The present invention relates to animated devices that include one or more electroactive polymer transducers. When actuated by electrical energy, an electroactive polymer produces mechanical deflection in one or more directions. This deflection may be used to produce motion of a feature included in an animated device. electroactive polymer transducers offer customizable shapes and deflections. Combining different ways to configure and constrain a polymer, different ways to arrange active areas on a single polymer, different animated device designs, and different polymer orientations, permits a broad range of animated devices that use an electroactive polymer transducer to produce motion. These animated devices find use in a wide range of animated device applications.
|
49. An animated skin comprising:
a feature capable of motion between a first position and a second position; a transducer either included in the skin or coupled to the skin and configured to provide at least a portion of the motion between the first position and the second position for the feature, the transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes; and wherein the polymer has an elastic modulus below about 100 MPa.
27. An animated face comprising:
a facial feature capable of motion between a first position and a second position; a transducer either included in the facial feature or coupled to the facial feature and configured to provide at least a portion of the motion between the first position and the second position for the facial feature, the transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes; and wherein the polymer has an elastic modulus below about 100 MPa.
64. An animated device comprising:
a feature capable of motion between a first position and a second position; a transducer either included in the feature or coupled to the feature and configured to provide at least a portion of the motion between the first position and the second position for the feature, the transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes, wherein the polymer has an elastic modulus below about 100 MPa; a sound generator configured to produce sound.
75. An animated device having likeness of a human, the animated device comprising:
a feature capable of motion between a first position and a second position; a transducer either included in the feature or coupled to the feature and configured to provide at least a portion of the motion between the first position and the second position for the feature, the transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by at least two electrodes, wherein the polymer has an elastic modulus below about 100 Mpa; and wherein the feature has a human likeness.
35. An animated toy comprising:
a feature capable of motion between a first position and a second position; a transducer either included in the feature or coupled to the feature and configured to provide at least a portion of the motion between the first position and the second position for the feature, the transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes; and wherein the polymer has an elastic modulus below about 100 MPa and the polymer is pre-strained by a factor in the range of about 1.5 times to 50 times its original area.
1. An animated device comprising:
a feature capable of motion between a first position and a second position; a transducer either included in the feature or coupled to the feature and configured to provide at least a portion of the motion between the first position and the second position for the feature, the transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electro active polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes; and wherein the polymer has an elastic modulus below about 100 MPa and the polymer is pre-strained by a factor in the range of about 1.5 times to 50 times its original area.
54. An animated device comprising:
a feature capable of motion between a first position and a second position; a transducer either included in the feature or coupled to the feature and configured to provide at least a portion of the motion between the first position and the second position for the feature, the transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes, wherein the polymer has an elastic modulus below about 100 MPa; a sensor configured to detect a parameter included in the device or detect a parameter from the environment around the device.
70. An animated device capable of surface based locomotion, the animated device comprising:
a feature capable of motion between a first position and a second position; a transducer either included in the feature or coupled to the feature and configured to provide at least a portion of the motion between the first position and the second position for the feature, the transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes, wherein the polymer has an elastic modulus below about 100 MPa; and wherein the device is configured such that motion between the first position and the second position for the feature provides at least a portion of the surface based locomotion.
2. The device of
6. The device of
7. The device of
9. The device of
11. The device of
12. The device of
13. The device of
14. The device of
17. The device of
19. The device of
21. The device of
22. The device of
23. The device of
25. The device of
26. The device of
28. The animated face of
29. The animated face of
30. The animated face of
31. The animated face of
32. The animated face of
33. The animated face of
34. The animated face of
36. The toy of
38. The toy of
40. The toy of
41. The toy of
42. The toy of
44. The toy of
45. The toy of
46. The toy of
48. The toy of
50. The animated skin of
51. The animated skin of
53. The animated skin of
55. The device of
58. The device of
59. The device of
61. The device of
66. The device of
67. The device of
68. The device of
71. The device of
72. The device of
74. The device of
76. The device of
77. The device of
|
This application claims priority under 35 U.S.C. §119(e) from co-pending U.S. Provisional Patent Application No. 60/194,817 filed Apr. 5, 2000, which is incorporated by reference herein for all purposes.
This application was made in part with government support awarded by the Office of Naval Research under contract numbers N00014-96-C-0026, N00014-97-C-0352, and N00174-99-C-0032; and by the Defense Advanced Research Projects Agency under contract number DABT63-98-C-0024. The government has certain rights in the invention.
The present invention relates generally to animated devices comprising one or more electroactive polymers. More particularly, the present invention relates to animated devices having motion powered by electroactive polymer transducers, and their use in various applications such as toys and animatronics.
An animatronic device is an animated device with motion likeness of a human, creature, or animal. Conventional animatronic devices include animatronic puppets, robots, creatures, special effects make-up, scenic props, sets, etc. These devices find wide use in themed rides, dark walks, scenery, and special effects for the film and television industries.
Motion for an animatronic device is typically powered by an electric or mechanical source. The most common source of power for an animatronic device is electric motors such as AC, DC, servo, and stepper motors. Compressed air and pressurized hydraulic fluid are also used to power air and hydraulic motors in larger animatronic devices. Each of these forms of power has advantages and disadvantages that determines its usage.
AC and DC motors provide continuous rotary output, which is often not suitable for simple animatronic devices. For example, a simple animatronic device may require a lead screw and other mechanical assistance to convert continuous rotary output of a motor into simple linear motion. AC motors provide continuous rotary motion but are limited to a few speeds that are a function of the AC line frequency, e.g., 1800 and 3600 rpm based on 60 Hz in the U.S. If other outputs speeds are desired for an animatronic device, a gearbox speed reducer is required; thus further complicating the animatronic device. Servomotors are fast response, closed loop control motors capable of providing programmed motion. In addition to the above rotary to linear complications, these devices are also very expensive. Unlike servomotors, stepper motors are open loop, meaning they receive no feedback as to whether the output device has responded as requested. While being relatively good at holding an output in one position, stepper motors often are poor with motion, get out of phase with a desired control, moderately expensive, require special controllers, and thus not ideal for many animatronic devices.
Air and hydraulic motors have more limited application in animatronics than electric motors since they require the availability of a compressed air or hydraulic source. The additional weight, complexity and relative inefficiency of the power source makes these devices unsuitable for many animatronic applications, particularly for small mobile devices, since extremely small compressors and valves are currently unobtainable. Although individual air motors and air cylinders are relatively cheap, these pneumatic systems are also quite expensive when the cost of all the ancillary equipment is considered.
In addition to the specific drawbacks discussed with respect to each source of power, all of the above systems are generally heavy, bulky and not suitable for many applications where light weight and small size is desirable. Conventional electromagnetic technologies also typically do not have sufficient energy densities (the work output on a per volume or per mass basis) to construct many animatronic devices. The deficiency of many conventional devices is greater at small scales. As electromagnetic devices are scaled-down in size, their efficiency decreases. Further, the above technologies provide strict mechanical output. Many animatronic applications require a high degree of mobility or dexterity that is difficult to achieve with conventional actuation technologies.
In view of the foregoing, alternative devices that convert from an input energy to mechanical energy would be desirable.
The present invention relates to animated devices that comprise one or more polymer based transducers. When a voltage is applied to electrodes contacting an electroactive polymer, the polymer deflects. Deflection of the transducer may then be converted into motion of a feature included in an animated device. Electroactive polymer transducers enable complex and customized animatronic devices by overcoming many of the actuator limitations described above. In this application, electroactive polymer transducers represent a simple, light weight, customizable, and efficient replacement for conventional actuators in animatronic devices.
In one aspect, the present invention relates to an animated device. The device comprises a feature capable of motion between a first position and a second position. The animated device also comprises a transducer configured to provide at least a portion of the motion between the first position and the second position for the feature. The transducer comprises an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer. The portion is capable of deflection in response to a change in electric field provided by the at least two electrodes.
In another aspect, the present invention relates to an animated face. The face comprises a facial feature capable of motion between a first position and a second position. The face also comprises a transducer configured to provide at least a portion of the motion between the first position and the second position for the facial feature. The transducer comprises an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer. The portion capable of deflection in response to a change in electric field provided by the at least two electrodes.
In yet another aspect, the present invention relates to an animated toy. The toy has a feature capable of motion between a first position and a second position. The animated toy also comprises a transducer configured to provide at least a portion of the motion between the first position and the second position. The transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer. The portion capable of deflection in response to a change in electric field provided by the at least two electrodes.
In still another aspect, the present invention relates to an animated skin. The animated skin comprises a feature capable of motion between a first position and a second position. The animated skin also comprises a transducer configured to provide at least a portion of the motion between the first position and the second position for the feature. The transducer comprises an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer. The portion is capable of deflection in response to a change in electric field provided by the at least two electrodes.
In another aspect, the present invention relates to an animated device. The animated device has a feature capable of motion between a first position and a second position. The animated device comprises a transducer configured to provide at least a portion of the motion between the first position and the second position for the feature. The transducer comprises an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer. The portion is capable of deflection in response to a change in electric field provided by the at least two electrodes. The animated device also comprises a sensor.
In yet another aspect, the present invention relates to an animated device. The animated device has a feature capable of motion between a first position and a second position. The animated device comprises a transducer configured to provide at least a portion of the motion between the first position and the second position for the feature. The transducer comprising an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes. The animated device also capable of acoustic emission.
In still another aspect, the present invention relates to an animated device capable of surface based locomotion. The animated device has a feature capable of motion between a first position and a second position. The animated device comprises a transducer configured to provide at least a portion of the motion between the first position and the second position for the feature. The transducer comprises an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer, the portion capable of deflection in response to a change in electric field provided by the at least two electrodes. The device is configured such that motion between the first position and the second position for the feature provides at least a portion of the surface based locomotion.
In another aspect, the present invention relates to a doll. The doll comprises a body comprising a torso having a pair of arms extending therefrom, a head, a pair of legs extending downwardly therefrom, a neck portion supporting the head. The doll also comprises a transducer configured to move a feature on the doll. The transducer comprises an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer. The portion capable of deflection in response to a change in electric field provided by the at least two electrodes.
In yet another aspect, the present invention relates to an animated device having likeness of a human and a feature capable of motion between a first position and a second position. The animated device comprises a transducer configured to provide at least a portion of the motion between the first position and the second position for the feature. The transducer comprises an active area, which includes at least two electrodes coupled to a portion of an electroactive polymer. The portion capable of deflection in response to a change in electric field provided by the at least two electrodes. The feature has a human likeness.
These and other features and advantages of the present invention will be described in the following description of the invention and associated figures.
The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
1. Overview
The present invention relates to animated devices that include one or more electroactive polymers. When actuated by electrical energy, an electroactive polymer produces mechanical deflection. Deflection of the electroactive polymer transducer may be used to produce motion of a feature of an animated device. The feature may be a leg or other body part included in an animated toy, for example. Electroactive polymer transducers offer customizable deflections by arranging one or more active areas on a single polymer and offer customizable shapes, e.g., rolls, diaphragms, etc. Multiple polymers may be included in a device by stacking or otherwise combining individual polymers. Combining different ways to arrange a polymer in a device, different polymer actuators, different ways to arrange active areas on a single polymer and different animated device designs, permits a broad range of animated devices that use an electroactive polymer to produce motion. These animated devices find use in a wide range of animated device applications.
As the term is used herein, an animated device refers to a device, figure or object that simulates motion of a living organism or a portion of an organism. Exemplary animated devices include animatronic devices, toys, masks, mannequins, displays, scenic and entertainment industry set decorations, novelty items. etc. Typically, the animated device is designed or configured to seem alive or moving or has some form of lifelike movement. In one embodiment, the devices are configured to simulate human actions and movements. This also includes non-living objects that simulate life-like characteristics, e.g., tea cups having actuated facial features that simulate talking. As mentioned above, an animatronic device is one class of animated device with motion likeness of a human, creature, or animal.
2. General Structure of Electroactive Polymers
The transformation between electrical and mechanical energy in devices of the present invention is based on energy conversion of one or more active areas of an electroactive polymer. Electroactive polymers deflect when actuated by electrical energy. To help illustrate the performance of an electroactive polymer in converting electrical energy to mechanical energy,
In some cases, electrodes 104 and 106 cover a limited portion of polymer 102 relative to the total area of the polymer. This may be done to prevent electrical breakdown around the edge of polymer 102 or to achieve customized deflections for one or more portions of the polymer. As the term is used herein, an active area is defined as a portion of a transducer comprising polymer material 102 and at least two electrodes. When the active area is used to convert electrical energy to mechanical energy, the active area includes a portion of polymer 102 having sufficient electrostatic force to enable deflection of the portion. As will be described below, a polymer of the present invention may have multiple active areas. In some cases, polymer 102 material outside an active area may act as an external spring force on the active area during deflection. More specifically, polymer material outside the active area may resist active area deflection by its contraction or expansion. Removal of the voltage difference and the induced charge causes the reverse effects.
Electrodes 104 and 106 are compliant and change shape with polymer 102. The configuration of polymer 102 and electrodes 104 and 106 provides for increasing polymer 102 response with deflection. More specifically, as the transducer portion 100 deflects, compression of polymer 102 brings the opposite charges of electrodes 104 and 106 closer and the stretching of polymer 102 separates similar charges in each electrode. In one embodiment, one of the electrodes 104 and 106 is ground.
In general, the transducer portion 100 continues to deflect until mechanical forces balance the electrostatic forces driving the deflection. The mechanical forces include elastic restoring forces of the polymer 102 material, the compliance of electrodes 104 and 106, and any external resistance provided by a device and/or load coupled to the transducer portion 100, etc. The deflection of the transducer portion 100 as a result of the applied voltage may also depend on a number of other factors such as the polymer 102 dielectric constant and the size of polymer 102.
Electroactive polymers in accordance with the present invention are capable of deflection in any direction. After application of the voltage between the electrodes 104 and 106, the electroactive polymer 102 increases in size in both planar directions 108 and 110. In some cases, the electroactive polymer 102 is incompressible, e.g. has a substantially constant volume under stress. In this case, the polymer 102 decreases in thickness as a result of the expansion in the planar directions 108 and 110. It should be noted that the present invention is not limited to incompressible polymers and deflection of the polymer 102 may not conform to such a simple relationship.
In one embodiment, electroactive polymer 102 is pre-strained. Pre-strain of a polymer may be described, in one or more directions, as the change in dimension in a direction after pre-straining relative to the dimension in that direction before pre-straining. The pre-strain may comprise elastic deformation of polymer 102 and be formed, for example, by stretching the polymer in tension and fixing one or more of the edges while stretched. For many polymers, pre-strain improves conversion between electrical and mechanical energy. The improved mechanical response enables greater mechanical work for an electroactive polymer, e.g., larger deflections and actuation pressures. In one embodiment, prestrain improves the dielectric strength of the polymer. In another embodiment, the pre-strain is elastic. After actuation, an elastically pre-strained polymer could, in principle, be unfixed and return to its original state. The pre-strain may be imposed at the boundaries using a rigid frame or may also be implemented locally for a portion of the polymer.
The quantity of pre-strain for a polymer may be based on the electroactive polymer and the desired performance of the polymer in an actuator or application. For some polymers of the present invention, pre-strain in one or more directions may range from -100 percent to 600 percent. By way of example, for a VHB acrylic elastomer having isotropic pre-strain, pre-strains of at least about 100 percent, and preferably between about 200-400 percent, may be used in each direction. In one embodiment, the polymer is pre-strained by a factor in the range of about 1.5 times to 50 times the original area. For an anisotropic acrylic pre-strained to enhance actuation in a compliant direction, pre-strains between about 400-500 percent may be used in the stiffened direction and pre-strains between about 20-200 percent may be used in the compliant direction. In some cases, pre-strain may be added in one direction such that a negative pre-strain occurs in another direction, e.g. 600 percent in one direction coupled with -100 percent in an orthogonal direction. In these cases, the net change in area due to the pre-strain is typically positive.
In one embodiment, pre-strain is applied uniformly over a portion of polymer 102 to produce an isotropic pre-strained polymer. For example, an acrylic elastomeric polymer may be stretched by 200 to 400 percent in both planar directions. In another embodiment, pre-strain is applied unequally in different directions for a portion of polymer 102 to produce an anisotropic pre-strained polymer. In this case, polymer 102 may deflect greater in one direction than another when actuated. While not wishing to be bound by theory, it is believed that pre-straining a polymer in one direction may increase the stiffness of the polymer in the pre-strain direction. Correspondingly, the polymer is relatively stiffer in the high pre-strain direction and more compliant in the low pre-strain direction and, upon actuation, more deflection occurs in the low pre-strain direction. In one embodiment, the deflection in direction 108 of transducer portion 100 can be enhanced by exploiting large pre-strain in the perpendicular direction 110. For example, an acrylic elastomeric polymer used in the transducer portion 100 may be stretched by 100 percent in direction 108 and by 500 percent in the perpendicular direction 110. The quantity of pre-strain for a polymer may be based on the polymer material and the desired performance of the polymer in an application. Pre-strain suitable for use with the present invention is further described in copending U.S. patent application Ser. No. 09/619,848, which is incorporated by reference for all purposes.
Generally, after the polymer is pre-strained, it may be fixed to one or more objects. Each object is preferably suitably stiff to maintain the level of pre-strain desired in the polymer. The polymer may be fixed to the one or more objects according to any conventional method known in the art such as a chemical adhesive, an adhesive layer or material, mechanical attachment, etc.
Transducers and polymers of the present invention are not limited to any particular shape, geometry, or type of deflection. For example, a polymer and electrodes may be formed into any geometry or shape including tubes and rolls, stretched polymers attached between multiple rigid structures, stretched polymers attached across a frame of any geometry--including curved or complex geometries, across a frame having one or more joints, etc. Deflection of a transducer according to the present invention includes linear expansion and compression in one or more directions, bending, axial deflection when the polymer is rolled, deflection out of a hole provided on a substrate, etc. Deflection of a transducer may be affected by how the polymer is constrained by a frame or rigid structures attached to the polymer. In one embodiment, a flexible material that is stiffer in elongation than the polymer is attached to one side of a transducer to induce bending when the polymer is actuated.
Materials suitable for use as a pre-strained polymer with the present invention may include any substantially insulating polymer or rubber (or combination thereof) that deforms in response to an electrostatic force or whose deformation results in a change in electric field. One suitable material is NuSil CF19-2186 as provided by NuSil Technology of Carpenteria, Calif. Other exemplary materials suitable for use as a pre-strained polymer include silicone elastomers such as those provided by Dow Corning of Midland, Mich., acrylic elastomers such as VHB 4910 acrylic elastomer as produced by 3M Corporation of St. Paul, Minn., polyurethanes, thermoplastic elastomers, copolymers comprising PVDF, pressure-sensitive adhesives, fluoroelastomers, polymers comprising silicone and acrylic moieties, and the like. Polymers comprising silicone and acrylic moieties may include copolymers comprising silicone and acrylic moieties, polymer blends comprising a silicone elastomer and an acrylic elastomer, for example. Combinations of some of these materials may also be used as the electroactive polymer in transducers of this invention.
An electroactive polymer of the present invention may have a wide range of thicknesses. In one embodiment, polymer thickness may range between about 1 micrometer and 2 millimeters. Polymer thickness may be reduced by stretching the film in one or both planar directions. In many cases, electroactive polymers of the present invention may be fabricated and implemented as thin films. Thicknesses suitable for these thin films may be below 100 micrometers.
Suitable actuation voltages for electroactive polymers, or portions thereof, may vary based on the material properties of the electroactive polymer (e.g., dielectric constant) and the dimensions of the polymer (e.g., polymer film thickness). For example, actuation electric fields used to actuate polymer 102 in
Generally, electrodes suitable for use with the present invention may be of any shape and material provided that they are able to supply a suitable voltage to an electroactive polymer. The voltage may be either constant or varying over time. In one embodiment, the electrodes adhere to a surface of the polymer. As electroactive polymers of the present invention may deflect at high strains, electrodes attached to the polymers should also deflect without compromising mechanical or electrical performance. Correspondingly, the present invention may include compliant electrodes that conform to the changing shape of an electroactive polymer to which they are attached. The electrodes may be only applied to a portion of an electroactive polymer and define an active area according to their geometry. In many cases, such as the pupil described below with respect to
Various types of electrodes suitable for use with the present invention are described in copending U.S. patent application Ser. No. 09/619,848, which was previously incorporated by reference above. Electrodes described therein and suitable for use with the present invention include structured electrodes comprising metal traces and charge distribution layers, textured electrodes comprising varying out of plane dimensions, conductive greases such as carbon greases or silver greases, colloidal suspensions, high aspect ratio conductive materials such as carbon fibrils and carbon nanotubes, and mixtures of ionically conductive materials.
Materials used for electrodes of the present invention may vary. Suitable materials used in an electrode may include graphite, carbon black, colloidal suspensions, thin metals including silver and gold, silver filled and carbon filled gels and polymers, and ionically or electrically conductive polymers. In a specific embodiment, an electrode suitable for use with the present invention comprises 80 percent carbon grease and 20 percent carbon black in a silicone rubber binder such as Stockwell RTV60-CON as produced by Stockwell Rubber Co. Inc. of Philadelphia, Pa. The carbon grease is of the type such as NyoGel 756G as provided by Nye Lubricant Inc. of Fairhaven, Mass. The conductive grease may also be mixed with an elastomer, such as silicon elastomer RTV 118 as produced by General Electric of Waterford, N.Y., to provide a gel-like conductive grease.
It is understood that certain electrode materials may work well with particular polymers and may not work as well for others. For example, carbon fibrils work well with acrylic elastomer polymers while not as well with silicone polymers. For most transducers, desirable properties for the compliant electrode may include one or more of the following: low modulus of elasticity, low mechanical damping, low surface resistivity, uniform resistivity, chemical and environmental stability, chemical compatibility with the electroactive polymer, good adherence to the electroactive polymer, and the ability to form smooth surfaces. In some cases, a transducer of the present invention may implement two different types of electrodes, e.g. a different electrode type for each active area or different electrode types on opposing sides of a polymer.
Electronic drivers are typically connected to the electrodes. The voltage provided to electroactive polymer will depend upon specifics of an application. In one embodiment, a transducer of the present invention is driven electrically by modulating an applied voltage about a DC bias voltage. Modulation about a bias voltage allows for improved sensitivity and linearity of the transducer to the applied voltage.
Transducers of the present invention are also capable of acoustic emission. More specifically, transducers of the present invention may be actuated at frequencies to produce sound in a medium such as air. Thus, the same transducer responsible for actuation of a feature in an animated device may also be responsible for acoustic emission for the animated device. Typically, an audio signal is provided to electrodes in contact with the polymer such that sound waves are produced during rapid actuation and elastic contraction of the transducer. The signal may be a signal from a stereo player or microphone that has been amplified and converted to the correct voltage range. For example, a transducer used to provide acoustic emission may be driven by a signal of up to 200 to 1000 volts peak to peak on top of a bias voltage ranging from about 750 to 2000 volts DC. However, it will be appreciated that the particular voltages used may vary based on the parameters of an application. Further description of electroactive polymer transducers used to produce sound is described in commonly owned, co-pending U.S. patent application entitled "Elastomeric Dielectric Polymer Film Sonic Actuator" naming R. E. Pelrine et al. as inventors, filed on Jul. 19, 1999 (U.S. application Ser. No. 09/356,801), which is incorporated herein for all purposes.
Although the discussion so far has focused primarily on one type of electroactive polymer commonly referred to as dielectric elastomers (transducer 100 of FIG. 1A), animated devices of the present invention may also incorporate other conventional electroactive polymers. As the term is used herein, an electroactive polymer refers to a polymer that responds to electrical stimulation. Other common classes of electroactive polymer suitable for use with many embodiments of the present invention include electrostrictive polymers, electronic electroactive polymers, and ionic electroactive polymers, and some copolymers. Electrostrictive polymers are characterized by the non-linear reaction of a electroactive polymers (relating strain to E2). Electronic electroactive polymers typically change shape or dimensions due to migration of electrons in response to electric field (usually dry). Ionic electroactive polymers are polymers that change shape or dimensions due to migration of ions in response to electric field (usually wet and contains electrolyte). Irradiated copolymer of polyvinylidene difluoride and trifluoroethelene P(VDF-TrFE) is an electroactive polymer suitable for use with some embodiments of the present invention.
3. Multiple Active Areas
In accordance with the present invention, the term "monolithic" is used herein to refer to electroactive polymers, transducers, and devices comprising a plurality of active areas on a single electroactive polymer.
The active area 152a has top and bottom electrodes 154a and 154b attached to the polymer 151 on its top and bottom surfaces 151c and 151d, respectively. The electrodes 154a and 154b provide a voltage difference across a portion 151a of the polymer 151. The portion 151a deflects with a change in electric field provided by the electrodes 154a and 154b. The portion 151a comprises the polymer 151 between the electrodes 154a and 154b and any other portions of the polymer 151 having sufficient electrostatic force to enable deflection upon application of voltages using the electrodes 154a and 154b.
The active area 152b has top and bottom electrodes 156a and 156b attached to the polymer 151 on its top and bottom surfaces 151c and 151d, respectively. The electrodes 156a and 156b provide a voltage difference across a portion 151b of the polymer 151. The portion 151b deflects with a change in electric field provided by the electrodes 156a and 156b. The portion 151b comprises the polymer 151 between the electrodes 156a and 156b and any other portions of the polymer 151 having sufficient stress induced by the electrostatic force to enable deflection upon application of voltages using the electrodes 156a and 156b.
Active areas for monolithic polymers and transducers of the present invention may be flexibly arranged. In one embodiment, active areas in a polymer are arranged such that elasticity of the active areas is balanced. In another embodiment, a transducer of the present invention includes a plurality of symmetrically arranged active areas. Further description of monolithic transducers suitable for use with the present invention are further described in commonly owned U.S. patent application Ser. No. 09/779,203, which is incorporated by reference herein for all purposes.
4. Actuator Designs
The deflection of an electroactive polymer can be used in a variety of ways to produce mechanical energy. One common implementation of a transducer in an animated device is within an actuator. Generally speaking, animated devices of the present invention may be implemented with a variety of actuators--including conventional actuators retrofitted with a polymer and custom actuators specially designed for one or more polymers. Conventional actuators include extenders, bending beams, stacks, diaphragms, etc. Several different exemplary actuators suitable for use with some animated devices of the present invention will now be discussed.
A straightforward electroactive polymer drive is one where the transducer acts as a linear actuator in much the same way as a conventional pneumatic or hydraulic cylinder might be employed.
The shape and constraint of an electroactive polymer may affect deflection. An aspect ratio for an electroactive polymer is defined as the ratio of its length to width. If the aspect ratio is high (e.g., an aspect ratio of at least about 4:1) and the polymer is constrained along its length by rigid members, than the combination may result in a substantially one-dimensional deflection in the width direction.
A collection of electroactive polymers or actuators may be mechanically linked to form a larger actuator with a common output, e.g. force and/or displacement. By using a small electroactive polymer as a base unit in a collection, conversion of electric energy to mechanical energy may be scaled according to an application. By way of example, multiple linear motion actuators 230 may be combined in series in the direction 235 to form an actuator having a cumulative deflection of all the linear motion actuators in the series.
The flexures 316 and 318 couple polymer 302 deflection in one direction into deflection in another direction. In one embodiment, each of the flexures 316 and 318 rest at an angle about 45 degrees in the plane of the polymer 302. Upon actuation of the polymer 302, expansion of the polymer 302 in the direction 320 causes the stiff members 308 and 310 to move apart, as shown in FIG. 2E. In addition, expansion of the polymer 302 in the direction 322 causes the flexures 316 and 318 to straighten, and further separates the stiff members 308 and 310. In this manner, the actuator 300 couples expansion of the polymer 302 in both planar directions 320 and 322 into mechanical output in the direction 320.
One advantage of the actuator 300 is that the entire structure is planar. In addition to simplifying fabrication, the planar structure of the actuator 300 allows for easy mechanical coupling to produce multilayer designs. By way of example, the stiff members 308 and 310 may be mechanically coupled (e.g., glued or similarly fixed) to their respective counterparts of a second actuator 300 to provide two actuators 300 in parallel in order to increase the force output over single actuator 300. Similarly, the stiff member 308 from one actuator may be attached to the stiff member 310 from a second actuator in order to provide multiple actuators in series that increase the deflection output over a single actuator 300.
In another embodiment, electroactive polymers suitable for use the present invention may be rolled or folded into linear transducers and actuators that deflect axially while converting from electrical energy to mechanical energy. As fabrication of electroactive polymers is often simplest with fewer numbers of layers, rolled actuators provide an efficient manner of squeezing large layers of polymer into a compact shape. Rolled or folded transducers and actuators typically include two or more layers of polymer. Rolled or folded actuators are applicable wherever linear actuators are used, such as legs and fingers, high force grippers, or some of the animated designs described below.
Using electrodes 134 and 136, portions 131a and 131b are capable of independent deflection. For example, upon application of a suitable voltage between electrodes 134a and 134b, portion 131a expands away from the plane of the frame 132, as illustrated in FIG. 2G. Each of the portions 131a and 131b is capable of expansion in both perpendicular directions away from the plane. In one embodiment, one side of polymer 131 comprises a bias pressure that influences the expansion of the polymer film 131 to continually actuate upward in the direction of arrows 143 (FIG. 2G). In another embodiment, a swelling agent such as a small amount of silicone oil is applied to the bottom side to influence the expansion of polymer 131 in the direction of arrows 143. The swelling agent allows the diaphragm to continually actuate in a desired direction without using a bias pressure. The swelling agent causes slight permanent deflection in one direction as determined during fabrication, e.g. by supplying a slight pressure to the bottom side when the swelling agent is applied. The swelling agent allows the diaphragm to continually actuate in a desired direction without using a bias pressure.
Although
5. Animated Devices
5.1 Exemplary Animated Devices
Electroactive polymer transducers are well-suited for use in animatronic devices such as animatronic faces.
Each actuator 404 is responsible for providing motion of a separate feature of face 400. In one embodiment, each actuator 404 is a linear actuator similar to the linear actuator of
Referring to the outer appearance of the face 400 (FIG. 3A), actuation and deflection of actuator 404a vertically opens right eye 406. When electrical energy is removed from actuator 404a, elastic return of electroactive polymer 403a included in actuator 404a, and elastic return of the mold 402, return right eye 406 to its resting position. Similarly, deflection of actuator 404b vertically opens a left eye 408. When electrical energy is removed from actuator 404b, elastic return of mold 402 and electroactive polymer 403b return left eye 408 to its resting position. Deflection and elastic return of actuators 404c and 404d provide motion for right and left cheeks 412 and 414, respectively. Deflection and elastic return of actuator 404e provides motion for mouth 416.
Actuators 404a-e are capable of independent actuation and may be individually or collectively used to simulate motion of a human face. For example, independent actuation of actuator 404e may be used to simulate mouth 416 movements corresponding to speech for the face 400. As electroactive polymers are capable of independent and complex time varying deflections, controlled actuation of multiple actuators 404a-e may be used to simulate complicated motions such as those that simulate human emotion. In a specific embodiment, independent actuation of actuators 404a-d are used to provide facial expressions that correspond emotionally to speech provided by mouth 416. For example, actuators 404a and 404b may both be actuated to open both eyes 406 and 408, thereby simulating surprise for face 400. The degree of surprise may be varied by differing the speed and displacement magnitude of actuation of actuators 404a and 404b. Eyebrows 418 may also accentuate the effect of displacement and human-like simulation provided by actuators 404a and 404b. Alternatively, actuators 404c and 404d may be simultaneously actuated to simulate a human smile. The type of smile, or degree of emotion conveyed by the smile, may be varied by differential actuation of the actuators 404c and 404d. As one skilled in animatronics will appreciate, controlled actuation of actuators 404a-e may be performed in a variety of ways to convey emotion and facial expressions for face 400.
Actuator 404e is configured such that the polymer included therein is capable of producing sound. In this case, the same transducer may be used for both actuation of mouth 416 and acoustic emission. When actuation and acoustic emission is performed simultaneously, the audio signal is superimposed on an actuation signal. The actuation is distinguished from the acoustic emission signal largely by frequency. The acoustic signal is typically of much higher frequency and lower magnitude than the lower frequency actuation signal. This high-frequency signal will have little effect on the resultant motion. In many cases, a DC bias is included with the high-frequency acoustic signal. This DC bias will produce a small amount of actuator motion which is usually acceptable. Often the acoustic emission is done at the same time as the actuation. In this case, the bias may be part of the actuation signal (linearly superimposed). The magnitude of the acoustic signal may be scaled such that the magnitude of the acoustic response is of the desired frequency profile, regardless of the magnitude of the actuation signal.
Additional humanlike motions may be applied to the face 400 using other animatronic devices used in conjunction with face 400.
Electrodes 426 cover a central circular portion of polymer 427, are dark and opaque, and thus resemble a human eye pupil. Actuation using electrodes 426 (attached on both sides of the film) causes polymer 427 in the region of electrodes 426 to expand in the plane. Electrodes 426 change shape with polymer 427. Thus, planar expansion of polymer 427 increases the darkened surface area of electrodes 426 and simulates dilation of a pupil, as illustrated in FIG. 3D. Portions of the polymer 427 outside the active area corresponding to electrodes 426 provide a contractile resistance to actuation. To enhance aesthetic appeal, polymer 427 material not covered by electrodes 426 may be colored white. When used with face 400, dilation and contraction of the electrodes 426 may be used to contribute to the simulation of human emotions by face 400. For example, actuation of eye 425 may be in conjunction with actuation of actuators 404a and 404b to simulate surprise for face 400.
Each electrode pair 434, 436, 438, 440, and 442 is responsible for actuation of a separate portion of the polymer 432 to produce motion for a separate feature for face 430. Actuation of electrode pair 434 moves right (
Electrode pairs 434, 436, 438, 440, and 442 are arranged with separate electrical communication. Independence of the electrode pairs allows electrical energy to be separately supplied to different portions of the polymer; thus allowing independent control for each of the active areas. Independent control may include deflection at different times, rates, and degrees of deflection. In another embodiment, two or more electrodes for face 430 are electrically coupled, e.g., electrode pairs 434 and 436 to allow for common actuation of eyebrows 441 and 443.
The electroactive polymer 432 exploits the flexibility of the electroactive polymer material as well as the ability to fabricate structures with high degrees of freedom by patterning multiple electrode pairs on a single polymer. In one embodiment, electrode pairs are patterned on polymer mold 432 to simulate facial features and facial muscle of a human. These simulated facial muscles may then be used to provide motion for features of the face 432 that simulates human facial movements. As one of skill in the art will appreciate, there are an abundant number of facial features, facial muscles, facial movements, and facial expressions that may be simulated using individual or multiple dedicated active areas on an electroactive polymer.
While the face 430 is illustrated as having a symmetrical appearance, it is understood that animated faces and devices of the present invention may comprise multiple active areas having a non-symmetrical and custom geometries. It is also understood that active areas may be combined in any configuration. These custom geometry active areas and configurations may be used, alone or a combination, to produce any custom two-dimensional deflection. In some cases, two active areas responsible for motion of separate features may be actuated together to provide movement for a separate portion of face 430 not specifically associated with the features associated with each of the active areas. For example, simultaneous actuation of electrode pairs 434 and 436 may also cause polymer material between the active areas in the central forehead region 439 to raise with eyebrows 441 and 443. It is also contemplated that elastic return may be used to provide controlled deflection. Similar to simultaneous actuation, elastic return of one portion of the polymer 432 corresponding to first active area may be combined with actuation of a second active area to provide a specialized movement for face 430, e.g., to provide movement for a separate portion of face 430 not specifically associated with the features associated with each of the active areas
In one embodiment, polymer 432 is substantially thin and flexible, and may be attached conformably to solid structures having flat and curved surfaces as if polymer 432 is an external skin. Face 430 then takes the shape of the structure that it is fixed to. Non-fixed portions are then be capable of motion as determined by active areas arranged on polymer 432. As described above, face 430 may be partially attached to a convex surface that allows motion for features communicating with an electroactive polymer transducer. The convex surface would then allow for non-linear motion of the flexible polymer 432 about the convex surface. As illustrated in
In another aspect, electroactive polymer transducers of the present invention are used in toys.
A first transducer 455 operates against a bias spring 456 to provide rotational motion between lower member 461 and upper member 463 of leg assembly 452a. Transducer 455 is a linear transducer rotably coupled to a central portion of lower member 461 at one end and rotably coupled to a central portion of upper member 463 at its opposite end. Bias spring 456 provides a counterclockwise bias force for leg 457 about pin 454 that maintains a resting position for leg 457 when transducer 455 is not actuated. As shown, actuation of transducer 455 rotates the lower member 461 of leg 457 clockwise about pin 454 to push lower member 461 down. When electricity is removed from transducer 455, elastic energy stored in bias spring 456 rotates lower member 461 counterclockwise and returns leg 457 to its resting position.
A second transducer 459 operates against a bias spring 450 to provide rotational motion between the upper member 463 of leg assembly 452a and frame 465. Transducer 459 is a linear transducer rotably coupled to a central portion of upper member 463 and rotably coupled to frame 465 at its opposite end. As shown, actuation of transducer 459 rotates upper member 463 clockwise about pin 453 to move leg 457 backwards. When electricity is removed from transducer 459, elastic energy stored in bias spring 450 moves leg 457 forward and returns leg 457 to its lateral resting position.
Together, transducer 455 and transducer 459 may be used to provide two degree of freedom motion for any part of lower member 461. Thus, transducers 455 and 459 may be used to contribute to a legged locomotion trajectory for a distal portion of leg 457. Leg assembly 452a may then be used in combination with other similar leg assemblies to provide a legged locomotion for dog 450. For example, electrical energy is removed from transducer 455 to pick lower member 461 up, and electrical energy is removed from transducer 459 to move lower member 461 and upper member 463 forward. In this case, elastic energy stored in springs 450 and 456 moves the distal end of leg 457 forward by rotating upper member 463 about pin 453 and lower member 461 about pin 454. At some point during forward displacement of leg 457, electrical energy is provided to transducers 459 and 455, bringing the distal portion of leg 457 down. Electrical energy may be provided either simultaneously or separately to provide a specific trajectory for the distal portion of leg 457. Leg 457 also includes padding 458 at its distal end attached to lower member 461. Padding 458 provides a compliant and larger area of contact with a surface that dog 450 is traversing to assist legged locomotion.
Although leg assembly 452a disk illustrated with transducers 459 and 455 providing clockwise rotation for their respective leg members about the pin joints as shown, it is understood that transducers 459 and 455 may each be oppositely coupled to their respective leg members in order to provide counterclockwise rotation for actuation of each transducer. In this case, activation of the polymer provides rotation in the opposite direction. One of skill in the art will appreciate that there are numerous trajectories that the distal end 461 can take in legged locomotion such as trajectories associated with walking, trotting, and running, for example. In a specific embodiment, springs 450 and 456 supply a constant force for deflection about each pin. Deflection about each pin may then follow a constant energy path to provide an energy efficient method for legged locomotion of dog 450. Deflection of an electroactive polymer using a constant energy path is described in further detail in commonly owned, pending U.S. patent application Ser. No. 09/779,373, which is incorporated by reference for all purposes.
Each transducer 455 and 459 is driven by a dc--dc converter with a maximum output of 5 kV and 500 mW of power. A dc--dc converter suitable for use with transducers 455 and 459 is model Q50 as provided by EMCO High Voltage of Sutter Creek, Calif. Actuation of transducers 455 and 459 may be initiated in a number of ways. In one embodiment, dog 450 includes a processor that coordinates actuation of transducers included in all four leg assemblies 452a-d. A processor, such as the PIC18C family of processors as provided by Microchip Technology Inc. of Chandler, Ariz., may be suitable to control each of the transducers 455 and 459 as well as their respective dc--dc converters. The processor may be coupled to a switch or a depressible push button which the user actuates by squeezing a portion of dog 450. Dog 450 may also include a battery or other electrical storage device enclosed within frame 465 that provides electrical energy to transducers 455 and 459 and the processor.
Deflection of bending beam actuator 280a rotates tail feathers 474 about a connection point 473 on body 472. Wings 475 and 476 are connected to distal ends of bending beam actuators 280b and 280c, respectively. In their resting position, wings 475 and 476 lie 180 degrees apart (FIG. 3K). Actuation of bending beam actuator 280b rotates wing 475 upward about body 472 (FIG. 3L). Actuation of bending beam actuator 280c rotates wing 476 upward about body 472. Thus, actuation of bending beam actuators 280b and 280c causes wings 475 and 476 to rotate upwards towards each other as illustrated in FIG. 3L.
When electricity is removed from the electrodes included in actuator 280b, elastic energy of the polymer included in the actuator returns wing 475 to its resting position. A similar elastic return occurs for actuator 280c and wing 476. Electrical energy may be repeatedly provided to actuators 280b and 280c to simulate flapping and flying for bird 470.
In another embodiment, a thin transducer, comprising an electroactive polymer and electrodes, covers one of the wings 475 or 476. The thin transducer is custom patterned monolithically according to simulate the shape of feathers for the bird 470. The transducer may then be used to reconfigure the shape of each wing according to the pattern of electrodes to simulate cruising and evasive motions of birds in flight.
Legs 506 and 507 are also somewhat pivotal in their attachment to torso 501 and each capable of user movement relative to torso 501 about the attachment. In addition, each leg 506 and 507 includes an electroactive polymer transducer that simulates kicking motion for doll 500. More specifically, transducer 509 is configured on the anterior side of leg 506 and attached at one end to thigh portion 510 of leg 506 and attached at its opposite end to lower leg portion 511. Actuation of transducer 509 causes lower leg portion 511 to rotate about knee joint 512, thus providing motion for leg 506. Doll 500 may be provided with a ball. A user, in conjunction with actuation of trasnducer 509, may use doll 500 to simulate kicking of the ball.
Actuation of transducer 509 may be initiated in a number of ways. In one embodiment, the transducer 509 is coupled to a depressible push button which the user actuates by squeezing a portion of doll torso 501. The transducer 509 and actuates when the depressible pushbutton is pushed or after the depressible pushbutton is released. In another embodiment, doll 500 includes a microphone and electric driving circuitry that allows voice activation of transducer 509. Doll 500 may also include a battery or electrical storage device enclosed within torso 501. Transducer 509 is driven by a control circuit and dc--dc converter with an output of 5 kV and 300 mW of power. A dc--dc converter suitable for use with transducer 509 is model Q50 as provided by EMCO High Voltage Inc. of Sutter Creek, Calif.
Doll 500 is intended to meet the need for more interactive hand held dolls as opposed to more sophisticated dolls that operate on their own. In contrast, one of skill in the art will appreciate that doll 500 may include numerous other electroactive polymer transducers that are processor controlled and designed to operate on their own without user assistance. Broadly speaking, one aspect of the present invention relates to articulated dolls including one or more electroactive polymer transducers. The dolls may be such devices employing an electroactive polymer that drives a movement feature--that is manually activated or processor activated. Toy dolls are a well known segment of the toy industry. Thus, dolls have been provided which vary from large "life size" dolls to small fashion dolls. Further variation is found in the material of dolls varying from soft so-called "plush" dolls to hand held hard plastic dolls and doll figures. By way of further variation, dolls may be provided that vary from simple dolls which have one or two moving features to dolls which are extremely active and able to perform various movements or activities.
While the doll 500 has been described specifically with respect to electroactive polymer transducers that provide motion that simulates kicking, it is understood that there a variety of other lifelike actions and movements that doll 500 may designed to simulate. Other exemplary lifelike actions whose movements an electroactive polymer transducer may contribute to simulation of include simulated skating action, liquid drinking action, swallowing action, smiling, arm waving, dancing, talking, throwing, blinking, burping, rolling over, etc. Lifelike movements that may be powered by an electroactive polymer transducer include may also any of those associated with the human actions listed above and any movements associated with a specific body part. Exemplary head 503 movements relative to torso 501 include nodding, twisting and universal movement of the head relative to the torso.
In general, toys in accordance with one aspect of the present invention include any toy that simulates motion of a living organism or a portion of an organism, such as hand held dolls, stuffed and plush toys, articulated action figures, action figure accessories, preschool learning toys, preschool talking & sound toys, mechanical design kits, robotic/virtual pets, etc. Each toy and may use one or more electroactive polymer transducers to provide motion for limbs, body segments, or appendages such as wings, antennae, etc. Toys of the present invention comprising one or more electroactive polymer transducers may include animated games. Exemplary animated games include those that use electroactive polymer transducers to direct static devices into motion for game purposes (e.g., to move a ball into a hole) and fighting toys having movements powered by one or more electroactive polymers and controlled by a user. As will be described in further detail below, transducers included in the fighting toys may also comprise electroactive polymer transducers with sensor capabilities.
One manner of classifying the large number of toys having motion powered by electroactive polymers of the present invention is by the type of motion produced by electroactive polymer. In one embodiment, electroactive polymer animated devices correspond to toys having surface based locomotion such as ground based and/or gravity-assisted locomotion powered by one more electroactive polymer transducers. Exemplary surface based types of locomotion include legged locomotion (bipedal, multiple legged, walking, trotting, crawling, running, etc), hopping (e.g., rabbits, frogs, kangaroos, etc.), wheeled locomotion (e.g., cars, trains, bicycles), and slithering (e.g., snakes, snails, slugs, etc.). Other exemplary types of locomotion include swimming (fish, eels, etc.) and flying, flapping and soaring (e.g. birds, butterflies, dragonflies, aircraft, etc.
In another embodiment, electroactive transducer powered toy has mobility independent from its user, e.g., wheeled vehicles such as trains and cars, legged animals such as dogs and dinosaurs, battery operated vehicles, electric/battery car sets & accessories, etc. In some cases, the devices may include remote control that controls actuation and deflection of an electroactive polymer. One of skill in the art will appreciate the abundant number of robotic toys that may be designed including electroactive polymer transducer and remote control.
An animated device that employs an electroactive polymer transducer may be considered a direct drive device where the transducer directly translates into motion of the feature. In many cases, back drivability associated with electroactive polymers included in a direct drive devices is desirable for an application. As the term is used herein, backdrivability refers to the ability to move a transducer against a direction of its actuation. Electroactive polymers typically have a low stiffness relative to their conventional electromechanical counterparts. More specifically, back drivability may be accomplished by overcoming the stiffness of the polymer during motion between a first position and a second position. This inherent low stiffness may provide a back drivability that is advantageous in some applications. For example, should an animated device in a theme park accidentally contact an object during motion, motion may be stopped by overcoming the stiffness of the polymer. As a result, the shock and initial force would typically be low relative to conventional electromechanical actuation, potentially reducing the amount of force experienced by the object. Thus, an animated device is in accordance with the present invention may be designed with a back drivability for motion of a feature between two positions. In one embodiment, the back drivability is accomplished by setting a maximum stiffness of polymer and device for motion of the feature between the first and second position.
In a specific embodiment, toys of the present invention comprise a feature that is back drivable. Since electroactive polymers are inherently compliant as discussed, back drivability for the toy may be accomplished by overcoming the stiffness of the polymer during motion between one position, e.g., a resting position, and a second position, e.g., a position of actuation. In addition, polymer material may be selected based on the back drivability requirements of an application. Polymer that is more compliant may add a larger compliance to the operation of an animatronic device by potentially reducing impact forces if an undesired collision occurs.
5.2 Animated Device Overview
Having briefly discussed several exemplary animated devices, some general aspects that may apply to animated devices of the present invention will now be discussed. In general, an animated device in accordance with the present invention comprises one or more electroactive polymers configured to provide motion for a feature of the device. The feature may be any portion of the device having motion at least partially contributed to by deflection (actuation or elastic return) of an electroactive polymer. There are an abundant number of animated device designs suitable for use with the present invention--including conventional animated devices retrofitted with one or more electroactive polymers and custom animated devices specially designed for electroactive polymer usage. Since many electroactive polymer transducers can operate well over a large range of sizes with little change in performance, electroactive polymer powered animated devices have many potential applications for both and large small devices.
An electroactive polymer may have customized deflections and strokes; thus permitting customized motions for a particular animated device. The use of multiple electroactive polymers in an animated device allows for the development of dextrous devices with numerous customized degrees of freedom. These customizable deflections and strokes also provide power without the need for complex transmission mechanisms such as cables and gears, resulting in lightweight actuation that is ideal for small, compact, and lightweight animated devices. Since no complex transmission mechanisms are needed, the remainder of the animated device is typically less complex and expensive than conventional forms of actuation.
The simplicity and high-efficiency of electrical to mechanical energy conversion provided by electroactive polymer transducers also allows improved animated devices in mobile and lightweight applications where available energy is limited. For example, mobile toys such as animated animals and remote control vehicles may benefit from the lightweight advantages of using an electroactive polymer transducer. Since the transducer is substantially lighter than a conventional electromagnetic motor, and the need for complex transmission mechanisms is removed for many devices, less demanding electrical energy storage devices are required. For example, the lighter weight gained by using an electroactive polymer transducer allows a smaller battery to be used or the same size battery may be used for a longer duration.
The present invention is also suitable for animated devices having a distributed transducer scheme. In a distributed transducer scheme, multiple links and transducers are used wherein each transducer drives a link directly, thus allowing a specific control for each link and therefore greater dexterity for the entire device. For example, an animatronic mannequin may have separate electroactive polymer transducers that power an upper arm, lower arm, wrist, and individual fingers. In this scheme, lightweight transducers are advantageous since a transducer is often required to move and support distal links that each include the added mass of a downlink transducer. One of skill in the art will appreciate the value of light weight in robotics, toys, and animatronics devices having multiple links.
A collection of electroactive polymers or actuators may be mechanically linked to form a larger actuator with a common output, e.g. force and/or displacement. By using a small electroactive polymer as a base unit in a collection, conversion of electric energy to mechanical energy may be scaled according to an application. By way of example, multiple linear motion devices 230 (
Given the customizable shape of electroactive polymers, animatronic devices using electroactive polymer transducers may then be designed to mimic any natural muscle based organism. Duplication of natural muscle thus allows electroactive polymer transducer powered animated devices to produce many natural motions and dynamics related to living organisms; and thus animated devices based on these organisms. For example, the large stroke capability of electroactive polymers allows them to be used directly as linear actuators in much the same way as muscle is used in biological animals, e.g., a biceps muscle. Further, the performance of electroactive polymer transducers is largely scale invariant, e.g., independent of size or mass. One can readily see the advantage of artificial muscle transducers in animatronic devices by noting the many conventional biological analogs to highly articulated animatronic devices that operate using muscular-like actuation. These include analogs such as fingers, hands, arms, legs, heads, limbs, body segments, wings, and appendages for a variety of insects and animals.
Animated devices of the present invention may also be designed and configured such that a mechanical property of a transducer substantially simulates a mechanical property of a real muscle. Exemplary mechanical properties that may be simulated by an electroactive polymer include stiffness, stroke, shape, strain, pressure, speed of response, efficiency, compliance, modularity (transducers may be stacked in parallel or linked in series) damping, and bulging in the middle as the muscle contracts. In one embodiment, electroactive polymer transducers are used to substantially simulate open loop or passive behavior of natural muscle. In this case, the transducers act as both a spring and damper in a passive manner similar to their natural counterparts.
5.3 Sensor Functionality
Animated devices of the present invention may also include a sensor. The sensor may sense a quantity or item included in the device and/or sense a quantity or item detected from the environment around the device. Quantities sensed may include haptic, acoustic, visual, or kinesthetic feedback, for example. In one embodiment, the sensor is a conventional sensor technology, e.g., a microphone or light sensor. In another embodiment, the sensor is an electroactive polymer transducer operating as a sensor.
In a specific embodiment, an electroactive polymer transducer acts as a large capacitor. By measuring changes in capacitance, corresponding changes in polymer physical dimensions and force loading may be calculated. Thus, the transducer may be used to detect motion of a feature included in an animated device, e.g., an arm. In one embodiment, the same electroactive polymer transducer that provides mechanical output in an animated device also provides sensing capabilities. These transducers may then be made into "smart transducers" that intrinsically incorporate position, force, tactile sensing, etc. These smart transducers may simplify feedback control of mechanical output for an animated device, thus allowing for enhanced dexterity and controlled mechanical output.
In one embodiment, transducers of the present invention act as a haptic sensor for detecting touch. For example, transducer 432 of face 430 may be used to detect whether the face 430 is in contact with an object. Sensing contact may be advantageous for toys that provide an interactive and automatic response with a user. Force sensors, electroactive polymer based or other, may also be used to detect touch applied to the toy.
In another embodiment, transducers of the present invention act as kinesthetic interfaces. Since the transducers operate through a simple drive mechanism rather than a complex transmission, position and force measurements from the transducer may give a direct measurement of the position and loading on a feature included in an animatronic device.
In another embodiment, the animatronic eye of
5.4 Interactive Capability
Animated devices of the present invention may also be interactive with their environment. Interactive abilities of the present invention refer to both automatic interaction and manual interaction.
In one embodiment, animated devices of the present invention include a processor. Combining the ability to design animated devices having customized motions, sensing abilities of electroactive polymer transducers and conventional sensors, and electrical communication with a processor, animated devices of the present invention may be programmed with automatic interactive capabilities.
In a specific embodiment, a stuffed toy comprises a processor that communicates independently with electrodes that actuate transducers in the toy. The toy may also comprise sensing capabilities that provide haptic, acoustic, visual, or kinesthetic information. The information is then provided to the processor, which is programmed to make decisions based on the feedback. In more elaborate designs, the sensor and processor may combine to make decisions based on context of the quantity being sensed. In a specific embodiment, electroactive polymer force sensors provide temporal and magnitude force information that a processor differentiates in order to provide interactive responses. For example, when a child user yanks on a stuffed toy, the processor receives the force information from the sensors and provides an acoustic signal to a transducer. The stuffed toy then interactively responds with an acoustic output of `ouch` from the transducer.
In one embodiment, an animated device provides biomimetic responses to a person interacting with the device. As to term is used herein, a biomimetic response refers to response of a device that copies or mimics nature. For example, the stuffed toy just described may provide a suitable empathetic response based on feedback from a child. Thus, the sensors may sense a particular state of the child playing with the stuffed toy and then respond accordingly, e.g., the sensors detect sadness in the child using voice recognition and the processor responds by actuating facial transducers for the stuffed toy similar to mask 430 of
In another embodiment, an animated device of the present invention provides tactile interaction with its environment. For example, one or more haptic sensors may be arranged under the skin in various places of the animated device. Each of the haptic sensors then detects touch for different body portion of the animated device. The same transducer may then be responsible for actuation in response to user interaction. For example, a haptic electroactive polymer sensor may be placed in the nose of the stuffed toy and the nose wiggles when touched (via actuation of the electroactive polymer). Alternatively, the stuffed toy may receive time varying force feedback from its environment and react accordingly. For example the stuffed toy previously discussed may be a teddy bear that reactively pushes back when its paw is pushed. In a more elaborate design, the magnitude of reactive push is proportional to the force magnitude pushing on the paw. In another embodiment, automatic toy interaction is designed not to stop an action based on sensor feedback. For example, a toy dinosaur with biting capabilities powered by electroactive polymer transducers uses force feedback from the transducers to decide when not to keep biting.
In another embodiment, an animated device has a set of responses based on a given input. For example, a toy dinosaur comprising a number of electroactive polymer transducers, a depressible button switch on its back, and a processor that responds to depression of the button, may have a series of programmed responses to depression of the button, e.g., locomotion and acoustic output. The depressible button may be an electroactive polymer transducer acting as a sensor or a simple conventional electrical switch in communication with the processor.
Interactive toys of the present invention need not include a processor. For the exemplary fighting men game mentioned above, an individual fighter in the game may include be designed with joint compliance that provides an automatic and appropriate response when hit by another fighter, e.g., the fighter falls down after being hit hard in the head by the other fighter. In this case, a user may provide manual control of the transducers in their corresponding motions for the toy fighter.
5.5. Additional Applications
As the present invention includes transducers that may be implemented in both the micro and macro scales, and with a wide variety of designs, the present invention finds use in a broad range of applications where animated motion is desired. Provided below are some additional exemplary applications for electroactive polymer transducer animated devices.
Animated devices of the present invention are also well-suited for use in the entertainment industry. Exemplary applications include animated device use in moving displays of theatre, theme parks, theme park rides, dark walks, scenery, and special effects for the film and television industries. Since downtime due to mechanical failure and repair is a nontrivial consideration for conventional animatronic devices in theme park rides, the simplicity and reliability electroactive polymers provide make them well-suited for this application. In many cases, fault tolerance may be built into an electroactive polymer based animatronic device included in theme park ride by using several smaller transducers in parallel, thus increasing reliability of the device and minimizing downtime of the ride.
One of skill in the art will appreciate the wide use of animatronics in entertainment special effects work. Some exemplary animated devices found in the entertainment industry suitable for use with electroactive polymer transducers include animatronic puppets, creatures and creature effects, sculptures, masks, special effects make-up, figures, prosthetics, props, scenic and set decorations, and character costumes. Exemplary creature effects include masked monsters, aliens, apes, dinosaurs, animatronic figures, etc. Special effects makeup include effects such as latex masks and devices added to a person, animal or other device, e.g., to appear if skin is bulging by putting a prosthetic on their skin and actuating it.
The present invention is also suitable for sporting animated devices. Exemplary sporting animated devices include decoys such as animated ducks used for attracting game and electroactive polymer transducer powered fishing lures. The decoys may also be used in animal and pest traps such as a flapping fly, crawling insect or wiggling worm or insect used in a pest trap, for example.
Animated devices of the present invention may also be used in medical training. This includes mannequins and training instruments that incorporate sensing and interactive capabilities. For example, a CPR training mannequin may include force sensors to detect the degree of chest expansion provided by a CPR trainee. In addition, the CPR training mannequin may include customized motions of a feature that provides interactive response based on CPR trainee performance, e.g., a diaphragm actuator that operates similar to actuator 130 of FIG. 2F and repeatedly actuates to simulate a pulse.
The present invention also finds use in novelty items that include animated motion. Exemplary novelty items suitable for use with present invention include singing fish, dancing flowers, Halloween and Christmas novelty items such as dancing Santas, etc.
8. Conclusion
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents that fall within the scope of this invention which have been omitted for brevity's sake. By way of example, although the present invention has been described in terms of several numerous applied material electrodes, the present invention is not limited to these materials and in some cases may include air as an electrode. It is therefore intended that the scope of the invention should be determined with reference to the appended claims.
Pei, Qibing, Pelrine, Ronald E., Kornbluh, Roy D., Eckerle, Joseph S., Shastri, Subramanian Venkat, Gallagher, Paul K., Czyzyk, Donald E.
Patent | Priority | Assignee | Title |
10493181, | Nov 16 2000 | Microspherix LLC | Flexible and/or elastic brachytherapy seed or strand |
10994058, | Nov 16 2000 | Microspherix LLC | Method for administering a flexible hormone rod |
11090574, | Jun 07 2019 | Universal City Studios LLC | Electromagnetic animated figure control system |
11139755, | Jan 31 2020 | Toyota Jidosha Kabushiki Kaisha | Variable stiffening device comprising electrode stacks in a flexible envelope |
11370496, | Jan 31 2020 | Toyota Jidosha Kabushiki Kaisha | Programmable texture surfaces having artificial muscles |
11453347, | Mar 12 2020 | Toyota Jidosha Kabushiki Kaisha | Suction devices having artificial muscles |
11611293, | Mar 13 2020 | Toyota Jidosha Kabushiki Kaisha | Artificial muscles having a reciprocating electrode stack |
11632063, | Aug 27 2019 | META PLATFORMS TECHNOLOGIES, LLC | Structured actuators |
11689119, | Jan 31 2020 | Toyota Jidosha Kabushiki Kaisha | Variable stiffening device comprising electrode stacks in a flexible envelope |
6812624, | Jul 20 1999 | SRI International | Electroactive polymers |
6940211, | Jul 20 1999 | SRI International | Electroactive polymers transducers and actuators |
7077808, | Jul 31 2003 | Boston Scientific Scimed, Inc | Ultrasonic imaging catheter |
7107992, | Oct 04 2002 | PAVAD MEDICAL, INC | System and method for preventing closure of passageways |
7196688, | May 24 2000 | Immersion Corporation | Haptic devices using electroactive polymers |
7211937, | Jul 20 1999 | SRI International | Electroactive polymer animated devices |
7213736, | Jul 09 2003 | Cilag GmbH International | Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint |
7320457, | Jul 19 1999 | SRI International | Electroactive polymer devices for controlling fluid flow |
7336266, | Feb 20 2003 | Immersion Corporation | Haptic pads for use with user-interface devices |
7339572, | May 24 2000 | Immersion Corporation | Haptic devices using electroactive polymers |
7362032, | Jul 20 1999 | SRI International | Electroactive polymer devices for moving fluid |
7394182, | Jul 20 1999 | SRI International | Electroactive polymer devices for moving fluid |
7400080, | Sep 20 2002 | DANFOSS A S | Elastomer actuator and a method of making an actuator |
7411332, | Jul 20 1999 | SRI International | Electroactive polymer animated devices |
7432630, | Jun 13 2001 | Massachusetts Institute of Technology | High power-to-mass ratio actuator |
7435514, | May 19 2005 | ENTERPRISE SCIENCE FUND, LLC | Active mask lithography |
7473499, | May 19 2005 | ENTERPRISE SCIENCE FUND, LLC | Electroactive polymers for lithography |
7481120, | Dec 12 2002 | LEAP TECHNOLOGY APS | Tactile sensor element and sensor array |
7487899, | Jul 28 2004 | Cilag GmbH International | Surgical instrument incorporating EAP complete firing system lockout mechanism |
7492076, | Dec 29 2006 | Parker-Hannifin | Electroactive polymer transducers biased for increased output |
7506790, | Jul 28 2004 | Cilag GmbH International | Surgical instrument incorporating an electrically actuated articulation mechanism |
7511706, | May 24 2000 | Immersion Corporation | Haptic stylus utilizing an electroactive polymer |
7513408, | Jul 28 2004 | Cilag GmbH International | Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism |
7514345, | May 19 2005 | ENTERPRISE SCIENCE FUND, LLC | Electroactive polymers for lithography |
7518284, | Nov 02 2000 | DANFOSS A S | Dielectric composite and a method of manufacturing a dielectric composite |
7521840, | Mar 21 2005 | Bayer MaterialScience AG | High-performance electroactive polymer transducers |
7521847, | Mar 21 2005 | Bayer MaterialScience AG | High-performance electroactive polymer transducers |
7537197, | Jul 20 1999 | SRI International | Electroactive polymer devices for controlling fluid flow |
7548015, | Aug 12 2003 | DANFOSS A S | Multilayer composite and a method of making such |
7573064, | Dec 21 2001 | DANFOSS A S | Dielectric actuator or sensor structure and method of making it |
7595580, | Mar 21 2005 | Bayer MaterialScience AG | Electroactive polymer actuated devices |
7614998, | Feb 24 2003 | Fully-implantable cardiac recovery system | |
7626319, | Mar 21 2005 | Bayer MaterialScience AG | Three-dimensional electroactive polymer actuated devices |
7671514, | Oct 22 2004 | Samsung Electro-Mechanics. Co. Ltd; Sungkyunkwan University | Electroactive solid-state actuator and method of manufacturing the same |
7679267, | Mar 21 2005 | Bayer MaterialScience AG | High-performance electroactive polymer transducers |
7679611, | May 24 2000 | Immersion Corporation | Haptic stylus utilizing an electroactive polymer |
7695389, | Jun 07 2006 | Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg; Siemens VDO Automotive Corporation | Conductive polymer drive for actuating eccentric members of a motor |
7703742, | Jul 20 1999 | SRI International | Electroactive polymer devices for controlling fluid flow |
7732999, | Nov 03 2006 | DANFOSS A S | Direct acting capacitive transducer |
7744619, | Feb 24 2004 | Boston Scientific Scimed, Inc | Rotatable catheter assembly |
7750532, | Mar 21 2005 | Bayer MaterialScience AG | Electroactive polymer actuated motors |
7784663, | Mar 17 2005 | Cilag GmbH International | Surgical stapling instrument having load sensing control circuitry |
7785905, | Dec 21 2001 | Danfoss A/S | Dielectric actuator or sensor structure and method of making it |
7813047, | Dec 15 2006 | HAND HELD PRODUCTS INC | Apparatus and method comprising deformable lens element |
7834527, | May 05 2005 | ELYSIUM ROBOTICS LLC | Dielectric elastomer fiber transducers |
7836888, | Sep 21 2004 | Pavad Medical, Incorporated | Airway implant and methods of making and using |
7857066, | Aug 03 2005 | Baker Hughes Incorporated | Downhole tools utilizing electroactive polymers for actuating release mechanisms |
7857183, | Mar 31 2005 | Cilag GmbH International | Surgical instrument incorporating an electrically actuated articulation mechanism |
7862579, | Jul 28 2004 | Cilag GmbH International | Electroactive polymer-based articulation mechanism for grasper |
7863822, | Feb 02 2004 | VOLKSWAGEN AKTIENGESELLSCHAFT | Operating element for a vehicle |
7868221, | Feb 24 2003 | DANFOSS A S | Electro active elastic compression bandage |
7879070, | Jul 28 2004 | Cilag GmbH International | Electroactive polymer-based actuation mechanism for grasper |
7880371, | Nov 03 2006 | DANFOSS A S | Dielectric composite and a method of manufacturing a dielectric composite |
7882842, | Sep 21 2004 | PAVAD MEDICAL, INC | Airway implant sensors and methods of making and using the same |
7895728, | Sep 20 2002 | Danfoss A/S | Method of making a rolled elastomer actiuator |
7914551, | Jul 28 2004 | Cilag GmbH International | Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument |
7915789, | Mar 21 2005 | Bayer MaterialScience AG | Electroactive polymer actuated lighting |
7915790, | Dec 29 2006 | Parker-Hannifin | Electroactive polymer transducers biased for increased output |
7922740, | Feb 24 2004 | Boston Scientific Scimed, Inc | Rotatable catheter assembly |
7923902, | Mar 21 2005 | Bayer MaterialScience AG | High-performance electroactive polymer transducers |
7935743, | Jul 06 2005 | RAS LABS LLC | Electrically driven mechanochemical actuators that can act as artificial muscle |
7952261, | Jun 29 2007 | Parker Intangibles, LLC | Electroactive polymer transducers for sensory feedback applications |
7956520, | Nov 24 2006 | North Carolina State University | Electroactive nanostructured polymers as tunable organic actuators |
7971850, | Jul 20 1999 | SRI International | Electroactive polymer devices for controlling fluid flow |
7990022, | Mar 21 2005 | Bayer MaterialScience AG | High-performance electroactive polymer transducers |
7993181, | Jul 08 2008 | Hon Hai Precision Industry Co., Ltd. | Artificial eye |
7993800, | May 19 2005 | ENTERPRISE SCIENCE FUND, LLC | Multilayer active mask lithography |
7993801, | May 19 2005 | ENTERPRISE SCIENCE FUND, LLC | Multilayer active mask lithography |
8027095, | Oct 11 2005 | Hand Held Products, Inc. | Control systems for adaptive lens |
8027096, | Dec 15 2006 | HAND HELD PRODUCTS, INC | Focus module and components with actuator polymer control |
8054566, | Mar 21 2005 | Bayer MaterialScience AG | Optical lens displacement systems |
8057508, | Jul 28 2004 | Cilag GmbH International | Surgical instrument incorporating an electrically actuated articulation locking mechanism |
8072121, | Dec 29 2006 | Parker-Hannifin | Electroactive polymer transducers biased for optimal output |
8076227, | May 19 2005 | ENTERPRISE SCIENCE FUND, LLC | Electroactive polymers for lithography |
8092391, | Jul 31 2003 | Boston Scientific Scimed, Inc. | Ultrasonic imaging catheter |
8127437, | Jun 29 2007 | Parker Intangibles, LLC | Method for fabricating electroactive polymer transducer |
8133199, | Aug 27 2008 | Boston Scientific Scimed, Inc. | Electroactive polymer activation system for a medical device |
8164835, | May 31 2007 | Parker Intangibles, LLC | Optical systems employing compliant electroactive materials |
8181338, | Nov 02 2000 | DANFOSS A S | Method of making a multilayer composite |
8183739, | Mar 21 2005 | Bayer MaterialScience AG | Electroactive polymer actuated devices |
8222799, | Nov 05 2008 | Bayer MaterialScience AG | Surface deformation electroactive polymer transducers |
8253536, | Apr 22 2009 | NANOTECH SECURITY CORP | Security document with electroactive polymer power source and nano-optical display |
8283839, | Mar 21 2005 | Bayer MaterialScience AG | Three-dimensional electroactive polymer actuated devices |
8317074, | Jul 28 2004 | Cilag GmbH International | Electroactive polymer-based articulation mechanism for circular stapler |
8319403, | Jun 27 2008 | Parker Intangibles, LLC | Electroactive polymer transducers for sensory feedback applications |
8333635, | Oct 29 2008 | Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd.; Hon Hai Precision Industry Co., Ltd. | Simulated eye |
8333784, | Feb 24 2004 | Boston Scientific Scimed, Inc. | Rotatable catheter assembly |
8337272, | Dec 01 2008 | Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd.; Hon Hai Precision Industry Co., Ltd. | Simulated eye for toy |
8350447, | Aug 20 2008 | Braun GmbH | Electro-polymer motor |
8398693, | Jan 23 2004 | Boston Scientific Scimed, Inc | Electrically actuated medical devices |
8470294, | Nov 16 2000 | Microspherix LLC | Flexible and/or elastic brachytherapy seed or strand |
8483873, | Jul 20 2010 | Innvo Labs Limited | Autonomous robotic life form |
8505822, | Dec 15 2006 | Hand Held Products, Inc. | Apparatus and method comprising deformable lens element |
8578937, | Sep 21 2004 | Medtronic Xomed, Inc | Smart mandibular repositioning system |
8616454, | Sep 14 2005 | Data reader apparatus having an adaptive lens | |
8687282, | Dec 15 2006 | Hand Held Products, Inc. | Focus module and components with actuator |
8692442, | Feb 14 2012 | DANFOSS POLYPOWER A S | Polymer transducer and a connector for a transducer |
8821835, | Nov 16 2000 | Microspherix LLC | Flexible and/or elastic brachytherapy seed or strand |
8872135, | May 19 2005 | ENTERPRISE SCIENCE FUND, LLC | Electroactive polymers for lithography |
8891222, | Feb 14 2012 | DANFOSS A S | Capacitive transducer and a method for manufacturing a transducer |
8905977, | Jul 28 2004 | Cilag GmbH International | Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser |
9013272, | Apr 22 2009 | NANOTECH SECURITY CORP | Security document with nano-optical display |
9058086, | Aug 30 2001 | Qualcomm Incorporated | Implementation of electronic muscles in a portable computer as user input/output devices |
9134464, | Dec 15 2006 | Hand Held Products, Inc. | Focus module and components with actuator |
9195058, | Mar 22 2011 | Parker Intangibles, LLC | Electroactive polymer actuator lenticular system |
9207367, | Dec 15 2006 | HAND HELD PRODUCTS, INC | Apparatus and method comprising deformable lens element |
9231186, | Apr 11 2009 | Parker Intangibles, LLC | Electro-switchable polymer film assembly and use thereof |
9370409, | Aug 20 2008 | Braun GmbH | Electro-polymer motor |
9425383, | Jun 29 2007 | Parker Intangibles, LLC | Method of manufacturing electroactive polymer transducers for sensory feedback applications |
9553254, | Mar 01 2011 | Parker Intangibles, LLC | Automated manufacturing processes for producing deformable polymer devices and films |
9590193, | Oct 24 2012 | Parker Intangibles, LLC | Polymer diode |
9636401, | Nov 16 2000 | Microspherix LLC | Flexible and/or elastic brachytherapy seed or strand |
9636402, | Nov 16 2000 | Microspherix LLC | Flexible and/or elastic brachytherapy seed or strand |
9699370, | Dec 15 2006 | Hand Held Products, Inc. | Apparatus and method comprising deformable lens element |
9739911, | Dec 15 2006 | Hand Held Products, Inc. | Focus module and components with actuator |
9761790, | Jun 18 2012 | Parker Intangibles, LLC | Stretch frame for stretching process |
9776097, | Jun 04 2015 | Disney Enterprises, Inc. | Artificial eye with an internal electromagnetic drive |
9796095, | Aug 15 2012 | Hanson Robokind and Intelligent Bots, LLC; HANSON ROBOTICS, INC | System and method for controlling intelligent animated characters |
9876160, | Mar 21 2012 | Parker Intangibles, LLC | Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices |
9951757, | Jul 31 2014 | Battelle Memorial Institute | Increased force generation in electroactive polymers |
RE44277, | May 24 2000 | Immersion Corporation | Haptic device utilizing an electroactive polymer |
RE45464, | Jul 20 1999 | Electroactive polymer animated devices |
Patent | Priority | Assignee | Title |
4885783, | Apr 11 1986 | SOUND CHEERS LIMITED | Elastomer membrane enhanced electrostatic transducer |
5928262, | Apr 01 1998 | Head covering for at least lifting the face of a wearer | |
5977685, | Feb 15 1996 | Nitta Corporation; Toshihiro, Hirai | Polyurethane elastomer actuator |
5984760, | Aug 13 1998 | Mattel, Inc | Doll having simulated drinking action |
6012961, | May 14 1997 | Design Lab, LLC | Electronic toy including a reprogrammable data storage device |
6048622, | Apr 19 1994 | Massachusetts Institute of Technology | Composites for structural control |
6060811, | Jul 25 1997 | NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA , THE | Advanced layered composite polylaminate electroactive actuator and sensor |
6084321, | Aug 11 1997 | Massachusetts Institute of Technology | Conducting polymer driven rotary motor |
6093078, | Feb 04 1999 | Mattel, Inc | Hand held doll simulating skating action |
6181351, | Apr 13 1998 | Microsoft Technology Licensing, LLC | Synchronizing the moveable mouths of animated characters with recorded speech |
6184608, | Dec 29 1998 | Honeywell INC | Polymer microactuator array with macroscopic force and displacement |
6184609, | Mar 26 1996 | Piezomotors Uppsala AB | Piezoelectric actuator or motor, method therefor and method for fabrication thereof |
6184844, | Mar 27 1997 | Qualcomm Incorporated; Qualcom Incorporated | Dual-band helical antenna |
6249076, | Apr 14 1998 | Massachusetts Institute of Technology | Conducting polymer actuator |
6379393, | Sep 14 1998 | Rutgers, The State University of New Jersey | Prosthetic, orthotic, and other rehabilitative robotic assistive devices actuated by smart materials |
DE4408618, | |||
EP295907, | |||
JP6397100, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 04 2001 | SRI International | (assignment on the face of the patent) | / | |||
May 01 2001 | SHASTRI, SUBRAMANIAN VENKAT | SRI International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011905 | /0574 | |
May 02 2001 | KORNBLUH, ROY D | SRI International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011905 | /0574 | |
May 02 2001 | PEI, QIBING | SRI International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011905 | /0574 | |
May 04 2001 | GALLAGHER, PAUL | SRI International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011905 | /0574 | |
May 04 2001 | CZYZYK, DONALD E | SRI International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011905 | /0574 | |
May 05 2001 | ECKERLE, JOE | SRI International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011905 | /0574 | |
May 08 2001 | PELRINE, RONALD E | SRI International | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011905 | /0574 |
Date | Maintenance Fee Events |
Jan 02 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 07 2011 | REM: Maintenance Fee Reminder Mailed. |
Feb 10 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 10 2011 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Jan 01 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 01 2006 | 4 years fee payment window open |
Jan 01 2007 | 6 months grace period start (w surcharge) |
Jul 01 2007 | patent expiry (for year 4) |
Jul 01 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 01 2010 | 8 years fee payment window open |
Jan 01 2011 | 6 months grace period start (w surcharge) |
Jul 01 2011 | patent expiry (for year 8) |
Jul 01 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 01 2014 | 12 years fee payment window open |
Jan 01 2015 | 6 months grace period start (w surcharge) |
Jul 01 2015 | patent expiry (for year 12) |
Jul 01 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |