04 2009 Masimo Corporation Medical communication protocol translator
11147518, Oct 07 2013 Masimo Corporation Regional oximetry signal processor
11153089, Jul 06 2016 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
11158421, Mar 04 2009 Masimo Corporation Physiological parameter alarm delay
11160455, Dec 31 2012 Omni Medsci, Inc. Multi-wavelength wearable device for non-invasive blood measurements in tissue
11160460, Feb 25 2009 Valencell, Inc. Physiological monitoring methods
11172890, Jan 04 2012 Masimo Corporation Automated condition screening and detection
11176801, Aug 19 2011 Masimo Corporation Health care sanitation monitoring system
11178776, Feb 06 2015 Masimo Corporation Fold flex circuit for LNOP
11179108, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices and methods using optical sensors
11179111, Jan 04 2012 Masimo Corporation Automated CCHD screening and detection
11179114, Oct 13 2011 Masimo Corporation Medical monitoring hub
11185262, Mar 10 2017 Masimo Corporation Pneumonia screener
11185290, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices and methods using optical sensors
11191484, Apr 29 2016 Masimo Corporation Optical sensor tape
11191485, Jun 05 2006 Masimo Corporation Parameter upgrade system
11202571, Jul 07 2016 Masimo Corporation Wearable pulse oximeter and respiration monitor
11219391, Jul 02 2001 Masimo Corporation Low power pulse oximeter
11224363, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
11229374, Dec 09 2006 Masimo Corporation Plethysmograph variability processor
11234655, Jan 20 2007 Masimo Corporation Perfusion trend indicator
11241156, Dec 31 2012 Omni Medsci, Inc.; OMNI MEDSCI, INC Time-of-flight imaging and physiological measurements
11241199, Oct 13 2011 Masimo Corporation System for displaying medical monitoring data
11252498, Aug 06 2014 YUKKA MAGIC LLC Optical physiological monitoring devices
11252499, Aug 06 2014 YUKKA MAGIC LLC Optical physiological monitoring devices
11259745, Jan 28 2014 Masimo Corporation Autonomous drug delivery system
11266319, Jan 28 2013 YUKKA MAGIC LLC Physiological monitoring devices having sensing elements decoupled from body motion
11272839, Oct 12 2018 Masimo Corporation System for transmission of sensor data using dual communication protocol
11272848, Dec 19 2006 YUKKA MAGIC LLC Wearable apparatus for multiple types of physiological and/or environmental monitoring
11272849, Dec 19 2006 YUKKA MAGIC LLC Wearable apparatus
11272852, Jun 21 2011 Masimo Corporation Patient monitoring system
11272883, Mar 04 2016 Masimo Corporation Physiological sensor
11289199, Jan 19 2010 JPMorgan Chase Bank, National Association Wellness analysis system
11291061, Jan 18 2017 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
11291415, May 04 2015 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
11295856, Dec 19 2006 YUKKA MAGIC LLC Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto
11298021, Oct 19 2017 Masimo Corporation Medical monitoring system
11317837, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
11324407, Dec 19 2006 YUKKA MAGIC LLC Methods and apparatus for physiological and environmental monitoring with optical and footstep sensors
11324445, Jan 27 2011 Valencell, Inc. Headsets with angled sensor modules
11330361, Aug 06 2014 YUKKA MAGIC LLC Hearing aid optical monitoring apparatus
11330996, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
11331013, Sep 04 2014 Masimo Corporation Total hemoglobin screening sensor
11331043, Feb 16 2009 Masimo Corporation Physiological measurement device
11337655, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices and methods using optical sensors
11342072, Oct 06 2009 Cercacor Laboratories, Inc. Optical sensing systems and methods for detecting a physiological condition of a patient
11350831, Dec 19 2006 YUKKA MAGIC LLC Physiological monitoring apparatus
11353440, Dec 31 2012 Omni Medsci, Inc. Time-of-flight physiological measurements and cloud services
11363960, Feb 25 2011 Masimo Corporation Patient monitor for monitoring microcirculation
11367529, Nov 05 2012 Cercacor Laboratories, Inc. Physiological test credit method
11375902, Aug 02 2011 YUKKA MAGIC LLC Systems and methods for variable filter adjustment by heart rate metric feedback
11389093, Oct 11 2018 Masimo Corporation Low noise oximetry cable
11395595, Dec 19 2006 YUKKA MAGIC LLC Apparatus, systems and methods for monitoring and evaluating cardiopulmonary functioning
11399722, Mar 30 2010 Masimo Corporation Plethysmographic respiration rate detection
11399724, Dec 19 2006 YUKKA MAGIC LLC Earpiece monitor
11399774, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
11406286, Oct 11 2018 Masimo Corporation Patient monitoring device with improved user interface
11410507, Feb 24 2017 Masimo Corporation Localized projection of audible noises in medical settings
11412938, Dec 19 2006 YUKKA MAGIC LLC Physiological monitoring apparatus and networks
11412939, Aug 31 2015 Masimo Corporation Patient-worn wireless physiological sensor
11412964, May 05 2008 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
11412988, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices and methods using optical sensors
11417426, Feb 24 2017 Masimo Corporation System for displaying medical monitoring data
11426103, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
11426104, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
11426125, Feb 16 2009 Masimo Corporation Physiological measurement device
11430572, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11432771, Feb 16 2009 Masimo Corporation Physiological measurement device
11437768, Feb 06 2015 Masimo Corporation Pogo pin connector
11439329, Jul 13 2011 Masimo Corporation Multiple measurement mode in a physiological sensor
11445948, Oct 11 2018 Masimo Corporation Patient connector assembly with vertical detents
11452449, Oct 30 2012 Masimo Corporation Universal medical system
11464410, Oct 12 2018 Masimo Corporation Medical systems and methods
11471103, Feb 25 2009 Valencell, Inc. Ear-worn devices for physiological monitoring
11484205, Mar 25 2002 Masimo Corporation Physiological measurement device
11484229, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11484230, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11484231, Mar 08 2010 Masimo Corporation Reprocessing of a physiological sensor
11488711, Oct 11 2013 Masimo Corporation Alarm notification system
11488715, Feb 13 2011 Masimo Corporation Medical characterization system
11490861, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices and methods using optical sensors
11504002, Sep 20 2012 Masimo Corporation Physiological monitoring system
11504058, Dec 02 2016 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
11504062, Mar 14 2013 Masimo Corporation Patient monitor placement indicator
11504066, Sep 04 2015 Cercacor Laboratories, Inc. Low-noise sensor system
11515664, Mar 11 2009 Masimo Corporation Magnetic connector
11534087, Nov 24 2009 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
11534110, Apr 18 2017 Masimo Corporation Nose sensor
11545263, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11557407, Aug 01 2012 Masimo Corporation Automated assembly sensor cable
11559275, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
11564593, Sep 15 2008 Masimo Corporation Gas sampling line
11564642, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
11571152, Dec 04 2009 Masimo Corporation Calibration for multi-stage physiological monitors
11576582, Aug 31 2015 Masimo Corporation Patient-worn wireless physiological sensor
11581091, Aug 26 2014 VCCB HOLDINGS, INC. Real-time monitoring systems and methods in a healthcare environment
11589812, Feb 25 2009 Valencell, Inc. Wearable devices for physiological monitoring
11596363, Sep 12 2013 Cercacor Laboratories, Inc. Medical device management system
11596365, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
11602289, Feb 06 2015 Masimo Corporation Soft boot pulse oximetry sensor
11605188, Aug 11 2015 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
11607139, Sep 20 2006 Masimo Corporation Congenital heart disease monitor
11622733, May 02 2008 Masimo Corporation Monitor configuration system
11627919, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
11637437, Apr 17 2019 Masimo Corporation Charging station for physiological monitoring device
11638532, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11638560, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices and methods using optical sensors
11638561, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
11642036, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11642037, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11645905, Mar 13 2013 Masimo Corporation Systems and methods for monitoring a patient health network
11647914, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11647923, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
11653862, May 22 2015 CERCACOR LABORATORIES, INC Non-invasive optical physiological differential pathlength sensor
11660006, Feb 25 2009 Valencell, Inc. Wearable monitoring devices with passive and active filtering
11660028, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
11672447, Oct 12 2006 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
11673041, Dec 13 2013 Masimo Corporation Avatar-incentive healthcare therapy
11678829, Apr 17 2019 Masimo Corporation Physiological monitoring device attachment assembly
11679579, Dec 17 2015 Masimo Corporation Varnish-coated release liner
11684278, Jan 28 2013 YUKKA MAGIC LLC Physiological monitoring devices having sensing elements decoupled from body motion
11684296, Dec 21 2018 CERCACOR LABORATORIES, INC Noninvasive physiological sensor
11690574, Nov 05 2003 Masimo Corporation Pulse oximeter access apparatus and method
11696712, Jun 13 2014 VCCB HOLDINGS, INC. Alarm fatigue management systems and methods
11699526, Oct 11 2013 Masimo Corporation Alarm notification system
11701043, Apr 17 2019 Masimo Corporation Blood pressure monitor attachment assembly
11705666, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
11706029, Jul 06 2016 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
11717194, Oct 07 2013 Masimo Corporation Regional oximetry pod
11717210, Sep 28 2010 Masimo Corporation Depth of consciousness monitor including oximeter
11717218, Oct 07 2014 Masimo Corporation Modular physiological sensor
11721105, Feb 13 2020 Masimo Corporation System and method for monitoring clinical activities
11724031, Jan 17 2006 Masimo Corporation Drug administration controller
11730379, Mar 20 2020 Masimo Corporation Remote patient management and monitoring systems and methods
11744471, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
11747178, Oct 27 2011 Masimo Corporation Physiological monitor gauge panel
11751773, Jul 03 2008 Masimo Corporation Emitter arrangement for physiological measurements
11751780, Oct 07 2013 Masimo Corporation Regional oximetry sensor
11752262, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
11759130, Oct 12 2006 Masimo Corporation Perfusion index smoother
11766198, Feb 02 2018 CERCACOR LABORATORIES, INC Limb-worn patient monitoring device
11779247, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
11786183, Oct 13 2011 Masimo Corporation Medical monitoring hub
11803623, Oct 18 2019 Masimo Corporation Display layout and interactive objects for patient monitoring
11812229, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
11813036, Apr 26 2017 Masimo Corporation Medical monitoring device having multiple configurations
11816771, Feb 24 2017 Masimo Corporation Augmented reality system for displaying patient data
11816973, Aug 19 2011 Masimo Corporation Health care sanitation monitoring system
11825536, Jan 18 2017 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
11830349, Feb 24 2017 Masimo Corporation Localized projection of audible noises in medical settings
11832940, Aug 27 2019 CERCACOR LABORATORIES, INC Non-invasive medical monitoring device for blood analyte measurements
11839470, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
11839498, Oct 14 2005 Masimo Corporation Robust alarm system
11844634, Apr 19 2018 Masimo Corporation Mobile patient alarm display
11848515, Mar 11 2009 Masimo Corporation Magnetic connector
11850024, Sep 18 2014 MASIMO SEMICONDUCTOR, INC. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
11857315, Oct 12 2006 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
11857319, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
11864890, Dec 22 2016 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
11864922, Sep 04 2015 CERCACOR LABORATORIES, INC Low-noise sensor system
11872156, Aug 22 2018 Masimo Corporation Core body temperature measurement
11877824, Aug 17 2011 Masimo Corporation Modulated physiological sensor
11877867, Feb 16 2009 Masimo Corporation Physiological measurement device
11879960, Feb 13 2020 Masimo Corporation System and method for monitoring clinical activities
11883129, Apr 24 2018 CERCACOR LABORATORIES, INC Easy insert finger sensor for transmission based spectroscopy sensor
11883190, Jan 28 2014 Masimo Corporation Autonomous drug delivery system
11886858, Feb 24 2017 Masimo Corporation Medical monitoring hub
11887728, Sep 20 2012 Masimo Corporation Intelligent medical escalation process
11894640, Feb 06 2015 Masimo Corporation Pogo pin connector
11900775, Dec 21 2009 Masimo Corporation Modular patient monitor
11901070, Feb 24 2017 Masimo Corporation System for displaying medical monitoring data
11903140, Feb 06 2015 Masimo Corporation Fold flex circuit for LNOP
7543598, Dec 29 2005 Group Dekko, Inc Vacuum break thermistor housing
7713477, Apr 26 2002 Systems and methods for monitoring chemical and biological activities using differential measurements
8157730, Dec 19 2006 YUKKA MAGIC LLC Physiological and environmental monitoring systems and methods
8204786, Dec 19 2006 YUKKA MAGIC LLC Physiological and environmental monitoring systems and methods
8315681, Nov 30 2005 Toshiba Medical Systems Corporation Method for noninvasive measurement of glucose and apparatus for noninvasive measurement of glucose
8652040, Dec 19 2006 YUKKA MAGIC LLC Telemetric apparatus for health and environmental monitoring
8702607, Dec 19 2006 YUKKA MAGIC LLC Targeted advertising systems and methods
8989830, Feb 25 2009 Valencell, Inc. Wearable light-guiding devices for physiological monitoring
9044180, Oct 25 2007 YUKKA MAGIC LLC Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
9055868, Sep 03 2002 CHEETAH OMNI LLC System and method for voice control of medical devices
9060687, Oct 02 2009 SHARP LIFE SCIENCE CORPORATION Device for monitoring blood vessel conditions and method for monitoring same
9131312, Feb 25 2009 Valencell, Inc. Physiological monitoring methods
9173604, Mar 19 2010 SHARP LIFE SCIENCE CORPORATION Measurement device, measurement method, measurement result processing device, measurement system, measurement result processing method, control program, and recording medium
9289135, Feb 25 2009 Valencell, Inc. Physiological monitoring methods and apparatus
9289175, Feb 25 2009 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
9301696, Feb 25 2009 Valencell, Inc. Earbud covers
9314167, Feb 25 2009 Valencell, Inc. Methods for generating data output containing physiological and motion-related information
9351671, Jul 16 2012 ZYOMED HOLDINGS, INC Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof
9351672, Jul 16 2012 ZYOMED HOLDINGS, INC Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
9375170, Jul 16 2012 ZYOMED HOLDINGS, INC Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
9427191, Jul 12 2012 YUKKA MAGIC LLC Apparatus and methods for estimating time-state physiological parameters
9442065, Sep 29 2014 ZYOMED HOLDINGS, INC Systems and methods for synthesis of zyotons for use in collision computing for noninvasive blood glucose and other measurements
9448164, Sep 29 2014 ZYOMED HOLDINGS, INC Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
9448165, Sep 29 2014 ZYOMED HOLDINGS, INC Systems and methods for control of illumination or radiation collection for blood glucose and other analyte detection and measurement using collision computing
9453794, Sep 29 2014 ZYOMED HOLDINGS, INC Systems and methods for blood glucose and other analyte detection and measurement using collision computing
9459201, Sep 29 2014 ZYOMED HOLDINGS, INC Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
9459202, Sep 29 2014 ZYOMED HOLDINGS, INC Systems and methods for collision computing for detection and noninvasive measurement of blood glucose and other substances and events
9459203, Sep 29 2014 ZYOMED HOLDINGS, INC Systems and methods for generating and using projector curve sets for universal calibration for noninvasive blood glucose and other measurements
9494567, Dec 31 2012 OMNI MEDSCI, INC Near-infrared lasers for non-invasive monitoring of glucose, ketones, HBA1C, and other blood constituents
9500634, Dec 31 2012 OMNI MEDSCI, INC Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
9521962, Jul 25 2011 YUKKA MAGIC LLC Apparatus and methods for estimating time-state physiological parameters
9538921, Jul 30 2014 YUKKA MAGIC LLC Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
9554738, Mar 30 2016 ZYOMED HOLDINGS, INC Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
9585604, Jul 16 2012 ZYOMED HOLDINGS, INC Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
9610018, Sep 29 2014 ZYOMED HOLDINGS, INC Systems and methods for measurement of heart rate and other heart-related characteristics from photoplethysmographic (PPG) signals using collision computing
9750462, Feb 25 2009 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
9757040, Dec 31 2012 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
9766126, Jul 12 2013 ZYOMED HOLDINGS, INC Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof
9788785, Jul 25 2011 YUKKA MAGIC LLC Apparatus and methods for estimating time-state physiological parameters
9794653, Sep 27 2014 YUKKA MAGIC LLC Methods and apparatus for improving signal quality in wearable biometric monitoring devices
9797876, Dec 31 2012 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
9801552, Aug 02 2011 YUKKA MAGIC LLC Systems and methods for variable filter adjustment by heart rate metric feedback
9808204, Oct 25 2007 YUKKA MAGIC LLC Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
9861286, Dec 31 2012 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
9885698, Dec 31 2012 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, HbA1C, and other blood constituents
9897584, Dec 31 2012 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
9955919, Feb 25 2009 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
9993159, Dec 31 2012 Omni Medsci, Inc.; OMNI MEDSCI, INC Near-infrared super-continuum lasers for early detection of breast and other cancers
9995722, Dec 31 2012 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
D897098, Oct 12 2018 Masimo Corporation Card holder set
D916135, Oct 11 2018 Masimo Corporation Display screen or portion thereof with a graphical user interface
D917550, Oct 11 2018 Masimo Corporation Display screen or portion thereof with a graphical user interface
D917564, Oct 11 2018 Masimo Corporation Display screen or portion thereof with graphical user interface
D917704, Aug 16 2019 Masimo Corporation Patient monitor
D919094, Aug 16 2019 Masimo Corporation Blood pressure device
D919100, Aug 16 2019 Masimo Corporation Holder for a patient monitor
D921202, Aug 16 2019 Masimo Corporation Holder for a blood pressure device
D925597, Oct 31 2017 Masimo Corporation Display screen or portion thereof with graphical user interface
D927699, Oct 18 2019 Masimo Corporation Electrode pad
D933232, May 11 2020 Masimo Corporation Blood pressure monitor
D933233, Aug 16 2019 Masimo Corporation Blood pressure device
D933234, Aug 16 2019 Masimo Corporation Patient monitor
D950738, Oct 18 2019 Masimo Corporation Electrode pad
D965789, May 11 2020 Masimo Corporation Blood pressure monitor
D967433, Aug 16 2019 Masimo Corporation Patient monitor
D973072, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D973685, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D973686, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D974193, Jul 27 2020 Masimo Corporation Wearable temperature measurement device
D979516, May 11 2020 Masimo Corporation Connector
D980091, Jul 27 2020 Masimo Corporation Wearable temperature measurement device
D985498, Aug 16 2019 Masimo Corporation Connector
D989112, Sep 20 2013 Masimo Corporation Display screen or portion thereof with a graphical user interface for physiological monitoring
D989327, Oct 12 2018 Masimo Corporation Holder
ER1649,
ER1777,
ER2016,
ER2198,
ER31,
ER3807,
ER419,
ER5816,
ER5918,
ER612,
ER6654,
ER6678,
ER6997,
ER7053,
ER8765,
ER9655,
RE49007, Mar 01 2010 Masimo Corporation Adaptive alarm system
RE49034, Jan 24 2002 Masimo Corporation Physiological trend monitor
Patent Priority Assignee Title
4213462, Aug 25 1977 Optical assembly for detecting an abnormality of an organ or tissue and method
4548505, Apr 22 1981 SUMITOMO ELECTRIC INDUSTRIES, LTD , 15, KITAHAMA 5-CHOME, HIGAHSI-KU, OSAKA, JAPAN Sensor for spectral analyzer for living tissues
5036853, Aug 26 1988 POLARTECHNICS LTD Physiological probe
6097975, May 13 1998 SPIVAK, PAUL; SPIVAK, OLGA Apparatus and method for noninvasive glucose measurement
6240306, Aug 05 1995 RIO GRANDE MEDICAL TECHNOLOGIES, INC Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
6353226, Nov 23 1998 Abbott Laboratories Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
6403944, Mar 07 1997 Abbott Laboratories System for measuring a biological parameter by means of photoacoustic interaction
WO65988,
WO109589,
WO9959464,
////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 26 2000ACOSTA, GEORGEInstrumentation Metrics, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0109860950 pdf
Jul 26 2000ABUL-HAJ, ROXANNE E Instrumentation Metrics, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0109860950 pdf
Jul 26 2000ABUL-HAJ, N ALANInstrumentation Metrics, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0109860950 pdf
Jul 26 2000HAZEN, KEVINInstrumentation Metrics, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0109860950 pdf
Aug 02 2000Sensys Medical, Inc.(assignment on the face of the patent)
Jul 12 2002Instrumentation Metrics, IncSENSYS MEDICAL, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0132210126 pdf
Mar 10 2006SENSYS MEDICAL INC Silicon Valley BankSECURITY AGREEMENT0179210274 pdf
Sep 29 2008Silicon Valley BankSENSYS MEDICAL INC RELEASE0216030397 pdf
Jan 20 2009SENSYS MEDICAL, INC GLENN PATENT GROUPLIEN SEE DOCUMENT FOR DETAILS 0221170887 pdf
Apr 14 2009GLENN PATENT GROUPSENSYS MEDICAL, INC LIEN RELEASE0225420360 pdf
Apr 28 2012SENSYS MEDICAL, INC SENSYS MEDICAL, LTDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0287140623 pdf
Aug 29 2012SENSYS MEDICAL, LIMITEDGLT ACQUISITION CORP ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0289120036 pdf
Date Maintenance Fee Events
Aug 23 2006M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Oct 25 2010REM: Maintenance Fee Reminder Mailed.
Mar 15 2011M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Mar 15 2011M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.
Nov 08 2012STOL: Pat Hldr no Longer Claims Small Ent Stat
Nov 09 2012ASPN: Payor Number Assigned.
Oct 24 2014REM: Maintenance Fee Reminder Mailed.
Mar 18 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Mar 18 20064 years fee payment window open
Sep 18 20066 months grace period start (w surcharge)
Mar 18 2007patent expiry (for year 4)
Mar 18 20092 years to revive unintentionally abandoned end. (for year 4)
Mar 18 20108 years fee payment window open
Sep 18 20106 months grace period start (w surcharge)
Mar 18 2011patent expiry (for year 8)
Mar 18 20132 years to revive unintentionally abandoned end. (for year 8)
Mar 18 201412 years fee payment window open
Sep 18 20146 months grace period start (w surcharge)
Mar 18 2015patent expiry (for year 12)
Mar 18 20172 years to revive unintentionally abandoned end. (for year 12)