The invention relates to a micromechanical structures that include movable elements. In particular the invention relates to an arrangement for coupling such movable elements to other structures of a microelectromechanical system (MEMS). The invention is characterized in that the arrangement comprises at least one coupling means (930-936) for coupling the movable element to the fixed structure, and at least one flexible means (980, 990-996) for allowing different thermal expansion between the movable element and the other structure in the direction which is substantially perpendicular to the characteristic movement of the movable element, wherein said coupling means and/or flexible means is reinforced in the direction of the characteristic movement of the movable element.
|
1. An arrangement for coupling a movable element, which has a characteristic movement direction, to a fixed structure, such as a substrate, of a micromechanical component, characterized in that the arrangement comprises at least one coupling means for coupling the movable element to the fixed structure, and at least one flexible means for allowing different thermal expansion between the movable element and an other structure in a direction which is substantially perpendicular to the characteristic movement of the movable element, wherein said coupling means and/or flexible means is reinforced to be substantially inflexible in the direction of the characteristic movement of the movable element.
16. A micromechanical component including movable elements, the movable elements adapted to be coupled to other elements of micromechanical components, an arrangement for coupling the movable elements to the other elements comprising:
at least one coupling means for coupling a movable element to a fixed structure of another element; and at least one flexible means providing different thermal expansion between the moveable element and the fixed structure in a direction that is substantially perpendicular to a characteristic movement direction of the movable element, wherein the coupling means and/or flexible means is reinforced to be inflexible in a direction of the characteristic movement of the movable element.
2. An arrangement according to
3. An arrangement according to
4. An arrangement according to
5. An arrangement according to
6. An arrangement according to
7. An arrangement according to
8. An arrangement according to
9. An arrangement according to
10. An arrangement according to
11. An arrangement according to
12. An arrangement according to
13. An arrangement according to
14. An arrangement according to
15. An arrangement according to
|
The invention relates to a micromechanical structures that include movable elements. In particular the invention relates to an arrangement for coupling such movable elements to other structures of a microelectromechanical system (MEMS).
In microelectronics the trend has been towards a higher level of integration. The same applies to micromechanics as well. Consequently, micromechanical elements designated especially for microelectronic purposes need to be more highly integrated because of the requirement for smaller and smaller components for electrical applications.
Prior art micromechanical components have been optimized for low frequency (<1 MHz) applications and used mainly for inertial and pressure sensors. The design of micromechanical RF components for 1 to 5 GHz applications used in mobile terminals sets demands on micromachined structures. These demands are partly different from the problems in the low frequency Micro Electromechanical Systems (MEMS) applications.
The optimization of the capacitive micromechanical structures is subject to several parameters:
Sensitivity to the measured value or control force (e.g., acceleration to capacitance transfer function, control voltage to capacitance transfer function),
Signal to noise ratio that depends on the several other device parameters,
Zero point stability of the device with respect to long time periods and temperature.
These optimization criteria convert into more specific device requirements when the application and especially the measurement or operation frequency is taken into account. This invention is related to the use of the micromechanical structure as a part of the high frequency application. Two different examples of such an application are:
MEMS rf components: tunable capacitors and micromechanical microrelays;
Micromechanical low noise, high sensitivity accelerometer using LC resonance as a basis of the measurement electronics;
For both these applications, there are several common requirements for the device:
Series resistance of the device must be minimized;
Series (stray) inductance of the device must minimized and repeatable;
Temperature dependence of the structure must be as small as possible; and
Parasitic capacitance must be minimized.
The prior art micromechanical structures are mostly based on silicon and polysilicon structures. The polysilicon has good mechanical properties and technology to build suspended structures from it is well researched. However, the main disadvantage of these structures is the high series resistance. The series resistance reduces the Q value of the component at high frequencies.
Many devices like the low-noise rf voltage controlled oscillators (VCO) require a resonant device with high Q-factor, since the phase noise of an oscillator is proportional to 1QT2, where QT is the overall Q-factor of the resonator. High dynamic range filters also require a high Q-resonator, since the dynamic range of the filter is proportional to QT2. The quality factor within the frequency range 1 to 2 GHz is dominated by the series resistance. Previously, for instance the MEMS tunable capacitors were fabricated from the polysilicon, but the requirement for the low series resistance has forced to consider metal as the material of the structure. Metal can be for instance gold, copper, silver, nickel, aluminum, chromium, refractory metal or alloy of several metals.
In capacitive sensors the ultimate resolution of the capacitance measurement is limited by the series and/or parallel resistances of the sensing capacitance. Most of the prior art capacitive inertial sensors are made of doped monocrystalline or polycrystalline silicon, and the conductivity is limitted to relatively modest values. Furthermore, the additional series resistance due to metal/silicon interfaces increases the series resistance. The inertial sensors based on metal structures have been studied, [1] and [2], because of two clear advantages: 1) metals have higher material density that increases the mass and thus the sensitivity of the capacitive sensor, and 2) metals have higher electrical conductivity that reduces the electrical noise of the capacitive sensor. One of the key problem in using metallic materials for inertial sensors has been the elimination of thermal stress caused by the mismatch of the thermal expansion coefficients between the substrate and the structure.
Metal thus has some disadvantageous characteristics like the built-in stress that can cause warping of the suspended structures. In addition, most metals that are available in the MEMS processes have the thermal expansion coefficient that is very different compared to the thermal expansion coefficient of most substrate materials such as silicon, quartz or borosilicate glass. Thermal stress of the suspended structure, due to the thermal expansion mismatch, can cause severe thermal dependence in the device.
where E is the Young's modulus, α1, and α2 are the thermal expansion coefficients of the metal film and the silicon substrate, respectively, and ΔT is the temperature change.
For the copper film on top of the silicon substrate,
The stress in the metal causes a force Feff to the anchoring structures 130 and 132.
The temperature dependence of the capacitance can be calculated as
The temperature dependence increases with the control voltage. For example, for 5 MPa residual stress, the temperature dependence of the capacitance can be 1%/°C C. at 1 V control voltage, and 24%/°C C. at 3 V control voltage. If the device is operated at low control voltages, the residual stress of the film must be minimized. At this range, the temperature dependence must be minimized by some structural modifications.
The temperature dependence has been reduced by using flexible spring support for the structure. Such prior art solutions for implementing micromechanical components are described e.g. in documents [3]-[6]. However, the problem of these prior art devices is: 1) too high series resistance, 2) too high temperature dependence, 3) too high stray inductance.
Prior art micromechanical structures comprising movable elements have therefore disadvantages related to the requirements described above. The prior art structures suffer from temperature dependence, due to the mismatch of thermal expansion coefficients of the micromechanical structure and the substrate. Series resistance and parasitic capacitance are also high in prior art RF components such as tunable capacitors and resonators based on a tunable micromechanical capacitor and an integrated inductor. These factors may lead to high losses, thermal unstability and unreliability of the micromechanical components.
The purpose of the invention is to achieve improvements related to the aforementioned disadvantages. The invented arrangements for coupling a movable element to other micromechanical structures facilitates minimizing the temperature dependence, the series resistance, the stray inductance and the parasitic capacitance. Hence, the invention presents a substantial improvement to the stability and reliability of the micromechanical componets, especially in the RF applications.
An arrangement according to the invention for coupling a movable element, which has a characteristic movement direction, to a fixed structure, such as substrate, of a micromechanical component, is characterized in that the arrangement comprises at least one coupling means for coupling the movable element to the fixed structure, and at least one flexible means for allowing different thermal expansion between the movable element and the other structure in a direction which is substantially perpendicular to the characteristic movement of the movable element, wherein said coupling means and/or flexible means is reinforced to be substantially inflexible in the direction of the characteristic movement of the movable element.
The invention also relates to a micromechanical component wich comprises an arrangement described above.
Preferred embodiments of the invention are described in the dependent claims.
One idea in implementing this invention is to use an additional layer, such as a metal layer, to form boundary conditions that are as close to ideal as possible for suspended structures. The inventive concept can most advantageously be realised using one or several of the following details:
1) The deflecting metal thin film is mechanically decoupled from the substrate and consists of:
a) Membrane, diaphgram or thin metal film of any shape,
b) Surrounding frame that can be of any shape as long as it is symmetric about the axes formed by two opposing anchors,
c) Inner springs that connect the deflecting element to the frame are formed on the corners of the frame,
d) Anchoring of the frame to the substrate at the middle of the frame forming beams,
e) Optional outer beams that further connect the frame and the substrate anchoring. The structure is further characterized by the symmetry shown in
f) Anchoring of the frame to the substrate is arranged to be temperature compensated.
Mechanical decoupling of the movable element achieved by the structure is almost perfect. Disadvantage of the planar structure of this preferred embodiment is, however, that the corners of the frame may warp in the direction perpendicular to the substrate plane (in vertical direction) due to the built-in (residual) stress in the frame or moving element.
2) Eliminating of the warping of the structure by having larger vertical thickness for the frame than for the moving element. Another possibility to achieve a rigid vertical structure is to use profile geometries.
The invention can be implemented utilizing new fabrication technologies that are commonly known as micro system technologies (MST) or Micro Electromechanical Systems (MEMS). These fabrication technologies enable the fabrication of movable structures on top of the silicon wafer or any other substrate material. The preferred process is based on the deposition of a sacrificial material layer (silicon dioxide or polymer film) under the movable structure during the fabrication. During the final steps of fabrication the movable mechanical structure is released by etching the sacrificial layer away.
Invention improves the prior art devices (metal film structures on top of silicon substrate) in several ways:
Thermally induced stress of the deflecting thin film is minimized, below 0.5 MPa level, because of the geometrical symmetries;
Series resistance is low, below 0.1 Ω, because of eight parallel current paths from the thin film to the anchor;
Series (stray) inductance is low, below 0.1 nH, because of eight parallel current paths from the thin film to the anchor;
Low control voltage level possible (3-5 V) because of the low film stress; and
Warping of the mechanically decoupled structure is small.
Removes almost all the stress issued to the suspended structure due to the thermal expansion mismatch.
Relaxes the built-in stress in the suspended structure.
Series resistance of the spring structure is smaller than in the previous spring structures.
Very rigid structure in other degrees of freedom. Rigid boundaries prevent warping and allow bigger capacitors to be made, than previous structures.
Eliminates the moment effect caused by thermal deformation of the thick anchoring.
Next the invention will be described in greater detail with reference to exemplary embodiments in accordance with the accompanying drawings, in which
When micromechanical anchoring structure is thick, there is significant deformation of the anchoring structure due to the thermal expansion of the diaphragm 410. This is illustrated in FIG. 4B. Figure shows that when the anchoring 430 is fixed to the substrate 450, its bottom cannot chance its size with temperature. However, the upper part of the thick anchoring structure may chance its size with temperature. This creates a momentum M to the suspended structure that causes temperature dependence in the device behavior.
There are several implementations for the spring structure when applied in tunable capacitors. A first implementation was illustrated in
The embodiments of
a) The thin film 910 is rectangular, preferably square;
b) The surrounding frame 980 is of a continuous, rectangular (square) structure;
c) Inner springs 990, 992, 994 and 996 connect the thin film to the frame at the corners of the frame;
d) The frame 980 is anchored to the substrate at the middle of the frame forming beams;
e) The structure may have optional outer beams that further connect the frame and the substrate anchoring.
The structure is preferably symmetrical. The anchoring of the frame to the substrate and the attachment of the thin film to the frame are preferably at 45 degree angle of each other. Mechanical decoupling of the diaphragm from the substrate achieved by the structure is at an optimum.
Measurements show that the structure according to
The frame can be reinforced against the movement in the direction of the characteristic movement of the thin film, as shown above, by producing the whole frame thick in this direction by using thicker material in the frame. However, another way of reinforcing the frame is to use a profile geometry for the cross section of the frame. The geometry of the beams may may have the shape of eg. "U" "T" profile.
TABLE 1 | ||
Parameters in the electrical equivalent circuit of |
||
Parameter | Description | Value |
C | Capacitance in the air gap (1 μm thick) | 1.0 pF |
Cd | Capacitance in the dielectric layer | 44 pF |
(100 nm thick) | ||
Rs_1 | Resistance in the lower electrode | 0.05 Ω |
(1 μm thick) | ||
Ls_1 | Inductance in the lower electrode | 0.05 nH |
(1 μm thick) | ||
Rs_2 | Resistance in the upper electrode | 0.1 Ω |
(0.5 μm thick) | ||
Ls_2 | Inductance in the upper electrode | 0.11 nH |
(0.5 μm thick) | ||
Rs_3 | Resistance in the frame (10 μm thick) | 0.06 Ω |
Ls_3 | Inductance in the frame (10 μm thick) | 0.18 nH |
Rs_4 | Resistance in the frame (10 μm thick) | 0.03 Ω |
Ls_4 | Inductance in the frame (10 μm thick) | 0.14 nH |
Cp_1 | Parasitic capacitance to the substrate | 0.1-0.5 pF |
Rp_1 | Resistance in the substrate | ∼10 kΩ |
Cp_2 | Parasitic capacitance to the bias electrode | 1 pF |
Rp_2 | Impedance of the control circuit | >1 kΩ |
The values in the Table 1 show that the series resistance and inductance values are very small which makes the capacitor structure very suitable for high frequency applications.
In the embodiments of
In the embodiments of
A second polymer layer 1256 is then deposited on step 1250 and a third lithography step is used to partially remove the polymer. Now part of the first metal structure is visible and it is used as a seed layer for the second electroplating, step 1260. This electroplating forms the thick metal layer (eg. a thickness of 10 μm), 1267, which stabilizes the anchor and forms and reinforces the springs. In the last step 1278, sacrificial polymer is etched away, 1278, and the suspended structure is thus released.
The invention has been explained above with reference to the aforementioned embodiments, and several industrial advantages of the invention have been demonstrated. It is clear that the invention is not only restricted to these embodiments, but comprises all possible embodiments within the spirit and scope of the inventive thought and the following patent claims. For example, the inventive idea of the micromechanical arrangement is not restricted to be used in a tunable capacitor, but it can be applied also in many other components and purposes. One examplary application of the invention is an inertial sensor, such as an accelometer or an angular rate sensor where it is possible, with the present invention, to achieve a low series resistance and high Q value together with large inertial mass. The invention is not either restricted to use of the mentioned materials. For example, the reinforced structure may comprise thin film and/or electroplated metal, it may comprise polycrystalline silicon and/or monocrystalline silicon, or it may comprise insulating films.
[1] Y. Konaka and M. G. Allen, "Single- and multi-layer electroplated microaccelerometers", Digest of Tech. Papers, IEEE 1996.
[2] J. T. Ravnkilde, "Nickel surface micromachined accelerometers", Internal Report, MIC-DTU, August 1998.
[3] Dec A. and K. Suyama, Micromachined electro-mechanically tuneable capacitors and their applications to RF IC's, pp. 2587-2596, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, 1998.
[4] Gill J., L. Ngo, P. Nelson and C-J Kim, Elimination of extra spring effect at the step-up anchor of surface-micromachined structure, Journal of microelectromechanical systems, pp. 114-121, Vol. 7, No. 1, 1998.
[5] Nguyen C., L Katehi and G. Rebeiz, Micromachined devices for wireless communications, pp. 1756-1768, Proc. IEEE, Vol. 86, No. 8, 1998.
[6] D. J. Young, J. L. Tham, and B. E. Boser, A Micromachine-Based Low Phase-Noise GHz Voltage-Controlled Oscillator for Wireless Communications, Proc. of Transducers '99, Jun. 7-10, 1999, Sendai, Japan, pp. 1386-1389).
Nieminen, Heikki, Ryhänen, Tapani, Ermolov, Vladimir, Silanto, Samuli
Patent | Priority | Assignee | Title |
10088675, | May 18 2015 | Rockwell Collins, Inc. | Turning light pipe for a pupil expansion system and method |
10108010, | Jun 29 2015 | Rockwell Collins, Inc.; Rockwell Collins, Inc | System for and method of integrating head up displays and head down displays |
10126552, | May 18 2015 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
10156681, | Feb 12 2015 | Digilens Inc.; Rockwell Collins Inc. | Waveguide grating device |
10241330, | Sep 19 2014 | DIGILENS INC | Method and apparatus for generating input images for holographic waveguide displays |
10247943, | May 18 2015 | Rockwell Collins, Inc. | Head up display (HUD) using a light pipe |
10295824, | Jan 26 2017 | Rockwell Collins, Inc. | Head up display with an angled light pipe |
10359641, | Aug 24 2011 | DIGILENS, INC ; ROCKWELL COLLINS INC | Wearable data display |
10359736, | Aug 08 2014 | DIGILENS INC | Method for holographic mastering and replication |
10401620, | May 10 2013 | Rockwell Collins, Inc. | Waveguide combiner system and method with less susceptibility to glare |
10509241, | Sep 30 2009 | Rockwell Collins, Inc | Optical displays |
10527797, | Feb 12 2015 | Digilens Inc.; Rockwell Collins Inc. | Waveguide grating device |
10545346, | Jan 05 2017 | DIGILENS INC | Wearable heads up displays |
10598932, | Jan 06 2016 | Rockwell Collins, Inc. | Head up display for integrating views of conformally mapped symbols and a fixed image source |
10642058, | Aug 24 2011 | DIGILENS INC | Wearable data display |
10670876, | Aug 08 2014 | DIGILENS INC | Waveguide laser illuminator incorporating a despeckler |
10678053, | Apr 27 2009 | DIGILENS INC | Diffractive projection apparatus |
10690915, | Apr 25 2012 | Rockwell Collins, Inc.; SBG Labs, Inc. | Holographic wide angle display |
10690916, | Oct 05 2015 | DIGILENS INC | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
10698203, | May 18 2015 | Rockwell Collins, Inc. | Turning light pipe for a pupil expansion system and method |
10705337, | Jan 26 2017 | Rockwell Collins, Inc. | Head up display with an angled light pipe |
10725312, | Jul 26 2007 | SBG LABS, INC | Laser illumination device |
10732407, | Jan 10 2014 | Rockwell Collins, Inc. | Near eye head up display system and method with fixed combiner |
10732569, | Jan 08 2018 | DIGILENS INC | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
10746989, | May 18 2015 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
10747982, | Jul 31 2013 | Digilens Inc. | Method and apparatus for contact image sensing |
10795160, | Sep 25 2014 | Rockwell Collins, Inc | Systems for and methods of using fold gratings for dual axis expansion |
10859768, | Mar 24 2016 | DIGILENS INC | Method and apparatus for providing a polarization selective holographic waveguide device |
10890707, | Apr 11 2016 | DIGILENS INC | Holographic waveguide apparatus for structured light projection |
10914950, | Jan 08 2018 | DIGILENS INC | Waveguide architectures and related methods of manufacturing |
10942430, | Oct 16 2017 | DIGILENS INC | Systems and methods for multiplying the image resolution of a pixelated display |
11175512, | Apr 27 2009 | Digilens Inc.; Rockwell Collins, Inc. | Diffractive projection apparatus |
11194162, | Jan 05 2017 | Digilens Inc. | Wearable heads up displays |
11215834, | Jan 06 2016 | Rockwell Collins, Inc. | Head up display for integrating views of conformally mapped symbols and a fixed image source |
11256155, | Jan 06 2012 | Digilens Inc. | Contact image sensor using switchable Bragg gratings |
11281013, | Oct 05 2015 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
11287666, | Aug 24 2011 | DigiLens, Inc.; Rockwell Collins, Inc. | Wearable data display |
11300795, | Sep 30 2009 | Digilens Inc.; Rockwell Collins, Inc. | Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion |
11307432, | Aug 08 2014 | Digilens Inc. | Waveguide laser illuminator incorporating a Despeckler |
11314084, | May 10 2013 | Rockwell Collins, Inc. | Waveguide combiner system and method with less susceptibility to glare |
11320571, | Nov 16 2012 | DIGILENS INC | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
11366316, | May 18 2015 | Rockwell Collins, Inc | Head up display (HUD) using a light pipe |
11378732, | Mar 12 2019 | DIGILENS INC | Holographic waveguide backlight and related methods of manufacturing |
11402801, | Jul 25 2018 | DIGILENS INC | Systems and methods for fabricating a multilayer optical structure |
11442222, | Aug 29 2019 | DIGILENS INC | Evacuated gratings and methods of manufacturing |
11448937, | Nov 16 2012 | Digilens Inc.; Rockwell Collins, Inc | Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles |
11460621, | Apr 25 2012 | Rockwell Collins, Inc.; Digilens Inc. | Holographic wide angle display |
11487131, | Apr 07 2011 | Digilens Inc. | Laser despeckler based on angular diversity |
11513350, | Dec 02 2016 | DIGILENS INC | Waveguide device with uniform output illumination |
11543594, | Feb 15 2019 | DIGILENS INC | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
11579455, | Sep 25 2014 | Rockwell Collins, Inc.; Digilens Inc. | Systems for and methods of using fold gratings for dual axis expansion using polarized light for wave plates on waveguide faces |
11586046, | Jan 05 2017 | Digilens Inc. | Wearable heads up displays |
11592614, | Aug 29 2019 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
11604314, | Mar 24 2016 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
11681143, | Jul 29 2019 | DIGILENS INC | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
11703645, | Feb 12 2015 | Digilens Inc.; Rockwell Collins, Inc. | Waveguide grating device |
11709373, | Aug 08 2014 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
11726323, | Sep 19 2014 | Digilens Inc.; Rockwell Collins, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
11726329, | Jan 12 2015 | Digilens Inc. | Environmentally isolated waveguide display |
11726332, | Apr 27 2009 | Digilens Inc.; Rockwell Collins, Inc. | Diffractive projection apparatus |
11740472, | Jan 12 2015 | Digilens Inc. | Environmentally isolated waveguide display |
11747568, | Jun 07 2019 | DIGILENS INC | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
11754842, | Oct 05 2015 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
11815781, | Nov 16 2012 | Rockwell Collins, Inc.; Digilens Inc. | Transparent waveguide display |
11899238, | Aug 29 2019 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
6940632, | Dec 10 1999 | Robert Bosch GmbH | Micromechanical structure, in particular for an acceleration sensor |
6995622, | Jan 09 2004 | Robert Bosch GmbH | Frequency and/or phase compensated microelectromechanical oscillator |
7221230, | Jan 09 2004 | Robert Bosch GmbH | Frequency and/or phase compensated microelectromechanical oscillator |
7224236, | Jan 09 2004 | Robert Bosch GmbH | Frequency and/or phase compensated microelectromechanical oscillator |
7365405, | Apr 27 2004 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Metrology structure and methods |
7571650, | Jul 30 2007 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Piezo resistive pressure sensor |
7678289, | Apr 27 2004 | Hewlett-Packard Development Company, L.P. | Metrology structure and methods |
8024279, | Jun 30 2008 | Nokia Technologies Oy | Resonator |
8203402, | Oct 24 2005 | TDK Corporation | Electronic device |
8289092, | Nov 27 2009 | STMICROELECTRONICS S R L | Microelectromechanical resonant structure having improved electrical characteristics |
9244280, | Mar 25 2014 | Rockwell Collins, Inc. | Near eye display system and method for display enhancement or redundancy |
9244281, | Sep 26 2013 | Rockwell Collins, Inc.; Rockwell Collins, Inc | Display system and method using a detached combiner |
9274339, | Feb 04 2010 | Rockwell Collins, Inc. | Worn display system and method without requiring real time tracking for boresight precision |
9341846, | Apr 25 2012 | DIGILENS INC | Holographic wide angle display |
9366864, | Sep 30 2011 | Rockwell Collins, Inc. | System for and method of displaying information without need for a combiner alignment detector |
9507150, | May 10 2013 | Rockwell Collins, Inc. | Head up display (HUD) using a bent waveguide assembly |
9519089, | Jan 30 2014 | Rockwell Collins, Inc. | High performance volume phase gratings |
9523852, | Jul 30 2015 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
9599813, | May 10 2013 | Rockwell Collins, Inc. | Waveguide combiner system and method with less susceptibility to glare |
9674413, | Apr 17 2013 | Rockwell Collins, Inc. | Vision system and method having improved performance and solar mitigation |
9679367, | Apr 24 2014 | Rockwell Collins, Inc. | HUD system and method with dynamic light exclusion |
9715067, | Sep 30 2011 | Rockwell Collins, Inc | Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials |
9715110, | Aug 06 2015 | Rockwell Collins, Inc. | Automotive head up display (HUD) |
9766465, | Mar 25 2014 | Rockwell Collins, Inc. | Near eye display system and method for display enhancement or redundancy |
9893652, | May 18 2015 | Ricoh Company, Ltd. | Electricity-generating element unit, electric generator, footwear, and flooring material |
9933684, | Nov 16 2012 | DIGILENS INC | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
9977247, | Sep 30 2011 | Rockwell Collins, Inc.; Rockwell Collins, Inc | System for and method of displaying information without need for a combiner alignment detector |
Patent | Priority | Assignee | Title |
5344117, | Oct 10 1992 | Robert Bosch GmbH | Micro-actuator |
5756901, | Oct 11 1995 | Robert Bosch GmbH | Sensor and method for manufacturing a sensor |
6000280, | Jul 20 1995 | Cornell Research Foundation, Inc. | Drive electrodes for microfabricated torsional cantilevers |
6073484, | Jul 20 1995 | PENTECH FINANCIAL SERVICES, INC | Microfabricated torsional cantilevers for sensitive force detection |
6369931, | Dec 22 1997 | Robert Bosch GmbH | Method for manufacturing a micromechanical device |
EP986077, | |||
WO50337, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 28 2001 | NIEMINEN, HEIKKI | Nokia Mobile Phones LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012223 | /0988 | |
Aug 28 2001 | RYHANEN, TAPANI | Nokia Mobile Phones LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012223 | /0988 | |
Aug 28 2001 | ERMOLOV, VLADIMIR | Nokia Mobile Phones LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012223 | /0988 | |
Aug 28 2001 | SILANTO, SAMULI | Nokia Mobile Phones LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012223 | /0988 | |
Sep 28 2001 | Nokia Mobile Phones Ltd. | (assignment on the face of the patent) | / | |||
Jan 16 2015 | Nokia Corporation | Nokia Technologies Oy | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036067 | /0222 |
Date | Maintenance Fee Events |
Oct 13 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 22 2010 | ASPN: Payor Number Assigned. |
Oct 06 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 08 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 06 2006 | 4 years fee payment window open |
Nov 06 2006 | 6 months grace period start (w surcharge) |
May 06 2007 | patent expiry (for year 4) |
May 06 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 06 2010 | 8 years fee payment window open |
Nov 06 2010 | 6 months grace period start (w surcharge) |
May 06 2011 | patent expiry (for year 8) |
May 06 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 06 2014 | 12 years fee payment window open |
Nov 06 2014 | 6 months grace period start (w surcharge) |
May 06 2015 | patent expiry (for year 12) |
May 06 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |