A flexible carrier substrate assembly or module that facilitates stacking of multiple carrier substrates bearing semiconductor dice for high density electronic systems. After the dice are placed on the flexible substrate, a flexible support frame may be applied to the flexible substrate. The support frame includes conductive paths therethrough to connect to circuit traces running from the dice on the substrate to the substrate perimeter to interconnect superimposed carrier substrates. The flexible carrier substrates may be bent to a radius of any given curvature to conform to various non-planar regular and irregular surfaces. Furthermore, since the frame as well as the substrate may be flexible, multiple, flexible substrate assemblies may be stacked one on top of another wherein an upper assembly has a different radius than a lower module and any intermediate assemblies have progressively differing radii from bottom to top position.

Patent
   6617671
Priority
Jun 10 1999
Filed
Jun 10 1999
Issued
Sep 09 2003
Expiry
Jun 10 2019
Assg.orig
Entity
Large
23
40
all paid
9. A semiconductor device module, comprising:
a flexible carrier substrate having a surface portion carrying conductive traces thereon;
at least one semiconductor device connected to said conductive traces using tape automated bonding; and
a flexible support attached to said flexible carrier substrate, said support having at least one conductive path for providing electrical coupling of said conductive traces to circuitry external to said flexible carrier substrate.
10. A semiconductor device module, comprising:
a flexible carrier substrate having a surface portion carrying conductive traces thereon;
at least one semiconductor device connected to said conductive traces in a flip chip arrangement; and
a flexible support attached to said substrate to support a second substrate thereon, said support having a plurality of conductive paths therethrough for providing electrical coupling of said conductive traces to said second substrate.
11. A semiconductor device module, comprising:
a flexible substrate having a surface portion carrying conductive traces thereon;
at least one semiconductor device connected to said conductive traces; and
a pliable support, attached to said substrate, to support a second substrate, said pliable support having conductive paths for providing electrical coupling of said conductive traces to said second substrate and wherein said pliable support is curable to a rigid condition.
1. A semiconductor device module, comprising:
a flexible carrier substrate having a surface portion carrying conductive traces thereon;
at least one semiconductor device connected to at least some of said conductive traces; and
a flexible support frame attached to said flexible carrier substrate, said flexible support frame including a plurality of conductive paths therethrough for providing electrical coupling of said at least one semiconductor device to circuitry external to said flexible carrier substrate.
7. A semiconductor device module, comprising:
a flexible carrier substrate having a surface portion carrying conductive traces thereon;
at least one semiconductor device connected to said conductive traces; and
a flexible support attached to said flexible carrier substrate along an outer perimeter edge thereof, said flexible support having at least one substantially vertical conductive path therethrough to provide electrical coupling of said conductive traces to circuitry external to said flexible carrier substrate.
2. The module according to claim 1, wherein said flexible carrier substrate exhibits a first radius of curvature.
3. The module according to claim 1, further comprising a second flexible carrier substrate having a surface mounted to said flexible support frame.
4. The module according to claim 3, wherein said flexible carrier substrate exhibits a first radius of curvature and said second flexible carrier substrate exhibits a second radius of curvature.
5. The module according to claim 3, wherein said second flexible Y carrier substrate has at least one semiconductor device attached to a surface thereof.
6. The module according to claim 3 wherein said flexible carrier substrate is shaped in a non-planar configuration and said second flexible carrier substrate substantially conforms to a shape of said flexible carrier substrate.
8. The semiconductor device module according to claim 7, wherein said at least one conductive path is selected from the group comprising plated through holes, conductively-filled vias and preformed conductive elements.
12. The module according to claim 3, wherein at least one of said flexible carrier substrate and said second flexible carrier substrate is configured to include a substantially 90°C arcuate section.
13. The module according to claim 1, wherein said flexible carrier substrate is configured to include a substantially 90°C arcuate section.
14. The module according to claim 1, wherein said flexible carrier substrate has sufficient flex to form at least a substantially 90°C arcuate bend.
15. The module according to claim 14, wherein said flexible support frame has sufficient flex to conform with said flexible carrier substrate.
16. The semiconductor device module of claim 1, wherein the flexible support frame is attached to the flexible carrier substrate at least along a substantial majority of a peripheral edge of the flexible carrier substrate.
17. The semiconductor device module of claim 3, further comprising a second flexible support frame attached to the second flexible carrier substrate, and a third flexible carrier substrate mounted on the second flexible support frame in a laminate manner.

1. Field of the Invention

The present invention relates generally to flexible circuits for semiconductor devices and, more specifically, to a flexible carrier substrate for use with semiconductor devices that facilitates high density stacking of the semiconductor devices.

2. State of the Art

Integrated circuit devices are commonly mounted on circuit boards and connected to conductive patterns formed on the circuit boards. Wire bonds may be used to interconnect the integrated circuit (IC) devices to traces of a conductive pattern formed on a circuit board. Each wire is bonded to both a bond pad of the IC device and a terminal pad formed at the end of a trace of the conductive pattern on the circuit board.

Wire bonding techniques are well known in the art and are highly reliable in most applications. Unfortunately, in a few applications, difficulties do occur. These applications exist when the IC device is small and the available area for connecting to the bond pads is limited. The process of reliably connecting wire bonds to small, closely-spaced bond pads is both tedious and expensive. Both ends of the wire bond must be accurately placed to avoid contacting adjacent pads on the IC device and the circuit board, respectively. Moreover, the wire must be sufficiently welded to the conductive bond pads to ensure a secure connection with good electrical contact and without damaging the IC device or the supporting circuit board.

To provide greater circuit density, circuit boards can be layered together in stacks and then interconnected electrically. This results in three-dimensional modules as the circuit boards are stacked one upon another. In stacking circuit boards one upon another, board production techniques become even more complex than before. This is because each layer may be different, requiring different circuit layouts and putting a strain on the ability of the assembly process to maintain dimensional tolerances that would not be as troublesome in a single layer interconnect layout assembly.

Another challenge in the art is an inability in some circumstances to provide a flat, smooth surface on which to mount a printed circuit board. Accordingly, flexible circuit boards have been developed to promote both lighter structures and greater adaptability to conforming to nonuniform surfaces. Unfortunately, the arrival of flexible circuit boards has resulted in other problems, such as the problem in joining several boards while effecting and maintaining a proper interconnection between the respective boards. Further, in some applications, where preclusion of ICs mounted on a lower circuit board from touching a higher circuit board is required, providing a rigid assembly to support the stacked circuit boards is useful. Unfortunately, this approach compromises the flexibility that would otherwise allow the circuit boards to conform to a non-planar surface.

One example of integrated circuit devices mounted upon flexible, stackable circuit boards to form semiconductor modules is disclosed in U.S. Pat. No. 5,440,171 entitled "Semiconductor Device with Reinforcement," issued Aug. 8, 1995. The '171 patent discloses a basic structural unit that uses a flexible circuit board made from a polyimide film with circuit lines formed on both sides, typically using copper foil. A supporting frame is provided and is bonded to the flexible circuit board with a heat resistant resin, such as a polyimide resin. Electrical connection is possible between the flexible circuit board and the support frame, which may include a plurality of layers. Conductive through holes are provided so that electrical continuity may be maintained between a semiconductor device mounted upon the flexible circuit board and either at least one other semiconductor device mounted on another flexible circuit board stacked within the module assembly, or an external structure upon which the entire basic structural unit is mounted. The semiconductor devices are electrically connected to electrodes formed on the support frame.

Although a semiconductor device in the '171 patent is mounted on a flexible circuit board that is stackable with other circuit boards in a three-dimensional arrangement, the support frame attaching the stackable circuit boards one to another is made from a rigid material that does not allow for any bending at all. For example, one type of frame material suggested in the '171 patent is a ceramic such as alumina or silicon nitride. Such materials may be used for high thermal conductivity to promote heat transfer from high power consumption semiconductor devices mounted on the flexible circuit board. However, because the support frame is made from an extremely rigid and non-flexible material, the entire semiconductor structure utilizing the stackable circuit boards and support frames must necessarily comprise a series of parallel, superimposed layers and must be mounted upon a substantially planar surface. This prevents the assembly from conforming to non-planar surfaces.

Accordingly, what is needed is a flexible circuit board having an associated support frame that overcomes the problems of the conventional practice of utilizing a rigid support frame and is readily adaptable for stacking in multiple layers. Additionally, the improved flexible circuit board with stackable support frame should be more easily assembled and mounted than was possible with prior art structures when disposed upon non-planar surfaces.

According to the present invention, a flexible substrate module or assembly is disclosed that facilitates stacking of multiple flexible carrier substrates to simplify the assembly of high density electronic systems. Integrated circuit semiconductor devices in the form of chips or dice are connected active surface side down to a flexible carrier substrate in a so-called "flip-chip" orientation using solder bumps or other discrete conductive bumps or elements. Such conductive connecting elements may be formed either on the die itself or on the flexible substrate. After the dice are placed on and secured to the flexible carrier substrate, a frame, preferably offering a significant degree of flexibility, is applied to the flexible carrier substrate to surround the perimeter thereof. The flexible frame includes conductive paths therethrough in the form of conductively-plated through holes, electrical conductor-filled vias, or preformed conductive elements, which conductive paths connect to circuit traces on the flexible carrier substrate extending from the electrical connections of the dice thereto on the interior region of the flexible carrier substrate to the flexible carrier substrate perimeter. This feature permits operational stacking of multiple flexible carrier substrates for cooperation between semiconductor dice mounted on different-level flexible carrier substrates and between all components of the stacked assembly and external, higher-level packaging by providing electrical interconnection between the various flexible carrier substrates. Since the flexible carrier substrates may be extremely flexible, they may be formed to a radius of substantially any given curvature, providing the ability to conform to various non-planar, arcuate or non-arcuate, regular or irregular surfaces. Further, the flexible carrier substrates exhibit substantial flexibility so as to provide significant bending angles, permitting mounting of the flexible carrier substrates to many structures having non-planar surfaces. Furthermore, since the perimeter frame as well as the carrier substrate may be flexible, multiple flexible carrier substrate modules, each comprising a flexible carrier substrate and associated frame, may be stacked one on top of another in superimposed arcuate configurations, wherein the top module may have a smaller or larger radius of curvature than the bottom module and any modules in between have progressively differing radii from bottom to top position.

Mounting multiple modules in a stacked configuration with differing module radii may be accomplished by attaching first ends of a plurality of modules comprising superimposed flexible carrier substrates and support frames and then sequentially attaching second ends of the modules after a given radius is established for each lower module. In an alternative assembly technique, the first and second ends of a first flexible carrier substrate may be attached to a desired surface. Next, a flexible support frame is then attached to a first end and then a second end of the first flexible carrier substrate. Next, a second flexible carrier substrate may be attached to the first and second ends of the first frame and the process repeated in layers until a desired, completed structure is formed.

FIG. 1 is a perspective view of a flexible carrier substrate according to the invention having semiconductor dice conductively attached to an upper surface thereof;

FIG. 2 depicts a flexible carrier substrate assembly, or module, according to the invention having the dice as well as a flexible support frame attached to the flexible carrier substrate;

FIG. 3 illustrates a perspective view of a flexible frame according to the invention having conductive vias extending vertically therethrough;

FIG. 4 illustrates a side view of a plurality of stacked flexible modules according to the invention;

FIG. 5 depicts how a first end of one flexible carrier substrate is attached to an edge of a flexible support frame while the second end of the substrate is then attached to the second end of the flexible support frame;

FIG. 6 depicts a first flexible carrier substrate attached to a second flexible carrier substrate via an interposed flexible support frame where the first flexible carrier substrate is curved to a radius different than that of the second substrate;

FIG. 7 depicts a plurality of flexible modules secured to an angular non-planar surface;

FIG. 8 depicts a plurality of flexible carrier substrates mounted in a vertical stack laminate arrangement;

FIG. 9 depicts plurality of superimposed flexible carrier substrates with attached dies mounted in abstantially planar, low-profile, laminate design;

FIG. 10 depicts a plurality of flexible carrier substrates bearing dice and mounted in a substantially planar interleaved laminate design;

FIG. 11 depicts a plurality of dice mounted in a flexible carrier substrate assembly wherein at least one die is mounted in an inverted position upon a flexible carrier substrate relative to the other dice; and

FIG. 12 is a block diagram of an electronic system incorporating a flexible stackable module according to the invention.

FIG. 1 depicts a flexible carrier substrate assembly or module 10 including a flexible carrier substrate 12. A plurality of semiconductor dice 14 is attached to the surface of flexible carrier substrate 12 in a flip-chip orientation. Semiconductor dice 14 may be selected from any type of semiconductor device such as, for example, memory devices, central processing units, signal processing units, controller devices, or any combination of these or other devices.

Flexible carrier substrate 12 may be fabricated from any type of flexible, conductive material such as a flexible laminate comprising a metal cladding adhered to a dielectric substrate, such as, for example, a polyimide film, a resin-impregnated fabric or a synthetic fabric. The flexible laminate typically is thinner than a rigid composite and can be freely formed over, or conformed to, a particular non-planar surface or structure. The flexible laminate may be less than 0.25 mm in total thickness. The dielectric thickness selection is significant to the end use for the carrier substrate in terms of required flexibility. Thinner materials may be used for dynamic or continuous flexing applications, while thicker materials may be used for intermittent flexing and flexing during installation, or where flexing with some degree of structural self-support is desired or required. Dynamic or continuous flexing applications may include, but are not limited to, repeatedly and frequently opening and closing connection points such as entryways, portable clamshell computer hinge points, personal electronic organizer hinge points, or cellular phone hinge points. Occasional flexing applications may include portable clamshell computer boards, personal electronic organizer boards, cellular phone boards, desktop computer boards, server boards and motor vehicle and aircraft-mounted computer system boards.

The metal cladding may include, without limitation, copper foil, beryllium copper, aluminum, and Invar®, and conductive polymer thick films may also be employed to fabricate conductors. The fabrication and design of the flexible substrate 12 in this particular embodiment are a polyimide film with conductive circuit traces 20 formed on both sides using copper foil. The circuit traces may be formed by applying either a positive or negative photo resist on the foil, then patterning the photo resist and etching away exposed portions of the foil to define the traces. Afterwards, additional processing may be performed on flexible substrate 12 to place additional metals or other conductive materials at selected positions, such as bumped pads, for mechanical and electrical connection of the semiconductor dice 14 to traces 20 on flexible substrate 12.

Semiconductor dice 14 are attached to the traces 20 on a surface of flexible carrier substrate 12 using conventional attachment methods such as, for example, conductive or conductor-filled adhesive elements, solder bumps, copper or gold bumps, anisotropically conductive adhesive films, or tape automated bonding (TAB) structures comprising conductors carried on a flexible dielectric film. Circuit traces 20 extend from locations of semiconductor dice 14 attached to flexible carrier substrate 12 to locations at the outer perimeter of carrier substrate 12 under or over the locations where a flexible support frame 16 is attached to flexible carrier substrate 12 as shown in FIG. 2. Flexible support frame 16 can be made of the same material as that of flexible carrier substrate 12, or can be made from a different material with desired thermal resistivity and electrical dielectric properties as well as a similar coefficient of thermal expansion (CTE) with respect to the material of flexible carrier substrate 12. Many known polymers, resins and laminates exhibit such desirable characteristics, as known to those of ordinary skill in the art. Additionally, conductive paths 18 in the form of plated through holes, conductively-filled vias, or preformed conductive elements are formed through flexible support frame 16 for interconnecting semiconductor dice 14 to other devices external to the semiconductor module formed by assembly 10, such as to a computer system in the event the semiconductor dies are DRAM chips, microprocessors, video chips, or logic chips, or to higher-level packaging for cooperation with other components in other electronic applications such as cellular phones, television systems, video cassette recorders, and the like. Circuit traces 20 are shown to connect the several semiconductor dice 14 to selected conductive paths 18 so that the semiconductor dice 14 can be connected to either other semiconductor dice 14 of other assemblies 10 within a stack or to other, external components as previously mentioned.

FIG. 3 depicts a perspective view of flexible support frame 16 with conductive paths 18 extending transversely through in the form of plated through holes, conductively filled vias or preformed conductive elements. Aligned conductive paths 18 extending through superimposed flexible support frames 16 provide horizontally electrically isolated vertical conductivity between superimposed assemblies 10. Each conductive path 18 may range in size (diameter or lateral breadth), by way of example only, from about 0.05 mm to 0.8 mm. The only upper constraint on the size for conductive path 18 is that it be no larger than otherwise necessary to prevent damaging the frame or reducing the frame's support strength. If a plated through hole is employed as conductive path 18, the metal used to plate the interior walls of each plated through hole such as, for example, copper, may have a minimum wall thickness of about 25 micrometers, or about 1 mil. A lesser thickness is possible as long as the plating employs a thickness of material adequate to provide the desired current carrying capacity without excessive resistance. If a conductive filler is employed in vias to form conductive paths 18, the filler may comprise a metal or a conductive or conductor-filled epoxy disposed in each via, or preformed, discrete conductive elements may be inserted.

FIG. 4 depicts a cross-sectional schematic diagram of a plurality of flexible carrier substrates 12, each having a plurality of semiconductor dice 14 placed upon the surface thereof, flexible carrier substrates 12, being interspaced with flexible support frames 16. Conductive paths 18 provide electrical interconnection between semiconductor dice 14 on one substrate 12 and those on another substrate 12. The use of flexible support frames 16 provides structural strength, without adding significant weight, in comparison to prior art approaches that employ dense, heavy, rigid ceramic or resin support frames. Additionally, reliable electrical interconnection is provided by the conductive paths 18 between the various flexible carrier substrates 12 in a stack. Further, the flexible carrier substrate 12 provides a relatively smaller resulting module, with lighter weight, and greater device or circuit density. With increased packing density, improved circuit performance is achieved. Additionally, the stacking process is simple to implement and can be used for combining a plurality of flexible assemblies 10 in the form of SIMM or DIMM modules to form a larger memory module.

FIG. 5 is a schematic diagram of how flexible carrier substrate 12 may be attached sequentially to a first end of flexible support frame 16 and then to a second end of flexible support frame 16. In this manner, rather than attaching all edges of a flexible support frame 16 to the perimeter of a flexible carrier substrate 12 simultaneously, an assembly 10 can first be molded to conform to a particular radius or other non-planar shape. For example, FIG. 6 is a cross-sectional diagram of two arcuate flexible carrier substrates 12 interconnected via a flexible support frame 16 where a relatively longer, top substrate 12 has a smaller radius of curvature than the bottom substrate 12. R2 is greater than R1 where R1 is the radius of the top substrate 12 and R2 is the radius of the bottom substrate 12, so that the upper substrate 12 "bows" away from the lower one to provide greater clearance therebetween. If desired, the substrates 12 may be sized to provide concentric curves when in superimposition so as to exhibit substantially constant space between superimposed substrates 12. Of course, a substrate 12 may be curved to a radius to conform to a mounting surface 13, as shown.

In an alternative embodiment, support frame 16 can be made from a semi-rigid material that is pliable such as a thermosetting or thermoplastic resin. With the pliability of support frame 16, it can be molded to a particular shape before placing a flexible carrier substrate 12 upon it. Further, the pliable material utilized in support frame 16 can be cured to shape in order to provide rigidity and greater strength after the semiconductor modules 10 are fabricated with the various flexible carrier substrates 12 layered in a desired configuration.

Another example that takes advantage of the technique of attaching the first end of a flexible carrier substrate 12 to a first portion of support frame 16 and then attaching a subsequent end of flexible carrier substrate 12 to a second portion of support frame 16 is shown in FIG. 7. FIG. 7 is a cross-sectional schematic diagram of a plurality of superimposed flexible carrier substrates 12, each bearing a plurality of semiconductor dice 14. Support frames 16 are used to support the flexible carrier substrates 12 and are configured in such a manner that a bend of 90°C is achieved over the adjoining faces of structure 22. Such configurations and arrangements as well as others are also possible using the combination of a plurality of flexible carrier substrates 12 with a multiple substrate support frame 116 as shown alternatively in FIG. 7. These various configurations are possible in that both multiple substrate support frame 116 and flexible carrier substrates 12 can be utilized in a plurality of combinations where either the flexible carrier substrates 12 are placed on structure 22 already secured to support frame 116, or support frame 116 may be arranged over a particular surface such as structure 22 with flexible carrier substrates 12 then subsequently secured to support frame 116.

FIG. 8 is a cross-sectional schematic diagram of a plurality of flexible carrier substrates 12 mounted and stacked in a laminate form. A single, preferably rigid, base substrate 24 is provided that can be selected from any type of rigid printed circuit board material such as, for example, fiberglass resin boards including FR-4 and FR-5, silicon, ceramics, or molybdenum. Mounted to the surface of base substrate 24 may be a second carrier substrate 26. Carrier substrate 26 can be either flexible or rigid, depending upon the requirements of the design. A plurality of semiconductor dice 14 is mounted to carrier substrate 26. Semiconductor dice 14 are mounted to carrier substrate 26 in a surface mount fashion such as by using tape-automated bonding (TAB) techniques. Alternatively, base substrate 24 may be provided with traces and dice 14 mounted directly thereto.

Alternatively, semiconductor dice 14 may be mounted using solder balls or other discrete conductive elements. A first flexible carrier substrate 12 is provided that connects at each end thereof to the surface of base substrate 24 and covers the dice carried by substrate 26 (or 24, as the case may be). Interconnect conductor traces 25 are fabricated on the surface of substrate 24 to allow interconnection between the semiconductor dice 14 placed on first flexible carrier substrate 12 to the dice 14 placed on carrier substrate 26 as well as any other dice connected to base substrate 24, or to other components external to base substrate 24. Next, a second flexible carrier substrate 12 is disposed over first flexible carrier substrate 12 and connected at each end there of to the surface of substrate 24.

A plurality of semiconductor dice 28 is attached to second flexible carrier substrate 12 and electrically connected to conductor traces 25. Semiconductor dice 28 may, by way of example, be attached to the surface of second flexible carrier substrate 12 by solder balls 30. Solder balls 30 are generally formed of a lead-tin or lead-silver alloy on bond pads of a die 28, and then reflowed to provide electrical and mechanical connection to terminals or contact pads on the surface of second flexible carrier substrate 12. Other discrete conductive elements as known in the art may be employed in lieu of solder balls 30. Finally, a cover 29 may be provided over the entire assembly. This can be another flexible substrate without circuit traces thereon, having its ends attached to the surface of base substrate 24. Alternatively, the cover 29 may be a hermetic, resin sealant that protects the dice 14 and 28 from moisture and dust, or may comprise a preformed dome-shaped member of any other suitable material sealed at its periphery to base substrate 24. The arrangement of FIG. 8 has the advantage of eliminating the need for support frames 16. Further, this approach facilitates connection of all of the flexible carrier substrates 12 to a single base substrate 24. Further still, the laminated but frameless design of FIG. 8 makes it easy to replace individual flexible carrier substrates as required.

FIG. 9 is a cross-sectional schematic diagram of a similar arrangement of that of FIG. 8, but where the plurality of substrates 12 are connected to rigid base substrate 24 in a more tapered, lower profile, design. In this example, a semiconductor die 28 can be attached to traces 25 on the surface of a rigid substrate 24 via a plurality of solder balls 30 or other discrete conductive elements. Next, a flexible carrier substrate 12 is placed over semiconductor die 28 and attached in a substantially planar arrangement over that of FIG. 8. At least one semiconductor die 14 can be attached to substrate 12. Additional flexible carrier substrates 12 can be applied to rigid substrate 24 and a laminated, more planar design can be achieved with a smaller vertical height. This arrangement is desirable when the dice 14 and 28 are of such a dimension that a nearly flat surface can be achieved in a stacking arrangement and a low profile, very dense structure is desired, as for SIMM or DIMM memory modules, laptop computers, personal digital assistants, cellular phones, and other compact electronic devices. This embodiment may be utilized when space is limited and a high chip stack cannot fit within the volume constraints of the electronic device. Further, this arrangement reduces electrical parasitics, and the close spacing of the dice 14 leads to better electrical performance.

In yet additional embodiments, the flexible carrier substrates 12 can be interleaved so that a plurality of semiconductor dies 14 are placed in a substantially coplanar arrangement with one another as shown in FIG. 10. This arrangement is also frameless and may again employ a base substrate 24. Yet another embodiment is depicted in FIG. 11, where selected dice 14 of a plurality of dice 14 are placed upon the base substrate 24 in a conventional flip-chip orientation while one or more additional dice 14 are mounted in an upside down flip-chip orientation to a bottom surface of a flexible carrier substrate 12 that is then attached at its ends to base substrate 24 either with or without a frame. In such an arrangement, the flexible carrier substrate 12 also serves as a cover for the dice 14 mounted to base substrate 24.

The use of a flexible carrier substrate of the invention rather than a rigid dielectric substrate such as a conventional printed circuit board has several advantages. These advantages include increased mechanical strength and vibration-dampening capability, as well as improved dielectric properties in comparison to rigid boards having the same relative thickness. Also, they provide space savings and weight reduction over the prior rigid dielectrics used. Additionally, greater impedance control and contact resolution (by way of example, reduction of pitch to 8 to 6 mils and extendible to 4 mils) can be achieved using the flexible substrates, providing superior electrical performance, which is also facilitated by the tighter geometries and therefore higher circuit densities which may be obtained using the flexible substrates. Additionally, mechanical flexing of the substrates may be readily used to conform to unusual and complex structural geometries not otherwise possible using conventional rigid materials. This flexing can be either continuous (i.e., a bend along a single radius) or intermittent or variable along the length of a flexible substrate. Further, when multiple flexible substrates are stacked upon one another, particularly when using support frames, additional rigidity of the overall module is achieved. Unlike conventional, rigid substrate approaches, wherein the rigidity is primarily in a single plane and bending or torsional degradation of a circuit structure may still occur, rigidity using the present invention can be achieved in an arcuate configuration or by using an abrupt, non-planar directional change that would not otherwise be possible using rigid, planar substrates. Properly engineered and configured as required with appropriate cross-members, an assembly of flexible substrates with one or more supporting frames according to the invention may provide rigidity under loads applied from any direction or particularly critical directions. Additionally, the flexible carrier substrate of the invention in combination with a stackable support frame facilitates fabrication of the assembly upon structures exhibiting greater non-planarity than was previously possible using conventional techniques for mounting, support and electrical connection of dice.

FIG. 12 depicts an electronic system 130 including an input device 132 and an output device 134 coupled to a processor device 136 which, in turn, is coupled to a memory device 138 incorporating a flexible stackable assembly 10 of any of the various embodiments thereof as depicted in, and described with respect to, FIGS. 1-11. For example, an entire, operable computer system may be assembled using stacked assemblies of the present invention. By way of example only, a microprocessor may be placed in one flexible carrier substrate level, which includes the appropriate and necessary supporting logic, memory devices may be placed on another flexible carrier substrate level, sound and video processors may be placed on another flexible carrier substrate level, and the input/output control devices can be placed on yet another flexible carrier substrate level.

Although the present invention has been described with reference to particular embodiments, the invention is not limited. Many additions, modifications and deletions to the embodiments disclosed herein may be effected without departing from the scope of the invention as defined by the claims appended hereto. Moreover, selected features from one embodiment may be employed with selected features from another embodiment, again within the scope of the invention.

Akram, Salman

Patent Priority Assignee Title
10483254, Jan 17 2017 Advanced Semiconductor Engineering, Inc. Electronic module and semiconductor package device
7300824, Aug 18 2005 TERECIRCUITS CORPORATION Method of packaging and interconnection of integrated circuits
7450398, Dec 02 2005 Samsung Electronics Co., Ltd. Printed circuit board
7502231, Jul 16 2003 Samsung Electronics Co., Ltd. Thin printed circuit board for manufacturing chip scale package
7511962, May 18 2007 AVARY HOLDING SHENZHEN CO , LIMITED Flexible printed circuit board
7863762, Aug 18 2005 TERECIRCUITS CORPORATION Method of packaging and interconnection of integrated circuits
7888185, Aug 17 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor device assemblies and systems including at least one conductive pathway extending around a side of at least one semiconductor device
7915718, Mar 04 2002 Micron Technology, Inc Apparatus for flip-chip packaging providing testing capability
7960829, Sep 19 2003 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Support structure for use in thinning semiconductor substrates and for supporting thinned semiconductor substrates
7983042, Jun 15 2004 Raytheon Company Thermal management system and method for thin membrane type antennas
8050043, Nov 18 2005 SAMSUNG ELECTRONICS CO , LTD Printed circuit board facilitating expansion of number of memory modules and memory system including the same
8345431, Jan 02 2008 MICROELECTRICS ASSEMBLY TECHNOLOGIES, INC Thin multi-chip flex module
8365397, Aug 02 2007 EM RESEARCH, INC Method for producing a circuit board comprising a lead frame
8629542, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional structure memory
8653672, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional structure memory
8791581, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional structure memory
8796862, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional memory structure
8824159, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional structure memory
8841778, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional memory structure
8907499, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional structure memory
8928119, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional structure memory
8933570, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Three dimensional structure memory
9401183, Apr 04 1997 Elm Technology Corporation; ELM 3DS INNOVATONS, LLC Stacked integrated memory device
Patent Priority Assignee Title
4555151, Aug 06 1984 AG COMMUNICATION SYSTEMS CORPORATION, 2500 W UTOPIA RD , PHOENIX, AZ 85027, A DE CORP Contact terminal device for connecting hybrid circuit modules to a printed circuit board
4907128, Dec 15 1988 GRUMMAN AEROSPACE CORPORATION, 1111 STEWART AVE , BETHPAGE, NY 11714-3580 Chip to multilevel circuit board bonding
4991927, Nov 23 1987 Dowty Electronic Components Limited Interconnection systems for electrical circuits
5089880, Jun 07 1989 AMDAHL CORPORATION, A CORP OF DE Pressurized interconnection system for semiconductor chips
5229960, Dec 04 1991 Matra Marconi Space France Solid state memory modules and memory devices including such modules
5247423, May 26 1992 Freescale Semiconductor, Inc Stacking three dimensional leadless multi-chip module and method for making the same
5313416, Jul 03 1991 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory control device and method of mounting same in high density
5343366, Jun 24 1992 International Business Machines Corporation Packages for stacked integrated circuit chip cubes
5384690, Jul 27 1993 International Business Machines Corporation Flex laminate package for a parallel processor
5435733, Nov 12 1993 YAKISAMI CAPITAL CO L L C Connector assembly for microelectronic multi-chip-module
5440171, Mar 09 1992 Renesas Electronics Corporation Semiconductor device with reinforcement
5471151, Feb 14 1990 NANOPIERCE TECHNOLOGIES, INC Electrical interconnect using particle enhanced joining of metal surfaces
5585675, May 11 1994 NORTH SOUTH HOLDINGS INC Semiconductor die packaging tub having angularly offset pad-to-pad via structure configured to allow three-dimensional stacking and electrical interconnections among multiple identical tubs
5620782, Jul 27 1993 International Business Machines Corporation Method of fabricating a flex laminate package
5637907, Sep 30 1994 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Three dimensional semiconductor circuit structure with optical interconnection
5715143, Jul 22 1996 Delco Electronics Corporation Carrier system for integrated circuit carrier assemblies
5729897, Jul 07 1993 Dyconex Patente A.G. Method of manufacturing multilayer foil printed circuit boards
5761795, Oct 05 1994 Enplas Corporation Pressing apparatus for connecting terminals of flexible circuit board
5776797, Dec 22 1995 Fairchild Space and Defense Corporation Three-dimensional flexible assembly of integrated circuits
5781415, Aug 10 1995 NEC Corporation Semiconductor package and mounting method
5798014, Feb 02 1995 INTERCONNECT SYSTEMS, INC Methods of making multi-tier laminate substrates for electronic device packaging
5838546, Apr 12 1996 NEC Corporation Mounting structure for a semiconductor circuit
5927193, Oct 16 1997 International Business Machines Corporation Process for via fill
5986886, Nov 03 1997 R-Amtech International, Inc. Three-dimensional flexible electronic module
5992649, Apr 30 1996 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Apparatus and method for facilitating circuit board processing
6027958, Jul 11 1996 CALLAHAN CELLULAR L L C Transferred flexible integrated circuit
6049975, Sep 16 1992 Method of forming a thin multichip module
6051877, Aug 04 1993 Renesas Electronics Corporation Semiconductor device and fabrication method
6061245, Jan 22 1998 International Business Machines Corporation Free standing, three dimensional, multi-chip, carrier package with air flow baffle
6064217, Dec 23 1993 ELK FINANCIAL, INC Fine pitch contact device employing a compliant conductive polymer bump
6086386, May 24 1996 TESSERA, INC , A CORP OF DE Flexible connectors for microelectronic elements
6104089, Jun 26 1996 Round Rock Research, LLC Stacked leads-over chip multi-chip module
6121676, Dec 13 1996 Tessera, Inc Stacked microelectronic assembly and method therefor
6191478, Jun 07 1999 III Holdings 1, LLC Demountable heat spreader and high reliability flip chip package assembly
6256203, Jan 22 1998 International Business Machines Corporation Free standing, three dimensional, multi-chip, carrier package with air flow baffle
6310667, Feb 23 1998 PANASONIC LIQUID CRYSTAL DISPLAY CO , LTD Liquid crystal display device and fabrication method thereof
6323891, Mar 16 1998 Canon Kabushiki Kaisha Imaging apparatus with thermal discharger for transferring heat to cool photoelectric transfer elements
6421013, Oct 04 1999 Avante International Technology, Inc Tamper-resistant wireless article including an antenna
20020001020,
JP2000138265,
///////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 09 1999AKRAM, SALMANMicron Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0100270523 pdf
Jun 10 1999Micron Technology, Inc.(assignment on the face of the patent)
Apr 26 2016Micron Technology, IncMORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0389540001 pdf
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTCORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0430790001 pdf
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0386690001 pdf
Jun 29 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0472430001 pdf
Jul 03 2018MICRON SEMICONDUCTOR PRODUCTS, INC JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0475400001 pdf
Jul 03 2018Micron Technology, IncJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0475400001 pdf
Jul 31 2019JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0510280001 pdf
Jul 31 2019JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTMICRON SEMICONDUCTOR PRODUCTS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0510280001 pdf
Jul 31 2019MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0509370001 pdf
Date Maintenance Fee Events
Dec 15 2003ASPN: Payor Number Assigned.
Feb 09 2007M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 10 2011M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 25 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 09 20064 years fee payment window open
Mar 09 20076 months grace period start (w surcharge)
Sep 09 2007patent expiry (for year 4)
Sep 09 20092 years to revive unintentionally abandoned end. (for year 4)
Sep 09 20108 years fee payment window open
Mar 09 20116 months grace period start (w surcharge)
Sep 09 2011patent expiry (for year 8)
Sep 09 20132 years to revive unintentionally abandoned end. (for year 8)
Sep 09 201412 years fee payment window open
Mar 09 20156 months grace period start (w surcharge)
Sep 09 2015patent expiry (for year 12)
Sep 09 20172 years to revive unintentionally abandoned end. (for year 12)